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ABSTRACT

The large deformation elastic response of a plane woven Kevlar fabric is 

investigated analytically and experimentally. The analysis assumes the undeformed 

geometry to be a sequence of interlaced arcs of circles which reverse at each yarn 

midpoint, and each yarn is modeled as an extensible elastica subject to certain 

compatibility conditions. Deflection-force relations for the fabric are determined in 

terms of the initial weave geometry and the elastic properties of the individual yarns. 

The theoretical results agree well with the results of experiments performed on a fabric 

woven from 400 denier Kevlar yarns under conditions of uniaxial loading in both warp

and fill directions. DISCLAIMER
This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi­
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer­
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom­
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof.
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1



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image 

products. Images are produced from the best available 

original document.



INTRODUCTION

Woven Kevlar fabrics exhibit a number of beneficial mechanical properties 

which include strength, flexibility, and relatively low density. Fabrics are used, for 

example, in parachutes and bullet-proof vests, and they are often used as the 

reinforcement in individual laminates of a composite material. The desire to engineer 

or design Kevlar fabrics for specific applications has stimulated interest in the 

development of theoretical models which relate their effective mechanical properties to 

specific aspects of the fabric morphology and microstructure.

Theoretical investigations to develop relationships between the various 

parameters which characterize a woven fabric have ranged from the purely 

geometrical model of Peirce [1] to the more physical mechanistic models of Olofsson 

[2] and Grosberg and Kedia [3]. A summary of the analysis of the mechanical 

properties of woven fabric prior to 1969 is included in the monograph by Hearle et al. 

[4], and more recent summaries have been provided by Ellis [5] and Treloar [6]. The 

mechanistic approaches have traditionally uncoupled the effects of yarn stretching 

from the effects of yarn bending (crimp interchange effect). The bending effects are 

obtained by modeling the yarns as inextensible elastica, and these bending 

deformations are superimposed unto the stretching deformations to obtain the total 

elastic response. This uncoupled approach provides estimates of a much stiffer 

mechanical response of the woven fabric than is observed experimentally. Recently, 

Warren [7] has provided an analysis of woven fabric which models the individual yarns 

as “extensible” elastica and thus couples bending and stretching effects throughout 

the deformation history. Following a general development of the nonlinear theory, 

Warren [7] restricts interest to small deformations and loads and obtains explicit 

representations for the in-plane linear elastic constants of the fabric in terms of the 

initial weave geometry and the elastic properties of the individual yarns. Even for these 

linear elastic results, the coupling between bending and stretching effects is complex
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and not well represented by simple superposition. The results of this linear analysis 

provide estimates for the in-plane elastic constants which agree very well with results 

obtained experimentally by Leaf and Kandil [8] on fabrics woven from Vincel rayon 

yarns.

In this work we extend our previous results [7] to provide a theoretical 

investigation of the large deformation elastic response of a plane woven Kevlar fabric 

together with a comparison of these theoretical results with experimental data 

obtained from uniaxially loaded Kevlar fabrics. We define the woven fabric as a 

regular network of orthogonal interlaced yarns and denote a point on any yarn which 

is midway between successive cross yarns as a yarn midpoint. For homogeneous 

deformations of this woven fabric we may restrict our analysis to the yarn deformations 

which occur between two adjacent yarn midpoints. We model the individual yarns as 

extensible elastica, thus coupling stretching and bending effects at the outset. 

Consideration is restricted to biaxial loading in the principal yarn directions in the 

plane of the fabric. The initial unloaded yarn geometry is assumed to be a sequence of 

alternating circular arcs of constant radius R as apparently considered first by 

Olofsson [9]. We utilize the general results obtained in [7] to investigate the asymptotic 

elastic behavior for large applied loads. Interestingly enough, the limiting results of this 

asymptotic analysis for small applied forces provide a very close approximation to the 

linear elastic response obtained in [7].

We first obtain the solution to the differential equation describing the nonlinear 

deformation of an extensible elastica subjected to a normal contact force 2V and a 

midpoint force T0. This provides the deflection-force relations for the individual yarns. 

The mechanical response of the woven fabric is obtained from the interaction of two of 

these solutions corresponding to the yarn overlap by enforcing equilibrium and 

compatibility of displacements. This provides analytical expressions for the in-plane 

displacement-force relations of the woven fabric in the two principal yarn directions.
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Deflection-force relations for a fabric woven from 400 denier Kevlar yarns has 

been determined experimentally under conditions of uniaxial loading. Specimens 

were tested in both warp and fill directions, and the deflection-force relations obtained 

experimentally are in quite good agreement with the theoretical predictions. During 

initial loading the elastic response of the fabric is dominated by yarn bending. With 

increased loading the response goes through a transition from bending to stretching 

and for large loads is dominated by yarn stretching. The difference between bending 

and stretching effects is significant and this difference is reflected in both the 

experimental and theoretical results. This particular fabric is found to be stiffer in the fill 

direction than in the warp which is consistent with the initial weave geometry showing 

the yarn crimp height greater for the warp yarns than the fill. This increased crimp 

height requires more bending deformation to straighten out the warp yarns, and this 

difference is captured in both the theoretical and experimental results.

ANALYSIS OF INDIVIDUAL YARNS

The first step in obtaining the displacement-force relations for the woven fabric 

is to obtain displacement-force relations for the individual yarns. In this analysis, each 

yarn is modeled as an extensible elastica, and the geometry of this model is shown in 

Fig.1 where we have made use of symmetry about the z-axis corresponding to the 

yarn overlap contact point. The extensible elastica has been considered in detail by 

Antman [10] and Tadjbakhsh [11], and in this analysis we make use of the intrinsic 

coordinates of the elastica as presented for the inextensible case by Mitchell [12]. The 

elastica is assumed to deform in the (x,z) plane as shown, and the initial shape is 

taken to be an arc of a circle of radius R subtending an angle <j)0. The undeformed

shape of the elastica is defined by the arc length s0 0 <: s0 s L0 _ and the slope <t>(s0)

= Sq/R . The deformed shape is defined by the arc length s, 0 s: s s L, and slope i^(s).
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The elastica is assumed to stretch linearly under the effect of the axial force T(s) acting 

through the centroid of the cross section of area A which provides

dso
ds

(1)

where E is the Young’s modulus of the elastica, and 

T(s) = F cosij) + V simp = T0 cos (xp - a) .

A number of synthetic yarns exhibit yielding and the linear relation of (1) is valid only 

for T(s) less than the yarn yield force. Yarns woven from Kevlar fibers, however, show 

an essentially linear displacement-force relation for loads up to fracture, and for these 

yarns Eqn. (1) is valid for the entire loading history. We note that the antisymmetric

condition at the deformed yarn midpoint s=L, with slope \p =ip0i requires the bending 

moment M(s) to vanish at this point.

The differential equation which describes the non-linear deformation of the 

extensible elastica together with the appropriate boundary conditions for this problem 

have been developed by Warren[7] and all the details of this development will not be 

reproduced here. Our point of departure is a first integral of this differential equation as 

presented in [7] which takes the form

r 1 + kR y cos(\p-a)

1/2
1 + 2kR2 [cos(ip0-a)-cos(ip-a)] 

+ K2R4y [cos2 (ip0-a ) -cos2 (tp-a)
(2)

and we have made use of the two constants

where I is the effective moment of inertia of the yarn cross-section. The constant y 

represents a measure of the relative effects of bending and stretching in the
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deformation of the elastica with the case y=0 representing the inextensible elastica.

The differential equation (2) is subject to the boundary condition

H>(0) - 0. (4)

Equation (1) provides the relation between ds and ds0 of

ds = 1 + kR y cos (ip-a) ds. (5)

which is important in evaluating the deformed slope at the end s=L. We note that 

the differential equation (2) may be expressed as an elliptic integral of Weirstrass’ form 

[10], but this does not provide an explicit representation for the unknown \\>0 in terms 

of the known parameters. In reference [7], approximate solutions of (2) were obtained 

for small applied forces such that kR2 « 1.

We now consider approximate solutions of Eqn. (2) for the specific situations 

where ij)0 and a are small which occur under conditions of loose weave geometry or

o 2for large in-plane forces F = fx. Formally, we assume now that \\>0^ « 1, a « 1,

which implies that V/F = tan a = a. We define the dimensionless forces associated

with F = fx and V as
\ 2 2 = kR cos a = kR .
„ 2.24 (6)
V = kR sin a = avcR = afx .

From Eqns. (2) and (5), the undeformed increment of arc length ds0 is given
ds. dij)

by

(7)

where

K = £x(l + y^x) / (8)
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and

= (MV^)2 + 2(a-H,0) + 1/K *

Integration of Eqn. (7) gives

Vo

and evaluation finally provides

1 (1-m2) (1-m)2

--T + a -- 2~ ’(1+m ) (1+m )
with

Jk<p
m = e

(9)

(10)

(11)

Equation (10) determines the yarn midpoint slope as a function of the initial yarn 

geometry <f>0 and the applied forces. For large values of applied force, K ^ , m -»0 ,

and \p0 -*■ a.

The deformed increment of arc length ds may be obtained from Eqn. (2) and is 

given by

^ f = ll + Y*x 1 - y(Tp-a)2 dtp
(12)

Using the deformed geometry relations dx = cos ds and dz = sin ^ ds together with 

Eqn. (12), the position of the deformed yarn midpoint (x0 , Zq) may be obtained in 

terms of the deformed yarn midpoint slope through direct integration, with ip0 given

by Eqn. (10). Carrying out these operations provides expressions for the deformed 

position of the yarn midpoint in terms of the initial yarn geometry and the applied 

forces. The components of the deformed position are given by
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a (1-m)2 (1-m2)

(1+m2) VR (1 +m2)

(13)

a m (1 -m2)

Vi< (1 +m2)

20
— = (1 +Y1 ) a (pR x 1 x' Yo

a (1-m2) + (1-m)2

Vi< (1 +m2) K(1+m2)
(14)

It is instructive to consider two limiting cases of these results.

(i) Limit as fx —»3C and V

Within the framework of this analysis, as fx -*oc and V -*», the ratio V/fx = 

a«1. Equation (10) shows that under these conditions, -* a and the deformed 

position of the yarn midpoint has the components

z = -----o EA

Thus in the limit of large fx , V , the yarn straightens out and the elastic response 

approaches that of a straight rod oriented at = a = V/fx.

(ii) Limit as fx -► 0 and V -> 0

This limiting case provides the linear elastic response of the yarn, and Eqns. 

(10), (13), and (14) provide
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1 3A 1 2 Atj) = «j> - -J-d) f + “r <{> V , 
~0 Y0 3 Y0 x 2 0

_0
R

/ 1 3 v 2 5Y(V3 f -1 
x 4

2 5 4-2v <|> +f4)
' Yo 6 0 V, (15)

_0
R

1^2.1 
2*0 4

-2y (})2 + f <^4
1 To 6 0

A 1 3 Af + i<|> v
x 3 0

These results agree with the linear elastic response developed in [7] through the 

appropriate order of the initial geometry parameter <j>0. It is interesting to note that while

the results of this analysis were obtained with the assumption of small a and large fx,

they provide a very accurate representation of the yarn response for the linear elastic 

limit. A measure of the error between the actual linear elastic response and the linear 

response represented by Eqn. (15) may be obtained by considering the exact initial 

yarn geometry (Xq/RJq = sin <|>0 and (Zq/R^ = (1 -cos <^0 ). Even for fairly tight weaves

with <p0 = 45 0, the error in (Xq/RJq is less than one percent and the error in (Zq/R^ is 

about five percent.

The displacement of the yarn midpoint with respect to the overlapping yarn 

contact point (0,0) is the difference between the deformed and undeformed positions 

of the yarn midpoint. This displacement has components ux and uz which may be 

obtained in the dimensionless form

4 - — — ^15. / a a3 iR R ” (^0 ~ 6 ^0 ’R

^ = IT2 R

X

z
~R

(16)
0 1 A2

~ 0 ^0 '

where Xq/R is given by Eqn. (13), Zq/R is given by Eqn. (14), and we have used the 

approximate undeformed yarn midpoint position given in Eqn. (15). Equation (16) 

provides the displacement-force relations for the individual yarns.
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ANALYSIS OF WOVEN FABRIC
The interlaced geometry of a typical woven fabric is shown in Fig. 2. With 

reference to Fig. 2b, the usual geometrical weave parameters of pick spacing p , yarn 

length i and crimp height h are represented in terms of the elastica parameters R 

and <(>0 by

p = 2R sin <|>0

£ = 2R<])0 (17)

h = 2R (1 - cos <p0) .

To fix ideas, we will denote the x-direction as the warp direction and the y-direction as 

the weft or fill direction.

The large deformation elastic response of a woven fabric which is loaded 

biaxially with forces fx and fy in the plane of the fabric may be determined directly 

from the displacement-force relations of Eqn. (16). The warp yarns in the (x,z) plane 

will exhibit displacements ux and u^ which depend on the initial warp yarn 

geometry , the elastic properties of the warp yarns, and the forces fx and V. In a 

similar manner, the fill yarns in the (y,z) plane will exhibit displacements Uy and uzy 

which depend on the initial fill yarn geometry, the elastic properties of the fill yarn, and 

the forces fy and V. In these relations we have made use of the fact that equilibrium in 

the z-direction at the warp and fill yarn contact point requires the contact force V to be 

the same for both yarns. The yarns are assumed to remain in contact during 

deformation, and recognizing that one yarn will be concaved downward while the 

other is concaved upward provides the displacement compatibility condition

uzx + uzy = 0- (18)

Equations (14) and (16) show that the transverse displacements u^ and u^

depend linearly on the angle a and therefore depend linearly on the contact force V.
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Thus the compatibility condition (18) provides a straightforward representation of the 

contact force V as a function of fx and fy and the geometric and material properties 

of the warp and fill yarns. With V( fx , fy) known, the ratios V/fx = ax and V/fy = ay

associated with the warp and fill yarns, respectively, may be defined. Then for any 

combination of biaxial loads in the plane of the weave, the in-plane displacements 

ux(fx • fy ^ and uy( fy . fy) may be evaluated from Eqn. (16i) with (13). We will not 

present the results for biaxially loaded fabrics since our main interest here is on a 

comparison of this theory with experiments performed on woven Kevlar fabrics loaded 

uniaxially in tension. Theoretical results for the elastic deformation of fabrics subjected 

to uniaxial loading are developed in the next section.

RESULTS FOR UNIAXIAL LOADING

In this section we obtain the displacement-force relations for a woven fabric 

subjected to uniaxial loading in a principle direction parallel to one of the yarns. 

Without loss of generality, we take the direction of loading to be in the warp or x- 

direction and this yarn is subjected to the forces fx and V. The fill or y-directed yarn is 

unloaded in the plane, so fy = 0 and this yarn is subjected to the transverse force V

2
only. Thus for the fill yarn, ay = jt/2 and the analysis developed for a « 1 is not

appropriate. In this analysis, a subscript x or y will denote properties associated with 

the x or y directed yarn and these subscripts are used only when necessary to 

differentiate between the two. Absence of a subscript implies properties of the warp or 

x-directed yarn.

We assume that the displacement of the fill yarn depends linearly on the contact 

force V, and that with 1y = 0 there will be negligible stretching of the fill yarn. Thus for

this inextensible fill yarn we take the stretching parameter yy = 0, and the linear
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analysis of [7] provides (Eqn. (27) of [7])

uy = -
K By
4EyIy

K cy ..

v
(19)

Uzy 4e„iy y

with By, Cy approximated by

^ = t (i

cy = T4 (i

T

9 .2
20

(20)

The approximations of Eqn. (20) are within 1 % of the exact expressions given in [7] 
for the geometries under consideration here. The compatibility condition (18) provides

with

a = V
«

212 l (1-m)
►2*0 “ £x (1+m2)

• (1+Y^x) 1^3 /k (1-m2)
,0+ 3N£A- |x(1+In2)]

(21)

N = t
! ExIxV Voy"! (

Eyly
oy

/ \ ^^Oxj
9 ,2

" 20 ^°yj * (22)

The dimensionless warp displacement uxfrom Eqn. (16-|) with (13) is given by

a * 12 13^ )
u = V f 0 - 77 a q + -^q------- ^x 1 xYo 2 y0 6y0 4K

a (1-m)2 (1-m2)
+

(1+m2) VK(1+m2)

+ (U2Yfx)qo
(1. a2) m2 + « m (1 -m ) 
K a (1+m2)2 Vk (1 +m2)2 (23)

+ ^(3+2Y?x)
a (1-m2) (f-m)2

(1 +m2) Vi< (1 +m2)
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with a given by Eqn. (21). For a particular plane woven fabric with pick spacings px , 

py , crimp heights hx , hy , or known yarn lengths £x,£y , the geometric parameters 

Rx , <t)ox and Ry , <j>oy are determined from Eqns. (17) and the warp displacement ux

evaluated for a uniaxial load fx as shown. Clearly the x and y directions for this 

fabric may be interchanged to provide the displacement uy for a uniaxial load fy.

COMPARISON WITH EXPERIMENT

The deflection-force relations of a plane fabric woven from 400 denier Kevlar 

yarns have been determined experimentally as part of a parachute fabric investigation 

at Sandia National Laboratories. This particular fabric has nominally 30 yarns per inch 

in the warp direction and 31 yarns per inch in the weft or fill direction. One inch wide 

specimens were cut from this fabric and were sufficiently long to provide a 10 inch 

gage length when installed in an Instron testing machine. Specimens were cut in both 

the warp and fill directions, and care was taken to insure 30 yarns in the warp direction 

and 31 yarns in the fill. In these experiments, a specimen cut from, say, the warp 

direction, was installed in the Instron and loaded uniaxially to a given level while the 

deflection-force relation was recorded, and the loading stopped. A mold was fitted 

about the specimen and a portion of the specimen encapsulated. The specimen was 

then unloaded and removed from the Instron, sectioned in both warp and fill directions, 

and photographed. A second specimen cut in the warp direction was then installed in 

the Instron, loaded to a higher level than the first with deflection-force data recorded, 

and the loading stopped. Encapsulation, unloading, sectioning, and photographing 

was repeated at this higher load level. Altogether, this process was repeated at four 

load levels for specimens cut in both warp and fill directions to reveal the changes in 

weave geometry and yarn cross-section with loading. An unloaded specimen was also 

encapsulated, sectioned, and photographed to obtain the initial weave geometry. The
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deflection-force records were remarkably consistent within the different load levels. A 

detailed summary and discussion of the results of these experiments, including results 

obtained on fabrics woven from 200 denier Kevlar yarns, is in preparation [13].

Our main interest here is in comparing deflection-force relations obtained from 

these experiments on a uniaxially loaded fabric with the theory just developed. We 

again denote the fabric warp direction as the x-axis and the fabric fill direction as the y- 

axis. The initial geometry of the yarns in these directions as obtained from the 

sectioned photographs of the the unloaded fabric are listed in Table 1. The measured 

pick space p and crimp height h represent average values through the section while 

the parameters R and <f)0 are derived from these average values using Eqn. (17).

The measured pick spacings differ by about 2% from the nominal values. Also shown 

in Table 1 are the effective elastic properties ea and i/a of each yarn. The effective 

yarn stretching stiffness ea was obtained from averaged displacement data for large 

forces in both warp and fill directions, and the i/a values were obtained from curve

fitting appropriate values of y at the lower load levels with Eqn. (82). These values

indicate that there is essentially no difference between the elastic properties of the 

warp and fill yarns for this particular fabric.

The experimental and theoretical deflection-force relations for loading in the 

warp and fill directions are shown and compared in Figures 3 and 4. We have denoted 

the true displacement of the specimen measured over the ten inch gage length by u 

and the true or total force applied to the one inch wide specimen by f. In terms of the 

dimensionless displacements of Eqn. (16) and the dimensionless forces of Eqn. (6), 

the u and f are given by
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mm ,

These flexible specimens are difficult to install in the Instron grips and there is some 

uncertainty as to the actual origin in all of the experimental ( u , f ) curves. We have 

circumvented this problem by positioning the curves along the u axis so as to line up 

with each other in the large load limit.

Figures 3 and 4 show quite good agreement between experiment and theory in 

both warp and fill direction. During initial loading the elastic response of the fabric is 

dominated by yarn bending. With increased loading the response goes through a 

transition from bending to stretching and for large loads is dominated by yarn 

stretching. The difference between bending and stretching effects is significant. For 

small values of force fx , fy , Eqn. (15) shows

u = 7.42 x 10 2 7 , u = 4.60 x 10 2 T , (25)
x x y y

while for large values of force

-3 — -3 —
Au =3.81x10 Af , Au =3.77x10 Af . (26)x x y y

Thus in the warp direction the elastic compliance changes by a factor of 20 and in the 

fill direction by a factor of 12. These results show that overall the fabric is stiffer in the 

fill direction than in the warp. This is consistent with the initial weave geometry 

presented in Table 1 where the crimp height h is greater for the warp yarns than for

the fill which provides a larger angle <t>0 for the warp yarns. This difference probably
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came about because of warp displacement during shedding and differences in yarn 

tension during weaving. Under loading in the fabric plane, more bending deformation 

is required to straighten out the warp yarns, and this difference in deformation is 

reflected in Eqn. (24) and in Figures 3 and 4. It appears from this comparison of 

experiment with theory that the deformation of plane woven Kevlar fabric can be quite 

accurately predicted by modeling the individual yarns as extensible elastica.
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FIGURE

Figure 1.

Figure 2.

Figure 3.

Figure 4.

CAPTIONS

The extensible elastica: (a) Schematic of woven yarn, (b) The intrinsic 

coordinates and applied forces, (c) Forces acting on an element. 

Geometry of the woven fabric: (a) Schematic of woven yarn interlace, (b) 

Cross-section of weave in either x (warp) or y (fill) direction. 

Displacement-force relations for uniaxial loading in the x (warp) direction.

Solid line is experimental, broken line is theory,------------is linear [7].

Displacement-force relations for uniaxial loading in the y (fill) direction. 

Solid line is experimental, broken line is theory, is linear [7].
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Table 1. Initial weave geometry and elastic properties

p (mm) h (mm) R (mm) <I>o (rad) EA (N) i/a (mm2)

x (warp) 0.805 0.113 1.460 0.279 2200 4.90 x IQ'5

y (weft) 0.829 0.092 1.885 0.222 2160 4.97 x 10‘5
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