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ABSTRACT

The effect of particle diameter, density difference, and
fluid flow rate on the stability of miscible displacements were
investigated using ethanol and water solutions in a 50-cm x
2.54-cm-ID column packed with spherical glass beads. The flow
characteristics were adequately described by a modified dis-
persion model that involves the dispersion coefficient, D, and
the fraction of the bed that was active, f.
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1. SUMMARY

Miscible displacement in a packed bed of spherical glass beads was
studied using water and ethanol solutions of different concentrations.
Density differences, particle diameters, and flow rates were varied to
isolate the onset of unstable displacement characterized by widening of
the mixing zone between displacing and displaced fluids.

When a denser fluid displaces a lighter one in downflow, the mixing
length may be broadened by formation of protrusions of the denser fluid
into the less dense fluid at low velocities. The displacement will be
unstable when gravity effects disrupt the symmetrical concentration pro-
files in the mixing zone between the two fluids. Instabilities became
more pronounced with increased packing sizes, increased density differ-
ences, and decreased flow rates. The transition from stable to unstable
displacement as indicated by the mixing length was gradual.

A dispersion model which uses the dispersion coefficient, D, and the
fraction of mobile fluid, f, as parameters (2J described the column be-
havior adequately.

2. INTRODUCTION
2.1 Background

Dispersion accompanying the flow of miscible fluids through porous
media occurs in oil recovery, chromatographic techniques, and leaching of
burled radioactive wastes. Previous researchers U, 3, 5, 7, 8) have
Beveloped theoretical models describing the dynamics of miscible displace-
ment in porous media. Based on Darcy's Law, empirical correlations and
perturbation methods have been utilized to determine system parameters
which adequately characterize flow stabilities/instabilities and disper-
sion. Most studies have examined instabilities due to viscous effects,
with very few studies evaluating the effects of density differences.

According to Darcy's Law, the velocity in a porous medium is given
by:

U BREEN o 1)

for a single phase system. Dumore (4) and Slobod and Hewlett (9j have
shown that for stable miscible displacement P and dP/dz will be equal at
the interface. Therefore, using Egq. (1) the critical velocity is
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This criterion correlates experimental observations accurately; however, it
fails to yield meaningful results if either the density or viscosity of
the liquids was kept constant.

For a downflow miscible displacement, four distinct cases may exist:
density favorable-viscosity favorable, density unfavorable-viscosity
favorable, density favorable-viscosity unfavorable, and density unfavorable-
viscosity unfavorable. When a highly dense liquid displaces a lower density
liquid, protrusions known as gravity tongues may form, thus broadening the
interface (see Fig. 1). The opposite case may have the stabilizing effect
on the mixing zone. Viscosity fingers may form when displacing liquid is
less viscous than resident liquid, again broadening the mixing zone (see
Fig. 1). The converse is true for a higher viscosity displacing liquid.
Higher liquid velocities tend to suppress gravity effects; however, they
may increase the viscosity induced instabilities.

A recent MIT group (].) evaluated miscible dispersions using various
packing materials and concluded that dispersion increased with increasing
liquid velocities and particle sizes at fixed liquid densities and vis-
cosities.

2.2 Objectives

The objectives were to investigate the effects of particle size,
liquid flow rate, and density difference on the nature of miscible dis-
placements (6j and to evaluate the applicability of a two-parameter dis-
persion model for stable displacements (2J.

3. APPARATUS AND PROCEDURE

Liquids used for displacement experiments were mixtures of ethanol
and water. This system was chosen because mixtures of equal viscosities,
yet different densities, were easily obtained (Fig. 2). Table 1 shows
the pairs of fluids used in the experiments. Two pairs of fluids close
to the maximum viscosity composition were chosen to minimize the viscosity
peak at the mixing zone. One pair was chosen with a large density dif-
ference to check for effects of this phenomenon by comparing results of
density favorable and unfavorable displacements.
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Table 1. Experimental Fluid Pairs

wt % EtOH n (gm/mil) u (cp)
24.5 0.960 2.0
71.0 0.862 2.0
36.25 0.940 2.3
60.0 0.895 2.3
38.75 0.934 2.35
54.0 0.903 2.35

Experiments were conducted in a vertical column (Fig. 3), 2.54-cm-ID
x 50-cm, packed with spherical glass beads of size ranges: 0.125-0.149,
0.250-0.297, and 0.595-0.707 mm. The column was first charged with one
liquid, and then the flow was switched to the displacing fluid at the top
of the column. Flow rates ranged from ! to 10 ml/min. Column and feed
solutions were kept at 25°C by a circulating water bath. The density of
the effluent was monitored by a SODEV 02D densimeter (Fig. 4). Pressure
drop and pore volume through the column were also measured. Pore volume
was determined by using the mean residence times and by weighing the column
and its contents.

4. RESULTS AND DISCUSSION

Plots of dimensionless outlet concentration vs time were used to dis-
tinguish between stable and unstable cases. Unstable cases show multiple
inflections indicating an irregular concentration profile, whereas stable
curves show smooth S-curves (see Fig. 5).

4.1 Breakthrough Curves

A summary of experimental results are presented in Table 2. The runs
with favorable density differences produced stable displacements at the
two lower density differences. For the highest density difference, the
density-favorable runs showed instability for the small and medium packing
sizes which can be attributed to viscosity effects. Consequently results
at the greatest density difference are of little value in determining the
effects of density alone on stability.
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Table 2. Observed Stability of Breakthrough Curves

Particle Size Flow Rate Density Difference (U), ap (gm/ml)
of Packing (ml/min) 0.031 0.045 0.098
dp = 0.0610 cm 2
25-30 mesh 5
10 STABLE
dp = 0.0262 cm 1
50-60 mesh 2 (STABLE)
5 'STABLE
10
dP = 0.0130 cm 1
100-120 mesh 2 STABLE
5
10

Parentheses indicate that observation was inconclusive.
AViscosity effects were evident for high density difference dis-

placements for small and medium packing.

The runs with unfavorable density differences produced both stable and
unstable displacements. For the two large packing sizes, a transitionary
behavior was observed. For the largest packing size, the transition flow
rate was between 2 and 5 ml/min for the smaller density difference and
between 5 and 10 ml/min for the medium density difference. This trend was
due to gravity effects becoming more noticeable as flow rates decreased
and/or density differences increased (see Table 2).

For the medium packing size, transition from stable to unstable dis-
placements was poorly characterized. The 1-2 ml/min runs made at the
smallest density difference appeared to be unstable but well-behaved. At
medium density difference, transition again occurred at higher flow rates.

The transition flow rate increased with increasing density difference
and particle size. In large packings, interstitial spacing was wide enough
to permit formation of gravity tongues even at high velocities. For small
packings, gravity tongues did not form even at the slowest flow rates
investigated.
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4.2 Mixing Length

The definition of mixing length, is based on the cumulative exit
age distribution function (see Fig. 5). Plots of mixing length vs flow
rate give good indications of the stability/instability of miscible dis-
placements. Figures 6 and 7 show the effect of liquid flow rates and
density differences on mixing lengths at a fixed packing size. Similarly,
Figs. 8 and 9 show the effects of flow rates and packing sizes on mixing
lengths for a constant density difference. For stable cases the mixing
length increases with increasing velocity due to increased micromixing.
Conversely, for unstable cases, the mixing length decreases with increasing
velocity since increased velocity reduces the time available for gravity
tongues to develop; thus the protrusions of displacing liquid into the
displaced liquid are minimized. For displacements which could not be
classified as stable or unstable, mixing lengths were unaffected by flow
rates.

4.3 Dispersion Coefficient

Matching experimental concentration profiles with those predicted by
the dispersion model (2J permit calculation of an effective dispersion
coefficient, D, and the fraction of unstagnant fluid, f, for both stable
and/or unstable flow regimes. A least squares computer algorithm was

successfully used in calculating these parameters. In all runs f was very
close to unity.

For stable flows, dispersion coefficient increased almost linearly
with interstitial velocities (see Figs. 10, 11, and 12) in accordance with
the trends predicted by the Taylor dispersion model (2j. However, for
unstable cases the dispersion coefficient actually decreased with increasing
velocity due to the shorter residence times. Above a critical velocity,

Uc, where stable flows occur, dispersion coefficients again increased
linearly with velocity. Increasing density differences increased the
dispersion coefficient for stable but unfavorable cases. However, dD/dIl
remained constant indicating a possible linear relationship between Taylor
dispersion coefficient and the observed dispersion coefficient, D.

5. CONCLUSIONS
1. The transition from stability to instability, as measured by the

spread of the cumulative exit age distribution function, appeared gradual.

2. For unstable cases, mixing length decreased with increasing flow
rates; for stable cases, the converse was true.

3. The dispersion coefficient increased with increasing flow rates for
stable displacements, while it decreased for unstable cases.
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4. The two-parameter dispersion model was found to describe the
system quite well, even though the parameter f was essentially unity.

6. RECOMMENDATIONS

1. Salt solutions of equal viscosities should be used in future
experiments to permit investigation of larger density differences without
interference of viscosity peaks.

2. Further experimentation should be conducted using density unfavor-
able systems for a thorough description of the transition zone.
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8. APPENDIX
8.1 Mathematical Model

Miscible fluid displacement can be described with a dispersion model
(2) as:

n 92 , 9 3C
DI 7 "v« = 3t (3)

with the following boundary conditions,

at x = 0 VCO = vc - D £ (4)
and x + C(x,t) -* Co (5)
at t = 0.0 C(x,t) = C0 (6)

The solution of Eq. (3) with boundary conditions (4), (5), and (6) is

C erfc(™ 1.0 - 1)
C, Ir
/r e-T( .0 - D2/41(1 . 2 (7)
AY(1.0 + 1)

where | and r are dimensionless time and position, respectively.

8.2 Location of Original Data

data may be found in ORNL Databook A-8144-G, pp. 1-34,

The original
file at the MIT School of Chemical Engineering

and in the calculation file on
Practice, Bldg. 3001, ORNL.
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8.3 Nomenclature

C concentration of displacing fluid, gm/ml

CQ initial concentration of displacing fluid, gm/ml

D dispersion coefficient, cm 2/sec

dp particle diameter, cm

f fraction of total pure volume occupied by mobile fluid

g gravitational acceleration, 981 cm/sec”

| Vt/L, dimensionless porevolume or time
K porous bed permeability, cm?/sec
L column length, cm

Lm mixing length, defined as fraction of pore volumes discharged between
C = 5% CO and C = 95% CO, dimensionless

P pressure, atm

t time, sec

U velocity, cm/sec; also denotes unfavorable velocity
Uc critical velocity, cm/sec

v flow rate, ml/min

X longitudinal distance in column, cm

y Vx/D, dimensionless dispersion

P density, gm/ml

u viscosity, gm/cm-sec
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