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ABSTRACT

Cleavage-crack initiation in large-scale wide-plate (WP) specimens could not be accurately
predicted from small, compact (CT) specimens by using a linear-elastic fracture-mechanics, Ky,
methc doulogy. In the wide-plate tests conducted by the Heavy-Section Steel Technology
Program at Oak Ridge National Laboratory, crack initiation has consistently occurred at stress-
intensity (K;) values ranging from two to four times those predicted by the CT specimens.
Studies were initiated to develop crack-tip stress field criteria incorporating effects of geometry,
size, and constraint that will lead to improved predictions of cleavage initiation in WP specimens
from CT specimens. The work centers around nonlinear two- and three-dimensional finite-
element analyses of the crack-tip stress fields in these geometries. Analyses were conducted on
CT and WP specimens for which cleavage initiation fracture had been measured in laboratory
tests. The local crack-tip fields generated for these specimens were then used in the evaluation
of fracture correlation parameters to augment the K| parameter for predicting cleavage initiation.
Parameters of hydrostatic constraint and of maximum principal stress, measured volumetrically,
are included in these evaluations. The results suggest that the cleavage initiation process can be
correlated with the local crack-tip fields via a maximum principal stress criterion based on
achieving a critical area within a critical stress contour. This criterion has been successfully
applied to correlate cleavage initiation in 2T-CT and WP specimen geometries.
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1. INTRODUCTION

Traditionally, fracture mechanics has been focused on understanding fracture processes
and providing fracture criteria for predicting the failure of structures with defects. In
applications of linear-elastic fracture-mechanics (LEFM) methodology, mode I crack initiation is
postulated to occur when the applied stress-intensity factor (Ky) exceeds a critical value (Kp.)
determined by material testing of small specimens, for example, compact (CT) specimens.
However, in tests of large-scale single-edge-notched (SEN) tension wide-plate (WP) specimens1
of A 533 grade B class 1 (A 533 B) steel, conducted by the Heavy-Section Steel Technology
(HSST) Program at Oak Ridge National Laboratory (ORNL), cleavage-crack initiation occurred
at Kj values well above those predicted by the small specimens. In fact, the K/K| ratios ranged
from 2.0 to 4.0. In Fig. 1, wide-plate data from the WP-1 series! are shown to be consistently in
the upper scatter band of data from CT specimens. In response to this apparent failure of the
fracture-mechanics approach, studies were initiated in the HSST Program to develop additional
crack-tip stress field criteria incorporating effects of geometry, size, and thickness that would
improve predictions of cleavage initiation in these reactor pressure vessel (RPV) steels.
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Fig. 1. Cleavage initiation values vs temperatures for small- and large-specimen tests
of A 533 grade B class 1 steel.
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The work centers around multidimensional analyses of the crack-tip stress fields in small-
scale CT and large-scale WP geometries, modeling specimens previously tested under the HSST
Program. All fracture data used in the study were measured on specimens taken from a single
plate of A 533 B steel that had been extensively characterized for mechanical and fracture
properties. Local crack-tip fields were generated from elastic-plastic analyses of two- and three-
dimensional (2-D and 3-D) finite-clement models of these test specimens. The crack-tip fields
from these specimen analyses were used to evaluate correlation parameters that may be used to
augment the Kj parameter for predicting cleavage initiation. The correlation parameters
examined in this study are hydrostatic constraint and magnitude of maximum principal stress
evaluated volumetricaily ahead of the crack tip.

Section 2 summarizes material characterization of the A 533 B steel source plate for the
test specimens, and Sect. 3 describes the CT and WP testing programs that provided the cleavage
fracture-toughness data for the present study. In Sect. 4, a description is given of the cleavage
initiation correlation parameters evaluated in this study. This is followed in Sect. 5 by a detailed
description of the posttest fracture analyses of the CT and WP specimens, as well as an
assessment of the fracture-toughness correlation parameters derived from the local crack-tip
fields of the specimens. Finally, in Sect. 6, recommendations are made concerning the predictive
capabilities of a dual-parameter model for cleavage initiation toughness in RPV steels.



2. MATERIAL CHARACTERIZATION

The first series of WP crack-arrest test specimens! and the CT test specimens used in this
study were taken from HSST plate 13A, which is of A 533 B steel. Properties of the plate
material included Young’s modulus, E = 206.9 GPa; Poisson’s ratio, v = 0.3; thermal expansion
coefficient, o = 11 x 10-5/°C; and density, p = 7850 kg/m3. The average room-temperature
tensile properties (longitudinal orientation) are as follows: ultimate tensile strength, 597 MPa;
yield strength, 445 MPa; total elongation, 24%; and reduction in area, 69%.

Variations of longitudinal tensile properties with temperature for the plate center are
shown in Fig. 2. Multilinear representations of the stress-strain curves for the material, with
temperature as a parameter, are shown in Fig. 3. The temperature-dependent yield stress for the
multilinear representations in this figure is given by the function

Oy = 374.866 + 59.894¢-0.0079328T (1)

where oy and T are in megapascals and degrees Celsius, respectively. The stress-plastic-strain
modulus H'(T) as a function of temperature is presented in Table 1.

Figure 4 shows that the Charpy V-notch (CVN) properties in the longitudinal orientation
also did not vary appreciably through the plate thickness. The LT orientation has the specimen
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Table 1. Stress-plastic-strain modulus H* for HSST
wide-plate material (HSST plate 13A of A 533
grade B class 1 steel)

Plastic Temperature
strain eing:eriraal ¢ H’ = Ac/AeP
interval °C) (MPa/%)
(%)
<1 -125.00< T <~-72.78 0.345
=72.78 < T <37.78 16.044 + 0.214 T
3778 <T < 148.89 21,787 +0.062 T
148.89 < T < 260.00 24407 +0.372 T
1-2 -125.00 < T < 260.00 37.23
2-4 -125.00 < T < 260.00 26.579 - 0.00776 T
4-8 -125.00 < T < 37.78 11.228 -0.0599 T
37.78 £ T < 260.00 8.96
8-12 -125.00< T <-17.78 -0.0276 - 0.0403 T

-17.78 < T < 260.00 0.689
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Fig. 4. CVN through-thickness results for LT specimens from HSST plate 13A, A 533
grade B class 1 steel in quenched and tempered condition.

parallel to the rolling direction and the notch (crack propagation) transverse to the rolling
direction, similar to that for the WP crack-arrest specimens. For the center 100 mm of the plate,
which was the portion used for the WP testing, the average 41-J transition temperature is -30°C,
the 50% ductile transition temperature is 2°C, the upper-shelf energy is 160 J, the onset of upper-
shelf energy is at 55°C, and 35 mils lateral expansion is obtaincd at —13°. The RTypT
[American Society of Mechanical Engineers (ASME) reference nil-ductility temperature] was
determined to be —23°C, as measured by drop-weight and Charpy testing in the LT orientation.

The fracture-toughness properties of HSST Plate 13A were determined at ORNL using
25.4- and 50.8-mm CT specimens (1T-CT and 2T-CT, respectively) modified for load-line
displacement measurement.! The single-specimen unloading compliance technique of ASTM
E1152 was used to measure crack growth during testing. The specimens were loaded under
load-line displaccinent control at a rate of 0.2 mm/min. When applicable, K¢ values were
determined according to ASTM E399. Otherwise, the modified Enisi j-integral was used to
infer Kjc values from the relation

K. =VEL . )



where

E(GPa) =207.2-0.057 T (°C) . 3)

A plasticity correction (*“beta-correction”) was determined from the Ky value at cleavage using

the Merkle method.2 A summary of the fracture-mechanics tests is provided in Table 2. The
material tearing resistance is represented by a power law curve having the equation

JR = c(Aa)ym, 4

where ¢ = 0.3539, m = 0.4708, and the units of JR and Aa are megajoules per square meter and
millimeters, respectively.

Fracture-toughness relations for crack initiation and arrest have been developed on the
basis of small-specimen data and are given as follows:

Kic = 51.276 + 51.897¢0-036(T — RTNpT) (5)

Kia = 49.957 + 16.878¢0-029(T - RTNDT) . (6)

Units for K and T are megapascals times square root meters and degrees Celsius, respectively.
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3. WIDE-PLATE TESTING PROGRAM AND TEST DATA

The primary objective of the wide-plate crack-arrest studies!3-7 was to generate data and
associated analysis methods for understanding the crack-arrest behavior of prototypical RPV
steels at tempetatures near and above the onset of the Charpy upper-shelf region. Program goals
included (1) extending the existing K, data bases to values above those associated with the
upper limit in the American Society of Mechanical Engineers Boiler and Pressure Vessel Code
(ASME B&PVC); (2) clearly establishing that crack arrest occurs prior to fracture-mode
conversion; and (3) validating the predictability of crack arrest, stable tearing, and/or unstable
tearing sequences for RPV materials. Sixteen WP crack-arrest tests were completed, ten
utilizing specimens fabricated from A 533 B material and six fabricated from a low-upper-shelf
base material.

The 1- x 1- x 0.1-m (WP-1.2 through WP-1.6) or 1- x 1- x 0.15-m (WP-1.7 and WP-1.8)
WP specimens were machined and precracked by ORNL. The precracking was done by
hydrogen charging an electron-beam (EB) weld located at the base of a premachined notch in the
plate. The initial total crack length, notch depth plus EB weld, for each specimen was nominally
0.2 m (a/W ~ 0.2). Each face of a specimen was grooved to a depth equal to 12.5% of the plate
thickness. Starting with the third specimen in test series WP-1 (WP-1.3), the crack front of each
specimen was machined into a truncated chevron configuration to reduce the tensile load
required to achieve crack initiation. Upon completion of the machining operations, each
specimen was shipped to the National Institute of Standards and Technology (NIST) in
Gaithersburg, Maryland, where it was welded to pull plates nominaily having the same cross-
section geometry as the specimen to produce the test article shown schematically in Fig. S.

To obtain pertinent data during a test, each WP specimen was instrumented with three
primary types of devices: (1) thermocouples; (2) strain gages; and (3) crack-opening dis-
placement (COD) gages. Also, an acoustic emission transducer was located on the lower pull
tab of each specimen. After being instrumented, the specimen was placed into the 27-MN-
capacity tensile testing machine, and electric-resistance strip heaters were attached to the back
edge of the plate. A temperature gradient was imposed across the plate by spraying liquid
nitrogen (LN3) onto the notched edge while heating the other edge. Generally, the midplate
(a/W = 0.5) temperature was selected to correspond to that of the onset of Charpy upper-shelf
energy (USE) for the material tested, and the crack-tip temperature was varied to provide the
desired initiation load. Upon obtaining the desired temperature gradient, tensile load was
applied to the specimen at a rate which varied from 11 to 312 kN/s, depending on the test, until
fracture occurred. Table 3 presents a summary of the conditions for testing of the A 533 B wide-
plate materials. A detailed description of each of thesc tests is provided elsewhere.!3-7

Initiation stress-intensity factors obtained from tests in the WP-1 serics are compared in
Table 4. In Fig. 1, the WP-1 initiation Kj values are compared with the CT-specimen data from
Table 2.
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Table 3. Summary of HSST wide-plate crack-arrest test conditions
and resuits for A 533 grade B class 1 steel: WP-1 serics

Test Crack Crack Initiation  Arrest Arrest Arrest Crack-arrast
location temperature load  location temperature T-RTNDT a
No. A o A oughness'
(cm) 0O M) m (O O (Mpa+ vim)
WP-1.1b 20.0 -60 20.10 50.2 51 74 NA
WP-1.2A 20.0 -33 18.90 55.5 62 85 424
WP-1.2B 55.5 62 18.90 64.5 92 115 685
WP-1.3 20.0¢ -51 11.25 48.5 54 71 235
WP-14A 20.7¢4 -63 7.95 44.1 29 52 NA
WP-14B 44.1 29 9.72 52.7 60 83 387
WP-1.5A 20.0¢ =30 11.03 521 56 79 231
WP-1.5B 52.1 56 11.03 58.0 72 95 509
WP-1.6A 20.0¢ -19 14.50 49.3 54 77 275
WP-1.6B 49.3 54 14.50 59.3 80 103 397
WP-1.7A 20.2¢ 24 26.20 528 61 84 319
WP-1.7B 52.8 61 26.20 63.5 88 111 555
WP-1.8A 19.8¢ 47 26.50 49 40 63 345
WP-1.8B 449 40 26.50 50.4 55 78 484
WP-1.8C 50.4 55 26.50 59.4 79 102 563

2Dynamic finite-element analyses.

bSpecimen was warm prestressed by loading to 10 MN at 70°C. Specimen was also preloaded
to 19 MN.

Crack front was cut to truncated chevron configuration.
dpiliow jack was used to apply pressure load 10 specimen’s machined notch.

Table 4. Initiation stress-intensity factor comparisons for the
WP-1 series of wide-plate crack-arrest tests

. Pr

4 Test w%rg(e:lr:gge Cal(t:autliitw cor;)er;z{itgn Kl/KIC
esignauon °0) K] Kica

(MPa « Vm) (MPa * vm)

WP-1.2 -33.0 251.5 87.5 2.87
WP-1.3 -51.0 173.5° 70.1 248
WP-14 -62.0 213.0° 63.9 3.33
WP-1.5 -30.0 179.8° 916 1.96
WP-1.6 -19.0 233.8° 111.2 2.10
WP-1.7 -22.7 280.6° 103.7 2.71
WP-1.8 472 290.0° 73.0 3.97

Calculated from K¢ = 51.276 + 51.897¢9-026 (T —RTnpT) using
crack-tip temperature of initial flaw and material RTNpT.

bComputed from 2-D static analysis.
¢Computed from 3-D static analysis.
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4. FRACTURE-TOUGHNESS CORRELATION PARAMETERS

The variability of cleavage fracture-toughness values for pressure vessel steels (as a
function of temperature) is well-documented in the literature (see, for example, Refs. 8-14). As
discussed by Merkle,? this variability can be traced to physical effects, such as difference in size
and geometry of test specimens, and to the existence of scatter due to material variability. A
large body of literature has developed which examines physical effects based on experimental
methods or on micromechanical models,9-11.15-17 while material variability has been modeled
using statistical methods.12-14 The >mpbhasis in this study is on the resolution of physical effects
through the use of correlation parameters based on local crack-tip stress fields. These parameters
are described in the following sections.

4.1 HYDROSTATIC CONSTRAINT

The cleavage fracture model, described by Kanninen and Popelar,!® is based on the
conditions of si:.all-scale yielding; that is, the size of the plastic zone ahead of the crack tip is
small compared to the K-dominant region, and the crack-tip stresses and strains are uniquely
characterized by K or J. However, with increasing plasticity, small-scale yielding conditions and
K-dominance are eventually lost, and K-values at initiation become size dependent. Generally,
the loss of K-dominance leads to a reduction in triaxiality, which can be quantified conveniently
in terms of constraint factors. One type of constraint factor is the ratio of the hydrostatic stress
to the Von Mises effective stress:

h =oy/oy . (7
with
oy = (Oxx + Oyy + 672)/3 , (8)
and
1/2
o, = {3[0.5(:3’)3X +o’\fY + o'zzz)“’%w + o%{Z +o§(2]} , ©)]

where 6, is proportional to the square root of the second invariant of the deviatoric stress tensor.
A function of this ratio has been used previously by Rice and Tracey!? to predict macroscopic
fracture toughness using microscopic void growth models. A higher value of the constraint
factor h indicates a higher degree of triaxiality. When triaxiality is high, the plastic flow of the
material decreases, thereby inhibiting the ability of the material to reduce local stress peaks.
According to Merkle,? triaxiality is necessary to sustain cleavage-microcrack propagation in
normal structural steels because the maximum principal tensile stress must be equal to or greater
than the cleavage fracture stress when the maximum principal tensile strain reaches the cracking
strain of the grain boundary carbide, which is about 2%.
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The hydrostatic stress, and consequently the constraint factor h, in the plastic zone ahead
of the crack tip depend on the transverse strain, that is, the strain parallel to the crack front. For
through-cracked specimens such as CT and WP configurations, the transverse strain depends on
the ratio of the plastic-zone size to the thickness. When the plastic zone becomes large
compared to the plate thickness, yielding can take place freely in the thickness direction
(condition of plane stress). As the transverse contraction strain increases, the maximum
hydrostatic stress and the maximum principal tensile stress on the crack plane ahead of the crack
tip decrease. Consequently, the load and the plastic-zone size at cleavage initiation are
increased, with an apparent elevation in the fracture toughness of the material.

4.2 MAXIMUM PRINCIPAL STRESS

In an early study, Richie, Knott, and Rice!5 developed a relationship between tensile stress
and cleavage fracture toughness in a mild steel under plane-strain conditions. In their study,
unstable cleavage fracture is postulated to occur when the maximum principal stress exceeds a
critical value of stress over a characteristic distance ahead of the crack tip, determined as twice
tire grain size of the material. The results in Ref. 15 are based on elastic-plastic solutions for the
stress distribution ahead of a sharp crack. The use of a sharp-crack model necessitated that the
critical stress be achieved over some microstructurally significant distance ahcad of the crack tip
to avoid predictions of fracture at vanishingly small loads due to the stress singularity.

Merkle? asserts that a description of the crack-tip stress and strain fields required to model
the onset of cleavage fracture can be attained only by considering the blunting of the crack tip.
Crack-tip blunting leads to a finite crack-tip root radius, with zero stress normal to the blunted
crack surface. Thus, the point of greatest hydrostatic stress occurs at a small distance ahead of
the notch tip, while the greatest strain occurs at the notch tip. Finite deformation analyses
performed by McMeeking20 and McMeeking and Parks2! indicate that the point of maximum
stress is approximately 39, ahead of the crack tip, where &, is the crack-tip opening displacement.
Merkle? points out that the blunted crack-tip model eliminates the necessity of exceeding the
critical stress over a characteristic distance to cope with a nonexistent stress singularity, such as
the criterion of Ref. 15. However, Dodds and Anderson!7 point out that relaxation of stresses
near the free surface of the blunted tip implies that the fracture process zone lies beyond the
finitely deforming zone adjacent to the tip. They argue that, because differences in stresses from
small-strain and finite deformation analyses of the small-scale yiclding model become
insignificant beyond 38; from the crack tip, small-strain solutions are adequate to assess crack-tip
fields for the stress-controlled cleavage process.

In recent studies, Anderson and Dodds!6 constructed a correlation procedure to remove the
geometry dependence of cleavage fracture-toughness values for single-edge-notched bend
(SENB) specimens of A36 steel for a range of crack depths. This procedure utilizes a local
stress-based criterion for cleavage fracture and detailed plane-strain finite-element analysis.
From Ref. 16, dimensional analysis for small-scale yielding implies that the principal stress
ahead of the crack tip can be written as

o 12
——1—=f( 5 J : (10)
O, G5 A
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where o, is the 0.2% offset yield strength, o1 is the maximum principal stress at a point, and A
is the area enclosed by the contour on which o) is a constant. The strategy employed in Ref. 16
utilizes a fracture criterion dependent upon achieving a critical volume V(o1) within which the
principal stress is greater than ¢j. For a specimen subjected to plane-strain conditions, the
volume is equal to the specimen thickness B times the area within the ¢; contour on the
midplane (V = BA). Thus Eq. (10) is the appropriate normalization for small-scale yielding
solutions when using the latter fracture criterion based on volume or area.

In the following, correlations are developed between local crack-tip fields in CT and WP
specimens utilizing parameters discussed in this section. Specifically, these include a
comparison of the hydrostatic constraint factor, h, for the various loading conditions and a
volumetric (or area) maximum principal stress criterion, based on volume V(o) [or area A(c1)]
and a critical stress 1. These criteria are applied to analysis results from both 2-D and 3-D
finite-element models of CT and WP specimen geometries that were tested in the HSST
Program.
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S. POSTTEST ANALYSES AND EVALUATION
OF LOCAL CRACK-TIP FIELDS

Two-dimensional plane-stress and plane-strain and fully 3-D finite-element models were
employed to generate the local crack-tip fields for the CT and WP specimens. The numerical
analysis techniques utilized both small- and large-strain formulations and the constitutive model
representation for A 533 B steel described in Sect. 2. In the following, detailed descriptions of
these models are given, as well as the loading conditions for each analysis performed.
Interpretations of the results are discussed in terms of the fracture correlation parameters of
Sect. 4, which are evaluated from the local crack-tip fields of the finite-element analyses.

5.1 FINITE-ELEMENT MODELS

The 2-D finite-element model of the CT configuration used in the nonlinear elastic-plastic
analyses consists of 1852 nodes and 580 eight-noded isoparametric elements, as shown in Fig. 6.
Collapsed-prism elements surround the crack tip to allow for blunting and for a 1/r singularity in
the strains at the crack front. The radial dimension of the collapsed-prism elements at the crack
tip is r = 0.22 mm (r/w = 0.0043) for the 1T-CT specimen and r = 0.44 mm (r/w = 0.0043) for
the 2T-CT specimen.

The 3-D finite-element models of the CT specimens were generated by projecting the plan-
form of a 2-D mesh for each specimen through the thickness, using four elements in the
thickness direction. The 3-D finite-element model of the 1T- and 2T-CT specimens consists of
6344 nodes, 1088 20-noded isoparametric brick elements, and 112 collapsed-prism elements at
the crack front for a 1/r singularity. One quarter of the specimen is modeled because of
symmetry. The model for the 2T-CT specimen is shown in Fig. 7.

The 2-D finite-element model for the WP specimens consists of 1164 nodes and 348
eight-noded isoparametric elements. The collapsed-prism elements at the crack tip have radial
dimensions of r = 0.375 mm (r/w = 0.000375). The 3-D finite-element model of the WP
specimens consists of 7542 nodes, 1297 20-noded isoparametric brick elements, and 112
collapsed prism elements at the crack front. The WP model is shown in Fig. 8; a detailed plot of
the crack-tip region is given in Fig. 9. For the 3-D model, the radial dimension of the collapsed-
prism crack-tip elements is r = 0.75 mm (r/w = 0.00075), which is twice that for the 2-D inodel.

5.2 FINITE-ELEMENT RESULTS AND EVALUATIONS OF CRACK-TIP
FIELD PARAMETERS

Two-dimensional plane-stress and plane-strain analyses were performed using the 2T-CT
specimen model and the multilinear true stress-strain curves from Fig. 3, assuming uniform
temperatures of —150, —75, and —18°C. A material-nonlinear-only (MNLO) formulation (small-
strain theory) was used in these analyses. The load was applied incrementally in the form of a
cosine stress distribution function to the load pin hole up to the load where crack initiation took
place for each 2T-CT test. By comparing the plane-strain and plane-stress solutions for load vs
displacement, it was observed that the experimental data plot close to the calculated plane-strain
curve (see Fig. 10).
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Fig. 7. Three-dimensional finite-element model for the 2T-CT specimen.
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Fig. 8. Three-dimensional finite-element model for the WP specimen.

For the 3-D models of the CT specimens, elastic-plastic static analyses were performed at
temperatures of —~150°C for the 2T-CT specimen and —75°C for the 1T- and 2T-CT specimens.
An MNLO formulation with a multilinear true stress-strain curve was used for the 1T-CT
specimen analysis. Since there had been some question conceming whether to use small-strain
or large-strain theory for these analyses, two analyses were performed for the 2T-CT specimens
at —75°C, utilizing MNLO and updated Lagrangian (UL) formulations (large-strain theory) with
a bilinear (BL) true stress-strain curve. Figure 11 shows the variation of the constraint factor, h,
given by Eqs. (7)-(9), with the distance from the crack tip at -75°C. For the MNLO
formulation, all the 3-D analyses fall on the 2-D plane-strain curve, and the value for h increases
steeply toward the crack tip. For the UL analysis, the value of h begins to decrease after a
maximum at about 0.4 mm (~4 §,) from the crack tip. Similar trends were reported in Ref. 22.

Elastic-plastic plane-strain analyses were performed using the 2-D WP finite-element
model and an MNLO formulation. Because these analyses were concemed with crack initiation,
the specimen was assumed to be in an isothermal condition at the crack-tip temperature
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measured in each WP test. A multilinear true stress-strain curve corresponding to this
temperature was selected from Fig. 3 for each analysis. The calculated J values were elevated by
the ratio of crack front-to-wide plate thicknesses to approximate in a 2-D model the conditions
produced by side grooves and the chevron.

A thermo-elastic-plastic analysis of the 3-D WP model was carried out using an MNLO
formulation and bilinear true stress-strain curves constructed from the multilinear curves of
Fig. 3. Boundary conditions prescribed for the model also included the thermal gradient across
the plate. In Fig. 12, the lower values of h for the WP analysis imply less constraint for the WP
specimen than for the CT specimen. However, these values are still considered to be in the
plane-strain range. When h is plotted through the thickness for both specimens (Fig. 13), the
values at comparable r's would be slightly lower for the WP specimen than the CT specimen if
the side-grooved region of the WP specimen is excluded. The side-groove of the WP specimen
gives rise t¢ stress peaks since it was modeled without a finite root radius. In the CT specimen,
h is a maximum at center plane and decreases to the 2-D plane-stress value at the free surface.
When the through-thickness average value, hy,, is plotted vs the stress-intensity factor (Fig. 14),
constraint is higher for the WP specimen until K =25 MPa *+/m. These results are similar to
those observed in Ref. 22 {or the CT specimens.

The fracture model based on maximum principal stress theory described in the previous
section was applied to the analyses of the CT and WP specimens. A criterion ror plane-strain
fracture is based upon achieving a critical area, Acg(01), within which the maximum principal
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stress is greater than a chosen stress, ;. This criterion was applied to the analyses of the CT and
WP specimens, and a portion of the results is summarized in Table 5. A maximum principal
stress of ¢p; = 1400 MPa was used to generate the contour areas in Table 5. This critical stress
is based on the average maximum principal stress calculated for the 2-D and 3-D analyses of the
CT specimens. Also, Hahn, Gilbert, and Reid?3 estimated that the cleavage-microcrack
propagation stress for individual grains of ferrite is 1380 MPa. In Table 5, the area within the
stress contour Gp1 = 1400 MPa is tabulated as a function of load for the 2-D and 3-D finite-
elernent solutions. When these areas are normalized with respect to the factor (6,/J)2, the
normalized values vary slightly for the 2T-CT specimen over the range of loading. By contrast,
the normalized results for the WP specimens decrease significantly with increasing load after an
initial increase, indicating loss of constraint with respect to small-scale yielding.

In the 2-D analyses of the CT specimens, the area corresponding to the smaliest initiation
load (0.144 MN) at —75°C is given by Acr = 0.1316 mm2. Comparing this with the arca from
the 2-D WP analyses, the same critical area is achieved at an applied load of approximately 15.7
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Table 5. Cumulative area within the maximum principal stress contour o1 = 1400 MPa

for CT and wide-plate specimens

Measured FEM calculated values
Specimen lcad J Area Normalized Remarks
(MN) (MJ/m?2) (mm?) arca
A*(op/T)?
K42B ').144 0.0480 0.1316 13.4 2T-CT4
K42A 0.158 0.0586 0.2166 14.8
K41A 0.162 0.0615 0.2278 14.0
K34A 0.180 0.0775 0.3572 14.0
K41B 0.203 0.1075 0.2774 44 2T-CTb
K34B 0.207 0.1149 0.3002 4.4 2T-CTP
K51C 0.029 0.0173 0.0120 94 1T-CT¢
Calculation only 0.031 0.0199 0.0120 1.0
K52B 0.035 0.0262 0.0326 11.2
K54A 0.050 0.0845 0.2544 8.4
WP-1.3d 7.63 0.0476 0.0328 3.2
8.44 0.0583 0.0328 2.6
8.84 0.0640 0.1186 6.2
9.64 0.0764 0.1268 4.6
11.25 0.1044 0.1428 2.8 Fracture
WP-1.6¢ 7.46 0.0455 0.0090 0.8
8.29 0.0563 0.0202 1.2
8.70 0.0621 0.0338 1.8
9.53 0.0748 0.0338 1.2
14.50 0.1754 0.2538 1.6 Fracture
wp-1.2f 8.81 0.0512 0.0202 1.6
9.48 0.0595 0.0212 1.2
10.16 0.0685 0.0338 14
10.84 0.0780 0.0506 1.8
18.90 0.2440 0.2452 0.8 Fracture
WP-1.28 5.34 0.0203 0.0974 48.4
11.49 0.0895 0.3952 10.2
18.90 0.2545 0.8802 2.8 Fracture

a2-D elastic-plastic static analysis at T = -75°C.
02-D elastic-plastic static analysis at T = -18°C.
€3-D elastic-plastic static analysis at T = ~75°C.
d2.p elastic-plastic static analysis at T =-51°C.
€2-D elastic-plastic static analysis at T = ~19°C,
f2D elastic-plastic static analysis at T = -33°C.

83-D thermo-elastic-plastic static analysis with thermal gradient at Tet = -33°C.
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MN for WP-1.2, 10.06 MN for WP-1.3, and 10.83 MN for WP-1.6; the critical arcas
corresponding to the initiation loads are 0.2452, 0.1428, and 0.2538 mm?2, respectively. In Fig.
15, the applied J values calculated from the 2-D analyses for the 2T-CT and WP specimens are
plotted vs the area within the critical stress contour, 6,1 = 1400 MPa, at each load step. For
given values of Acg and temperature, T, values of the J-integral for the WP specimen lie above
those for the CT specimen, reflecting the differences in crack-tip constraint in these two
geometries. Using the critical areas at initiation for the 2T-CT specimen at —75 and -18°C, a
prediction can be made for J at initiation of the WP specimens. From the CT specimen results,
the predicted Acg values at initiation, at —75 and —18°C, are 0.234 and 0.288 mm?2, respectively.
This implies that the J value at initiation for the WP specimen with a crack-tip temperature of —
33°C should lie in the interval (0.233, 0.255) MJ/m2. The calculated J value at initiation for WP-
1.2 was 0.244 MJ/m2.

A simple relation was developed for Acr to account for the elevation of the stresses in
front of a crack tip due to the presence of a chevron in WP-1.3 and WP-1.6. Two 3-D elastic
analyses were performed with a chevroned and a nonchevroned wide plate to compare
differences in the stresses at the crack plane. The wide plate was side-grooved in both analyses.
While the stress ratio is variable, a mean value of 1.07 was used to increase the stress
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components for the chevroned wide plate. The initiation J value was successfully predicted for
WP-1.6. The area achieved by WP-1.3 at initiation fell short of the average CT value of —75°C
but was above the minimum Acg value.

Critical areas within the op; = 1400 MPa contour from the 3-D analyses of the 1T-CT
specimen and WP-1.2 cannot be reconciled with the corresponding 2-D analysis results. As
described in the following section, this discrepancy is probably related to mesh refinement and
numerical difficulties associated with the 3-D finite-element models used in the present study.

5.3 DISCUSSION Or KESULTS

Based upon the analysis results presented in this section, several observations can be made
concerning the interpretations of local crack-tip fields using the fracture correlation parameters
described in the previous section. To begin with, comparisons of hydrostatic constraint factors
computed from both the 2-D and 3-D analyses of CT and WP specimens indicate that constraint
at the midplane is lower for the WP specimen but still in the plane-strain range (see, for example,
Fig. 12). Furthermore, the average constraint factor for both the CT and WP geometries varies
only moderately over the range of applied loads considered in the analyses (see Fig. 14).
Consequently, partly because of this relative insensitivity to loading, it was not possible to use
hydrostatic constraint as a parameter to correlate J values at initiation in these geometries. The
maximum principal stress criterion based on achieving a critical area within a selected stress
contour appears to offer promise for interpreting cleavage initiation in terms of local crack-tip
fields. The 2-D analyses of the 2T-CT specimens at —75°C and at —18°C provide contour areas
corresponding to initiation that are consistent with the values calculated from the 2-D model of
WP-1.2 and WP-1.6. It is probable that these estimates could be further refined with analyses
based on improved mode’ing of the crack-tip zone.

Critical areas calculated from the 3-D models of the CT and WP specimens cannot
presently be reconciled with the 2-D analysis results. Apparently, the difficulties stein from lack
of sufficient mesh refinement in the crack-tip area. It can be observed in Fig. 16 (from Ref. 17)
that the contour for 61/6, = 3.2 extends approximately 0.148 mm from the crack plane. The 3-D
model for the WP specimen shown in Fig. 17, at the time of initiation, has a contour for op1 =
1460 MPa contained just in the first ring of elements to the right of the crack tip (an element
length of 0.75 mm). This severely limits an accurate volume or area calculation. Clearly, if
constraint conditions are to be incorporated through 3-D modeling of the crack-tip region, then

greater mesh refinement will be required to achieve accurate representation of the local crack-tip
fields.
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6. SUMMARY AND CONCLUSIONS

Elastic-plastic 2-D and 3-D firite-element analyses of CT and WP specimens of A 533 B

steel were carried out to correlate a selected local crack-tip parameter with measured cleavage
initiation loads. Results of the study can be summarized as follows:

1.

Comparisons of the hydrostatic constraint factor evaluated from the CT and WP specimen
solutions indicate that midplane constraint is lower for the WP specimen and varies only
moderately over the range of applied loads for both geometries. It was not possible to use
the hydrostatic constraint as a factor to correlate J values at initiation in the two geometries
because of the insensitivity of h to loading.

The maximum principal stress criterion based on achieving a critical area within a selected
principal stress contour successfully correlated the cleavage initiation toughness values for
wide-plate tests WP-1..! and WP-1.6 with measured toughness values from the 2T-CT
specimen tests. By plotiing applied J values for the small and large specimens vs the area
within a critical stress contour, one can predict the initiation J for the large specimen from
the critical areas attained by the small specimens at initiation. In effect, these areas and J
values are used as a two-parameter model for predicting cleavage initiation in the larger
structure. These results were obtained using 2-D plane-strain analyses of the two-specimen
geometries. It is anticipated that further improvement in the correlation is possible with
more refined finite-element models.

Analysis results from the 3-D models of the CT and WP specimens cannot presently be
reconciled with the 2-D analysis results. Clearly, these difficulties stem from lack of suffi-
cient mesh refinement (both in-plane and through-thickness) in the crack-tip region of the
3-D models.

Results from this study indicate that future focus should be on detailed 2-D plane-strain

elastic-plastic analyses of the CT end WP geometries. It was observed that important results can
be obtained from 2-D analyses without the excessive computing resource requirements of
3-D analyses. Highly refined meshes at the crack tip are required to accurately compute the
enclosed areas for the maximum principal stress criterion. Based on values of cumulative area
and applied J, the two-parameter model should be tested further to establish its transferability
' etween laboratory specimens and engineering structures for predicting cleavage initiation.
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