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ABSTRACT

The large deformation elastic response of a plane woven Kevlar fabric is
investigated analytically and experimentally. The analysis assumes the undeformed
geometry to be a sequence of interlaced arcs of circles which reverse at each yarn
midpoint, and each yarn is modeled as an extensible elastica subject to certain
compatibility conditions. Deflection-force relations for the fabric are determined in
terms of the initial weave geometry and the elastic properties of the individual yarns.
The theoretical results agree well with the results of experiments performed on a fabric
woven from 400 denier Kevlar yarns under conditions of uniaxial loading in both warp

and fill directions. DISCLAIMER
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INTRODUCTION

Woven Kevlar fabrics exhibit a number of beneficial mechanical properties
which include strength, flexibility, and relatively low density. Fabrics are used, for
example, in parachutes and bullet-proof vests, and they are often used as the
reinforcement in individual laminates of a composite material. The desire to engineer
or design Kevlar fabrics for specific applications has stimulated interest in the
development of theoretical models which relate their effective mechanical properties to
specific aspects of the fabric morphology and microstructure.

Theoretical investigations to develop relationships between the various
parameters which characterize a woven fabric have ranged from the purely
geometrical model of Peirce [1] to the more physical mechanistic models of Olofsson
[2] and Grosberg and Kedia [3]. A summary of the analysis of the mechanical
properties of woven fabric prior to 1969 is included in the monograph by Hearle et al.
[4], and more recent summaries have been provided by Ellis [5] and Treloar [6]. The
mechanistic approaches have traditionally uncoupled the effects of yarn stretching
from the effects of yarn bending (crimp interchange effect). The bending effects are
obtained by modeling the yarns as inextensible elastica, and these bending
deformations are superimposed unto the stretching deformations to obtain the total
elastic response. This uncoupled approach provides estimates of a much stiffer
mechanical response of the woven fabric than is observed experimentally. Recently,
Warren [7] has provided an analysis of woven fabric which models the individual yarns
as “extensible” elastica and thus couples bending and stretching effects throughout
the deformation history. Following a general development of the nonlinear theory,
Warren [7] restricts interest to small deformations and loads and obtains explicit
representations for the in-plane linear elastic constants of the fabric in terms of the
initial weave geometry and the elastic properties of the individual yarns. Even for these

linear elastic results, the coupling between bending and stretching effects is complex
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and not well represented by simple superposition. The results of this linear analysis
provide estimates for the in-plane elastic constants which agree very well with results
obtained experimentally by Leaf and Kandil [8] on fabrics woven from Vincel rayon
yarns.

In this work we extend our previous results [7] to provide a theoretical
investigation of the large deformation elastic response of a plane woven Kevlar fabric
together with a comparison of these theoretical results with experimental data
obtained from uniaxially loaded Kevlar fabrics. We define the woven fabric as a
regular network of orthogonal interlaced yarns and denote a point on any yarn which
is midway between successive cross yarns as a yarn midpoint. For homogeneous
deformations of this woven fabric we may restrict our analysis to the yarn deformations
which occur between two adjacent yarn midpoints. We model the individual yarns as
extensible elastica, thus coupling stretching and bending effects at the outset.
Consideration is restricted to biaxial loading in the principal yarn directions in the
plane of the fabric. The initial unloaded yarn geometry is assumed to be a sequence of
alternating circular arcs of constant radius R as apparently considered first by
Olofsson [9]. We utilize the general results obtained in [7] to investigate the asymptotic
elastic behavior for large applied loads. Interestingly enough, the limiting results of this
asymptotic analysis for small applied forces provide a very close approximation to the
linear elastic response obtained in [7].

We first obtain the solution to the differential equation describing the nonlinear
deformation of an extensible elastica subjected to a normal contact force 2V and a
midpoint force TO. This provides the deflection-force relations for the individual yarns.
The mechanical response of the woven fabric is obtained from the interaction of two of
these solutions corresponding to the yarn overlap by enforcing equilibrium and
compatibility of displacements. This provides analytical expressions for the in-plane

displacement-force relations of the woven fabric in the two principal yarn directions.
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Deflection-force relations for a fabric woven from 400 denier Kevlar yarns has
been determined experimentally under conditions of uniaxial loading. Specimens
were tested in both warp and fill directions, and the deflection-force relations obtained
experimentally are in quite good agreement with the theoretical predictions. During
initial loading the elastic response of the fabric is dominated by yarn bending. With
increased loading the response goes through a transition from bending to stretching
and for large loads is dominated by yarn stretching. The difference between bending
and stretching effects is significant and this difference is reflected in both the
experimental and theoretical results. This particular fabric is found to be stiffer in the fill
direction than in the warp which is consistent with the initial weave geometry showing
the yarn crimp height greater for the warp yarns than the fill. This increased crimp
height requires more bending deformation to straighten out the warp yarns, and this

difference is captured in both the theoretical and experimental results.

ANALYSIS OF INDIVIDUAL YARNS

The first step in obtaining the displacement-force relations for the woven fabric
is to obtain displacement-force relations for the individual yarns. In this analysis, each
yarn is modeled as an extensible elastica, and the geometry of this model is shown in
Fig.1 where we have made use of symmetry about the z-axis corresponding to the
yarn overlap contact point. The extensible elastica has been considered in detail by
Antman [10] and Tadjbakhsh [11], and in this analysis we make use of the intrinsic
coordinates of the elastica as presented for the inextensible case by Mitchell [12]. The

elastica is assumed to deform in the (x,z) plane as shown, and the initial shape is

taken to be an arc of a circle of radius R subtending an angle <0. The undeformed
shape of the elastica is defined by the arc length sO 0 < s0 s LO _and the slope <>(sO)

= SQ/R . The deformed shape is defined by the arc length s, 0 s: s s L, and slope i*(s).



The elastica is assumed to stretch linearly under the effect of the axial force T(s) acting
through the centroid of the cross section of area A which provides

ds
dso
where E is the Young’s modulus of the elastica, and

1)

T(s) = F cosij) + V simp = TO cos (xp - a) .
A number of synthetic yarns exhibit yielding and the linear relation of (1) is valid only
for T(s) less than the yarn yield force. Yarns woven from Kevlar fibers, however, show
an essentially linear displacement-force relation for loads up to fracture, and for these

yarns Eqgn. (1) is valid for the entire loading history. We note that the antisymmetric
condition at the deformed yarn midpoint s=L, with slope \p =ip0i requires the bending

moment M(s) to vanish at this point.

The differential equation which describes the non-linear deformation of the
extensible elastica together with the appropriate boundary conditions for this problem
have been developed by Warren[7] and all the details of this development will not be
reproduced here. Our point of departure is a first integral of this differential equation as
presented in [7] which takes the form

R 1 + KRY cos(\p-a)

1/2

1 + 2KR2? [cos(ip0-a)-cos(ip-a)] o)

+ K2R4y [cos2 (ip0-a ) -cos2 (tp-a)

and we have made use of the two constants

where | is the effective moment of inertia of the yarn cross-section. The constant v

represents a measure of the relative effects of bending and stretching in the



deformation of the elastica with the case v=o representing the inextensible elastica.

The differential equation (2) is subject to the boundary condition

H>(0) - O. (4)

Equation (1) provides the relation between ds and dsO of

ds = 1 + KRY cos (ip-a) ds. (5)

which is important in evaluating the deformed slope at the end s=L. We note that
the differential equation (2) may be expressed as an elliptic integral of Weirstrass' form
[10], but this does not provide an explicit representation for the unknown >0 in terms
of the known parameters. In reference [7], approximate solutions of (2) were obtained
for small applied forces such that KR2 <« 1.

We now consider approximate solutions of Eqn. (2) for the specific situations

where ij)0 and a are small which occur under conditions of loose weave geometry or
for large in-plane forces F = fx. Formally, we assume now that POR « 1, a2 <« 1,

which implies that V/F =tan a = a. We define the dimensionless forces associated

with F =fx and V as

\ 2 2

= KR"cos a = KR .
i — _ = —1 (6)
V = KR sin a = awcR = afx .

From Eqgns. (2) and (5), the undeformed increment of arc length ds0 is given by
ds. dij)
(7)

where

K= £x(I + YAX) |/ 8



and

= (MVA)2 + 2(a-H0) + UK (9)

Integration of Eqn. (7) gives
Vo

and evaluation finally provides

1 (1-m2) (1-m)2
_ S (10
dmy & @3
with
JKp
m=e€ an

Equation (10) determines the yarn midpoint slope as a function of the initial yarn
geometry ¢0 and the applied forces. For large values of applied force, K~ |, m-»0,

and \p0 -‘r a.
The deformed increment of arc length ds may be obtained from Eqn. (2) and is
given by

~N F =11 + Yx 1 - y(Tp-a) dtp 12

Using the deformed geometry relations dx = cos ds and dz =sin ™ ds together with
Eqgn. (12), the position of the deformed yarn midpoint (x0 , ZQ) may be obtained in
terms of the deformed yarn midpoint slope through direct integration, with ip0 given

by Egn. (10). Carrying out these operations provides expressions for the deformed
position of the yarn midpoint in terms of the initial yarn geometry and the applied

forces. The components of the deformed position are given by



a (1-m)2 (1-m2)
(1+m2) VR (1 +m2)

A3
am (1 -m2)
Vi< (1 +m2)
0 a(1-m2) + (1-m)2
R &1 +Y1x)' a (PO Vi< (1 +m2) K(1+m2)

It is instructive to consider two limiting cases of these results.

(i) Limit as fx —»3c and V
Within the framework of this analysis, as fx -*oc and V -*», the ratio V/fx =

a«1. Equation (10) shows that under these conditions, -* a and the deformed

position of the yarn midpoint has the components

0 EA

Thus in the limit of large fx , V | the yarn straightens out and the elastic response
approaches that of a straight rod oriented at =a = V/fx
(i) Limit asfx-» 0 and V -> 0

This limiting case provides the linear elastic response of the yarn, and Eqns.

(10), (13), and (14) provide



- 3 A .2
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These results agree with the linear elastic response developed in [7] through the

appropriate order of the initial geometry parameter ¢0. It is interesting to note that while

the results of this analysis were obtained with the assumption of small a and large fx

they provide a very accurate representation of the yarn response for the linear elastic
limit. A measure of the error between the actual linear elastic response and the linear

response represented by Eqn. (15) may be obtained by considering the exact initial

yarn geometry (Xo/RJa = sin ¢0 and (Zo/R” = (1 -cos <0 ). Even for fairly tight weaves

with 90 = 45 O, the error in (XQ/RJQ is less than one percent and the error in (Zo/R” is

about five percent.

The displacement of the yarn midpoint with respect to the overlapping yarn
contact point (0,0) is the difference between the deformed and undeformed positions
of the yarn midpoint. This displacement has components ux and uz which may be

obtained in the dimensionless form

I I TN 1§

A2
S R -0
where Xa/R is given by Egn. (13), Za/R is given by Eqn. (14), and we have used the

approximate undeformed yarn midpoint position given in Eqn. (15). Equation (16)

provides the displacement-force relations for the individual yarns.



ANALYSIS OF WOVEN FABRIC
The interlaced geometry of a typical woven fabric is shown in Fig. 2. With
reference to Fig. 2b, the usual geometrical weave parameters of pick spacing p , yarn

length # and crimp height h are represented in terms of the elastica parameters R
and {0 by
p = 2R sin ¢0
£=2R4)0 (17)
h=2R (1 - cos ¢0) .
To fix ideas, we will denote the x-direction as the warp direction and the y-direction as
the weft or fill direction.

The large deformation elastic response of a woven fabric which is loaded
biaxially with forces fx and fy in the plane of the fabric may be determined directly
from the displacement-force relations of Eqn. (16). The warp yarns in the (x,z) plane
will exhibit displacements ux and u” which depend on the initial warp yarn
geometry , the elastic properties of the warp yarns, and the forces fx and V. In a
similar manner, the fill yarns in the (y,z) plane will exhibit displacements Uy and uzy
which depend on the initial fill yarn geometry, the elastic properties of the fill yarn, and
the forces fy and V. In these relations we have made use of the fact that equilibrium in
the z-direction at the warp and fill yarn contact point requires the contact force V to be
the same for both yarns. The yarns are assumed to remain in contact during
deformation, and recognizing that one yarn will be concaved downward while the
other is concaved upward provides the displacement compatibility condition

uzx + uzy = O- (18)
Equations (14) and (16) show that the transverse displacements u”® and u#

depend linearly on the angle a and therefore depend linearly on the contact force V.
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Thus the compatibility condition (18) provides a straightforward representation of the

contact force V as a function of fx and fy and the geometric and material properties

of the warp and fill yarns. With V( fx , fy) known, the ratios V/fx = ax and V/fy = ay

associated with the warp and fill yarns, respectively, may be defined. Then for any
combination of biaxial loads in the plane of the weave, the in-plane displacements
ux(fx «fy * and uy(fy .fy) may be evaluated from Eqn. (16i) with (13). We will not
present the results for biaxially loaded fabrics since our main interest here is on a
comparison of this theory with experiments performed on woven Kevlar fabrics loaded
uniaxially in tension. Theoretical results for the elastic deformation of fabrics subjected

to uniaxial loading are developed in the next section.

RESULTS FOR UNIAXIAL LOADING

In this section we obtain the displacement-force relations for a woven fabric
subjected to uniaxial loading in a principle direction parallel to one of the yarns.
Without loss of generality, we take the direction of loading to be in the warp or x-
direction and this yarn is subjected to the forces fx and V. The fill or y-directed yarn is

unloaded in the plane, so fy = 0 and this yarn is subjected to the transverse force V
2
only. Thus for the fill yarn, ay =J41/2 and the analysis developed for a <« 1 is not

appropriate. In this analysis, a subscript x or y will denote properties associated with
the x or y directed yarn and these subscripts are used only when necessary to
differentiate between the two. Absence of a subscript implies properties of the warp or
x-directed yarn.

We assume that the displacement of the fill yarn depends linearly on the contact

force V, and that with 1y = 0 there will be negligible stretching of the fill yarn. Thus for

this inextensible fill yarn we take the stretching parameter yy = 0, and the linear
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analysis of [7] provides (Eqn. (27) of [7])

K By
- Y%
uy = - 4Eyly (19)
K cy .
Uz 4€E, 1
A

with By, Cy approximated by

N =t (i
T 20

cy = TaA (i 290 2

The approximations of Egn. (20) are within 1% of the exact expressions given in [7]
for the geometries under consideration here. The compatibility condition (18) provides

2
12 1 (1-m)
C2%) N £x (1+m2) '
a = v «21)
1~3 /K (1-m2)
© (1+Y%%) O+ 3N£2n - |x(1+In2)]
with

/ "y

.ExIxVVoXy: ( 9 ,(g- *
N = tevis/\MOX 20 "%y 22)

The dimensionless warp displacement uxfrom Eqn. (16-|) with (13) is given by

A V; 12 13/\ ) ) a (1-m)2 (1-m2)
= -7 4+ NJeooee
ux 1 XQO 53 %‘/0 6y6:I 4K (1+m2) * VK(1+m2)
(1.a2) m2 + «m(1-m)
+(U2YIX)qo K g (1+4m2)2 VK (1 +m2)2 (23)

a (1-m2) (f-m)2
+ 4~ (3+2Y7x)
(1+m2) Vi< (1 +m2)
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with a given by Eqn. (21). For a particular plane woven fabric with pick spacings px,

py , crimp heights hx, hy , or known yarn lengths £x,£y , the geometric parameters

Rx, 9ox and Ry, ¢oy are determined from Eqns. (17) and the warp displacement ux

evaluated for a uniaxial load fx as shown. Clearly the x and y directions for this

fabric may be interchanged to provide the displacement uy for a uniaxial load fy.

COMPARISON WITH EXPERIMENT

The deflection-force relations of a plane fabric woven from 400 denier Kevlar
yarns have been determined experimentally as part of a parachute fabric investigation
at Sandia National Laboratories. This particular fabric has nominally 30 yarns per inch
in the warp direction and 31 yarns per inch in the weft or fill direction. One inch wide
specimens were cut from this fabric and were sufficiently long to provide a 10 inch
gage length when installed in an Instron testing machine. Specimens were cut in both
the warp and fill directions, and care was taken to insure 30 yarns in the warp direction
and 31 yarns in the fill. In these experiments, a specimen cut from, say, the warp
direction, was installed in the Instron and loaded uniaxially to a given level while the
deflection-force relation was recorded, and the loading stopped. A mold was fitted
about the specimen and a portion of the specimen encapsulated. The specimen was
then unloaded and removed from the Instron, sectioned in both warp and fill directions,
and photographed. A second specimen cut in the warp direction was then installed in
the Instron, loaded to a higher level than the first with deflection-force data recorded,
and the loading stopped. Encapsulation, unloading, sectioning, and photographing
was repeated at this higher load level. Altogether, this process was repeated at four
load levels for specimens cut in both warp and fill directions to reveal the changes in
weave geometry and yarn cross-section with loading. An unloaded specimen was also

encapsulated, sectioned, and photographed to obtain the initial weave geometry. The
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deflection-force records were remarkably consistent within the different load levels. A
detailed summary and discussion of the results of these experiments, including results
obtained on fabrics woven from 200 denier Kevlar yarns, is in preparation [13].

Our main interest here is in comparing deflection-force relations obtained from
these experiments on a uniaxially loaded fabric with the theory just developed. We
again denote the fabric warp direction as the x-axis and the fabric fill direction as the y-
axis. The initial geometry of the yarns in these directions as obtained from the
sectioned photographs of the the unloaded fabric are listed in Table 1. The measured

pick space p and crimp height h represent average values through the section while
the parameters R and <0 are derived from these average values using Eqn. (17).

The measured pick spacings differ by about 2% from the nominal values. Also shown
in Table 1 are the effective elastic properties Ea and x/a of each yarn. The effective
yarn stretching stiffness Ea was obtained from averaged displacement data for large

forces in both warp and fill directions, and the 1/a values were obtained from curve
fitting appropriate values of y at the lower load levels with Egn. (82). These values

indicate that there is essentially no difference between the elastic properties of the
warp and fill yarns for this particular fabric.

The experimental and theoretical deflection-force relations for loading in the
warp and fill directions are shown and compared in Figures 3 and 4. We have denoted
the true displacement of the specimen measured over the ten inch gage length by u
and the true or total force applied to the one inch wide specimen by f. In terms of the
dimensionless displacements of Eqn. (16) and the dimensionless forces of Eqn. (6),

the u and f are given by
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mm

These flexible specimens are difficult to install in the Instron grips and there is some
uncertainty as to the actual origin in all of the experimental ( u , f ) curves. We have
circumvented this problem by positioning the curves along the u axis so as to line up
with each other in the large load limit.

Figures 3 and 4 show quite good agreement between experiment and theory in
both warp and fill direction. During initial loading the elastic response of the fabric is
dominated by yarn bending. With increased loading the response goes through a
transition from bending to stretching and for large loads is dominated by yarn
stretching. The difference between bending and stretching effects is significant. For

small values of force fx,fy, Eqn. (15) shows

u =742x1027 , u =460x102T , (25)
X X y y

while for large values of force

-3 - -3 -
Aux =3.81x10 Afx , Auy =3.77x10 Afy : (26)

Thus in the warp direction the elastic compliance changes by a factor of 20 and in the
fill direction by a factor of 12. These results show that overall the fabric is stiffer in the
fill direction than in the warp. This is consistent with the initial weave geometry

presented in Table 1 where the crimp height h is greater for the warp yarns than for

the fill which provides a larger angle ¢0 for the warp yarns. This difference probably
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came about because of warp displacement during shedding and differences in yarn
tension during weaving. Under loading in the fabric plane, more bending deformation
is required to straighten out the warp yarns, and this difference in deformation is
reflected in Egn. (24) and in Figures 3 and 4. It appears from this comparison of
experiment with theory that the deformation of plane woven Kevlar fabric can be quite

accurately predicted by modeling the individual yarns as extensible elastica.

16



REFERENCES

1.
2.

Peirce, F. T. , “The Geometry of Cloth Structures". J. Text. Inst.. 28 (1937) T45.
Olofsson, B. , ‘A General Model of a Fabric as a Geometric-Mechanical Structure”,
J. Text. Inst., 55 (1964) T541.

Grosberg, R and Kedia, S., “The Mechanical Properties of Woven Fabrics, Part I:
The Initial Load Extension Modulus of Woven Fabrics", Textile Res. J., 36 (1966)
71.

Hearle, J. W. S., Grosberg, P, and Backer, S.. Structural Mechanics of Fibers.
Yarns, and Fabrics. Wiley-Interscience, NY (1969).

Ellis, R, “Woven Fabric Geometry — Past and Present”, Tex. Inst. & Industry. 12
(1974) 245.

Treloar, L. R. G., “Physics of Textiles”. Physics Today. 30 (1977) 23.

Warren, W. E., “The Elastic Properties of Woven Polymeric Fabric”, Poly. Eng. &
Science . 30 (19901 1309.

Leaf, G. A. V. and Kandil, K. H., “The Initial Load-Extension Behavior of Plane-
Woven Fabrics”, J. Text. Inst.. 71 (1980) 1.

Olofsson, B., “The Setting of Wool Fabrics- A Theoretical Study”, J. Text. Inst.. 52
(1961) T272.

10. Antman, S., “General Solutions for Plane Extensible Elasticae having Nonlinear

Stress-Strain Laws”, Q. APPl. Math,. 26 (1968) 35.

11 .Tadjbakhsh, ., “The Variational Theory of the Plane Motion of the Extensible

Elastica”, Int. J. Enono. Sci., 4 (1966) 433.

12. Mitchell, T. R, “The Nonlinear Bending of Thin Rods”. J. Appl. Mech. ,25 (1959) 40.

13. Ericksen, R. H., Davis, A. C., and Warren, W. E., “Deflection-Force Measurements

and Observations on Kevlar 29 Parachute Fabrics”, in preparation.

17



FIGURE CAPTIONS

Figure 1. The extensible elastica: (a) Schematic of woven yarn, (b) The intrinsic
coordinates and applied forces, (c) Forces acting on an element.

Figure 2. Geometry of the woven fabric: (a) Schematic of woven yarn interlace, (b)
Cross-section of weave in either x (warp) or y (fill) direction.

Figure 3. Displacement-force relations for uniaxial loading in the x (warp) direction.
Solid line is experimental, broken line is theory,------------ is linear [7].

Figure 4. Displacement-force relations for uniaxial loading in the y (fill) direction.

Solid line is experimental, broken line is theory, is linear [7].
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Table 1. Initial weave geometry and elastic properties

p (mm) h (mm) R (mm) < (rad) EA (N) 1/A (mm2)

x (warp)  0.805 0113 1460 0279 2200  490x1Q%

4.97 x 105

y (weft) 0.829 0.092 1.885 0.222 2160

19



INITIAL SHAPE «/»(s0)

DEFORMED SHAPE '/'(s)

(a)

M(S)

Q(s) * ™ TT(s)

(C)






Displacement ux (mm)

Fir 3



Displacement u (mm)

Fi'?-



