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ABSTRACT

A code has been written to use the algebraic computer

system MACSYMA to generate systematically the in-

finitesimal similarity groups corresponding to systems

of quasi-linear partial differential equations. The

infinitesimal similarity groups can be used to find

exact solutions of the partial differential equations.

In an example from fluid mechanics the similarity

method using the computer code reproduces immediately a

solution obtained from dimensional analysis.
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1.  Introduction

In recent years Lie infinitesimal contact transformation

group theory has become a widely used tool for systematic ex-

plorations of similarity solutions of partial differential               I

equations [1]. Though the implementation of this method in-

volves mostly standard manipulations (algebra and chain deri-

vatives), in practice these become extremely involved for all

but the simplest of equations.

Here we introduce the use of the algebraic computing

system MACSYMA to facilitate these calculations.  Specifically,

MACSYMA is used to calculate systematically the generators of

the infinitesimal group under which the considered equations

are invariant. As far as the operational side of the similarity

method is concerned, this is the most involved and tedious step.

Once the general similarity group is found, a (hopefully non-

trivial) subgroup is found which leaves invariant boundary

curves and boundary conditions. Finally, once this subgroup

is found, its invariants and consequently the similarity forms

of the solutions of the partial differential equations can be

found.

A primary advantage of the similarity method is that it

is one of the few general techniques for obtaining exact (non-

linear) solutions of partial differential equations. A primary

disadvantage of the similarity method is that the solution found

may satisfy only a very restricted set of initial and boundary

conditions.
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In general, the existence of a one parameter group of

transformations leads to a reduction by one in the number of

independent variables. Thus, in the most encountered case of

two independent variables, the reduction leaves  us with an

ordinary differential equation.

We remark here that the similarity method contains as a

special case those solutions which can be obtained via dimen-

sional analysis.  That is, if an equation has a solution which

can be obtained from dimensional analysis, then the present

method will reproduce immediately that special similarity

solution, and possibly more general similarity solutions as

Well.

2.  Sketch of the Similarity Method

In this section we present a brief summary of the similar-

ity method. The similarity transformation solver (STS) uses

MACSYMA to construct the similarity transformations which are

admitted by a set of partial differential equations of the

form (sums over j,k, and 1)

2
3                    3                      3a.. --- u. + b   - u. + c.   - u

1]   Z  J    ij Dt J ijk 3xk  j3t

+d . = e. , (1)ijkl axlaxk  u]    1

+

where  u  = u (x,t)  are solutions, and
a,b ,c,a, and e are

arbitrary, specified functions of  (x,t,&) .  The one parameter
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infinitesimal transformations considered are

X' = & + 81(*,t,U) (2a)

t' =t + ET(*,t,j) (2b)

1' =1+ EL(&,t,0) . (2c)

MACSYMA  is used to determine the differential equations,

called the determining equations, that are satisfied by
+ +

the infinitesimal groups X,T,U. Technically, this is achieved

by requiring that the partial differential equations (1) be
2 + +

invariant to order € in terms of the new variables (x',t',u')

of Eqs. (2). Thus the annuling of 0 (E) terms becomes an in-

variance condition.

Let  A[J] = o  be a system of partial differential

equations in the old variables, and let  A'[&'] = O  be the
+ +

same system in the new variables, where M'[u'] is obtained
+

from  A[u]  by replacing everywhere  (x,t,u) + (x',t",u')

The application of the transformations (2) to  A'[&']  shows

that   '[ u']  is of the form M'[u'] = M[u] + EH + 0(&2),

where    =  (&,t,J,l,T,6) .  We make the system invariant to

the infinitesimal transformations (2) by requiring that    E 0.

Suppose we denote by  {S } , for an appropriate set of values  m,m

all possible first or second derivatives of u. with respect
J

to  xk  and/or  t .  Then the expression     is a sum of terms

involving the  S 's, with coefficients functions of  (*,T,6)
and their derivatives with respect to  (xk't,u ) .  After the

original system of partial differential equations is used to
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guarantee that all the  S 's  that appear in  H  are independent,

   is made to vanish by requiring that all the coefficients of

the  S 's vanish. This, as explained in [1], is a sufficientm

but not a necessary condition. The coefficients of the  S 's
m

are differential equations satisfied by the infinitesimal

generators  ( ,T,6);  these are the determining equations mentioned

earlier. In practice the determining equations usually can be

solved easily, as they are an overdetermined set of linear

equations. 'A knowledge of the infinitesimal transformations

enables one to construct a continuous transformation or in turn

to find the invariants of the group that serve as the new de-

pendent and independent variable. It is in these new variables

that  Eqs. (1) exhibit their symaetry and result  in  a  re-

duction by one in the number of independent variables.

To illustrate the desirability of using MACSYMA to calcu-

late the determining equations, suppose a partial differential

3u
equation contains a derivative  -- (assume scalar  u  and  x).3x

In terms of the new variables, the transformed partial differential
3 u'equation contains a term  --r .  But from Eq. (2c),
3x

3u'    3- = - [u(x,t) + Eu(x,t,u)]
3x' 3x'

g u a x  +   g u e t  + E    a u a x  + g u e t= 52 - at 3x 3t3x' 3x' 3x' Dx'

-

Bu feu 3x . au at  1
+   3 u    I ax   -   T   TE   -    1               0                                                                                            (3)

l ax, 3x' j _
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3x 3t
Now for --- and  --- ,  use  Eqs. (2a-b) to obtain

3 x' 3 x'

3x FaX 3 X 3u      2- =l -  6  1-t- -   + 0(E) (4)

3 x'
3x   au 3x

-

.

and

3t 3T 3T 3u       2
- = -  E   - + - -   + 0 (E) (5)
3 x'

3x 3 u 3x

By substituting Eqs. (4) and (5) into Eq. (3). and

simplifying, we obtain

a u'               a u      .      _      |3U    +      MU     _     3 X1      a u              D T     e u              3 X      M u l  2-   ax T " lax    laE - ax) ax - ax  E - au l.52.13 x'

BT au auD         2-1    +  0 (E  )
-   au   ax   312.1

(6)

Correspondingly, any second derivatives such as  32U2  become
3x'

very involved.  The system of partial differential equations

(1) is written in a completely vectorized form. Since

MACSYMA knows the chain rule and can simplify and factor, it

is quite feasible for MACSYMA to  reliably transform compli-

cated systems of partial differential equations in several in-

dependent variables.

3.  Programming Considerations

In this section we describe the implemention of the STS

on the MACSYMA system. The basic mode of operation is that a
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reference version of the STS is modified as required with the

TECO editor to solve the problem at hand, and then the modified

version is executed while in MACSYM using the BATCH command.

Once program execution is initiated with the BATCH command,

no further user interaction is required.

Input procedures for the STS are described as follows.

Once a user obtains a reference copy of the STS program in his

user space, a listing of the program should be made while in

TECO. In the program listing the portions of the code which

must be changed  from one problem to another are preceded  by  a

single asterisk and a blank line and are followed by a blank

line and a double asterisk. There are three places in the

STS program where the user must modify the text to solve a

new problem. First, a title should be specified which identifies

the system of partial differential equations being considered.

Second, the user must specify the number of equations (i.e.,

the number of dependent variables  u.),  NEQ, the spatial
]

dimension of the problem, NX (NX 1 1), and whether or not

there are time derivatives (NT = 0, no time derivatives;

NT = 1, there are time derivatives). Finally, the user must

specify the nonzero coefficients  a.., b. , c .d andij   ij ijk' ijkl'

e   of Eq. (1).  Before assigning the subscript  i  to the

coefficients, the equations should be ranked in ascending

order according to the number of terms in the equations.  For

example, the equation with the fewest terms goes first, etc.

After these changes are made in the reference STS program, the
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updated version is stored with TECO as a new file, to be

excuted later with BATCH. In this way a user might build a

library of STS programs appropriate to different systems

of equations.

The output of the STS is in two stages. In the first

stage the BATCH command causes listing and execution of the

code. During this stage some of the intermediate calculations

are'  printed  out,    so   that the progress   of the calculation   can

be inspected as it proceeds.  This portion of the computing

time takes about 10 minutes, nearly independent of the system

of equations considered.  The first intermediate printout is

a listing of the functional dependencies of the functions in-

volved in the infinitesimal transformations (2). The STS

program is vectorized, so the variables (xk't,u ,Xk'T,U )  are

replaced with the program variables (X[K],T,U[J],FX[K],FT,

FU[J]), respectively. The second intermediate printout is a

listing of the system of equations to be solved. This serves

as a check that the equations were ordered properly and that

the coefficients were entered correctly. Next the linearized-

in-epsilon versions of the new coefficients of the transformed

partial differential equations are displayed.  Recall that the

original system of equations must be used to guarantee that

the  S 's  that appear in  *  are independent.  The fourth

intermediate printout lists  NEQ  of the  S 's  which them

STS  has chosen to eliminate from H  by using the original

system of equations.  The solutions of the original equations
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for the  NEQ S 's  is then listed in the last intermediate
printout.

The second stage of output in the STS is the displaying
of the components of   ,  from which the determining equations

are derived.  Each component of     is factored conveniently

with respect to all the  S 's; €he determining equations canm

be read off immediately as the coefficients of the independent
-

terms involving the  S 's.  The amount of time spent computing

H  depends significantly on the system of equations solved, as

well as on the current load on the MACSYMA system. A very

rough estimate of the computing time to calculate     is

T (min) = NEQ (NX+1) (NX/2 + 2). (7)

4.  An Example

As an example of the use of the STS, consider the classical

Blasius problem from fluid mechanics; solve the problem of two-

dimensional, steady state, incompressible, viscous, laminar flow

in a boundary layer. The equations to be solved are

4v„+4vy-0 (8a)

2
3                 3                    x

3v
V - V + V - V v   2   '                          (8b)x 3 x x y ey  x

3y

where  v = (vx'v ,0)  is the fluid velocity, and  v  is the

coefficient of viscosity.  A semi-infinite plate exists in the

x-z  plane for  x>0, and far from the plate, Y++00 , V- X
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assumes a constant value,  u  .  The viscous boundary

conditions are:

vx(y = te) = uo                                     (9a)

Vxcy - 0, =v y(y=0) -0. (9b)

Using arguments of dimensional analysis, one concludes that

(Landau and Lifshitz [21) the new independent similarity

variable is

(10 a)
4 = Y luo/x

and that v and v are of the forms
X Y

vx =uo fl(O (1Ob)

v  = 96/ 1 f   (C) . (loc)
Y      l  'y)    2

Let us now obtain these same results as well as the gen-

eral infinitesimal similarity group by means of the STS. In

a program listing of the STS we first insert in the appropriate

place a title for problem being solved.  Next we insert on

separate lines in the STS:

NEQ:2$

NX:2$ (11)

NT:0$.
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Finally we insert the nonzero coefficients:

C[1,1,1]:1$

C[1,2,2]:1$

C[2,1,1]:U[1]$ (12)

C[2,1,2]:U[2]$

D[2,1,2,2]: - NU$ ,

where  NU  is the coefficient of viscosity,  v . After this

version of the STS is stored in TECO and executed in MACSYM

with BATCH, the printouts begin.

The components of  A  are printed out, and the determining

equations can be read-off by inspection (see the Appendix).

They are (letting U[1] + u, U[2] + v, FU[1] + U, and FU[2] + V)

X =X =X =X =Y =Y
v         u         y vv VT, V

=U =U =Y =0
VV   V   U

V  -Y  =V +U =0 (13)
uxyx

Y -V -X  +U =U-U X + 2uY  = 0
y  v  x  u     x   y

V (-U + 2Y ) + 2vY  = - vU + VU + UU  = 0
UU uy       u       yy     y     x

v (Y -2U ) + VY - UY +V=0.
YY uy      y     x

This  set of differential equations  for   x,Y,U,   and   V   as

functions of x,y,u and v is overdetermined.
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The integrations involved is solving Eqs. (13) are straight-

forward.  The result is that the general infinitesimal similarity

group corresponding to Eqs. (8) is

X(x,y,u,v) = (a + 2b)x + c

Y (x,y,u,v)      =    by    +    g (x) (14)

U(x,y,u,v) = au

V(X,y,U,V) = Ugx - bv

where a,b, and  c  are arbitrary constants, and g(x) is

an arbitrary function of  x  alone.

Now we find the subgroup of (12) that leaves invariant

the boundary curves (9):

Invariance of  y=0*y' =O»Y (x,y = O,u,v) =0

A  g (X)   E  O . (15a)

From the transformations  (2a) , the boundary curves   y=t o o

are trivially invariant.

Invariance of x=0*x' =0= >X(x= O,y,u,v)=0

*C=0 (15b)

Invariance of  x>0*x' >0*X(x> 0,y,u,v) >0

*2 b+a>0. (15c)

Equations (15) will restrict the group (14) so that the

boundary curves are left invariant. Now we further restrict
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the group (14) so that the boundary conditions are invariant:

U(y= 0)=0 *U'(y= 0) -0 4 U(X,y=O, U=O,V) =0

*  no restriction on  a . (16a)

Similarly, v(y = 0) = 0  is trivially satisfied

*  no restriction on  b . (16b)

U(y =too) = UQ =* U(X,Y = too, U = U ,V) = 0

=> a=0 (16c)

By combining Eqs. (15-16) the final subgroup of Eqs.

(7-8) that leaves invariant the boundary data is

X(x,y,u,v) = 2bx

Y(x,y,u,v) = by (17)

U(X,y,U,V) = 0

V(x,y,u,v) = - bv.

The first invariant surface condition is

dx = 91 = du dx dy = du
X    Y    U  '  or,  ---

= (18)2bx by   o

Integration of the first equality in (18) is

4   =    /   42   = constant. (19a)

Integration of the second equality in (18)

u   =   F l(z i) ' (19b)
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v = F2(zi) /Y . (19c)

The second invariant surface condition is

dx _ dy dv dx dy = dvX      -   y      =   0      ,       or,       2bx   =   by         bv ' (20)

Integration of the second equality in (20) gives

Equations (19) are the same results as Eqs. (10) obtained

by Landau and Lifshitz. Furthermore, the infinitesimal group

(14) is the general infinitesimal group corresponding to Eqs.

(8). Thus the similarity solution corresponding to any other

boundary conditions can be found by analyzing the group (14).
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Appendix

In this appendix we illustrate how the determining

equations are obtained from a printout of the functions    .

As an example we consider the system of partial differential

equations     (8) , so there   are two components       Hi 'i  =     1       and       2.

The STS factors each  Hi  to produce a polynomial in the

S 'S, where the factoring is performed first  with respect tom

Sl,  then with respect to  S2' and so on.  That is,  Hi first

is factored to produce a polynomial in  Sl .  Then the coef-

ficient of each power of  Sl  is factored to produce a poly-

nomial in  S2' etc.  In this way, once a particular product

of   powers   of   the      Sm' s appears   in      H   ,    that same combination

of the  S 's  never appears again.  Consequently the coef-
m

ficients of the independent terms  of  Hi(i.e., the deter-

mining equations) can be identified by inspection.

The printout of     corresponding to the partial differential

equations (8) is
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"                                                                                                                                                            4

COMPONENT NUMBER 1  OF THE EXPRESSION H FROM WHICH THE

DETERMINING EQUATIONS ARE DETERMINED IS:

d d 2 d d d d
ZEROP = ((- --- FX - --- FX )*S  + (--- FX  - --- FU - --- FX + --- FU )*S

dU 2 dU 1   4 dX 2 dU 2 dX 1 dU 1      4

2            1                  2           2            1            1

d           d                 d           d
+ ((- --- FX - --- FX )*S   - --- FX  + --- FU )*S

dU 2 dU 1 13 dX 2 dU 2   7
2            1                  1            1

d           d                 d           d
+ (- --- FX  + --- FU )*S   + --- FU  + --- FU )*EPSLON

dX 1 dU 1 13 dX 2   dX    1
2           2                 2           1

COMPONENT NUMBER 2  OF THE EXPRESSION H FROM WHICH THE

DETERMINING EQUATIONS ARE DETERMINED IS:

d                       d                       d
ZEROP = ((- 2*(--- FX )*NU*S + 2*(--- FX )*NU*S + 2*(--- FX )*NU)*S

dU    1      4      dU    1      7      dX    1       2
2                       1                       2

2                       2                  2
d         3    d           d

+ (--- FX )*NU*S + ((--- FX - 2*( FX ))*NU*S
21 4 22 dU  dU    1       7

dU dU 1      2

2                       2

2               2
d              d                        d                 d           2

+ (- 2*(------- FX ) - --- FU )*NU - 2*U *(--- FX ) +U *(--- FX ))*S
dU dX 1 2 1 1  dU 2 2  dU    1    4

2 2 dU                    2              2
2

2              2
d              d              2

+ ((- 2*(------- FX ) + --- FX )*NU*S
dU  dU 2 21 7

1 2 dU
j
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2                    2                     2
d              -      d                     d                         d

+ ((- 2*( FX ) + 2*( FX ) + 2*( FU ))*NU - U *(--- FX )
dU dX 2 dU dx 1 dU dU 1 2  dU    2

2 2 1 2 12    2

d                      d                  d
+ 2*U *(--- FX ))*S - U *(--- FX )*S   + (--- FX )*NU*S

1  dU    2    7    1 dU 1 13 dU 1 14
1                              2                         2

2                 2
d                 d                            d                 d

+ (--- FX + 2*( FU ))*NU + 2*U *(--- FX ) -U *(--- FX )  '
2 1 dU dX 1 1  dX 2 2  dX    1

dX 22     2   2
2

2                                                            1d                  d                          d               3
-U *(--- FX ) -U *(--- FU ) +F U )*S  + (--- FX )*NU*S

1  dX 1 2  dU 1 1 4 227
1              2                   dU

1

2               2
d              d                        d           2

+ ((2*( FX ) - --- FU )*NU + 2*U *(--- FX ))*S
dU dX 2 2 1 2  dU    2    7

1 2 dU                    1
1

2                  2
d                 d                    d                d

+ (- U *(--- FX )*S   + (--- FX )*NU*S   + (--- FX - 2*( FU ))*NU
1 dU 2 13 dU 2 14 2 2 dU dX    1

2               2 dX 1     2
2

d                 d                             d                  d
+U *(--- FX ) -U *(--- FX ) +F U )*S + U *(--- FU )*S - (--- FU )*NU*S

2  dX 2 1  dX 2 2 7 1 dU 1 13 dU 1 14
2                 1                             2                  2

2
d                       d                  d

- (--- FU )*NU +U *(--- FU ) +U *(--- FU ))*EPSLON
2 1 2  dX 1 1 dX 1

dX                   2               1
2

(D88) BATCH DONE

(C89)
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The functions H. can be simplified considerably by1

making use of the following procedure: if all the independent

coefficients of the  S 's  that contain only a single termm

are set to zero, these conditions on the groups can be used

immediately to discard many of the remaining terms of    .

For instance, in  H2  we note that

d.      d       d        d2
FX =

2
Fx (A.1)35  FXl = 3Ul FXl = dii    1 1

dU
2

2=d          d         d         d
2 FX2 = dE  FX2 = dU  FX2 = dU  FU1=O

dUl          1         2         2

By using these relationships many of the remaining terms of

Hi  can be crossed out immediately from the printout.  For

example, by using Eqs. (A.1) in Hl the terms involving

S      S  S. and S vanish. By equating to zero the
2

4  '  13 7' 13

coefficients of the remaining terms of  Hl ' those involving

54, S7'  and the constant term, we obtain the following

determining equations

dd- FX  - --- FU
2-  Xl FX1 +  Ul FUl =O  'ax 2   dU22

dd- FU  + --- FU =0  ,
- dXl   2   dUl   2

-20-
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and

dd- FU + --- FU = 0dX 2   dx    121

Similar reductions occur in the size of  H2  by applying

Eqs. (A. 1).
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