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Chapter One

Introduction and Overview

Federal transportation policies have wide ranging impacts upon the 

transportation industries, and, through them, upon the allocation of 

economic activity among industries and regions throughout the nation. 

Federal regulatory policy directly affects rates, entry, routes, etc. in 

the intercity transportation industries: rail, highway, water, and air. 

Federal promotional policies directly affect the infrastructure and thus 

the costs of these various modes, as do federal policies with respect to 

use charges, subsidies, safety, energy, loan guarantees, environmental 

impacts, etc.

Clearly, a change in any given federal transportation policy with 

respect to any given mode will have a direct impact upon the costs and/or 

demands facing the firms in that mode, and thus upon the equilibrium con­

figuration of rates, traffic allocations, service levels, etc. within that 

mode; but it will also affect the rates, traffic allocations and service 

levels of the competing modes by changing the relative prices of the 

various transport services. Moreover, since transportation is used as an 

intermediate good in virtually all industries in all regions of the coun­

try, changes in the costs of transportation relative to those of other in­

puts will alter the allocation of economic activity and consequently the 

level of incomes and employment among regions, among industries, among 

different kinds of labor and capital, and among cities of different sizes.

When viewed in this context, it is clear that most studies of 

transportation policy have had an excessively narrow focus. Economic 

studies have tended to look at the question from the point of view of 

economic efficiency alone, and have thus concentrated upon providing 

global measure of user savings, resource savings, or welfare losses.

— See, for example, Keeler (1972), Moore (1973), Douglas and Miller (1974).
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While informative, these studies have tended to ignore questions of 

the income distribution as well as broader questions of efficiency 

concerned with full employment and transfer costs. Thus, what happens 

to employment and wages in a given transportation industry; what 

happens to regional income levels and the regional allocation of 

economic activity; what happens to the level of service to given 

communities have been questions that economists have generally not raised 

much less answered.

Clearly, however, if one looks at legislative or regulatory 

proceedings, issues of the income distribution have tended to dominate 

the discussion. Whether service will be curtailed to a given city or 

class of cities; whether labor income and/or employment will fall 

within a given transportation industry or a given region; whether 

industry incomes and outputs will rise or fall; are all questions that 

the policy maker has tended to weigh more heavily than questions of 

aggregative economic efficiency. Thus, if economic analysis is to be 

used to help evaluate changes in transportation policy, it must not 

only provide answers concerning aggregative efficiency impacts, but 

also provide answers relating to a whole host of distributional questions 

Consequently, one of the major goals of this research is to provide 

analytical models that can be used to quantify the magnitude of the 

various distributional effects as well as to quantify the magnitude of 

the efficiency effects of a given change in transportation policy.
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This volume describes such a modeling effort. The basic premise 

of the analysis is that relative prices matter. Thus any change in 

transportation policy should lead to a change in the transportation rate 

structure, which in turn will affect a wide range of regional and 

national variables concerning income, output, employment, etc. Since 

these, however, can influence transportation costs and/or demands, the 

entire system is interrelated and simultaneously determined.

These propositions are illustrated in Figure 1, which depicts 

four linked models:

• A regional transportation model that determines costs, revenues, 
profits, outputs, shipment characteristics, rates and factor 
demands by firm, by mode, by broad commodity type and by region.

• A national interindustry model that determines interindustry 
coefficients, commodity prices, commodity outputs and factor 
employment by broad commodity type.

• A regional income model that determines factor prices, con­
sumer prices, increases, outputs and employment by broad 
commodity type.

• A small-scale national macroeconometric model that determines 
factor prices, final demands and consumer prices.

With the exception of the exogenous variables in the national 

macroeconometric sub-model, every variable that is exogenous to a 

given sub-model is endogenous to another sub-model. Hence, the entire 

system is interrelated and interactive; a full solution to the model 

must be simultaneously determined.



An Integrated Policy Mddel. for 

the Transportation Industries

Federal Transportation 
Policy

sk

Regional Transportation Mnnpi 

Endog. Var. Exog. Var.

Costs

Revenues

Profits

Outputs

Shipment
Charac,
Rates—
Factor
Demands'

Comodi ty 
Charac.

Factor Pric

FKrket . 
CharacH

ES
/N

V

Nationai I/O Mnm 

Endog. Var. Exog. Var.

I/O Coef. 

Comodi ty •
TRICES

Comodi ty ^ 
Output

Factor Empl.-

Factor Prices 4 

Final Demand^

Transport^ 
Prices ^

------->-
Rfgionai Inconf Modfi 

Endog. Var. Exog. Var.

Factor
Prices

Tncope

CPI

Output

■E/oloyiont
____/K____

U.S. Em3loy.<-

U.S. Commodity 
Output <—

U.S. iNcort^- 

U.S. CPU—

Figupc 1

National Macro Model

rw™. Vap. Fxog. Var.

-Factor Prices Population

Final Demand Macro Police

U.S. CPI
___ ___A__________________

V

A



-5-

In terms of policy analysis, we can postulate a change in trans­

portation policy that affects costs, demands or the nature of market 

equilibrium in the transportation industries in a given region or the 

nation as a whole.—/ These in turn affect transportation rates and 

factor employment, which, in turn, affect regional and national outputs, 

employment, factor prices and so forth. However, these also affect 

the nature of the equilibrium in the transportation industries. Thus 

by using these interrelated models, we can analyze the impact of a 

wide range of transportation and related policies upon a wide range of 

variables that measure distributional as well as efficiency impacts.

To make the problem tractable, our initial efforts will be quite 

aggregative and deal with broad categories with respect to modes, 

regions, commodities, and factors. We thus plan to consider the 

following:

Modes. Initially we plan to focus upon the rail and trucking 

industries. Because of data limitations, we will probably have 

to confine our analysis to regulated trucking, although it would 

obviously be desirable to extend it to private and exempt carriage.^/

Regions. A wealth of regional data exist from the Census 

of Transportation, which makes it possible to perform a 

regional analysis on a fairly fine level of detail. At 

this time, however, we are primarily interested in developing an

2/—'For a full discussion of the proposed policy analysis see Friedlaender 
et al^ (1977).

3/
— Insofar as data and resources permit, we will also analyze the water 

and pipeline industries.
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integrated model that can be used for aggregative policy analysis. 

Consequently we plan to limit ourselves to the five ICC regions:

The Official, Southern, Southwestern, Mountain-Pacific and Western 

Territories. Once we have developed working models of these five regions, 

we can always extend the analysis to more regions.

Commodities. Similarly, a wealth of commodity detail exists. 

Nevertheless, for reasons of tractability, we plan to limit our initial 

analysis to the following broad commodity groups: durable manufacturers; 

nondurable manufacturers; feed grains; other agricultural commodities; 

coal; petroleum and petroleum products; minerals, chemicals and others.

Factors. The regional transportation models will consider 

labor, fuel, equipment and track (for the railroads) as the relevant 

factors of production, while the regional models will only consider 

labor. The national interindustry model will treat transportation as a 

factor of production as well as labor, capital, energy, and materials.

Our basic approach is one of comparative statistics, with trans­

portation policy as the primary exogenous variable. We thus determine 

an initial equilibrium and postulate a change in transportation policy. 

After determining the new equilibrium as well as its time path, we can 

then assess the impact of the policy change.

As indicated above, our main analytical tools are changes in the 

cost functions, changes in the demand functions, and changes in the nature 

of the market equilibrium in the transportation industries. These, 

however, permit us to consider a wide range of policies under a wide 

range of situations.
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With respect to industry behavior, we can analyze the nature of 

the equilibrium if the transportation industries operate under joint 

monopoly profit maximization, workable competition, or oligopoly or 

monopolistic competition. We can also analyze how the equilibrium 

would change if transportation firms maximized objective functions other 

than profits.

Within this framework, it is relatively straightforward to 

analyze policies that affect demands or costs. In particular, we should 

be able to assess the impact of the following: deregulation under different 

market structures; marginal cost pricing; abandonment and capital 

adjustments; work force adjustments; entry restrictions; and abolition of 

rate bureaus. Moreover, in so far as energy policies affect final costs, 

our analysis should be able to assess their impact. Finally, this 

framework can also be used to assess the impact of user charges and 

investment or promotional policies that affect carrier costs.

To recapitulate briefly, these interrelated models permit us to 

analyze the impact of a wide range of transportation and related 

policies upon a wide range of variables that measure distributional 

as well as efficiency impacts. Specifically, by utilizing this frame­

work, it should be possible to consider the following:

Transportation Policies

e Setting rate levels or rate bands in the regulated 
transportation industries.

• Total deregulation of rates.
• Elimination of rate bureaus or other cartelization in 

the regulated transportation industries.
• Relaxation or tightening up of restrictions concerning 

entry in the regulated transportation modes.
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« Relaxation or tightening up of restrictions concerning 
mergers in the regulated transport modes.

• Relaxation of restrictions concerning abandonment and 
capital adjustments in the transportation industries.

• Relaxation of restrictions upon the utilization of 
labor in the regulated transportation industries.

• Construction and maintenance of transportation infra­
structure and its related user charges.

• Explicit subsidies for specific kinds of transportation 
services.

• Energy policy in so far as it affects relative fuel 
costs in the transportation industries.

Efficiency Variables

• Long-run and short-run marginal costs of different 
outputs by different modes.

• Price-marginal cost ratios by different outputs and 
different modes.

• Resource cost savings from "optimal" adjustments in 
capacity and labor utilization.

t Resource savings (or costs) associated with traffic 
allocations resulting from competitive, monopolistic, 
or oligopolistic market structures as opposed to the 
present regulatory environment.

• Measures of productivity by transport mode.
t Measures of industrial concentration by transport mode.
• Measures of profitability, costs, and revenues by 

firm and by transport mode.
t Measures of factor utilization (employment) by firm 

and by transport mode.
t Measures of aggregate level of service by mode.
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Distributional Variables

• Traffic allocations and profitability by firm and by 
mode.

• Employment and wages by firm and by mode.
• Employment and wages by national industry, regional 

industry, and by broad geographical regions.
• Price-marginal cost ratios by class of user and by 

geographical region.
• Income levels by broad geographical regions and by 

national industry.
• Producers' prices by broad industry category.

The remaining chapters of this volume discuss the specification 

of the various models and the preliminary econometric results in 

some detail. Chapter Two outlines the regional transportation model 

while Chapters Three and Four respectively discuss the econometric 

estimation of cost functions in the transportation industries and its 

application to the trucking industry. Chapter Five describes the 

interindustry model, while Chpater Six discusses the determination of 

regional and national income in the context of these policy models. 

Chapter Seven provides a brief summary and conclusions.
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Chapter 2

The Regional Transportation Model

The heart of the analysis lies in the model of the regional 

transportation market. Conceptually, this is quite straightforward, 

and is illustrated in Figure 2. Thus we postulate that there is a 

known industry or firm cost function, which relates costs to outputs, 

factor prices, and (in the case of the short-run cost function) 

the amounts of the fixed factors. Similarly, we assume that there is 

a known firm or industry demand function relating shipments to market 

characteristics, commodity characteristics, shipment characteristics 

of own and competing modes, and rates of own and competing modes.

Given these cost and demand functions, and assuming profit maximizing 

behavior as the part of the firms in the industry,-^we can determine 

the equilibrium level of rates, shipments, profits, costs, revenues, 

shipment characteristics, and factor demands in the short-run and the 

long run under a number of different market structures: perfect competi~ 

tion, joint profit maximization, rate regulation, oligopoly, and 

monopolistic competition.

Let us now discuss the specification of the cost and demand 

functions, and how we plan to utilize them for policy analysis,

—/We could also make different assumptions about the firms' objective__
functions such as sales maximization subject to a profit constraint 
or profit maximization subject to a rate of return constraint.
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I. Cost Functions

The validity of econometric estimates of the costs of the

various transportation modes remains an issue surrounded by

controversy. While there have been numerous econometric studies
2/of rail, trucking, and airline cost,- no one has yet developed a 

costing methodology that has yielded results that are generally 

accepted as valid. This inability to obtain a consensus concerning 

costing methodology and/or the validity of the empirical results 

arises not so much from a lack of effort, but rather from the failure 

to specify the cost functions that appropriately characterize 

the structure of technology.

Specifically, there appear to be three fundamental problems 

that one must address in specifying and estimating cost functions 

for the transportation industries.

First, the output of a transportation firm, whatever the mode, 

is multi-dimensional by its very nature. Not only does the firm 

produce different types of transportation services for different 

users at different origins and destinations, but also at different 

levels of quality. Consequently, the mix of output can have a major 

impact upon the costs of any given firm. For example, railroads 

specializing in coal traffic have very different cost characteristics 

than those specializing in general manufactured commodities*

Since the mix of output affects the firm's costs, it is clearly 

inappropriate to estimate cost functions by using a single aggregate measure

2/
- For a review of the literature, see Kneafsey (1975) for rail,

Dramas (1975), for trucking, and Douglas and Miller (1974) for air.
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of output such as ton miles or passenger miles. To the extent that the mix 

of traffic and quality levels affect costs, a vector of outputs and quality 

levels that characterize the range of activities undertaken by the 

firms in a given transportation mode should be incorporated into the 

analysis. While it is unlikely that the available data will permit the 

fully desired degree of output disaggregation, it is clear that 

considerably more disaggregation is possible that has been undertaken 

in existing studies of transportation costs.

Second, it is generally agreed that the activities of each of 

the transportation modes are characterized by joint and common 

costs, implying that their technology is characterized by joint 

production. Although Hall (1973) has shown that a separable 

technology will always imply joint production, he has also shown 

that the converse is not true. We cannot assume, therefore, that 

cost functions based on a separable Cobb-Douglas technology are 

good representations of reality.-7 Instead, a flexible form is 

needed that will permit the determination of the underlying structure 

of technology from its estimated coefficients.

Third, to the extent that regulatory or other constraints

prevent the firms in each mode from making optimal adjustments in

capacity, they are not generally in a position of long-run equilibrium

operating along their long-run cost function. Consequently, efforts

to estimate long-run cost functions directly from cross-sectional

data will yield seriously biased coefficients and resulting measures

of marginal costs. The sign of this bias will depend upton the
4 /degree of excess capacity.- Since, however, this relationship is not

3/- See, for example, Keeler (1974), Kneafsey (1975) and Eads, Nerlove, and 
Raduchel (1969).

VSee Friedlaender (1969) for a discussion of this point.
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generally known, it is impossible to make any adjustment to correct for 

this bias.

This implies that one should estimate short-run functions when one 

suspects that an industry may be in long-run disequilibrium with chronic 

excess capacity. Since the long-run cost function is merely the envelope 

of the short-run cost function, it is always possible to derive the 

unobserved long-run cost function from the observed short-run cost function^/ 

Thus, to the extent that the short-run cost function has been correctly 

specified, and its coefficients are therefore unbiased, the coefficients 

of the derived long-run cost function will also be unbiased and the 

long-run marginal costs obtained from the derived long-run total cost 

curve will also be unbiased.

These arguments imply that in estimating cost functions for the 

transportation industries, one should specify a multiple-output cost 

function in a sufficiently flexible form to permit the testing of a 

number of hypotheses concerning the separability, homogeneity, and 

jointness of the underlying production function. Moreover, if there is 

reason to believe that regulatory or other institutional constraints 

prevent "optimal" capacity adjustment, one should estimate a short-run 

variable cost function, which can be used to derive the associated long- 

run cost function and the underlying production function.

This analysis will use a translog cost function that meets the 

objections raised with respect to most cost functions: it permits

multiple outputs and quality levels; it is of a sufficiently flexible 

form to test hypotheses concerning the underlying structure of production;

—^This approach has been utilized by Keeler (1974) and Kneafsey (1975) 
in the railroad industry and by Eads, Nerlove, and Raduchel (1969) in 
the airline industry.
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and it can be used in either its short-run or long-run form^/
j

Since the methodology we use to estimate cost functions is entirely 

general, we will apply it to all of the relevant modes. Thus, by using 

cross-sectional and time series data, we plan to estimate a short-run 

variable cost function of the folowing general form:

(2.1)
C = C(y,x,w)

where C = short-run variable cost

y = a (IxN) vector of outputs

x = a (IxH) vector of fixed factors

w = a (IxJ) vector of prices of the variable factors.

We can then establish the short-run total cost function:
H

C = C(y,x,w) + W.x, (2.2)
h=l n n

where w^ represents the price of fixed factor h. Differentiating the 

short-run total cost function with respect to each fixed factor and 

setting the resulting expression equal to zero we thus obtain:

(2,3)

6/ For a full discussion of the costing methodology used see Chapter 3, 
below.
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Solving the above system of equations for each we obtain:

*h = Vy,w,S)

By substituting the above into the short-run total cost function we 

can then obtain the long-run total cost function:

C* = C*(y,q) (2.5)

where q represents the vector of all factor prices; hence

q ~ (w-j»... j Wj; w-j j. • • »^[^)

Moreover, we can obtain short-run and long-run factor demand 

equations by utilizing the well-known relationships that

9C(y,x,w) _ . ,
----^ Xj J'1*

v

,0 (2.6a)

9C*(y ,g_) _ ^=1 J+H (2 6b)a% xh h l .6b)

where x^ represents the demand for the j*"*1 variable factor and x^ 

represents the demand for the h^ factor (variable or fixed).

Finally, by differentiating the short-run and long-run cost 

functions with respect to output, we can obtain the marginal costs of 

different shipments; thus

9C-(^-w-l = me. i=l,...,Nay^ i (2.7a)

3C*(y,q)
9yi

met i=l,...,N (2.7b)

where mc^ and mc| respectively represent short-run and long-run 

marginal costs.
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The derivation of the long-run cost function from the short-run 

cost function is fairly straightforward in the case of a specific 

functional form.-^ In the case of second-order approximations it is 

considerably more difficult, since we are not only interested in the 

numerical value of costs in the short-run and in the long-run around 

a particular point, but also in the specification of the entire 

function. Nevertheless, using the translog approximation it is 

possible not only to derive the value of long-run costs around a 

particular point, but also to derive short-run and long-run cost 

functions over the relevant range. Consequently, because it enables 

us to determine much more about the nature of the underlying tech­

nology than a specific functional form, we plan to use the following

translog approximation in analyzing the short-run cost variable
8/functions of the transportation industries.—

N H J
&nC(y,x,w) = cx0 + J^a. Jin yi + ^&h An xh + £n w^

, N N H H
+ 7^ J Aik *n yi “ + H 10 *n

+

+

+

+

a j,
""V

niDij +D':i)ilnwj “"j
^ j

VlK + E'.ni] *n*h
i h

| }IFW + F'jh| knx.ltnwj)

(2.8)

—^See, for example Keeler (1974), Kneafsey (1975).

8/lhis approach has also been used by Caves and Christensen (1976). Our 
work differs from theirs, however, in that we utilize multiple outputs 
and adjust for quality.<
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As indicated in Chapter Three, below, by using this 

specification of the cost function and by imposing various restrictions 

on the coefficients, we can test for homogeneity in factor prices, homo' 

geneity in outputs, separability, and jointness in production. More­

over, it is also possible to derive long-run total costs, long-run and 

short-run marginal costs and long-run and short-run factor demands over 

the relevant range from eq. (2.8). Finally, by adjusting the vector of

outputs to reflect differences in the quality of service,-we can take 

service differentials into account.

For notational simplicity, we now revert to the general specification 

and write the short-run variable cost function for mode m in region d as:

(2.9a)

where the d's range over the ICC territories and the m's range over rail, 

truck, water, and (possibly) pipelines.

The long-run cost function derived from this is given by:

Sn = ^ym’ xm’ wm^

Cd(yd, qd) mVJm’ mr (2.9b)

and the respective marginal costs are denoted by Cdm and CV„, where

C?n, ' SCra/3yr

.d
'im'

Finally, since the cost functions are derived from cross-sectional

and time series data, as long as all firms in a given mode face the

same technology, we can derive firm-specific cost functions for each

mode and write: 
g/
- This can be done by deflating the output measures directly by use of 

hedonic price equations or by estimating hedonic cost functions di­
rectly, in which the output vector y is replaced by a function $(y,Q), 
where Q represents the vector of qualities. For a full discussion of 
the use of hedonic adjustments in this context see Chapters 3 and 4, 
below.
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C% = Cd.(yd,, xd , wd ) mf mf^mf mf mf
:d
,/m1
,d rd , d • d » 

Cmf “ Cmf^ymr qmf^

(2.10a)

(2.10b)

where the variables have their previous meaning and f ranges over the 

firms in the mode.

We can similarly obtain the firm's marginal cost curves and 

write and Cdmf as the respective short-run and long-run marginal 

cost curve associated with shipment type 1 by firm f in mode m in 

region d.
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II. Demand

Since freight transportation is used as an intermediate input, 

it seems reasonable to specify its demand in terms of a derived demand 

for a factor of production. Hence following the approach outlined 

above, let us characterize the costs (C^) in a given industry i in 

region r as depending upon the level of output (Qr), capital and 

labor costs in that region (w^, , w^) and the costs of rail and
il -\k in/

v rd rd —trucking transportation between that and other regions (w^ , v^y).

If we assume that the producing industry only bears the costs of final 

goods shipments, then we can write the industry's general cost function 

as:

'i C>iv iL ’ "iK ’ "iR ’ "il . q!-) (2.11)

where the d's range over all regions of destination.

By differentiating this cost function with respect to the appro­

priate transportation cost, we can then derive the demand for truck 

or rail transportation from regions r to region d as

'i
t . 1 (2.12a)

I rd
(2.12b)

— We omit other modes for rotational simplicity.



-21-

Since we assume that the industry of origin ships its final 

products to all other regions, the market demand in region r for each 

mode is respectively given by

The specification of the actual demand function, is complicated, 

however, by two problems. First, we must utilize a specific functional 

form for the cost function given is Equation (2.11); and second, 

we must recognize that transport costs reflect inventory costs as well 

as rates.

Following our approach used to estimate cost functions, it would 

be natural to specify a general translog cost function and estimate 

its factor share equation to derive the demand for transportation.

Thus let the translog approximation of an industry's cost function 

be given by:

(2.14a)

(2.14b)

£n cV = a0 + E aE a 2.n w^. + ft. Jin qV 
f if ir 1 1

+ 1/2 E b^Jtn qV Jin w1 + 1/2 C.. Jin Q' (2.15)
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Thus the factor share equation for, say, rail transportation is given by

9 £n Rev’JjJ

9 £n CostsT

= a.R £n wiR + 1/2 [a.L £n £n +

+ a^ £n + a^ £n + b. £n q^] (2.16)

where the superscripts range over the region of destination as 

necessary. The trucking factor share equation would take a similar 

form. As indicated in Berndt and Wood (1974) it is straightforward 

to derive the Allen-Uzawa elasticities of substitution and then 

own and cross price elasticities for the transportation modes from 

these equations.

Because a translog approximation makes no restrictive assumptions 

about the nature of technology and permits variable elasticities of 

substitution among the relevant factors, it is attractive. Indeed, 

if we were solely interested in estimating the own and cross elas­

ticities for each mode, it would make sense to estimate the factor 

share equations (2.16) for each mode and derive the relevant elasti­

cities from them. In fact, however, we must have the specific demand 

function to determine the equilibrium in the transportation industries 

under various assumptions concerning market structure. Because the 

demand function generated by the translog factor share equation is of
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a particularly intractable function form,—^ it is preferable to

use a simpler, if more restrictive cost function to derive the transpor­

tation demand functions.

Consequently, let us therefore assume that the technology of each 

industry can be characterized by a Cobb-Douglas production function.

The cost function of each industry is then given by the following 

expression:

' f "

The demand function for, say, rail transportation can be obtained 

by differentiating Equation (2.17), collecting terms, and taking logs

where is obtained from the estimated translog cost function for 
the industry producing commodity i.

(2.17)

r rwhere

—^Specifically, if T^j represents the demand for truck transportation of 
commodity i between regions r and d, T^j can be obtained from the 
translog share equation by the following expression:



-24-

to obtain

Jin R JlnB + Jin w.
iL

J*.n w. Jin vi.

rd
ai p

+ — - 1 Jin + -1: Jin (2.18)
Pi Pi

where B represents a constant term containing the relevant coefficients 

of production. The demand functions for the other modes would take a 

similar form.

The transport cost variables (w^Ijj. , w^) are not directly observable, 

but depend upon the rates(PV° , and the inventory costs associated 

with goods in transit, which depend in turn upon the quality of service 

as measured by such variables as reliability, size of shipment, length 

of haul, loss and damage, and value of the commodity. If we denote the 

vector of the qua!ity-of-service variable that affects inventory costs 

as q, then we can relate the cost of transport of mode on to the rate 

and inventory costs by the following expression:

+ 1/2 (I I + J 'WO'C +

+ k™, M P-l2)mm im (2.19)
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In the case of rail and truck transportation, let us specifically 

denote the quality-of-service variable as:

qrd = (Srd Mrd Drd V ) qi liiR ’ niR ’ ui ’ vi;

_rd _ /crd Mrd nrd >
qiT ' (SiT ’ Mil » Di » V

rd rdwhere S.R * S.T = average size of shipment of commodity i between 
1 1 r and d on rail or truck

, M^d = average length of haul of commodity i between 
r and d on rail and truck

differential loss and damage costs between rail 
and truck borne by commodity i between r and d

value of commodity i.

Thus by substituting Equation (2.19) into Equation (2.18), collecting

terms, and jointly estimating the modal demand functions, we can obtain
12/consistent estimates of the market demand for each mode.—'y,, i

If we let the symbol represent the ton-miles carried of 

commodity i between regions r and d by mode m, we can readily derive

—/We will generally have to use cross sectional data to estimate these 
demand functions, which requires us to assume that all industries 
in the sample have the same technology. While restrictive, this is 
probably acceptable if we utilize reasonably similar industries in 
the sample (e.g., all industries are nondurable manufacturing). It 
would obviously be preferable to utilize time series data on one 
commodity. Unfortunately, however, this is not generally available.
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the total revenue function facing that mode by multiplying the rates 

and the volume and summing appropriately. Thus:

Z Z Prd T™1. ^ im im (2.20)

where the subscript m ranges over the relevant modes and the super­

script r ranges over the relevant regions.

We assume that each firm's demand function is some proportion of 

the market demand function and write:

Tr
imf

where
Tr

mf

Z Z 
i d

(2.21)

Thus, represents the share of the total ton-miles carried in region 

r by mode m accruing to firm f. If data permit, we can, of course, 

disaggregate this market-share variable into commodities and regions 

of origin.

Since service is a major competitive weapon in the transportation

industries, it is quite likely that a firm's share of total freight

shipments also depends upon its level of service relative to other

firms. In the airline industries where data on flight frequency are

readily available, frequency is generally taken to measure levels of 
13/service.—' In the surface freight industries, however, such data

13/—^ee, for example, Douglas and Miller (1974).
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do not exist. Hence, we must find another proxy for level of service.

In so far as firms with large amounts of rolling stock are able 

to meet shipper demands more quickly than firms with small amounts of 

rolling stock, it is likely that the level of service offered by the 

former firms is greater than that of the latter. Hence, as a first 

approximation we can postulate that

yrmf (2.22)

where represents the rolling stock of firm f in mode m in region

r, and Em represents the total rolling stock of mode m in region r.

Ill. Market Equilibrium

Having specified the industry and firm cost and demand functions 

within a given region, we are now in a position to analyze the nature 

of equilibrium in the regional transportation market under a number of 

different assumptions concerning the competitive structure of the 

industry. Note that since we are dealing with a number of regions 

and modes, a partial-equilibrium analysis of a given mode within a 

given region will not in general be sufficient.

A. perfect Competition

Under perfect competition, equilibrium is given when the supply 

price equals the demand price. The market demand for commodity i in 

region d for mode m is given by:

y T,:V:d,£ im im’
(2.23)
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where P^, refer to the own and competitive price of shipping the 

commodity and refers to the other variables in the demand function; 

see Equations (2.18) and (2.19). In perfectly competitive equilibrium, 

the market must clear at the common price. Hence, there can be no 

regional nrice discrimination and

yd (pd 
irr im5 P*?Me’ (2.24)

The long-run total cost function for firm f in mode m in region 

d is given by:

Cmf = Cmf(yimf’-*’,yNmf’ qmf^ ^,25^

where the y's represent shipment carried by the firm and the q's 

represent the vector of factor prices facing the firm. Note that 

since we will estimate the short-run cost function directly, we will 

also undertake an analysis of market equilibrium using the relevant 

short-run cost functions. Hence, our use of the long-run cost function 

is purely for expositional and rotational simplicity.

The firm's marginal cost function for commodity i is similarly 

given by

med
imf (2.26)

In equilibrium, the firm equates its marginal cost with its price. 

Hence:

Pd
im

d
*yNmf’

(2.27)

Note that in this formulation, the marginal costs of shipment 

i not only depend upon its own level of output, but also upon the
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levels of output of all other commodities. Therefore, we must solve 

the system of equations given in (2.27) for all of the output levels 

and thus obtain the firm's supply function in terms of all price. Thus

Having obtained each firm's supply functions, we can then obtain 

the market supply function by summing over all firms.

Equilibrium requires that the quantity supplied equals 

the equantity demanded. If we take the prices of the competing 

modes as given, then equilibrium of any given transportation mode is 

given by the following expression:

This yields a set of N equations that can be used to solve for the N 

equilibrium rates, and thus the equilibrium levels of output for the 

industry as a whole as well as for each firm.

Of course, the problem is considerably more complicated than this 

because we cannot analyze the equilibrium of a transportation industry 

apart from the equilibrium of its competitiers. Hence, instead of 

solving eq. (2.30) on the assumption that P^c is constant, we must also 

analyze the full general equilibrium solution of the transportation

(2.28)

(2.29)

(2.30)



industries. This, however, is a realtively straightforward, if 

computationally complex, problem. Hence, we simply extend our system 

of equations in (2.30) to

> • • • (2.31a)

• • • » (2.31b)

where c ranges over the relevant competing modes. We thus obtain a 

system of MN equations to obtain the full competitive equilibrium of 

the rates in each mode. The traffic allocations in each mode, and 

the traffic allocations in each firm.

B. Joint Monopoly Profit Maximization

We now turn to the other extreme and assume that the firms in a 

given transportation industry collude to maximize joint monopoly 

profits. While akin to the usual text-book case of the profit- 

maximizing monopolist, our analysis is somewhat more complex because:

(1) The "monopolist" can practice regional and corrmodity price dis­

crimination; (2) the "monopolist's" marginal costs of any given output 

depend on all levels of output; (3) the "monopolist" has many plants, 

each corresponding to a given firm. Thus, the "monopolist" not only 

has to decide what price to charge in each market, but how much traffic 

of each type to allocate to each firm.

The problem can be stated formally as follows. The monopolist 

in region d faces the following demand function for any given commodity^

— In the case of the monopolist, it is more convenient to utilize the 
inverse demand functions.
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prd = prd/Yrd Yrd 
rim rimuim* Tic’ (2.32)

where P.m represents the price of commodity c shipped by mode m to 

region d from region r; y^, y^ represent the quantities shipped on 

mode m and its competing mode(s) c, and represents the other variables 

in the demand function.

The revenues derived from commodity i are given by:

^ A?)im im im im ic m

Thus,
Rrd _ Rrdf rd rd .d, 
^im ^im'^im* ^ic’ ^m^

(2.33)

(2.34)

Hence, total revenues equal:

(2.35)

The monopolist's total costs are the sum of the costs in each of 

its plants. Thus, if there are F firms in the industry, total costs 

are given by:

qm^ " ^ Cmf ^ylmf‘ * ,yNmf ’ qmf^ (2.36)

where y!?^ represents the traffic carried of commodity i by firm f in 

mode m and q^ represents the factor price vector facing firm f in mode

m.

Thus, the firm's profits are given by:

y y Rrd(vrd vrd Adi - y cd(vdL. J; Kim'yim’ yic’ mj ^ Lflylmf’ • »yd
Nmf ’ Tnf> <2-37)71



-32-

The monopolist has to decide how much of commodity i should be 

carried by firm f from region r. If there are F firms, N commodities, 

and D regions, it then has FND control variables, each given by 

yl^f We then differentiate eq. (2.37) with respect to y^ and 

obtain:

SR^fy^, yr". fld)irrr im* Jic’ nr

3yrdim

if*Jim

''imf

9Cmf^yimf’-*',y|Nmf’ qf^

imf

9yimf

9y?mf

(2.38)

Since:

and

i=l.,N 

f=l,... ,F 

r=l,...D.

yrd = 7 yrdy'“ ^ yimfim

yd
yimf l

(2.39a)

(2.39b)

we readily see that the above conditions for profit maximization 

reduce to:
rd d 

mrim = mcimf (2.40)

r=l,... ,D 

i=l ,...,N 

f=l,...,F.

Thus, joint profit maximization requires that: (1) the marginal revenue 

derived from shipping commodity i from region r must be the same for
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all regions and commodities; (2) the marginal cost of carrying 

commodity i by firm f must be the same for all firms; and (3) the 

common marginal revenue must equal the common marginal cost.

The conditions for joint profit-maximization, given in eq.(2.39)

yield NFD equations which can be used to solve for the NFD variables, 
pdy^f. From this, we can obtain the equilibrium rates, and traffic 

allocations of commodities among firms, under the assumption that 

the quantities shipped (and implicitly, the prices) of the competing 

modes are constant.

Of course, a full general equilibrium solution requires that we 

recognize that rate determination is interdependent. If we also 

assume that the competing mode(s) is (are) also pursuing a joint 

profit-maximizing solution, the problem is formally equivalent to 

one of duopoly or oligopoly. In this case we are faced with the 

familiar problem of determining the duopolists' behavior, and we 

can adopt a Cournot, Stackelberg, or even a grand joint profit max­

imization solution. Because, however, it is likely that the firms 

in any given transportation mode are somewhat myopic, the Cournot 

solution seems the most plausible. In this case, each mode pursues 

its joint-maximizing behavior on the assumption that the output or 

rates of its competing mode are constant. To solve this problem we 

simply let the modal index, m, range over the relevant modes, with 

the understanding that the relevant firms and commodities vary by mode. 

Thus, the profit-maximization conditions are formally identical to 

those given in eq, (2.37) and can be written as;
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yic’ Am
,d /yd
"'mf'‘Mmf1 .«y.Nmf* qmf)

K1mf

<^m» ri c ’ Ac> 8Ccf(yicf’'-*’yNcf’

where for mode m

1=1,

f=l,

r=l,

and for mode c

1*1........Nc

f=l. ,FC

r=l,D

(2.41)

Hence the above equations yield (Nm)(Fm)(D)+(Nc)(Fc)(D) equations 

to determine the variables y^ and

We could also obtain equilibrium on the assumption that mode m 

pursued joint profit maximization, while mode c experienced the 

perfectly competitive solution. In this case we would utilize the 

equilibrium conditions given in eqs. (2.30) and (2.38) to obtain a 

full market equilibrium.

Finally, we should also note that in addition to controlling price or 

outputs, the firm typically controls the level of service as measured by 

size of shipment and length of haul. Thus in addition to maximizing profi 

with respect to output, the firm can also maximize with respect to level o- 

service. Thus in addition to the marginal-revenue equals marginal-cost 

conditions with respect to output given in eq. (2.40), we must utilize add' 

tional marginal-revenue equals marginal cost conditions with respect to 

level of service.
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C. 01igopoly

An oligopolistic market is one in which there are a sufficiently 

small number of sellers so that the members of the market take the 

behavior of their competitors into account in setting prices and 

quantities. Since there are a wide range of postulates concerning the 

behavior of the oligopolists, there are an equally wide range of solu­

tions to the determination of equilibrium in an oligopolistic market.

In considering oligopolistic behavior, however, it is useful to

distinguish between traditional oligopoly theory, which is based on

some sort of profit-maximizing behavior, and modern oligopoly theory,

which assumes that the firm maximizes a general objective function that
15/contains many arguments other than profits.—

In assuming that all firms maximize profits, traditional oligopoly 

theory postulates a number of different behavioral responses on the 

part of the firms in the industry.

Fellner (1949) has argued that oligopolists will tend to collude 

implicitly and adopt joint profit-maximizing behavior. In this case, 

the analysis would simply follow that of the previous section.

The Cournot solution was discussed at the end of the previous 

section. As indicated above, this assumes that although the revenue 

of each oligopolist depends upon both its own output and that of its

— For a good summary of oligopoly theory see Baumol (1967),
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rivals, each oligopolist is myopic and assumes that its rivals 

keep their prices and quantities constant. While this assumption may 

seem reasonable for multi-modal equilibrium, it is probably not very 

reasonable for intra-modal equilibrium. Hence it is probably unreal­

istic to adopt a Cournot solution in determining the equilibrium of any 

given model.

The Stackelberg solution assumes that one member of the oligopoly 

maximizes its profits given the responses of its competitors, while 

the remaining members of the oligopoly ignore the behavioral responses 

of its competitors. Since it is unlikely that firms in an oligopolistic 

industry actually act according to the Stackelberg solution, a formal 

analysis of this solution does not seem warranted.

Another well-known variant of oligopoly theory is price leadership. 

If the leaders set the joint profit-maximizing monopoly price, this 

analysis merely follows that of the previous section. If the leader is 

sufficiently dominant, however, it may set its price to maximize its own 

profits, with its followers acting as price takers. An analysis of 

market equilibrium in this case would combine elements of the monopoly 

and perfectly competitive solution. Specifically, the dominant firm 

would determine its profit maximizing price, and the remaining firms 

would equate their marginal costs with this price. The equilibrium 

price would then be determined by the sum of the output of the dominant 

firm (acting as a monopolist) and the remaining firms in the market 

(acting as price takers).

In recent years, a number of people have questioned the relevance 

of traditional oligopoly theory.^ Basically, they argue that the

—^See, for example, Baumol (1967), Harris (1964), Cyert and Marsh (1963)
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behavior of the large modern corporation is much more complicated than 

that implied by the simple behavioral postulates of profit maximization.

Thus instead of maximizing profits, the modern corporation probably 

maximizes a complex objective function that includes variables such 

as market share, sales, and net workth, as well as profits. In this case, 

the conventional analysis that follows the profit maximizing postulate 

has to be modified accordingly.

Although this research has not yet developed a formal framework 

that could be used to analyze the market equilibrium tht would occur 

under broader objective functions than that implied by simple profit 

maximization, such an extention is planned. Thus our present analysis 

is limited to examples of traditional oligopolistic behavior. Nevertheless, 

it is hoped to extend this to other forms of oligopolistic behavior in 

the near future.

D. Monopolistic Competition

With the exception of the railroads and the airlines, transr 

oortation industries tend to be characterized by large numbers 

of carriers rather than a few. Hence models of monopolistic competition 

may give a better description of the behavior of their industries 

than models of oligopoly. We thus now analyze the the determination 

of industry equilibrium under a market structure characterized by monopolistic 

competition.
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As explained abpve (see eqs.(2.21), (2.22)), we assume that 

each firm's demand function is some proportion of the market demand 

function. Thus:

jd = d Td 
imf ymf im

where represents the share of ton-miles carried in region d by 

firm f in mode m.

Since price is determined by the market demand function, each 

firm's revenue must also be a proportion of total revenue. Hence:

imf Rrd(prdt p,:d. Ad)rnr im ic m (2.42)

Consequently, each firm's profits are given by:

nf ’ yrnf ^ £ Rim^Pi'm> Pic’ Am^ ‘ Cmf ^yimf‘ ,yNmf ’ qmf^

Profit maximization thus requires that

11
SR?m

1 ' <

(2.43)

(2.44)

v^A yA
By using the relationship that \ yvj^ = y!j°, we thus obtain a system

of NDF simultaneous equations that can be used to solve for each
rd rd —^yimf and yield equilibrium values of P^.

—/Since yjL: depends on the equipment utilized by firm f in mode m, 
we may T also want to treat this as a control variable.
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4

As in the previous cases, a full market equilibrium occurs when 

all transportation markets are in equilibrium. This can be obtained 

by making the appropriate assumptions about the market behavior of the 

competing mode(s) and solving the expanded set of equations for

yimf imd yicf t0 obtain pim and P1c-
This analysis deviates from the traditional Chamber!inian

formulation of the problem, which assumes that it is possible to

estimate demand functions for each firm that depend on the outputs of

the competing firms as well as its own output. Since this formulation

is more conventional, it is useful to present it, although it is

important to realize that data limitations will probably make its

implementation impossible.

In the case of Chamber!inian monopolistic competition, each 

firm's demand function can be written as:

P rd
imf (y

rd
imf’

rd
imh’

hj*f

(2.45)

where P..^ = the demand price facing firm f in mode m for 
commodity i shipped from region r.

rA
^imf = amount commodity i shipped by firm f in mode 

‘m from region r.

■Mmh = amount commodity i shipped by firm h in mode 
m from region d.

rA

yic amoun't commodity i shipped by mode c from region r.

= other factors affecting the demand schedule of firm f 
in mode m.

The costs of firm f depend upon its outputs and factor prices and 

thus are given by:



-40-

rd _ rd / d 
Lnif imf (2.46)

Thus, the firm's profits are given by:

(2.47)

hj*f

Equilibrium is obtained by differentiating the above expression with

equations. We can also obtain a full market equilibrium by assuming 

that the competing modes can be described by perfect competition, 

joint monopoly profit maximization, or monopolistic competition.

Thus, if we can determine firm demand functions that utilize the output 

of other firms as arguments, it should be possible to utilize a 

conventional Chamber!inian analysis to determine market equilibrium. 

Otherwise, we will utilize a similar analysis, with the firm demand 

functions based on market shares.

respect to yT^ and solving the resulting system of simultaneous



-41-

IV. Policy Analysis

Having specified the nature of the cost and demand functions and 

the determination of the modal and industry equilibrium under alterna­

tive market structures, it is useful to consider briefly how alternative 

transportation policies could be evaluated within this modeling and 

framework. A full discussion of the policy analysis is contained in 

Volume II of this report.

The methodological approach to the evaluation of transportation 

policies with respect to the surface freight industries is comparative 

statistics. We thus derive an initial equilibrium under a set of 

initial conditions concerning the cost functions, demand functions, 

and the competitive behavior of the firms in the transportation industries. 

We then postulate a change in transportation policy that affects these 

initial conditions and determine the new equilibrium resulting from 

these changes. The differences in the relevant variables between the 

initial and new equilibrium then measures the impact of a given policy.

As indicated above, we analyze changes in transportation policies 

by relating them to changes in the cost functions, the demand functions, 

or the competitive structure of the affected transportation industry.

Within this framework, however, it is possible to evaluate a wide range 

of transportation policies.

Figure 3 indicates whether various transportation policies affect 

the cost or demand functions or the competitive structure of the industry. 

This indicates that policies generally fall into one of the following 

categories:
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« Those that affect the demand function alone

- Permissible price discrimination

- Setting rate levels

• Those that affect both the demand function and the market structure

- Elimination of rate bureaus

- Total deregulation of rates

- Entry controls

4 Those that affect the cost function through factor prices

- Wage settlements

- Energy policy

- User charges and subsidies

• Those that affect the cost function through factor utilization

- Abandonment

- Union work rules

- Provision of infrastructure

- Weight and size limitations

- Nationalization of the roadbed

• Those that affect cost functions, demand functions, and market struct

- Mergers and consolidation



FIGURE 3
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Thus by translating changes in specific transportation policies into 

changes in cost functions, demand functions, the competitive 

structure of the industry and comparing the resulting equilibria 

with respect to rates, traffic, profits, etc., it should be possible to 

obtain quantitative estimates of the impact of alternative transportation 

policies. It is important to stress, however, that this analysis require: 

a careful translation of the specific policy into a specific change in 

the appropriate function. While some policies, such as changes in the 

level of user fuel taxes, can be analyzed fairly simply, other policies, 

such as the nationalization of the railroad roadbed, require a major 

research effort to translate them into appropriate changes in the relevan 

functions. Thus any specific policy will generally require considerable 

effort to ensure that the specified change in the cost or demand function 

or market structure accurately reflects the direct impact of the proposed 

policy. Nevertheless, such an analysis should be feasible and provide 

a valuable aid in the decision making process of policy makers.
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Chapter Three

Econometric Estimation of Cost Functions 

in the Transportation Industries

The previous chapter argued that it is desirable to use a general 

translcg approximation when estimating cost functions in the transportation 

industries. Briefly stated, unlike other cost functions the translog 

cost function permits multiple outputs and quality levels; it is of a 

sufficiently flexible form to test hypotheses concerning the underlying 

structure of production; and it can be used in either its short-run 

or long-run form.

This chapter discusses the translog cost functions in some detail 

and shows how various kinds of information concerning the structure of 

costs and technology can be obtained from it. Section I presents a 

translog approximation to a general function and explores the relationship 

between the translog approximation and its underlying function. Section II 

then discusses the relationships between the short-run cost function, the 

long-run cost function, the underlying production functions, and their 

translog approximations. Section III considers the problems posed by 

the need for aggregation and the existence of different quality levels. 

Section IV presents the restrictions that can be imposed in the short-run 

and long-run cost functions to test for jointness, separability, and 

homogeneity in the underlying production function and discusses the 

econometric specification of these equations.
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I• The Translog Function

In recent years increasing attention has been paid to a number of

general cost and production functions that are second-order approximation

to any given cost or production function. These functions can therefore

deal with multiple outputs, variable elasticities of substitution among

factors and variable elasticities of transformation among outputs,

etc. As such, they offer substantial gains in flexibility, and enable

the researcher to test important hypotheses concerning the underlying

structure of production.-^ The best known functional forms of second-

order approximations are the transcendental logarithmic functions

proposed by Christensen, Jorgenson and Lau (1973), the generalized

Leontief function proposed by Diewert (1971), and the Hall joint cost

function (1973). Because, however, the translpg function explicitly

permits multiple outputs, and enables us to test for separability, homo-
2/geneity and nonjoint production, we shall concentrate upon it.—

Since any translog function is a second-order approximation about an 

arbitrary point of expansion, it is useful to consider its specific 

construction and its accuracy as the point of observation diverges from 

the point of approximation. We will then consider the relationship 

between the coefficients of the translog function and the derivatives 

of its underlying function.

A. The Translog Approximation

The conventional translog function can be interpreted as a Taylor's

-^For an example of this, see Christensen, Jorgenson and Lau (1973).
2/-The Hall joint cost function also permits tests of separability and 

jointness with multiple outputs, but assumes constant returns to scale 
in production.
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series approximation to the function itn g(x) about the unit point. To see 

this, we recall that any continuous function f(z) obeys

f(z) = f(z0) + (Z-Z0) f,(z0) + J (z-z0)[fi;j(z0)](z-z0)' (3.1)

+ higher order terms

Where z is the vector of arguments of f(z); zo is the vector of arbitrary 

points of ^evaluations; and f^ and f^. respectiv»ly represent the first and 

second derivatives of f(z) with respect to its arguments. The second-order 

Taylor's approximation f(z) is simply given by

f(z) * f(z0) + (Z-Z0) * 5'(z-z0)tfij(z0)](z-z0)' (3.1a)

Suppose we now want to derive the translog approximation to g(x),

where x is a vector of positive numbers. We do this in two steps. First,

we construct an exact function f, satisfying f(lnx) = Jin g(x); and second,

we write z = Jin x and form the Taylor's approximation f(z) to f(z) given in

eq. (3.1a). The first step is carried out by replacing each x.. in the func- 
xtion g(x) by e i and then by taking the log of the resulting function. This

y\ /S

yields f(Jln x) = f(z). We then obtain f(z) = Jin g(x) by applying eq. (3.1a) 

to f(z); thus:

^ 1 
Jin g(x) = f(Jinx )+(Jinx-Jinx )f.(Jlnx ) + Jinx-Jinx )o o 1 o £ o (32)

[fij(£nx0)3(Anx- nx0)'

If the function is evaluated at the unit point so that xQ = (1,...,1),

Jlnxo = (0,...,0) and eq. (3.2) reduces to

£n g(x) = f(0) + JlnxCf^O)] + j JlnxCf^.(OjjJlnx' (3.2a)

This, of course, is precisely the conventional translog function, which is 

written as

Jin g(x) = a + T a.Jinx. + i T T B-.• Jin x. Jin x.3 o^iiZv^ij i j
(3.2b)
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where a0 = f(0), a.. = f^O), and = ^(0). Thus, in the conventional 

translog function, the constant term, the a.'s, and the 8.^'s can be re- 

spectively interpreted as the value, the first derivatives, and the second 

derivatives of the log of the underlying function whose arguments are evalu­

ated at the unit point. Note that from the symmetry of the second derivatives

Because the conventional translog approximation represents an expansion 

around the unit point, it may be a rather poor approximation if the actual 

values of the variables are far removed from the unit point.-^ This implies 

that it may be desirable to utilize the general translog function, given in 

eq. (3.2), which represents the Taylor's approximating function £n g(x) to 

the function itn g(x) about an arbitrary point of expansion xo. Thus in 

utilizing translog approximations, instead of using the unit point as the 

point of approximation it may be preferable to use either the sample mean or 

the current value of the variable as the point of approximation and to use 

eq. (3.2) instead of eq. (3.2b) as the specific form of the translog function. 

In this case the estimating equation would take the following form:

Jin g(x) = a0 + [ a.(jlnx.-Jlnxoi) + ^ (I I B. Unx.-S,nxoi)
1 i J ij (3.3)

(Jinx.-Jinx .))

— Burgess (1975) has argued that the translog functions are not self dual 
in the sense that the production functions cannot be obtained from the 
cost functions and vice versa. Moreover, because the approximation error 
depends upon the divergence between the point of evaluation and the point 
of approximation, different points of approximation used in the cost and 
production functions can lead to different estimates of the underlying 
technology. Consequently, estimates of technology based on cost and pro­
duction functions may be inconsistent. However, these problems may occur 
because the point of approximation is far removed from the actual point 
of evaluation; hence they may be resolved if the point of approximation 
were closer to the point of evaluation.
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Thus in eq. (3.3) the constant, a. coefficients and the B-- coefficientsi i j
can be interpreted as the value, first, and second derivatives (with respect to 

£n x) of the log of the underlying function whose arguments are evaluated at

B. The Translog Function and its Underlying Function

Because the coefficients of the translog function can be interpreted as 

the logarithmic value, logarithmic gradient, and logarithmic Hessian of the under­

lying function, evaluated at the point of expansion (the vector^!....... 1) in case

of the conventional translog function, and the vector(xQ) in the case of the gen­

eral translog function),we cannot directly infer anything about the value,gradient 

or Hessian of the underlying function at its point of expansion by simple 

inspection of the coefficients. Since, however, we are interested in the 

total costs, marginal costs, and the second derivatives of the cost function 

at the point of output, we must find a way to translate the coefficients of 

the translog function into the value, gradient, and Hessian of the underlying 

function.

A function g(x) is said to provide a second-order numerical approxi­

mation to a given function g(x), if its value, gradient, and Hessian at the 

point of approximation equals the value, gradient, and Hessian of g(x) at that 

point. That is,

.f/while it is true that the application of OLS to (3.3) and (3.2b) gives 
identical results (in the sense that the coefficient estimates of (3.3) will 
be a nonsingular transformation, uniquely determined by x°, of the coefficient 
estimates of (3.2b)) when there are no restrictions on the coefficients, this 
is not generally true when there are restrictions, as is usually the case.

the arbitrary point of expansion

W = 9i(xo>

g(x0) = g(x0> (3.4a)

(3.4b)
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9ij(*0) ' 9ij(*o> (3'4c)

Since a translog approximation is a second-order numerical approxi­

mation, by differentiating the translog function given above in eq. (3.3) 

and by utilizing the equalities given in eq. (3.4), we can determine the 

relationship between the coefficients of the translog function and the 

derivatives of the underlying function.

Since eq. (3.3) is a logarithmic function, we know that

9g(x) _ 31oq q(x) . g(x)
x.9xi Slog x. vi

Hence, by differentiating eq. (3.3) we obtain 

9f = Ct,i + ^ Bih(£nVtnxoh):i X,

9ij
Ml ,9 Bi.i

9ii xi
3i SMii + —i— + 11

gB,

xi

(3.5a)

(3.5b)

(3.5c)

Using the equalities given in eq. (3.4) and solving for cu, and 6^, 

we therefore obtain 

Mi
“i'f1 l Bih(£nxh-£nxoh> (3.6a)

8u ■ (9u - ^
*

9* g,- x '
ft.. « [g.. + ---- - ] —3n g g

(3.6b)

(3.6c)
'i

Finally, since

ao = 5109 (xo> ‘ ^ Oi(^xi-*nxoi) " I Bij (^x.-inxoi)(xnxj.-InxoJ.)

(3.6d)
i J
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we can obtain ing(xo) directly and from that, £ng(xo) and thus g(xo). Thus 

using the translog approximation, we can obtain the value, gradient, and 

Hessian of the underlying function at the point of expansion xo. This 

property will prove to be extremely useful when we attempt to derive mar­

ginal costs and the structure of the underlying production function from 

the estimated translog cost functions.
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II. The Long-Run Cost Function and Production Function

Let us assume that we have estimated a short-run variable cost 

function using the translog approximation. From this function, we can de­

rive estimates of short-run total costs, the short-run variable costs, the 

short-run marginal costs and the change in the short-run marginal costs, 

all around the relevant point of expansion, using the relationships given 

in Section I. For policy purposes, however, it is desirable to know the 

nature of the long-run equilibrium total costs, marginal costs, factor 

demands, and the underlying structure of production. In this section, we 

therefore show how the long-run cost function can be determined from the 

estimated short-run cost function and how the production function can be 

obtained from the long-run cost function.

A. The Long-Run Cost Function

We assume that the firm produces m outputs, (denoted by the vector y) 

and utilizes n inputs (denoted by the vector x) at given prices (denoted by 

the vector w). Then the firm's long-run total cost function, C(y,w) gives 

the minimum cost of producing outputs y at factor prices w. In the short- 

run the firm cannot adjust all of its factors, and without loss of general­

ity we assume that the first factor, x^is fixed. Then its short-run vari­

able cost function C(y,'x^ ,W2,... ,wn) represents the minimum costs of pro­

ducing a given output y, exclusive of the costs associated with the fixed 

factor. The short-run total costs represent the sum of the fixed and vari­

able costs and are given by C(y,x^,W2,...,wn) + w^x^.

Let the vector q = (y, w2, w3,..., wn). Then C(q,w1) represents the 

long-run cost function, and C(q.'x^) represents the short-run variable cost 

function. The problem at hand is stated as follows: Given that we have a 

translog approximation of C(q,7^) can we derive the long-run cost function
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C(q,w^)? The answer to this question is clearly "yes" if we have an ob­

served point of long-run equilibrium; the answer is tentatively "yes" if 

we do not have an observed point of long-run equilibrium.

The problem arises because the translog function only represents an 

approximation around a given point of expansion and may not be a good 

representation of the underlying function over the entire range. Let us 

proceed, however, as if the translog function were a true representation 

of the underlying function and then discuss how our procedure must be modi­

fied to take approximating errors into account.

1. No Approximating Errors

We have shown in Section I.B, above, that there is a unique re­

lationship between the value, gradient, and Hessian of the underlying 

cost functions and the coefficients of the translog cost function. There­

fore, given the estimated translog short-run variable cost function, we 

can derive the value, first derivative, and second derivative of the under­

cost function. If we can then derive the value, gradient, and Hessian of 

the long-run cost function from their short-run counterparts at a given 

point, we can also construct a translog long-run cost function. Given this, 

we can then determine the long-run total cost, marginal costs, and factor 

demands for any specified levels of output or factor prices (assuming, of 

course, that the translog approximation is valid over the relevant range).

Let us begin by assuming that we have derived the appropriate short- 

run variable cost function C(q,x-j) from its translog approximation.-^

Since the short-run total cost function is given by

&/.If we treat the translog approximation as an exact function, then

3C(q,x-|) 3tnC(q,x^) £ The precise expression for this is given in 
3q = aHq q ecl- (3-5a) above‘
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C(q,x1) = C(q,x1) + w]x1

The equilibrium demand x^ is given by solving the relationship 

3C(q,x1)
—---------------- !— s -w

3x W1

(3.7)

(3.8)

We also know that in equilibrium, long-run marginal costs must equal short- 

run marginal costs and that variable factor demands must be identical:

cC(q>x-|) 3C(q,w1)

3q aq (3.9)

Finally, from Shephard's Lemma, we know that the long-run equilibrium quan­

tity of the fixed factor is given by

3C(q,w1)
TvTj = X1 (3.10)

*

Using the relationships given in eq. (3-8) we can therefore write that 

3C(qjW-|) - 3C(q,x^) x^
= 3~x^ ^ (3.11)

It is useful to rewrite equations (3.9)- (3.11) in compact notation 

as a system of q+2 simultaneous equations in the following variables:

C , C , and x
q *^1 *

Cq = 0 (3.9a)

C (x./w.) + C = 0 
X1 1 1 W1 (3.10a)

x 1 = 0 (3.11a)

By solving this system we can thus obtain the long-run equilibrium value of 

the fixed factor x^, and the long-run marginal costs with respect to outputs
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and the price of the variable factors, C and the long-run marginal costs
H

with respect to the price of the fixed factor, Cw .

To construct the long-run cost function, we also need to know its

second derivatives. We can obtain these by performing a comparative statics

experiment in which we treat C , C , and x, as endogenous and q and w, asq W] i i
exogeneous and then determine how C and Cw change in response to changes

1 6/in q and w,; that is, we determine C , C , and C Since eq. (3.11a)I qq qw-j wlwl
relates x, to C , we can substitute for x, to obtain the followino ex- I W-| i
press ions.^

V^w^ ‘ Cq = 0 

Cwl

(3.12a)

(3.12b)

By implicitly differentiating eq.(3.12) with respect to q and w^ we

obtain

C Cqq qwi

w1w1

— _ -1
-I Xcr

o

0 Q
'1

x^ w]

0

C C 
X1 W1

"=7"

(3.13)

where Q = C —y- (since C /w, + 1 = 0)

-See Appendix 3.A for a brief discussion of comparative statics.

Z/Note that C = C (q,x,) and that C (q,x,). But since x. = C , 
q q i x-j i i w-j

= C0(q>cw ) and K = (q.c )•q q wi x-| xi wi
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Solving, we obtain

C = C + [C I'Ve ][C ]qq qq Lx1x1J LV1-"-^q-1 (3.14a)

c = -cc rhe ]
qwl X1X1 qxl

(3.14b)

c = -rc ][c i"1LV'x1qJLl'x1x1J (3.14c)

c * -rc r1
wlwl xlxl

(3.14d)

cost

cost

Having obtained the first and second derivatives of the long-run

function, it is possible to construct a general translog long-run

function of the form given in eq. (3.3). If we take the solution

value of x.j and the associated values of the input prices and outputs, we 

can obtain the coefficients of the general translog cost function from 

eq. (3.6) at that point of equilibrium. Given these, we can readily ob­

tain a general translog long-run cost function that can be interpreted 

as a second-order approximation to the underlying long-run cost functions. 

This can be used to estimate industry and firm costs in long-run equi­

librium under different output levels and factor prices.

2. Approximating Error

Up to now we have assumed that the translog approximation is a good 

representation of the true cost function and proceeded as if the translog 

approximation was an exact function. Because, however, the translog approx' 

mation is only valid around a point of expansion, it is likely that then it 

will not be valid over the entire range. Specifically, if we use the sam­

ple mean as the point of expansion, the translog function may not be a good 

approximation around the unobserved point of long-run equilibrium.
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Since approximation error grows as the distance between the point of expansion 

and point of evaluation grows, approximation error will be minimized if we 

choose the point of long-run equilibrium as the point of expansion.

Unfortunately, we have by hypothesis not actually observed any point 

of long-run equilibrium. Thus, we are required to estimate one of the 

infinitely many possible. Under the weak regularity conditions usually 

assumed of technologies, we know that there exists a vector of prices for 

the fixed factors such that, at the observed mean values of y.x", and w, 

equilibrium would obtain. This is the vector of fixed factor prices that 

would lead a cost-minimizing firm to voluntarily use the mean values 

of the fixed factor quantities x to produce the mean oytputs y at mean 

variable factor prices w. Denote this vector of fixed factor prices w*, 

and the mean values of y,x, and w by y*, x*, and w*, respectively. Then 

from eq. (3.8) we know that Cxr = -w *. At y*, x*, and w*, we have:

b C(y*, w*, x*) _ 
r x *

(3.15)

But C(y*, w*, x*) = ea°, since ao, the constant term in the translog 

C(y,w,x), is the value of £n C(y,w,x) at y = y*, w = w*, and x = x*, by 

the properties of second-order numerical approximation. Thus 

- w *x *
br r=l,... ,f (3.16)

This requires no constraints in the estimation of C(y,w,'x), except that 

b^ £ 0 for IT* being marginally productive (i.e. cost-lowering), if one 

is satisfied to approximate the technology around x*. On the other hand, 

if 7 has been, say,in chronic excess supply (due to regulation, perhaps).
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then one may wish to estimate corresponding to a given w . as thisr ------ r
point of expansion (and, therefore, evaluation) would give estimates 

that would better approximate the technology after the chronic excess 

supply of xr were relieved -- for example, after deregulation. In 

this case, eq. (3.16) would require direct implementation by substitu­

tion in the estimating equations, and iln 7. - £,n x£ would be replaced

as a variable by S,n 5T - £n x*. where 7* was not the mean of 7 but ar r r r
parameter to be estimated.

B. The Production Function

Just as it is possible to derive a translog approximation to the 

long-run cost function from the value, gradient, and Hessian of the short- 

run cost function, it is possible to derive a translog approximation to 

the underlying production function has the value, .gradient and Hessian of 

the long-run cost function. Thus, using the derived long-run cost func­

tion, we can construct its associated production function.

Let us begin by writing the production function as

* = F(y.x) (3.17)

where y represents the m component vector of outputs, x represents the 

n-1 component of inputs and l represents the n**1 factor, labor. Thus,

£ represents the amount of labor required to produce y with factor inputs 

x. Writing the production function in this form implies separability be­

tween the outputs and the factor £, but not separability between the out­

put and the remaining factors x. Consequently, writing the production 

function in the form given in eq. (3.17) imposes some restrictions, al-
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though they do not appear to be too severe.—

Since C(y,w] is homogeneous of degree one in w, we can divide both 

sides of the long-run cost function by w to obtain a normalized long- 

run cost function with the following form:

C* = C*(y,w*) (3.18)

where C* = C/w^ and w* = (w^/w^5...,wn_^/w^).

In equilibrium, we know that the production function is related to 

the cost function by the following three relationships:

Fy(y,x) - C*(y,w*) = 0 (3.19)

F (y,x) + w* = 0 (3.20)

C**(y>w*) - x = 0 (3.21)

Equation (3.19) states the equilibrium condition that the marginal

rate of transformation equals the ratio of marginal costs, with labor as 
9/the numeraire.- Equation (3.20) is the familiar condition of cost mini­

mization that the ratio of the marginal products of the factors equals the 

ratio of the factor prices, with labor again being treated as the numeraire 

Equation (3.21) is simply Shephard's Lemma, which states that in equili­

brium the factor demand is given by the partial derivative of the cost func 

tion with respect to factor price.

Substituting eq. (3.21) into eqs. (3.20) and (3.19) we obtain

8 /— The full implications of writing the production function in this form 
are described in Jorgenson and Lau (1974, 1975) and in Lau (1976). Note 
that it is not necessary that labor be the normalizing factor, although 
it is often more convenient to have labor act in this capacity.

9 /- Since both the production function and the cost function are normalized 
on labor, eq. (3.19) can be interpreted in terms of marginal ratio of 
transformation and ratios of marginal costs. While we could clearly 
normalize on any factor, it seems natural to treat labor as the numeraire 
factor. For a full discussion of the "Generalized Hotel lings Lemma", 
see Lau (1976).
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Fy[y, C**(y,w*)] - C*(y,w*) = 0 (3.19a

Fx[y, C**(y,w*)] + w* = 0 (3.20a

Equations (3.19a) and (3.20a) yield a system of m+n-1 equations that can

be used to solve for the m marginal rates of transformation, F , and the

n-1 marginal products of the factors, F .

We are now in a position to perform a comparative statics experimenl

in which we treat y and w* as exogenous variables and F , F as the endo-y x
genous variables. Thus differentiating eq. (3.20a) and (3.19a) with

respect to w* and y respectively yields

F C* + I = 0XX w*w* (3.22a;

F + F C* = 0 xy xx w*y (3.22b:

F C* - C* = 0yx w*w* yw* (3.22c:

F + F C* - C* = 0 yy yx w*y yy (3.22d]

Solving for F , F , F , F we readily obtain 
a a Ajr yA yy

F**= (3.23a)

F = - F C* xy xx w*y ■ (3.23b)

r = _ r* F 
ryx yw*rxx (3.23c)

r = C* - F C* yy yy yx w*y (3.23d)

Equations (3.23a) - (3.23d) completely characterize the relationshi| 

between the Hessians of F(y,x) and the Hessians of C*(y,w*), while equa­

tions (3.19) - (3.22) completely characterize the gradient. Therefore, 

we can construct a Taylor's approximation (at an arbitrary point) to the
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production function that is dual to the long-run cost function. If the 

translog cost function is derived around a point of long-run equilibrium, 

it should be a reasonable approximation of the underlying cost function, 

and the production function derived from it should be a reasonable approxi­

mation of the underlying technology.

To recapitulate briefly, having estimated a translog approximation 

to the short-run variable cost functions around a long-run equilibrium, 

it is possible to determine the short-run marginal costs and factor de­

mands at that point. From this translog approximation to the short-run 

variable cost function, we can then derive the value, gradient, and 

Hessian of the underlying short-run variable cost function and from these, 

the value, gradient and Hessian of the underlying long-run cost function. 

Given these, we can then not only construct the translog approximation 

to the cost function, which can be used to estimate long-run marginal costs 

and factor demands at points other than one of long-run equilibrium, but 

also the value, gradient, and Hessian of the underlying production func­

tion; and these latter variables can be used to construct a translog 

approximation to the underlying production function. Consequently, esti­

mating a translog approximation to a short-run variable cost function 

around an arbitrary point, it is possible to derive estimates of short- 

run marginal costs and factor demands; long-run marginal costs and factor 

demands; and the underlying structure of technology.



-62-

III. Aggregation and Quality Differentials

Most analyses of transportation cost functions use gross measures 

of outputs and inputs such as ton-miles and total rolling stock. Since 

however, the output mix as well as the way the <Jood is carried (size 

of shipment, length of haul, etc.) can affect carrier costs, it is 

necessary to disaggregate ton-miles in such a way that reflects these 

differences. Similarly, because the mix of rolling stock and the compositio

of that work force can also affect carrier costs, differences in the composi 

tion of the various types of factors must be taken into account.

Nevertheless, because transportation firms normally produce a wide 

range of outputs at different levels of quality and also utilize a wide 

range of inputs, also with different levels of quality, it is virtually 

impossible to introduce specific variables in the cost function for 

each type of output and each type of specific factor. Thus aggregation 

of factors and outputs is necessary. This section, therefore, discusses 

various proposed approaches to aggregation which ensure that, under cer­

tain conditions,the underlying cost function will not be mis-specified 

by the aggregation procedure.

A. Attributes of Aggregation Functions

Suppose that a given firm has N "micro" factors, denoted by x's, 

which it uses to produce M micro outputs, denoted by y's, according 

to the general transformation function

t ?y ■j»• * •, y|gj» x -j»..., xN) - 0 (3.24)

Let us stratify the outputs and factors into the mutually exclusive and
1 inexhaustive output category vectors y ,..., ym and input category vectors 1

1 nx x , each of possibly different lengths, so that each micro output
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or input is included in ore (■ d only one) category.

Let us furthermore define an aggregate output or factor measure as

Y1 = H1(y^) (3.25a)

= Gj(xJ') (3.25b)

Then the functions (y^) and G^x'1) are acceptable aggregations if and 

only if a transformation equivalence is satisfied such that:

t(Y1........Ym; X1.......... Xn) = 0 (3.26a)

is equivalent to

t(y1>..., yM; xr...,xN) = 0 (3.26b)

We can similarly express aggregation in terms of cost functions.

Thus let us define an aggregate factor price measure as

WJ* = EJ(w^) • (3.26c)

where represents the vector of factor prices corresponding to 

the factor vector xJ. Then the functions H^(y1') and EJ(wJ") are accept­

able aggregations if and only if the cost equivalence is such that

C(y» w) - C(y.j,..., yM; w-j,..., w^)

= C(Y1........Y,n; W1,..., Wn)

where Yi = H^y1) and W^ = EJ(wJ)

(3.27a)

(3.27b)

Thus the problem at hand is to determine the functional form of 

H and E"^ that will ensure that the transformation and cost equivalencies 

are satisfied.
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Clearly simple addition to obtain output measures such as ton-

miles or input measures such as freight-cars will not in general

satisfy these conditions.—^ Even if two firms produce the identical

number of ton miles, one would expect their costs to be different if

(for rail) one was specialized in coal traffic and the other was

specialized in TOFC; or if (for truck) one was specialized in truckload

traffic and the other was specialized in less-than-truckload traffic.

Similarly, one would expect costs to vary among firms as the composition

the fleet or rolling stock varied. Consequently, any acceptable aggregat

must be able to take these differences into account.

In recent years, a considerable amount of work has been done on

aggregation functions and index numbers,—^and it has been shown that

if the aggregation functions, H1, GJ, and are homothetic, it is

possible to construct index numbers of the aggregation of y^, x^, and w^
12/which act in well behaved manner.— Homothetic functions are formally 

defined as a monotonic transformation of a homogeneous function. Thus

H1 = h1’[f^ (y1')] (3.28c

Gj = gd[fj (xj)] (3.28t

Ej = ej[fd (wd)] (3.28(

10/— To utilize these measures, one must implicitly assume that the con­
ditions for employing the Hicks composite good theorem obtain, that 
is: (a) each firm must utilize the same proportion of micro factors
and produce the same proportion of micro outputs; and (b) these pro­
portions are invariant to the scale of output.

—'See, for example, Samuelson and Swamy (1974), Fisher (1969) and the 
references cited in these papers.

12/
— That is, they satisfy the following: if prices double, the index 

doubles; the index between two dates is invariant to the base period; 
the index is invariant to the unit of the goods (tons or pounds) or 
the unit of money (dollars or $1,000 dollars).
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where h1, and e'* are monotonically increasing functions with h^O) =

g^(0) = eJ'(0) = 0; and f^, f^, and are homogeneous functions of degreey X w
one. Since h1", g^, and eJ take scalars to scalars, we can estimate then

the relevant cost or production functions by substituting f^, f^, ory w
for H1, Gj, or EJ.

We can interpret this procedure as follows. For the production 

function, the N micro factors are combined to produce n abstract inputs, 

which are then utilized according to eq. (3.26a) to produce m abstract 

outputs, which are then divided so that eq. (3.25a.) is satisfied in each 

output subcategory. Similarly, on the cost side, the optimal (cost-mini­

mizing) method of producing the given bundles H^y1) from the abstract 

inputs GJ(xJ) is determined via the production function, and then each 

abstract output H1^) is produced via/the cost function, eq. (3.27b), 

for the components of the abstract fixed factors G^(x^) and the abstract 

prices E^(wJ) of the variable factors. Note that the assumption that the 

aggregation functions are homothetic does not imply that the overall 

production process is homothetic.

Although the assumption of homothetic aggregation functions may 

appear restrictive, it is not really so. All it states is that the 

index number generated by the aggregation function is a monotonically 

increasing transformation of a linear homogeneous function relating 

micro inputs or outputs to aggregate inputs or outputs. In any event, 

there is really no alternative. If one rejects homothetic aggregation, 

it has been shown that there is not generally any aggregation function 

that exists with the desirable properties with respect to measurement 

scale and so forth. Thus in the absence of homothetic aggregation, 

one must utilize totally disaggregate data, which, of course, is gener­

ally infeasible in view of the large number of different inputs and out-
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puts associated with transportation firms. On the other hand, if one 

ignores the restrictions imposed by homothetic aggregation and simply 

adds together ton-miles or freight cars, it is likely that extreme 

biases will result in the estimated cost or production functions. Con­

sequently, there seems to be relatively little alternative to the use 

of homothetic aggregation functions, which can, in fact, be quite 

flexible and general.

B. Approaches to Homothetic Aggregation

In the most abstract theory of the multiple output firm, in which 

outputs are choice variables of the firm, output prices are given to the 

firm, and, as a consequence of profit maximization, price equals mar­

ginal cost, there is no fundamental difference between the theory of 

output aggregation and the theory of input aggregation. In fact, in the 

pure theory of the perfectly competitive firm, inputs and outputs are 

treated symmetrically.

In the transportation industries, however, it probably does not 

make sense to treat factors and outputs symmetrically for two reasons. 

First, even though these industries are regulated, price is typically 

different from marginal cost and the firms have the ability to excercise 

some monopoly power; and second, while micro factors are usually avail­

able in discreet units, micro outputs are usually available in a continuum 

of goods of a different quality, as measured by size of shipment and 

length of haul. Consequently, there are some operational differences 

in approaching aggregation of factors and outputs in the transportation 

industries.

We will first discuss the general approach to aggregation in the 

context of factors and then show how the analysis may be modified for
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outputs.
1. Factor Aggregation-—'13/

The general approach to homothetic aggregation consists of speci­
fying a convenient form for or , the homoceneos* quantity and price 
aggregations respectively, and rsspee H l.) esu m.t ICj, the resulting

factor share equations a- ■F'jnctions of quantify ' or prices. From the 
resulting quantity or price index (denoted by Qo and P ) the correspon­
ding price and quantity indices are implicitly defined by 

Expenditures in t
p0M Q0Tt) 

Expenditures in t
p0rti

(3.29a)

(3.29b)

Samuelson and Swamy (1974) have shown that the indices (Q ,P ) and 
(Q ,P ) have the desirable properties concern!rq irva’-iance with respect 
to units and time. Since, however, it is generally true that P ^ P and 
V Q0 , one has a choice of constructing either a price or a quantity 
index explicitly and defining the ether implicitly. Let us consider the 
construction of a price index first.

As indicated above, we assume that it is possible to group the 
firm's inputs into categories x^lj=l,...,m). The problem then is to 
detemvir? a single measure cc^t-' :ponn'-■-'g vo the components of each

4vector x'j. Conceptually, .Ms preotem can i;': h'ruled P> assuming that
the firm has a sub-production problem, to transform the micro factors
xV.,xJ, into a simple agaregate factor xJ. Thus, wc assume that the 

1 h i i ifirm; has a production function relating xv to . ,x'^, which is seper-

—This section relies on the work by Diewert fl9?4).
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14/able.— Corresponding to this, we furthermore assume that the firm has 

a sub-production function, relating the costs of producing each abstract 

factor to the factor prices of its associated micro factors. From eqs. 

(3.25b) and (3.28b)we know that x^' = G^x^') and GJ' = gJ'[fJ'(x^')]. Be-X
cause, however, h"1 is a montonic transformation of f^, it simply takes 

a scalar into a scalar and can consequently be ignored. Thus by the 

assumption of separability of the sub-production function we can write

CJ(xJ,wJ) = • <!>J(wJ) (3.30)

where fJ is the aggregation function for factor subcategory j, wJ is a X
vector of the factor prices associated with subcategory j; and is 

the unit cost function of the subcategory. Suppose, for example, 

that is translog; then

^ = exp[dQ + l a.Zmi + £ 8ik*nw^nwj] (3.31)

We can therefore write the share of the iLn component of the jn sub­

category as

wVwixi
wJ •xJ

S2.n<j)
8tnw^ ■i +-^ik“'"kjtnwr (3.32)

After imposing the conditions of symmetry and homogeneity, we can 

estimate the factor share equations for each component of the 

subcategory and obtain estimates of each and each 3^. Using 

an arbitrary normalization to obtain doj ,we can then obtain the 

function ^ from eq. (3.31). Then eq. (3.23b) is used to obtain an impli-

14/—-Note, however, that this contains no assumption concerning the separa­
bility of the total production function that relates all outputs to all 
inputs.
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cit quantity index

q EXj = fJ'= g wj-£ = (3.33)
0 X ^(wJ) <j)J(wJ) p0(wJ)

To calculate an explicit price index, we adopt a similar approach, and

assume a specific functional form for f"1 and estimate its associatedX
factor demand equations and combine these estimates (along with an ar­

bitrary normalization to obtain the constant term) to obtain a quanti­

tative estimate of fJ. For instance, suppose fJ is translog; then itsX X
factor demand equation is given by

wJxJi i a. + £ .. £nx, i ik k (3.34)

After imposing the necessary symmetry and homogeneity conditions, the esti­

mates of the equations corresponding to eq. (3.31) can be combined with 

an arbitrary normalization to completely specify f^. The aggregate 

factor price (WJ) is then obtained by the relationship

Po Q0(xj)
(3.35)

A related approach to aggregation is considered by Diewert (1974). 

Under this formulation, we choose a functional form for f^ which is con­

sistent with an index number formulation that depends only upon obser­

vable prices and quantities. In this approach, it is unnecessary to 

estimate specific factor share equations.

In particular, Diewert calls a quantity index Q exact for f^ 

if it satisfies

fJx(xJt) i • i •

-T—T- = Q(P,P^XJ,X^) f J / YJ x 0 t’ 0 V
x^xo;

(3.36a)
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where f is a homogeneous aggregation and the subscripts o and t refer 

to the base year quantities and prices and the current year quantities 

and prices. Thus a quantity index is exact if the ratio of its present 

value to its base value is a function of the prices and quantities in 

the current and base time periods. Similarly, an exact price index 

P for the unit cost function, satisfies the relationship

P (3.36b)
4>(Wq)

Then, Diewert defines an index number to be super!ative if the 

function for which it is exact is capable of providing a second-order 

approximation to a homogeneous function.

Diewert (1974) and others— have argued.that the following in­

dex number has these desirable properties

9<V „ I| (in, 2(sit + ho*
■?"] *'10

(3.37)

where S^, is the cost share of the iLn micro factor in period t and 

is the cost share in the base period and the z1s represent factor prices 

or quantities, depending upon whether we use a price or quantity index.

In particular, this index provides a discrete approximation to the 

Divisia index, is exact for translog f^ or fJ, and, therefore, is superla 

tive. Furthermore, its use does not require the estimation of factor

—See I. Fisher (1S22), Tornquist (1936), Theil (1967), Christensen and 
Jorsenson (1973) and Starr and Hall (1976). In the latter two papers, 
it was also used to provide a discrete approximation to a Divisia index
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share equations; numerically, it differs from the estimated translog 

index, given by equation (3.31), only because of the stochastic speci­

fication implicit in the latter.

For these reasons, we will concentrate on (3.37) for factor ag­

gregation. Nevertheless, some analysis with all types of aggregator/ 

functions will be useful to test for consistency. Thus we plan to explore 

the application of each of the various aggregator indices described 

and use eqs. (3.33), (3.35), and (3.37) to determine the best aggregator 

index.

2. Output Aggregation

The usual theory of aggregation assumes perfectly competitive mar­

kets, that is price equals marginal cost in product and factor markets, 

and that the micro units (factors or outputs) are available in a finite 

number of different qualities (or that each firm has the same proportion 

of each quality type within each generic category). Since, hov/ever, trans 

portation firms typically produce at prices that differ from marginal 

cost and since they can produce a continuum of different outputs by 

varying the length of haul and the size of shipment, neither of these 

assumptions will usually be met with respect to output. Thus, we need 

to modify the usual approach to aggregation.

To fix ideas concerning the problems caused by the divergence 

of price from marginal cost, let us first consider the usual case. Thus 

suppose the firm faces the production function

t(H (y1.y2) x^,...,x^) - o (3.38)

where y. represents the micro outputs; x. represents the micro inputs, and
* w

H'(y1,y2) represents some aggregator function on the first and second
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micro outputs. The cost function is defined by

C(y,w) = min wx s*t t(y,x) ■ 0 (3.39)

Consider two different output vectors, y' = (y| .y2>y3»*••»FM) and

y"=(yi|',y2>y3........yM)» which are identical except for their first two

components. Furthermore, let the aggregator functions for y^ and y^ 

be such that

H'(yj.y^) = H'Cy^yp = Y1 (3.40)

Clearly, C(yiw) = C(y"w), since from the cost function, eq. (3.39), 

we know that identical x's are required to produce y' and y". Thus 

if the firm is instructed to cost-minimize subject to = H^fyj.yp = 

H^Cy^yp* the precise output configuration is indeterminate.

If, however, the firm is a price taker and profit maximizer, th< 

the y1,y2 combination it chooses will solve the problem

max p1y1 + p^ s*t H'(y1,y2) = Y1 (3.41)
yl ,y2

for some Y^. Thus the problem is determinate; and it is upon this fac 

that the usual theory of aggregation is.based.

When the government (or a rate bureau) sets output prices and r 

quires that firms satisfy all demand forthcoming at that price, the 

firm is no longer free to adjust quantity in a profit maximizing way. 

Only by chance, will the quantity produced be the profit-maximizing 

quantity, and price may either be above marginal cost (implying that t 

firm would like to sell mere at the regulated price) or below marginal 

cost (implying that it would like to sell less). In either case, we 

cannot determine the equilibrium quantity y^ and y2 by solving the
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profit-maximizing problem given by eq. (3.41), since and

are no longer control variables of the firm. In effect, the firm has 

an output restriction imposed upon it such that the quantity supplied 

equals the quantity demanded at the regulated price.

To see the implications of this for aggregation let us assume 

that the micro output of y^ is fixed at y^ and that we want to determine 

the appropriate aggregate for and y3* We tl’1us write the trans­

formation function as

(y-j»y2’y3^’y^*■ ■ *’y^’ - o (3.42)

Then the (y^^) configuration chosen by the firm solves the problem

max p]y1 + p2y2 s»t H1(y1,y2,y) = Y1;
yl ,y2

This can be written equivalently as:

max
yry2

Piyi
^2

s*t H1 (y y?) (3.43a)

where is a function that depends upon the constant y^. which has been 

subsumed. If is homogeneous of degree that is independent of y^, 

then a suitable aggregate measure for y-j and y2 can be found, since 

can then be written as a monotonic transformation of a linear homogeneous 

function. In general, however, such a function is extremely difficult

to find.—/

This implies that unless we can find an aggregator function 

that is homogeneous of degree that is independent of the restricted

—The Cobb-Douglas function has this property, but it implies a transfor­
mation locus that is convex to the origin. The translog function and 
other usual aggregator functions do not have this property.
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outputs, we should never include a micro output for which p me 

with micro outputs where p - me in any given aggregate category.

This gives us an approximate rule to follow for output aggregation: 

a category (aggregate) can only be formed when no micro output in that 

category is more severely restricted than the others.

Suppose, however, regulation is such that the price levels of t 

broad aggregates are regulated, but that some freedom is permitted 

with respect to the micro outputs. This may actually be the case, sin 

the ICC appears to have certain notions about the rate levels for broa 

classes of commodities, but permits considerable lattitude for specifi 

commodities. Certainly, the value of service rate structure has thes 

characteristics. In this case, let us define an aggregate =

HJ(y^,...,y^), whose price is directly regulated and whose quantity 

is implicitly regulated by the constraint that the firm must satisfy 

the existing demand at that price. Then the firm's sub-problem is to

Thus the firm is free to set its micro quantities in a second-best 

profit-maximizing manner. Since the firm will set prices proportional 

to marginal cost in this case, this means that aggregates can be founc 

for micro outputs whose price bear the same relationship to marginal 

cost.

As a practical matter, this means that aggregates should be

s-t Hj(yJ,...,y^) = Y1 , Y^Y1 

1 h

(3.4-

formed from outputs which are subjected to the same regulatory con­

straints, which have similar demand functions, and which impose simila 

marginal costs upon the firms. For example, this means that grains,
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coal, and manufactured commodities should not be aggregated into a 

single output measure, but that it may be acceptable to aggregate 

different types of grains into a single output measure, and similarly 

for coal and manufactured commodities.

C. Quality Adjustments

The second problem with output aggregation arises from the con­

tinuum of quality levels (e.g., size of shipment). Ideally, we would 

like to treat a discrete number of quality levels as separate goods 

and proceed in the manner outlined for factor aggregation. Lacking that, 

even if the continuum of quality levels bunched around a discrete num­

ber of values, we could still proceed in the conventional manner.

Since, however, there is no a priori reason to expect such bunching to 

occur in the case of transportation outputs, we must accordingly modify 

the aggregation theory outlined above.

To state the problem formally, let us assume that each firm pro-
^ nduces n vectors of output, y’,...,y , each of which has an associated
Inivector of quality levels, q ........q , where q1 is of arbitrary dimension-m-'

Let us furthermore assume that each output price is a function of quality 

and that the firm's technology is such that production is readily separ­

able, that is the components of each output category can be written in 

terms of an aggregate index. Thus, the firm's problem is to choose out­

put quantities and qualities to maximize profits

—^Thus if y1' represents the i* *^ category of output, its micro components
• • •

can be described by y^,...,y,!. Th quality vector q1 would then have 
i i 1 hicomponents q^,...,q^, where q^ would also be a vector of qualities asso­

ciated with the micro output y1.



-76-

i, i, 1max tt * J p'fq'Jy' - C[^ (y 1 qi),... ,^n(yn,qn),x,w]

q1 ’-y1 (3.45)
where x is a vector of fixed inputs and w is a vector of prices of the 

variable factors, and 4^ (y1'.q"*) represents a function relating the micro 

components and their related qualities to some aggregate measure.

Analogous to the usual aggregator functions, it seems desirable 

to assume the following three properties of the ij;1' functions for all i

(i) ^(O.q1*) = 0; t>1' is defined for all y1* > 0, q1' > 0; and
^(y^q1) > 0 for y^ > 0, q^ > 0.

(ii) ^(yi.q1) is homogeneous of degree 1 in y1' for fixed q1'.

(iii) ^^(y^.qM is monotonically non-decreasing in q.

Assumption (i) is straightforward and simply state that the aggre 

gate output measure must be zero if its micro output components are zero 

and that as long as one micro output is positive, the aggregate output 

measure must also be positive.

Assumption (ii) states that doubling the level of micro outputs 

will double the level of the aggregate output measure, but "doubling" th 

quality measures for fixed y need not double the aggregate output 

measure. Thus the definition of the output measure (tons, ton-miles,etc 

can have important implications for the measurement of aggregate output.

Assumption (iii) specifies that output with higher qualities

is ceteris paribus at least as difficult (in terms of input requirements

to produce as the same generic output with lower qualities. One way of

interpreting this is to view qualities as freely disposable. This assumf

tion is entirely plausible when output qualities are separable from

specific inputs, as we have assumed here. On the other hand, no assump-
i i i i ^tion about the concavity of ip (y ,q ) in q for fixed y is made since
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measures of quality may have no natural units of expression: Jcp” may

serve as well as q1' in the sense that tJj1"(y^ could represent the 

"^-technology" as well as ^'(y^q1'), but such a transformation could 

affect the concavity-convexity behavior of ^1'( • ).

The problem at hand is to estimate a cost function of the following 

general form:

ctoV*1).....* n(yn,qn)> x, w] (3.46)

where ^(y1* ,q^) is some aggregate output measure that is controlled for 

quality; x represents the vector of fixed inputs; and w represents the 

prices of the variable inputs.

There are basically two approaches to estimating this cost func­

tion. The first approach is more familiar and involves deriving a 

standardized output measure where quality differentials have been taken 

into account. The second is to estimate the cost function directly, making 

the appropriate substitution for ij;1'(y1* jq1').

1. Hedonic Adjustments for Quality

The usual approach to accounting for quality differentials is 

to determine a "standard" price for a "standard" level of quality, and 

then deflate revenues to obtain a "standard" level of output, which we can 

use to form aggregate output measures in the usual way, taking into 

account differentials between prices and marginal cost.

Specifically, let us consider a specific firm's output category

i, which is composed of micro outputs that have been chosen
h

to ensure that their price/marginal-cost ratios are comparable. By 

assumption, however, the quality levels of y^ f yj.. Let represent 

the revenues from y^ and pj, represent the price of yj., which we obtain 

by dividing revenues by the relevant output measure (presumably tons
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or ton-miles). We then estimate a hedonic regression,—^ relating 

the price of the micro output to its quality characteristics and 

some specific attribute of the firm. If each output has H quality 

dimensions, we can postulate the following general relationship

0i Di , i -i i —i . .P = P (q - q ,... ,q u - q u, r r r^ r^ ^rH ^rH’ f- (3.47)

where qj. and q"^ respectively represent the actual and mean quality 

dimention i associated with micro output y^-and Ap represents specific

attributes of firm f. If, for example, we had a time-series, cross-*
section sample of output y^, we could estimate the following regression:—^

p)ft= % +J1utdt (3.47a)

H
+ l

s=l

where P^t represents the price of commodity r in category i at time t 

for firm f; d represents a time dummy (1 if period t; 0 otherwise);

represents a firm dummy (1 if firm F; 0 otherwise); represents 

a commodity dummy (1 if commodity r; 0 otherwise); qj, ^ represents 

the quality dimension s associated with commodity r at time t; and 

q^ represents the mean quality dimension s, over all firms, time periods

—^See Rosen (1974) for a good discussion of the use of hedonic regressions.

—/Note that we standardize the base period (t=0), the first firm (f=l) 
and the first commodity (r=l). Moreover, there is no reason why this 
relationship needs to be linear. In fact, since a linear formulation 
could result in negative standardized prices, it is probably desirable 
to estimate a hedonic regression in a logarithmic form that includes 
interaction terms.
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and commodities.
*i i

We then define P t as the price of the micro-output yr at a 

standard quality level at time t and estimate it by assuming that each 

firm's quality is at the mean quality level. Thus, for firm f

utdt+ BjPf + Y C f f 'r r

We now are in a position to construct a price or a quantity index. To 

obtain an aggregate output measure, it is desirable to construct an 

aggregate price index and then obtain an aggregate output measure by di­

viding revenue by the price index. The aggregate price index for each firm 

is constructed by the following expression

r=1 p* j (3.48)
,i

where P*L and P*! represent the standardized prices of commodity r rtt rro
for firm f in the base and current periods; and srft and srfQ represent 

the revenue shares of commodity r from category i in the base

and current periods for firm f. The aggregate output measure 

of category i for firm f in time t (vj.) is then simply defined as

,i 4t/ i.pjt (3.49)

where represents revenues from category i for firm f in time t. 

A similar analysis which constructs a Divisia quantity index
*i

can be performed by deflating each micro revenue by its P^:

R1'
*1 = ini
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to obtain the quality-adjusted micro output measure y . The micro
rft

output quantity can then be used in a Divisia index number formula 

analgous to eq. (3.48) to provide an index of aggregate output quantit, 

This index, when divided into aggregate revenues, yields an alternativ 

aggregate price index.

While attractive, this approach has a number of problems associ 

ated with it. Specifically, it requires that a very special relation­

ship must exist between the technology as embodied in the tj^'s and the 

market functions, p^Cq1*), and it does not seem that in general such a 

relationship should obtain except under perfect competition.

Let us consider the assumptions about ^ that are made when de­

flation by an estimated hedonic price index is performed. Basically, 

there are three steps involved in the procedure.

(i) Estimate p1'(q1') directly by means of a "hedonic" regressi 

analogous to eq. (3.47).

(ii) Define p 1(q 1) by setting the value of each level of 

quality equal to its mean and implicitly define the "deflated" value 

of output as

/i = pV) -.1. 
p’Vh

*i _

(iii) Estimate the value of c(ij/ ,x,w).

While the estimation of p^q1*) involves some subtle issues,—^ 

we shall concentrate upon the implications of the determination of
*i

\l> . In particular, we want to explore the question of what assump-
*itions are being made about i{> when deflation by an estimated hedonic

20/— See Sherwin Rosen (1974) for a good discussion of this problem.
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price index is performed.

To answer this question, note that any solution to the profit 

maximization problem also solves the i=l,...,n sub-problems of the 

allocation of micro outputs and their associated quality levels.

max P1'^) • y"5 s.t. V(y1'.q1') = ^ (3.50)

y1»q1

or

= • y1' + X^ly'.q1) (3.50a)

This follows from the form of the separability of the cost function and 

the assumption that each firm is a competitive price taker. Thus 

once the ij^'s are chosen, the allocation of the y^'s and q^'s must solve 

the sub-problem given in eq. (3.50) or else, revenue (for identical cost) 

would not be maximized, since the y\q^ decision given the i^’s does not 

affect any other output market.

Thus let p1'(q^) • y^ denote the revenue accruing from the i^

output aggregate for the quality bundle actually chosen by the firm;
*iand let q be the "standard" quality bundle for category i. From the 

maximization sub-problem given in eq. (3.50), we know that

p^q1) • y1 i p^q*1) • y 1 (3.51)

where y ^ is chosen to satisfy i^(y ^q 1) = » that is, the maximum
*i

output that could have been produced at the standard quality q would 

have realized not more revenue than the bundle that was actually chosen 

did.

Hedonic deflation defines
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p^g1) v1 > *1

p'V1)
(3.52

with the last inequality holding by virtue of eq. (5.28). Since
i i *i i^ (y »q ) is homogeneous of degree one in y , an arbitrary choice of

numeraire allows the above, eq. (3.52) to be written

J / i \ i P (q ) • y
pV’)

> y*i

^(y1 »q*1) = y1 (3.53;

From this we see that hedonic deflation never underestimates aggregat 

output quantities, and will typically overestimate them except in the 

special case when

i. i, i i, *i \ *ip (q ) • y = p (q ) • y for 4)1' = (3.54;

that is, when revenues from different breakdowns of a given 411' are

always the same. Suppose, for example, that ^ is fixed at ty1";

then all (q^y1) that satisfy if'^y'.q1) = v generate the same revenu<
* _

the level of which k is a function of . Thus we have

p^q1) • y1 = p^q*1) • y*1 s k^^1) 

^V.q1) = ^1(y*l.q*1) * ^
i i /Ti i,y “ y (ll» .q )

-A Hi

y 1 ■ y ’(r .q )

(3.55c

(3.55t

(3.55c

(3.55c

Since ^1(y1,q 1) is homogeneous of degree one in y, k (^) 

is also homogeneous of degree one in ^. Fixing ij71, we therefore ob­

tain
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pV) i, i\y (q ) . .i* LJ i 1 ^ .1/ i U = k , ^ y ,q > (y ,q ) (3.56)

It follows directly from this that

y1(q1)
* —i 

k (^1)
pV)

or that

(3.57)

^(y’.q1) • p1(q1) = k* (3.58)

•k
where k is chosen so that the normalization

*
^(y1 ,q 1) = -T^*i = yl (3-59)

P1(q 1)

is satisfied.

From the forgoing analysis, we can therefore see the following: 

Hedonic aggregation using estimated hedonic price frontiers is exact if 

and only if the aggregator function ^'(y^q1') is proportional to the 

inverse of the "frontier" price of q^. This apparently indicates that 

a very special relationship must obtain between the technology as em­

bodied in the ^1's and the market price function p1'(q1'); and it does 

not seem that such a condition should generally obtain except under 

perfect competition. Furthermore, hedonic aggregation, if correct, 

implies that firms motive!essly place themselves in the quality space, 

since any efficient production bundle will realize the same revenue for 

identical costs. Note, however, that the distribution of the firm's 

production of the ij>1"'s as aggregates is not motiveless, but depends 

upon differences in x and w.

2. Hedonic Cost Functions

As an alternative to hedonic deflation, we can incorporate the
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vVunction into the cost function and estimate it directly. Briefly, this 

approach requires us to approximate by

£n ^(y’.q1) = aQ + ^ £nyj + I bk inq^

+ I ^ Ajn 

+ i n Bjk t-v]

+ ^ I I ckr £nQk (3.60)

where we impose the relevant coefficient restrictions to ensure that tj;1' is 

linearly homogeneous in y .—' Thus in estimating the usual translog cost 

function and its associated factor demand equations, we substitute for y1* 

the expression for ij;1', given above. The result is a system of non-linear 

equations with the number of parameters equal to

(N2 + 2N + 3) + l (Q2 + Q£ + 2)

where Q = 1 + the number of quality dimensions of the output and 

N = (m + n), that is, the number of aggregate outputs (m) plus the number 

of fixed and variable factors (n). The model is apparently identified^ 

Since direct estimation of hedonic regressions does not involve the 

restrictive assumptions involved in hedonic deflation, it seems to be a 

theoretically superior approach to quality adjustment. Against this 

theoretical advantage, however, must be weighed the increase in variables 

if some previous aggregation is not made over commodities.—^

217—'See Section IV, below.
22/—'This is aided by the assumption of weak separability in the cost function 

and the homogeneity of in y1.
23/— This approach is used in estimating trucking equations, discussed in 

Chapter Four, below.
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IV.. Estimation o-f the .vc-:.-.--, ;'„nction

We begin by specifying a general long-run translog cost function 

and show how we can test for homogeneity, separability, and non-joint 

production using this function. We then show how the long-run translog 

cost function and its associated tests must be modified in the context 

of a short-run cost function. Finally, since the general translog for­

mulation is not in suitable form for estimation, we show how the speci­

fic estimating equations are derived.

A. The Long-Run Cost Function

Let us being by writing a general translog function as£i/

C(y) = a0 + a^ncl + ^ £ncT B£nq (3.61a)

where q represents a (Nxl) vector of outputs and factor prices, aQ 

represents a scalar; a represents a (IxN) vector of coefficients 

associated with the first-order terms; and 3 represents a (NxN) matrix, 

of coefficients associated with the second-order terms.

This general expression can be given more intuitive meaning if

Since we will generally take the sample mean as the point of expansion 
we can interpret the q's as deviations from the sample mean and can 
similarly interpret the coefficients as the value, first derivative, 
and second derivative (with respect to Jinq) of the log of the under­
lying function, evaluated as the sample mean.
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we partition the vector q into factor prices and commodity outputs 

and partition the vector and matrix of parameters (a and &) into the 

relevant interaction terms between factor prices and commodity outputs 

as follows:

I
q = (w ! y)

where w represents an (nxl) vector of factor prices and y represents 

a (mxl) vector of commodity outputs and n + m = N.

—
1 

> B
1

i—
;

00
 I - i i i

C_

where A represents an (nxn) symmetric matrix of parameters associated 

with factor price interactions; B represents a (nxm) matrix of parameters 

associated with the interactions among factor prices and commodity outputs 

(note that (B') = B); and C represents a (mxm) symmetric matrix of para­

meters associated with commodity output interactions.

a = (a | c)

where a represents a (nxl) vector of parameters associated with factor 

prices and c represents a (mxl) vector of parameters associated with 

commodity outputs.

In matrix notation, we can then write the translog cost functions as
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£n C(y,w) = a0 + (a ; c)’ iln (w J y)

^ Jtn (w y)
A ! B 

B' ] C
in (w ! y) (3.61b)

Performing the indicated multiplication, we thus obtain

Ml Ml

C(y,w) = a + l a.inw. + l c iny
0 i=l 1 1 i=l ^ 36

n n
+ 4- l y A., inw. inw.

2 ji, 1J 1 J

, n m
+ 2 J, J/ BU + B

m m^ 111 Ml

+ "2 I I ^oh ^n^P,
£ i=l h=l m * n

(3.61c)

The function described in eq. (3.61c)is entirely general and does 

not require homogeneity, separability or non-joint production. Never­

theless, using this translog cost function, we can test a series of nested 

hypotheses concerning questions of homogeneity and separability as well 

as hypotheses concerning non-joint production.

1. Homogeneity and Separability

Figure 1 illustrates the structure of the nested hypotheses con­

cerning homogeneity and separability. We thus being with a general trans-
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Figure 1. Tests of Underlying Production Structure 

Using Translog Cost Functions

(1) General Translog Function

C(y,w), possibly not homogeneous in w

Y
(2) General C(y,w), homogeneous in w

(3) Homogeneous of arbitrary 

degree y in y

(5) Separable (multiplicative)

(4) CRTS (6) Homogeneous of degree y in y

and separable

(7) CRTS and separable (8) Cobb-Douglas, not CRTS

(9) Cobb-Douglas, CRTS
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log function (1) and derive the restrictions necessary for cost-mini­

mization (2). We then derive the necessary restrictions for production 

to be homogeneous of an arbitrary degree in output (3), and for produc­

tion to be subject to constant returns to scale in output (CRTS) (4).

We then derive the restrictions necessary for production to be separable

(5), and separable and homogeneous in output (6). Finally, we indicate 

the combinations of restrictions needed if production is subject to CRTS 

and is separable (7); if production can be described by a Cobb-Douglas 

technology of arbitrary degree in y (8); and production can be described 

by a CRTS, Cobb-Douglas technology (9).

The basic theory of cost-minimization requires that the cost func­

tion be homogeneous of degree one in factor prices (w). We thus develop 

the necessary restrictions on the parameters to ensure that C(y,w) be homo­

geneous of degree one in w^Note that since C(y,w) is symmetric in w and 

y, we can easily extend the analysis to derive the necessary restrictions 

for homogeneity in output (y) of an arbitrary degree.

Homogeneity of degree one in w for fixed y requires^/

C(y,Aw) = AC(y,w) (3.25)

Thus

Jin C(y,Xw) = Jln[xC(y,w)] = JlnX + £n C(y,w) (3.63)

By direct calculation, we therefore obtain

25/—-'See Spady and Friedlaender (1976) for a proof that a translog approximation 
to a homogeneous function of degree k must also be homogeneous of degree k.

— This is only a demonstration of sufficiency. For a rigorous proof of 
necessity and sufficiency, see Spady and Friedlaender (1976).
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C(y,Xw) s 2q + j a^inX + £n w^) + j c££n y
i = l £=1

m o^ lit w

+ •57 J A..(JlnX + Jin w.)(£nX + £n w.) 
^ i=l j=l 1J 1 J
^ m m

+ •? I I (Bip + B' )(£nX + Xw.)(£n y.) 
* i=l £=1 1 1 ^

1 m m
+ 2 ^ ^ C£h £n y££nyh^ £=1 h=l ^ ^ n

Thus

£n C(y,Xw) = £n C(y,w) + J a. £nX
1-1 1

n n+ T I £ A. . [(£nX)2 + £nX(£n w .)] 
2 i=l j=l J

1
n m

+ ? I, Bii)lnUn^

(3.64)

(3.65)

Examination of the last two terms of equation(3.65) indicates that their 

magnitudes depend upon the £n w^'s and the £n y^'s. Since we do not 

want to impose any restrictions upon magnitudes of these variables, we want 

to impose restrictions on the parameters that will ensure that these terms 

equal zero.

Examining the last term first, since 8^= , we have

(3.66)
n n

in [ l Bu £n y£ = 0

i £

Clearly, this term will equal zero if

l B.
i=l 1

£=l,...,m (3.67)
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Thus, for the cost function to be homogeneous of degree one in factor prices, we 

must have the factor price - commodity output interactions sum to zero for each

output.

Similarly, (after multiplying by 2) the third term can be written as

2 n n n n
UnXr l I A. . + £nA [ l A.-.An w

i=l j=l i=l j=l

n n
+ AnA £ l A..An w. 

i=l j=l 1J J

For the last two terms of this expression to equal zero, we must have

= 0 i = l,... ,n (3.68a)
j = l 1J

n
I A. . = 0 j=l,... ,n (3.68b)

i = l

But, since A is a symmetric matrix, this implies that 

and that
n
I

i=l

n
I Aij = 0 (3.68c)

Thus the third term of eq. (3.65) vanishes. Then eq.(3.65) can be written as
n

An C(Aw,y) = An C(w,y) + AnA £ a.
i = l 1

Therefore, to ensure that the cost function is homogeneous of degree one in 

factor prices, we must also require that

n
(3.69)
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To recapitulate briefly, homogeneity of degree one in w requires 

the following parameter restrictions

I A = 0 j-T....... n (3.70)
i=l 1J

n
I £,•« = 0 A=l,...,m

By a similar argument, homogeneity of degree k in y requires that

m

= 0 »m (3.71)

m
I B.j ® 0 i=l....... n

£=1

Thus, to test for homogeneity of degree one in w, we first estimate

the unconstrained cost function (3.61c) and then estimate it subject to the

restrictions given in eq. (3.70) and then perform the usual F test to see

if the equations are "significantly" different.

To test for homogeneity of an arbitrary degree k in y, we estimate

the cost function subject to the constraints given by (3.70) and (3.71)

and then utilize the F-test. To test for CRTS, we can impose the additional 
m

constraint that I c = 1 in (3.71) and compare the estimated cost function 
£-1 *

to the one that did not impose this constraint.

Since the restrictions (3.70) are implicit in all cost functions, we 

now assume that they hold and discuss how we can test for separability in 

the translog framework.
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A separable function is one in which we can express the transfor­

mation frontier F(y,x) =0 as ^(y) = f(x), where x represents the factor 

inputs and y represents the commodity outputs. The cost function asso­

ciated with a separable production function can therefore be written as

C(w,y) = C*(w,^(y)) (3.72)

If F(y,x) is homothetic (i‘.e. all its "isoquants" or level sets are 

are scalar multiples of each other; see Jacobsen (1970)),then C*(w,\p(y)) 

can be written as

C(w,y) = 4>(w)*^(y) (3.73)

or in logarithmic form

£n C(w,y) = iln cf>(w) + iln i|;(y) (3.74)

Using eq. (3.74) and the translog form of the cost function, we

can readily obtain that the separable translog cost function is written as
n m

£n C(w,y) = a + £ a. S,n w + I c £n y 
0 i=l 1 1 £=1 * 1

n
I

i=l

m
l

£=1

Y A.. £n w. £n w.^ ij ■* 1

m
C£h £n y£ £nyh

(3.75)

Thus, if the production function is separable, the translog cost function 

has the added restriction that

i=l,... ,n; 
£=1,... ,m

(3.76)

That is, all interaction terms between w.. and y^ must equal zero if the 

production function is separable.

If we want to impose separability and homogeneity of an arbitrary
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degree in y, we add the further restrictions given in eq. (3.71).

Summarizing, we can rewrite Figure 1 with the required restrictions. 

Thus, we begin (1) with the arbitrary function given in eq. (3.61). By 

imposing the restrictions given in eqs. (3.70) as can test for the under­

lying assumption of cost minimization (2), which we shall subsequently 

assume to hold. Thus the ensuing analysis assumes that restrictions (3.70_ 

hold, as well as those needed for homogeneity and separability. Homo­

geneity of an arbitrary degree in y (3) requires that eqs. (3.71) hold;

while constant returns to scale (4) imposes the additional restriction that 
m
I c = 1. Separability (5) requires that eq. (3.76) holds and that B.. = 0. 

£=1 *
The restrictions implied by eqs. (3.71) and (3.76) can then be combined to

test for separability and homogeneity (6). By further requiring that eqs.
m

(3.71). and (3.76) hold and that £ c = 1, we can test for separability
£=1 *

and CRTS (7). Moreover, by requiring that eqs. (3.71) and (3.76) hold and 

that = 0, we can test for Cobb-Douglas technology, with no CRTS re­

striction (8). Finally, by requiring that eqs (3.71) and (3.76) hold and
m

that A.. =0, and [ c = 1, we can test for CRTS, Cobb-Douglas technology (9) 
1J £=1 1

2. Non-Joint Production

If production is non-joint, the cost function can be written as the 

sum of the cost functions of each of the separate outputs; thus

c(yi»• • • »yp»^i»• • • »w^) = £ c ^£’ »• • *

This implies, of course, that

(3.77)

32C
3y£Syh

0 for j^h (3.78)

Consequently, if we can relate the coefficients of the translog cost func­

tion to the second derivative of the underlying cost function and impose



Figure 2. Parameter Restrictions Needed to Test

The Underlying Production Structure 
Using a Translog Cost Function

(1) General Transiog Function

n
1 a.=l

i = l 1

l
i=l

n

i Aij=0 j=1»...,n

I B. =0 
i=l ^

N/
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the condition that = 0, we can then determine the restrictions on the 

coefficients of the translog functions to ensure that production is non­

joint. I
Let us write the log of the non-joint cost function (3.77) as

£n C(y,w) = tn(J C£'(yc,w)) = £n f(x) (3.79]
a x

Thus its translog approximation can be written as
✓s

£n f(x) = a0 + £ a^tnx^ - i-nx^)

+ J I iBjjdnx, - tnxo1)(«.nxj - tnxo.)
• w

when xo represents the point of expansion.

From eq. (3.6b), we know that if f.. * f.. = 0, then
ij ij

(3.80)

6ij

f.f. x.x.

Substituting eq. (3.6a) for f. into the above expression and collecting 

terms, we thus obtain

B1j = + pih(Ir,xh -lnxoh)][aj + ^jh(lnxh -£nxoh)] (3-81)

If the point of expansion x0> also equals the point of evaluation,x,

then £n x. = £nx . and h oh

6^ + a.a. = 0 1 = 1,...,m
1J ’J j=l....... m; j M

(3.82a)

Since the i and j indices in expression (3.82a) refer to outputs, this 

expression can be translated into the coefficients of the translog cost 

function as

+ c£ch £=1,... ,m
h=l,...,m ; h f i (3.82b)
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Thus by using these non-linear restrictions on the interaction coefficients 

of the output variables, we can test for non-joint production.

B. The Short-Run Variable Cost Function

Instead of estimating a short-run total cost function, it is more 

convenient to estimate a short-run variable cost function. We obtain 

this by subtracting the fixed costs from the total costs and by replacing 

the prices of the fixed factors with their quantities. Thus, let us de­

note the short-run .variable costs as C; the vector of prices of the

variable factors by w(w = w-j....... wv); and the vector of fixed factors by

x(7 = xr...,xf) where f + v = n, the total number of factors. Then the 

translog short-run variable cost function can be written as

_ v f _ m
Jin C(y,w,x) = a + j a. inw. + l b fcnx + I cf £ny

0 i = l 1 1 r=l r r Jl=l *

.. v v mm
+ T A^nw.tnw. - j> Z

f f _ _ v m
+ ^ lBrs*"*r*n)<s + l I + B'«)P S 1 36

v f m f _
+ l l (E1r + E'HUnwjinxr + I I (F^ +
If X- i

(3.83)

1. Homogeneity in Factor Prices

As long as a firm minimizes costs, its cost function must be homo­

geneous of degree one in factor prices. Thus even if the firm is subject 

to regulatory or institutional constraints that prevent it from adjusting 

its factors in an optimal fashion, it should still minimize costs with 

respect to its unrestricted or variable factors. Therefore the cost func­

tion should always be homogeneous of degree one in variable factor prices.
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whether the finr; is in a point of long-run equilibrium or not.

Elementary economic theory requires that short-run (variable) 

cost functions be homogeneous of degree one in the variable factor prices 

w. Thus, by arguments analogous to those above, the translog approxi­

mation to C(y,jT,w) must also be homogeneous of degree one in w.

This implies that the folloA'ing restrictions must be satisfied:

y a. = 1 (3.84a
i=l 1

v
I A... = 0 j=l........v (3.84b

i=l
v
I B- = 0 *=!,...,m (3.84c

i=l 1

v
J E. = 0 r=l,...,f (3.84d

i=l ir

2. Homogeneity in Output

It is important to realize that homogeneity of degree k in output 

in the long-run cost function does not imply homogeneity of degree k in 

the short-run cost function. Nevertheless, the long-run cost function will 

be homogeneous of degree k in output if the following restrictions are 

satisfied as the short-run cost function:—^

27/
— For a full discussion of this point see Spady and Friedlaender (1976).
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I c
£=1

k

m f
l Bu + kl Eir ' 0

11=1 r=l 1

i=l,...,n

m f
l C,. + k I E ' 0

1=1 r=l
h=l,... ,m

m f
j Fls + k hDrs = 0£=1 ^ r=l rS

S = 1 , . . . ,f

(3.85a)

(3.85b)

(3.85c)

(3.85d)

3. Separability and Non-Joint Production

If the long-run cost function is multiplicitively separable in 

outputs and all inputs, it will also be separable in the outputs and 

variable inputs and the outputs and fixed inputs. Hence separability 

requires

(3.86a) 

(3.86b)

Finally, since the restrictions for non-joint production only apply 

to outputs, they are identical in the case of the short-run cost function 

to those of the long-run cost function, and are given by eq. (3.82b).

BU = ° 1=1,.
£=1,.

= ,V 

. ,m

Frl = 0
r=l,. 
£=1,.

.,f

. ,m
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C. The Factor Demand Equations

From Shephard's Lemma we know that the derivative of the cost func­

tion with respect to a given factor price equals the demand for that 

factor, that is

5C(y,w) =
3w. i

Since logarithmic differentiation of the translog cost function yields

3&nC(y,w) _ 9C(y,w) .
3£nw.

we can readily obtain that

(3.87a

9ilnC(y ,w)
8£w i 'i (3.87b

where p. = x.w./C, the share of the total costs accruing to factor i.

Consequently, in addition to estimating the translog cost function,

it is useful to estimate its associated factor demand (or factor share) 
equations. In the long-run cost function, these equations take the

following form

1 5 * m
°1 " ai + 2 H * A^UrWj ♦ ^ <BU +

(3.88a
i=l,...,m

where a. represents the share of the total costs attributed to factor i. 

However, in the case of the short-run variable cost function, these equa­

tions take the following form



(3.88b)

a. + i[ J" (A.. + A.
^ 2 V-i 1J J

..)£nw .Ji j
m
I (B 

£=1
U

+ VEir+EVi)tnxr5r= i
1=1.............. V

where represents the share of the variable costs attributed to factor i. 

Because the factor demand equations provide more information than the cost 

functions alone, it is desirable to estimate the cost function and the fac­

tor demand equations jointly and apply the appropriate restrictions over 

all equations. This will be discussed below when we describe our estimation 

procedures and empirical findings.

Neither the long-run translog cost function,given in eq. (3.61c), 

nor the short-run translog cost function, given in eq. (3.83), and their 

associated factor demand equations are suitable for estimation in 

their present form since similar terms have not been combined in them

( i.e., A..£nw.£nw. and A..£nw.£nw. have not been combined into a single 
ij i J Ji J i a

term (A^ + A^ )£nw^£nw^.). We therefore must rewrite these cost functions 

and modify the coefficient restrictions for homogeneity, separability, and 

non-joint production accordingly. We perform this transformation for the 

short-run cost function and its associated factor demand equations. The 

extension to the long-run cost function is apparent.

We thus rewrite the short-run cost function, given by eq. (3.83),

as:
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v f m
£nC(q,w,x) = aQ + Ja.inw. + IbrJlnxr + Ic^Jlny^

i r £.
v v . m m

+1 l A.. Anw.tnw. + [ l C-ulny £ny 
1 = 1 j=l 1J 1 J £=V h=£ ^ 36 r
f f ~ v m ^

+ I l D ^nx £nx + l [ B. ^nw.^ny
r=l s~r rs r 5 1=1 £=1 u 1 a

v f _ f m ^
+ l l Eir*nw.£nx + [ l F £ny

1 = 1 r=l ir 1 r r=l £=1 riL 1

Jinx (3.89)

where
A.j/2 for i=j 

(A.j + Aj.J/Z for

C^/2 for £=h 

(cth+ cm)/z f°r

D /2 for r=s rs

<D1-S + Dsr)/2 for rils

Bi = (BU + B\i)/2 for 311 ',)1 

i1rMEjr + E'rj)/2 for all 1,r

'Frr «Frt + r^'2 f°r 3,1

Using equation (3.89) we can therefore include each pair of variables 

only once and ensure that the symmetry conditions in the relevant inter­

action coefficients are enforced.

The factor demand conditions must be similarly rewritten as

_ %
oi = ai + £ Aij£n wi + £ >£ + 2 Eir in xr

j £ r
(3.90)
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Equations (3.89) and (3.90) are the most general formulation of the 

cost and factor share equations since they contain no restrictions con­

cerning homogeneity of factor prices, outputs, separability and so forth. 

Since however, we want to test for these restrictions, we must modify the 

equations accordingly.

Cost minimization requires that the cost function be homogeneous

of degree one in w. As shown above in eqs. (3.84a) to (3.84d), this im-

plies that

v^l
■v ■ 1 -' £ai i=l 1

(3.91a)

v-1

> < C
_j

. 11 1 l A j=l,...,v
1=1 3

(3.94b)

v-1

Bv* = - l B.. A=l,...,m
i=l

(3.94c)

v-1

1

11>
U
J l E. r=l,...,f

i=l ir
(3.94d)

Therefore,

v-1 ~

= -
(3.92a)

v-1

Bvt= - (3.94b)

V-1

Evr * ' (3.94c)

Thus,by substituting for a , A ., B and E in eqs. (3.88) and (3.89)
V * J v VO

and by imposing the relevant cross equation restrictions between the cost

and factor share equations we can estimate the set of equations that
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assumes cost-minimization.

The restrictions for homogeneity in outputs of an aribtrary degree 

k can similarly be incorporated into the estimating equations by using 

the following relationships to substitute for cm, C^, Bmi., and F^, in 

eqs. (3.88) and (3.89).

m-1 f
C * V - I - k ^ b 

m £=1 36 r=l r
(3.93a)

f ~ m-1

' k ^ Eir ‘ l §iil r=l lr £=1 1X1

i=l,... ,n (3.93b)

m-1.
'mh ' [ I C5. + 2C. J - k VF- h=l,...,m

r=l
(3.93c)

ms
m-l~ f ~

• ^ F£s ' kn D + 2D ] s=l,...,f
£=1 “ r?s r& ss

(3.93d)

Separability requires that there be no interactions among the inputs 

and the outputs and hence implies that

Bu = 0
i=l,...,v 
Jl=l,... ,m

(3.94a)

rri-° r=l,... ,f 
i55!,... ,m

(3.94b)

Finally, non-joint production implies that C^+ - 0 (see 

eq. (3.82b). Since = Ch£ and C£n = (C^ + C^/Z, we readily see 

that non-joint production implies

C£Ch 1 ^ • 9 in
h=l,...,m;

(3.95)

Consequently, by making the successive substitutions indicated by 

eqs. (3.91) - (3.95), we can simultaneously estimate the cost and factor
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share equations under the following restrictions: cost-minimization,

homogeneity of degree k in output; separability; and non-joint production.
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Appendix 3.A 

Comparative Statics

x=n - component vector of endogenous variables

a=k - component vector of exogenous or shift variables

We have structural equations:

(1) f(x,a) = 0

Suppose there exists locally a function g such that x=g(a). 

Then we can rewrite (1) as

(2) F(g(a),a) = 0

We want to find |^, i.e., how the x's locally change with the 

a's, with the effects of system (1) taken into account. 

Differentiating (2) with respect to a:

(3) If. la +
3g 3a but 3F _ 3F 

3g 3x *

Rearranging

(4) la = 
K 1 3a

(nxk)

3f "1 3f 
3x 3a

(nxn) (nxk)

If [-|^] is singular, then g(a) = does not exist, even locally, d
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Appendix 3.B

Aggregation in the Railroad Industry

The railroad industry poses difficult problems of aggregation be­

cause of the large number of different types of track, rolling stock, and 

labor employed and because of the large numbers of different commodities 

carried in different shipment size; end’lengths of haul. In this Appendix 

we therefore consider procedures for factor and output aggregation that will 

capture the relevant differences, while still maintaining a tractable num­

ber of variables.

I. Factor Aggregation

Consistent with traditional economic theory, we plan to utilize three 

(or possibly four) broad factor aggregates: capital, labor, and materials

(and possibly fuel as a-separate category). Since, however, capital and 

labor consist of disparate categories, we will utilize a number of sub­

categories for capital and labor.

Expenditures are broken down into six broad categories which them­

selves consist of expenditures on the various factors. The table on the 

following page presents this schematically.

^Thus expenditures on maintenance of way and structures will be allo­

cated to maintain track, "other" track, and the labor needed to maintain 

them. Expenditures on maintenance of equipment will be allocated to the 

various kinds of rolling stock and the labor needed to maintain them. Ex­

penditures on traffic and transportation will be allocated to the train, 

yard and supervisory labor and materials and fuel. Finally the remaining 

expenditure categories, general and miscellaneous, will be allocated 

among labor (executives, staff, professionals and clerical) and materials.
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Expenditure Factor

Category Capital Labor Materials

Maintenance 
of way and 
structures 
(Tracks)

Different types 
of track

MWS labor
None

Maintenance 
of Equipment 
(Rolling Stock)

Different type 
of rolling 
stock

ME labor
None

Traffic and 
Transportation

None Three grades 
of labor

Fuel, other 
traffic and trans

General and 
Miscellaneous

None Executives,staff
professionals,
clerical

Materials and.
Mi sc.

Note that the factor called "materials" is really a residual category 

that acts as a catch all for unallocated expenditures.

For each factor (and its subcategory), we need data in quantities, 

prices, and expenditures. Since, however, any two of these can generate 

the third, we really only need data on two of these three items. We now 

consider how they can be obtained for each factor and its components.

A. Capital

1. Track

Each railroad's track is divided into a number of different types 

of track of varying grades or qualities. The problem at hand, therefore, 

is to aggregate these various types of track into a measure of abstract

track.



-109-

Expenditures on track are readily available for each railroad 

and are defined as expenditures on maintenance of way and structures 

less their labor components (EMWST).—^ We thus want to create an 

aggregate price index for track, which can then be used to generate 

measure of abstract track for each railroad.

The ICC's Transport Statistics gives data on the average cost of 

repairing mainline and "other" track.If we assume that the price 

of each type of track is proportional to its cost of repair, we can 

construct an aggregate price index as follows. First, we obtain measure 

of the price of each type of track from the following identity:

EMWSTt ct(plTlt P2tT2t^ (3B.1)

where EMWST^ represents the total expenditures for all railroads on 

maintenance of way and structures less their labor component; and 

represent the costs of repairing mainline and "other" track in year 

t; T^t and T^^. represent the miles of mainline and "other" track for 

all railroads; and k^ represents a constant, which is determined by 

solving eq. (3B.1) for k^.. Note that in estimating the railroad cost 

functions, we plan to use cross-sectional and time series data for the 

years, 1961-1974. For each year then, "prices" of each type of track 

are defined as kltP)(.Tu and k2tP2tT2t.

We now form a Divisia price index for the aggregate of all rail­

roads using the following price index, given in eq. (3.37), above.

Note that since maintenance is often deferred, these expenditures 
will reflect the fact that a mile of un-maintained track is not 
equivalent to a mile of maintained track.

iL/See ICC, Transport Statistics, Part 1, second release (TS.I.2), Table 92.
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IPTt - (3B.2)

where IPT^ represents the aggregate price index for all track in year t; 

PTit and PTio represent the prices of track type i in the base period 

and in period t (i.e. PTlt = ’ and Sit and Sio rePresent

the share of each type of track in the base period and in period t 

(i.e., Sit = PTit/EMWSTt).

Having obtained an aggregate price index for all track for all rail­

roads, we can then divide the above index into each railroad's expendi­

tures on maintenance of way and structures less its labor component to 

obtain its quantity of abstract track. Thus

EMWST .
T , - --------^

IPTt
(3B.3)

where represent the quantity of abstract track utilized by railroad 

r in year t; EMWSTrt represents the expenditures on track by railroad r 

in period t; and IPTt represents the aggregate price index of all track 

in period t.

2. Rolling Stock

Since each railroad uses different kinds of engines and cars, we 

must aggregate these into two categories, engines and cars.

The price of a new engine is related to its type (diesel, electric, 

steam, etc.) and its horsepower. We thus adjust its price to take differ­

ences of tractive power into account and estimate the following regression.

pEit * d0 +^2Yjej +t1,wt dT + “i (HPn - HPt> (3B.4)
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where represents the price of a new engine of type i in year t; 

e. represents a dummy variable for each engine type (1 if engine of type j;
J

0 otherwise); dT represents a time dummy (1 if observation in year t;

0 otherv/ise); HP.^ represents the horsepower of engine i in period t; 

and HP represents the average horsepower of all engines. With three types 

of engines and data for 14 years, we will thus have 42 observations to 

estimate 17 parameters.

The "price" of a standard engine of type i in year t is thus estimated 

as

PEit = do + litdt + Yiei (3B.5)

where the dummies take on values of 1 or 0 as appropriate.

Data are available on the costs of new freight cars, but there do 

not seem to be any data available on their qualities. Hence we cannot 

perform a hedonic adjustment on freight cars, similar to that employed 

on engines.

The prices of new cars and engines do not reflect the prices of their 

services, which we assume to be proportional to these purchase prices.

We thus relate expenditures on maintenance of equipment less their labor 

component to the expenditures on engines and cars as follows:

MERSt = kt [ J p;.tEit ♦ I PCitCft] (3B.6)

where MERS^. represents expenditures on maintenance of equipment less labor;
*

PEit rePresents the Price of a standard engine of type i in year t; E^t

represents the number of engines of type i in year t; Pr • represents the
Lit

price of car type i in year t; and represents the number of cars in 

year t. Solving for k^, we thus defined the price of services of a 

standard engine of typ i in year t as
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pEit = ktPEit (3B.7a)

We similarly define the price of the service of car type i in year t as

s k PPCit Veit (3B.7b)

We now divide expenditures on maintenance of equipment less labor into 

expenditures on engines and cars and then define

MERSEt= i ktPEitEit 5 E pEitEit (3B.8a)

MERSCt= ktlPc1tC1ts ^ pCitCit (3B.8b)

Given these, we can then define two Divisia indices, one for engines 

and one for cars. Specifically, we calculate

n
i=l

Eit^Eit + SEio

pEioJ
(3B.9a)

where the i's range over engine types and represents the share of 

MERSE^ spent on locomotive type i in year t.

Similarly, we define the index of the price of car services as

IPCt = n
i=l

pCitj Scit + Sc1°
pCio/

(3B.9b)

where the i's range over car types and Sj.^ represents the share of MERSC^. 

spent on cars of type i in year t.

By dividing these indices into the appropriate measure of expenditures 

on maintenance of equipment, we can then obtain quantity measures of engines
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and cars.

Alternatively, we could construct Divisia quantity indices, using 

the physical quantities of engines and cars of each type instead of their 

prices. We could then divide these indices into the appropriate measure 

of expenditures on maintenance of equipment to obtain measure of abstract 

prices of engines and cars.

B. Labor

The ICC's A-300 wage statistics have detailed information on numerous 

types of labor, giving the number of individuals employed and their total 

compensation. We plan to aggregate these into three categories of labor: 

train labor, yard labor, and other labor by constructing Divisia quantity 

indices. We can then obtain aggregate price measures by dividing the rele­

vant labor expenditure category by its Divisia quantity index.

C. Materials

Expenditures on materials will be treated as a residual category and 

defined as total expenditures less expenditures on capital and labor. There 

are no direct price measures available for materials. However, using nation­

al or regional price indices for materials or energy would probably be 

acceptable and thus enable us to obtain quantity indices if desired.

II. Output

The ICC's quarterly commodity statistics give annual data on numerous 

commodity types for each railroad. We plan to aggregate these into the 

following broad categories:
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Grains
Other agricultural commodities 

Coal

Other raw materials

Non-durable manufactures (including petroleum) 

Durable manufactures 

Forwarder and Related Traffic

Since these are composed of a number of two-digit STCC codes, it probably 

makes sense to aggregate by these codes. Thus our procedure will be to 

aggregate by 2-digit STCC where appropriate, and to perform no aggregation 

where the broad aggregate does not comprise more than one STCC code. The 

procedure followed will be the same for all output categories.

Since the size of shipment and length of travel vary by commodity 

type, it is desirable to adjust for these differences directly. Thus we 

estimate a hedonic regression of the following type-^

t=l j=l f=l

+ al (Mjft - M1) + a2 (Sjft " S )
(3B.10)

where represents the revenues per ton-mile for commodity j in category 

i for firm f in time t; dx represents a time dummy (1 if in year t; other­

wise 0); y^ represents a commodity dummy (1 if commodity j; otherwise 0);

represents a firm dummy (1 if firm f; otherwise 0); represents the 

length of haul of commodity j for firm f in year t; sj^^ represents the

3/- This can also be in logarithmic form and include interaction terms.



-115-

average size of shipment '•f commodity (for firm f in year t); M1" repre­

sents the average size of shipment for commodity; over all years and 

over all firms; and represents the average length of haul over all firms 

and all years.

The "price" of a standard shipment of commodity j for firm f in year 

t is therefore given by

Pjt = do + Yede+ yjyj + 6fRf (3B.11)

Given this, we can therefore define a Divisia price index as

h
n

::^n
-ill

+ s15jfo

d

(3B.12)

where and S^o represent the revenue shares of commodity; for firm f 

in year t and the base year 0.

Finally, we define the "abstract" quantity of Y^. carried by firm f 

in year t as

Yift
(3B.13)

Thus y|^ is the variable that enters the estimated cost functions.

Instead of adjusting the quantities of each broad commodity type 

carried by hedonic regressions, we could estimate a hedonic cost function 

directly, in which case instead of using Y^ in the cost functions, we 

would introduce \J;(Y1, M1 - , S1 - S1) for each aggregate output category

as explained in the text (see eq. (3.60) above). While this approach has 

definite theoretical advantages since it does not assume the existence of
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perfectly competitive markets, which are assumed by hedonic regressions, 

it has the disadvantage of not considering quality differences among the
4/

component of each category i.— Thus we will probably estimate cost func­

tions using direct hedonic adjustments and indirect hedonic adjustments 

via prices and determine which approach gives the best results.

—^Although these could be introduced in principle, in practice, they would 
make the regressions too unwieldy.
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Chapter Four

Hedonic Cost Functions for the Trucking Industry

The previous chapter outlined a general methodology that can be used • 

to estimate cost function in the transportation industries. This chapter 

presents the application of this methodology to the trucking industry 

and shows that failure to take quality of output explicitly into account 

may lead to seriously biased estimates of costs and therefore to poor 

policy conclusions.

I. Introduction and Overview

During the past decade, there have been a number of econometric studies 

of the costs of regulated trucking.—^ While they have varied in detail, 

they have generally utilized a cross section of firms to estimate costs as 

a functions of output (usually measured by ton-mile or revenue ton-miles) 

and a number of other variables to reflect regional differences or technical 

change.

Because, however, trucking output is highly heterogeneous, it is 

questionable whether a single output measure, such as ton-miles, is appro­

priate to use in estimating trucking costs. Not only do different firms 

carry different commodities; but also, different firms utilize widely 

different shipment sizes and lengths of haul. Moreover, firms vary widely 

in the share of less-than-truckload (LTL) traffic they carry. Thus, two 

firms, each carrying an equal number of ton-miles over a year can have

-^See Dramas (1975) for a good summary of these.
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very different types of output. One could concentrate on short-haul, small­

load, LTL traffic, while the other could concentrate on long-haul, large- 

load, truckload traffic. In view of the differences in the composition 

of their output, it would be highly unlikely that they would have the same 

costs, although this would be predicted by conventional econometric studies 

of the trucking industry.

Basically, there are two sources in differences in output for any 

given measure of ton-miles. First, the nature of the commodities carried 

may differ; and second, the way in which the commodities are carried 

with respect to length of haul and size of shipment may differ. . Ideally, 

econometric estimates of trucking costs should take both of these factors 

into account.

By limiting our analysis to regulated common carriers of general

freight we are largely able to take the first factor into account. These

firms typically carry manufactured comnodities whose characteristics with
2/respect to handling, etc. should be similar.—

Within regulated carriers of general freight there are significant 

inter-firm differences with respect to size of haul, length of haul, and 

the share of LTL traffic. Fortunately, data are available to take these 

factors into account, and this chapter reports on efforts to relate costs to 

differences in the composition of output with respect to length of

2/- Nevertheless, to the extent that firms specialize with respect to certain 
types of manufactured commodities, biases-may still exist. If, for 
example, one firm specialized in computer components and another spe­
cialized in fabricated steel products, it is likely that their costs 
would differ for any given number of ton-miles. Unfortunately, however, 
data are unavailable to take these differences into account.
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haul, size of shipment, and the share of LTL traffic. An understanding 

of the cost effects of these differences is important for evaluating 

alternative policies, not only because some alternatives (such as the 

relaxation of backhauling prohibitions) directly affect shipment sizes and 

haul lengths, but also because these factors affect firms' responses to 

factor-price (particularly fuel price) increases and the economies (or 

diseconomies) of increased firm size. Clearly, this last question is 

important to merger policy and policies affecting the distribution of 

freight across modes: economies from the expansion of trucking activity

depend not only on the present level of activity (in ton-miles) but also 

on its distribution by shipment size, length of haul, and share of LTL 

traffic.

Briefly, then, this chapter takes the following form. Fart II presents 

a general econometric specification of technology for the trucking industry, 

while Part III presents a number of estimates under alternative assumptions 

concerning the importance of quality differentials and the structure of 

the industry. Part IV presents a brief surmary and outlines areas for 

further research.
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II. Econometric Specification of Technology

Duality theory indicates that every specification of a cost strucuture 

corresponds to a specification of a production structure. One can there­

fore interchangeably specify a cost function or a production function.-^ 

Because, however, it is possible to specify more econometrically testable 

hypotheses concerning the structure of technology by using cost functions 

than by using production functions, it is generally agreed that econo­

metric estimation of cost functions is more useful than econometric 

estimation of production functions.—^

The simplest specification that might reasonably be expected to take 

account of shipment size, length of haul, and share of LTL traffic is 

the hedonic cost function given by:

Cost = C[’';(y,q1 ,q2,q3); w^w^v^.w^ (4.1)

where *Ky,q-j is a function that measures output, with y = ton-miles,

q-| = average size of shipment, q2 = average length of haul, q3 = percentage 

of tons shipped in LTL lots; and w-j.w^Wj.w^ represent the respective price 

of labor, fuel, capital, and ourchased transportation (primarily rental 

vehicles).

-^See Shephard (1970) for the theoretical equivalence between costs and 
production and the regularity conditions that are needed to ensure that 
duality holds.

—^See Varian (1975) for a discussion of the econometric problems associated 
with estimating production functions.
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We call this cost function "qua!ity-seperable" because the effect 

of quality variations upon the output measure ip, and therefore on 

costs, is independent of relative factor prices. The technology implied 

by such a specification can be envisioned as combining the four input 

factors to produce one abstract output, "trucking capacity", measured by 

Ip, which can then be divided into any (y,q-| combination which

satisfies b = iKy,q-j This specification is moderately restric­

tive for it implies, for example, that the price of fuel does not affect

the combinations of ton-miles and average size of shipment that can be
5/

produced at equal cost with equal haul lengths and LTL ratios.—

As indicated above, the value of the function of (y,q^,q2»q3) serves 

as the output measure in this specification of the cost function. This 

assumes that a continuum of different "quality" ton-miles exists, which 

can be consistently aggregated by the function iH*)- By analogy with 

conventional theory of aggregation,-^ it is natural to require that ^(*) 

is separable into ton-miles and qualities. Thus:

<Hy.q-1.q2.q3) = yHq-j.q2.q3) (4.2)

This implies that a doubling of ton-miles at a given quality level doubles 

ip the measure of output. No restrictions need be placed on H*).

— In fact, our econometric results indicate that there may be some inter­
action among fuel prices and average size of shipment and average length 
of haul. We are presently trying to develop a more general specifica­
tion that would relax this separability restriction.

—^See Diewert (1974 ) and Samuel son and Swamy (1974 ) on aggregation theory, 
and Chapter Three, above, for the details of the specification of the 
H*) function.
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Because the translog approximation to a cost function permits us

to test a wide range of hypotheses concerning the structure of technology,—^

we use it here. Since the trucking firms presumably are able to adjust

capacity easily, either by selling trucks or by rental agreements, it

seems sensible to estimate a long-run cost function, which takes the
8/following general form:—

X,n C(^,w)

+ 1/2 B^Un^-Jln^)2

4
+ ^B^i(^-£n^)(£nwi-£nwi) (4.3)

In addition, we estimate the factor share equations, which take the 
9/following form:—

wixi
~q— = a0 + I BijUnwj-ilnWj) + B^Unty-tn^) (4.4)

i * 1. ,3

—^See Chapter Three, above, for a full discussion of these tests.
0/
-Note that we take the sample mean as the point of approximation.

-^Note that we only need to estimate three factor share equations 
explicitly, since the fourth is implied by the previous three. The 
results are invariant to the equation dropped. See Barten (1969) or 
Berndt and Savin (1975).
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From equation (2) we know that:

£nij> = £ny + £n ct(q1 ,q2>q3). (4.5)

We thus utilize a translog approximation of $(•) and write:—^

£n4> (q-j »^2 ’^3 ^ = aQ + a^ (inq-j-jlnq^) + a2(£nq2-£nq2) + a3(£nq3-£nq3) 

+ 1/2 (£nq1-£nq^) + b12(£nq1-£nq1)(£nq2-£nq2)

+ b13 £n(q1-£nq'1)(£nq3-£nq'3)

+ 1/2 b22(£nq2-£nq2) + b23/£nq2-£nq2)(£nq3-£nq3)

+ 1/2 b33(£nq3-£nq'3)2 (4.6)

In the most general case, therefore, we substitute eq. (4.6) into 

eqs. (4.3) and (4.4) and jointly estimate these equations, subject to the 

following constraints, which ensure linear homogeneity of C(^,w) in w 

and the symmetry restrictions implied by cost minimization.—^

-^Note that we have collected similar terms in this expression and thus 
imposed the necessary symmetry conditions.

—^The LSQ procedure in ISP was used for all regressions reported here; 
it provides a minimum distance estimation whose properties are dis­
cussed in Berndt, Hall, Hall, and Hausman (1974).
Estimating the factor share equations jointly with the cost functions 
improves the efficiency of the resulting estimates; see Christensen 
and Greene (1976) on this and related points concerning returns to 
scale estimation to be covered below. For a development of the 
homogeneity and symmetry restrictions, and a number of other 
restrictions useful in testing hypotheses concerning the technology 
represented by C(^,w) see Chapter Three, above.
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4
l*

1=1 i = 1

h 6ij
i = 1,... ,4; B ij

4
l

i=l

= 0

(4.7)
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III. Econometric Estimation of Trucking Costs

Having specified a general quality-separable hedonic cost function, 

with the appropriate restrictions needed to ensure cost-minimization, 

we now consider a number of alternative specifications and their 

associated restrictions, which have definite implications concerning 

the role of quality differentials and the competitive structure of the 

industry. We thus begin by presenting the estimation associated with 

the general quality-separable hedonic cost function presented above, 

and then consider the restrictions implied by ignoring quality differ­

entials and the assumptions concerning separability and homogeneity.

A. Data

The sample used in this study consists of 171 firms in 1972,

located in the Central, Middle Atlantic, and New England trucking

regions, as defined by the ICC, which roughly corresponds to the ICC's
12/Official Railroad Territory.—' As indicated above, we use the 

following variables in the cost functions: 

y = ton-miles

q-j = average size of shipment (tons/shipment)

~ average length of haul
13/q^ = 1 + percentage of tons shipped in LTL lots— 

w-| = price of labor 

Wg = price of fuel 

w3 = price of capital 

w^ = price of fuel

—/This regional aggregation was performed to ensure rough regional similarity 
between trucking and rail costs. This similarity will prove useful when 
intermodal competition is analyzed. For a discussion of the analysis of 
intermodal competition see Chapter Two, above.

•H/The variable q3 was defined as l+% LTL since some firms had no LTL 
shipments.
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C = total costs

w^x^/C = share of factor i

All of these data were taken from Trine's Blue Book (1972), which 

summarizes the individual firm reports to the ICC. The firms' total 

costs were divided into labor costs, fuel expenditures and fuel taxes, 

purchased transportation, and other. "Other" expenditures (which 

included depreciation) were assumed to be payments for capital services; 

each firm's "carrier operating property - net" was taken as a measure 

of the quantity of capital (and thus of capital services), so that 

"other expenditures" divided by "carrier operating property net" gave 

a firm-specific price of capital. A firm specific price of labor was 

obtained by dividing labor expenditures by the average number of employees. 

Since direct quantity measures of purchased transportation and fuel were 

not available, regional prices for these commodities were estimated by 

a method whose assumptions and results are given in Appendix 4. —^

The sample of 171 firms included all firms without missing data 

in five regions (Central States East, Central States West, Middle 

Atalantic, North Middle Atlantic, New England) that met the following 

conditions:

1. They purchased some of all four factors; but no more than 
10 percent of their costs were for purchased transportation.
(If a firm does not purchase any of a particular factor, this 
indicates a corner solution which the specification is incap­
able of modelling. Firms which rent most of their vehicles 
do so from subsidiaries set up for tax and regulatory purposes, 
due to an ICC ruling which allows the deduction of such 
expenses as current costs, which has the effect of artificially 
lowering.their operating ratio, which is a primary regulatory 
target.

—/For similar translog models which use some firm-specific prices and 
some regional prices, see Christensen and Greene (1976) and Nerlove 
(1963).
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2. They reported an average salary of $8O0O/year or more per 
employee. (Some firms implicitly reported salaries as low 
as $2000, presumably because they counted owner/operators 
whose trucks they rented as employees, even though they 
did not directly pay them any wages).

3. They had a calculated price of capital of less than 10.
(Due to reasons related to (1) above, a few carriers report 
almost no operating property, as it is (presumably) owned 
by subsidiaries. (Note that carrier operating property
is the value of the property that the firm owns, not its 
equity in that property.)) The mean price of capital in 
the sample is 2.725 with a standard deviation of 1.287.

4. They had no other"obvious" error in the data. (For instance, 
one firm reported an average load of 92 tons.)

B. Econometric Estimate

In a cross-firm estimate of the cost function, as long as each firm 

faces the same iHy.q) function of the form ^(y,q) = y<{>(q), we can 

estimate a cost function given by equation (4.3) and its associated factor 

share equations(4.4), with the appropriate substitution of £n ^(y,q), given 

in eq. (4.6).

Table I gives the joint estimates of the cost>and factor share equa­

tions under varying assumptions concerning the nature of technology and 

the hedonic cost function. Equations (1) - (3) estimate the hedonic cost 

function under the following assumptions: (1) no restrictions concerning

separability and homogeneity in output; (2) separable technology;

(3) homogeneity in output of degree 1.

Since the estimates of the hedonic function 4>(q) are quite similar in 

each of these equations, we will concentrate on the estimate of this function 

given by the unrestricted hedonic cost function eq. (1). These are given by 

the coefficients above the dotted line. A constant does not appear in the hedonic 

function ^(q) since its effect in this specification would be merely to chanae 

units of measurement of 4>(q). The estimates of this function accord well
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Table 1
Joint Estimates of Cost and Factor Share Equations

Hedonic Cost Function
0) (2) (3) (4}

Unrestricted Separability Hc!,,ooenei ty in fionhedcnic
___________ __________ _____________________________ Out out Cost Function

Coefficicnt \a”iatle Value
Standard
Error Value

Standard
Error Value

Stir.Jard
Error Value

Stanjard
Error

*1 (Site; <3, -.1501 -.04205 -.1267 .04186 -.1441 .0397 • •

*2 (Haul) q. -.7070 .05497 -.6310 .05496 -.6880 .0537 — —

*3 (LTL) o3 1.2029 .23339 1.1757 .23374 1.2181 .2166 - -

bll 3/2 q] .1286 .05663 .1337 .05681 .1222 .0560 — --

b12 .0749 .06147 .0879 .06152 .0635 .0607 -- —

b13 .7418 .18522 .7408 .18570 .7575 .1799 — —

b22 3/2 q| .3121 .09211 .1259 .09253 .1376 .0915 — —

b23 q2q3 -.2816 .3417 .2884 .34213 -.3492 .3365 — —

b33 3/2 q| 7.5114 1.8130 7.6940 1 .£1239 7.6999 1.7016 -- —

a, 1 8.6639 .04789 8.6684 .04755 8.6830 na 8.6858 .0457

%
(Output) 1.0408 .02753 1.0345 .02:33 1.coco na .7C65 .0252

(lab) w1 .5928 .00458 .5870 .0041i. .5929 .0^45 .5870 .0049

“2 (Fuel) Wj .0397 .00124 .0409 .00111 .0399 .0012 .0416 .0013

“3 (Cap) w3 .3323 .00374 .3376 .00340 .3319 .0037 .3341 .0040

(Purch.
“4 Trans.) .0352' na+ .0342 na .0353 na .0373 na

Bn Vi .0324 .01671 .0372 .0168 .0326 .0167 .0229 .0149

®12 V2 -.0235 .00725 -.0254 .00716 -.0237 .0072 -.0149 .0062

S13 wl“3 -.0147 .00872 -.0171 .00892 -.0148 .0087 -.0109 .0085

®!4 .0053+ na+ .0053 na .0059 na .0028 na

S22 *2*2 .0296 .00749 .0280 .00741 .0272 .0075 .0176 .0066

■ S23 -.00732 .00235 -.0058 .00231 .0073 .0023 -.0068 .0020

E24 *2*4 .00127 na+ .0095 na ..0038 na .0041 na

®33 w3w3 .0159 .00735 .0185 .00754 .0158 .0073 .0118 .0076

S34 W3W4 .0061+ na+ .0054 na .0063 na .0059 na

®44 W4W4 -.0070*
+

na -.0202 na -.0160 na -.0127 na

^1 .0128 .00445 — -- .0130 .0041 -.0005 .0035

6-il ^2 -.0027 .00119 — — -.0023 .0011 .0008 .0009

6i3 ^3 -.0115 .00361 — — -.0122 .0035 -.0045 .0028

b*4 ,0014+ na ‘ — — -.0015 na .0082 na

.0644 .03896 .0634 .03887 - — .1117 .0319

'Coefficient value is implied by symmetry and homogeneity restrictions. 
Therefore, standard errors are not available.

x
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Table 2

Summary Statistics

Hedonic Cost Function Nonhedonic
(1)

Unrestricted
. (2)

Separability
(3)

Homogeneity
Cost Function 

(4)

R2
Cost Eq- .9286 .9265 .9264 .7596
Labor Eq- .0847 .0419 .0821 .0315
Fuel Eq- .0418 .0111 .0393 .0313
Capital Eq- .0778 .0227 .0760 .0366

SSR
Cost Eq- 11.1824 11.5071 11.5264 37.6612
Labor Eq- .4708 .49278 .47210 .49809
Fuel Eq - .0337 .0348 .03382 .03410
Capital Eq ■ .3101 .3287 .31077 .32400

Log of Likelihood 
Function 1157.08 1150.69 1155.46 1075.80
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with a priori expectations. The significant negative signs in the linear

size and haul terms indicate that ton-miles characterized by larger loads

and longer lengths of haul are easier to produce than ton-miles characterized
15/by smaller loads and shorter lengths of haul.— Conversely, the significantly 

positive coefficient in the linear LTL term indicates that ton-miles charac­

terized by a larger percentage of LTL shipments are harder to produce than 

those characterized by small percentage of LTL shipments. Stated alternatively 

these findings indicate that LTL shipments, small loads, and short hauls 

are more costly to produce than TL shipments, large loads and long hauls, 

for any given amount of ton-miles.

Equation (1) indicates that the squares and interaction terms of the

ty(q) function are marginally significant, with the exception of those

containing the LTL variable, which are all highly significant. This indicates

that LTL shipments interact with size of shipments and length of haul.

Specifically, for any given size of shipment, increase in the share of LTL

will increase costs (b^ > 0) while for any given length of haul, increases

in the share of LTL will reduce costs ^^cO). Finally, the significantly

positive sign in the squared LTL term indicates that costs will rise at an

increasing rate as the share of LTL increases. Thus from Equation (1), we can 
_
— Specifically, the linear coefficients can be taken to represent the 

change in output occasioned by a change in quality. Thus a positive 
sign in the linear terms implies that cet.par., an increase in the 
quality will increase the effective output, and thus increase costs. 
Similarly, a negative sign in a linear coefficient implies an increase 
in the quality will reduce effective output and hence costs.

The signs in the interaction terms are somewhat harder to interpret. 
Basically, they represent the impact of a given quality in the rate of 
change in output. For example, a positive b^ coefficient implies that 
for any given size of load, an increase in the share of LTL will lead to 
greater increase in effective output and thus higher costs. Thus, for any 
given size of load, costs increase with the share of LTL.
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infer that although size of shipment, length of haul, and share of LTL ship­

ments all affect effective output and thus costs, the share of LTL shipments 

probably has a greater impact upon effective output and costs than does 

either of the other quality variables.

The figures below the dotted line in Equations (1) - (3) represent 

the joint estimate of the cost and factor share equations of the hedonic 

cost functions.

It is difficult to interpret directly the estimates of the translog 

cost function's coefficients, since the elasticities of substitution and 

returns to scale generally depend upon the output level and factor prices 

at which they are calculated. In particular, nonzero which we

generally estimated in Table 1 , indicate that the cost function is not 

separable,—^ and therefore, that the structure of production is non- 

homothetic.

A production structure is nonhomothetic if the cost-minimizing factor 

intensities are not independent of the output level for fixed relative 

factor prices. Another way of characterizing this is to say that (factor) 

isoquants are not radial "blow-ups" of a unit isoquant or that they change 

shape as output increases. All of these effects are illustrated for the 

two-factor one-output case in Figure 1.

While it is not possible to strictly characterize returns to scale for 

a nonhomothetic production structure, it is possible to gain some intuition 

concerning this issue if we limit the analysis to situations where relative 

factor prices are constant, since in this case we can infer the shape and

—^A separable cost function can be written C(^,w) = f(4>)*4>(w), and 
corresponds to a production function that can be written f(if)) = g(x), 
where x is a vector of factor quantities.
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Figure 1

NONHOMOTHETIC PRODUCTION WITH VARIABLE RETURNS TO SCALE

Factor

■>Factor 1
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location of the average cost curve from the and coefficients. 

Specifically, at mean factor prices, a positive B^ indicates that the firm 

faces a U-shaped average cost curve (a negative B^ would indicate an 

inverted-U average cost curve; ^= 0 indicates an average cost curve which 

is either exponentially falling, rising, or constant, depending on o^); 

if a^=l, then the bottom of the U, the point of minimum average cost, 

occurs at the mean output level. If a^<l1 the point, of minimum

average cost occurs at ip>^p, since expanding output beyond ip would steadily 

decrease average costs if were 0, but for > 0 additional costs grow 

with (JtmJj-£n^)2 until they dominate the effects of the term. Similarly, 

if c^>l, then the point of minimum average cost occurs at \p<\p.

Examination of Equation 1 indicates that the are generally sig­

nificantly different from zero, indicating that technology is not separable. 

This is corroborated by Equation 2, which restricts these coefficients to be 

equal to zero. A comparison of the log of the likelihood functions in these two 

equations indicates that they are significantly different at the .005 percent 

level, indicating that we can reject the hypothesis of separability. Stated 

alternatively, Equations (1) and (2) clearly indicate that technology is 

not separable.

A comparison of Equations (1) and (3) permits us to examine the question 

of homogeneity of output and the existence of economies of scale. In parti­

cular, Equation (1) indicates that is not significantly different from one' 

and that B^ is not significantly different from zero. Taken together, these 

imply that production is subject to constant returns to scale or that output 

is homogeneous of degree 1. Equation (3) imposes these restrictions, and a 

comparison of the log of the likelihood functions of Equations (1) and (3) 

indicates that their values are not significantly different. Thus the
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equations indicate that production is characterized by constant returns 

to scale.

Equation (4) presents a conventional translog cost function that makes 

no adjustment for quality. We thus set ^(qi^.q^) = 1 and specify our 

output measure as:

^(y.q-! ,q2,q3) = y•<{)(q1 ,q2»q3) *.y (4.8)

In this case, all ton-miles are treated equally, regardless of their 

quality characteristics. Thus, all hedonic coefficients are constrained 

to have a value of zero.

The coefficients of Equation (4) clearly indicate that the ignoring of

quality variables (or, equivalently constraining the hedonic coefficients
2

to be zero) leads to serious misspecification. The R of the overall equatic 

given in Table 2, is substantially less than that of the hedonic cost function 

and the likelihood ratio test clearly indicates that the constrained equation 

differs from the unconstrained. From this we can readily infer that quality 

variables such as length of haul, size of shipment, and share of LTL traffic 

clearly do affect costs.

Because costs are typically estimated in terms of ton-miles alone, 

it is interesting to note the implications of such a misspecification.

With regard to separability. Equation (4) indicates that the 8^ 

coefficients are generally statistically insignificant. Thus if we did not 

make a hedonic adjustment we would incorrectly assume that technology 

was separable.

With respect to homogeneity of output, Equation (4) indicates that 

oty is significantly less than one and that 8^ is significantly greater 

than zero. Since this implies that production is subject to increasing
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returns to scale, the nonhedonic cost function implies that the trucking 

industry is subject to rather substantial economies of scale.

Since this finding has rather important policy implications, it is 

desirable to consider it further. Table 3 gives the costs per ton-mile 

implied by Equations (1) and (4), which respectively represent the general 

hedonic and nonhedonic cost functions. Thus the hedonic cost functions 

indicate that trucking firms exhaust their economies of scale at a very 

small level of output of 10,587,000 ton-miles, and that average costs 

begin to climb substantially by the time a firm has reached a size of 

300,000,000 ton-miles, which respresents.a medium-sized firm in the trucking 

industry. In contrast, the nonhedonic cost function indicates that firms 

only exhaust their economies of scale by the time they have reached 

161,377,000 ton-miles. While the average costs of firms of 300,000,000 

ton-miles are also above their minimum levels, the differentials between 

these costs and the minimum costs are substantially smaller than those implied 

by the nonhedonic cost function.

Since the trucking industry has been characterized by a large number 

of mergers in recent years, it is useful to reconcile this fact with the 

apparent lack of economies of scale implied by the hedonic cost function, 

which appears to be a superior specification to the nonhedonic cost function. 

The hedonic cost function indicates that there are virtually no economies 

of scale beyond a low level of output, when output is adjusted for quality 

differentials. Stated alternatively, it indicates that if all firms had 

equal lengths of haul, equal sizes of shipment, and equal shares of LTL 

traffic, there would be no economies of scale and thus incentives for merger. 

In contrast, the nonhedonic cost function indicates that there are sub­

stantial economies of scale when measured in terms of ordinary ton-miles.
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Table 3

Costs per Ton-Mile, Evaluated at Mean Factor Prices

Ton-Miles Hedonic Cost Nonhedonic
(l.OOO's) Function Cost Function

10,000 20.51 25.78

10,587 20.50 na

19,947 20,80 21.27

50,000 22.20 18.10

161,337 na 16.67

300,000 24.60 17.16
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These differences can be reconciled when one realizes that ton-miles 

are not equal and that larger firms typically have larger lengths of haul, 

larger loads, and smaller properties of LTL traffic. Thus, the actual 

ton-miles of large firms are in some sense less costly to produce than 

the actual ton-miles of small firms. Consequently, firms have a clear 

incentive to merge if by so doing they can increase the efficiency of 

their operations by increasing their shipment size or length of haul or by 

reducing their share cf LTL traffic. This, in large part, explains why 

many of the mergers have consisted of large firms merging with smaller ones 

that fill in missing portions of their operating rights.

Thus, insofar as larger firms can achieve greater economies of density 

and utilization than smaller firms, we can understand the large number of 

mergers that have taken place in the trucking industry in recent years. 

Nevertheless, it is important to realize that these are not economies of 

scale in the conventional sense, but rather economies of density and utiliza­

tion. If smaller firms could operate with the same loads, lengths of haul, 

and share of LTL traffic as larger firms, there would be little incentive 

to merge.

In addition to yielding information about separability and economies 

of scale, the cost functions given in Table 1 also enable us to estimate 

the elasticities of substitution among factors and thus own price elasticities 

of the factors. Specifically, the Allen-Uzawa elasticities of substitution 

can be estimated from the following expression:

aij = CCij/CiCj (4,9a)

where the subscripts on the cost, function (C) denote differentiation with 

respect to a factor price. The price elasticities are readily obtained from 

the elasticity of substitution by the relationship:
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Eij M.o. . 
J ij (4.90)

where M. represents the cost share of factor j.

Table 4 presents the own price elasticities and elasticities of substi­

tution implied by the general hedonic and own hedonic cost functions given ir 

Equations (1) and (4). The results are generally similar and imply that 

while there is relatively little substitutability among labor, capital and 

fuel, there is substantial substitutability among these three factors and 

purchased transportation. Thus a small increase in the costs of labor, fuel 

or capital will cause firms to shift to purchased transportation. Moreover, 

there is some substitutability among labor and capital indicating that as 

labor costs rise, firms will tend to use larger vehicles that tend to have 

lower labor costs per vehicle-mile.

The own price elasticities implied by the hedonic and nonhedonic 

regression are also similar and indicate that the demand for fuel, labor and 

capital are all quite inelastic, while the demand for purchased transportati< 

is quite elastic. These findings indicate that trucking firms tend to view 

the truck, driver and fuel as being in quais fixed proportions. Thus, 

instead of substituting among these three factors when any of their prices 

change, firms will tend to treat them together and substitute toward or 

away from purchased transportation.
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Table 4

Elasticities of Substitution

Estimation of Hedonic Cost Function Nonhedonic Cost Function
substitution 
between: (a)

(Equation (1))
Value Stand.Error

(Equation (4))
Value Stand. Error

Labor-fuel .0005 .3098 .3911 .2562

Labor-Capital .9254 .0443 .9442 .0432

Labor-purch.trans 1.2799 .4853 1.1299 .4290

Fuel-capital .4454 .1824 .5130 .1486

Fuel-purch.Trans. .37925 1.5279 3.6168 2.3882

Capital-purch.Trans. 1.5279 .4076 1.4705 .3762

Own Price Elasticity

Labor -.3526 .0282 -.3738 .0255

Fuel -.2818 .1899 -.5859 .1605

Capital -.6200 .0230 -.6305 .0237

Purch. Trans. -1.4171 .2513 -1.3050 .2342

(a) Note that = a..j
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IV. Summary and Conclusions

This chapter has highlighted the need for hedonic adjustment for qualit 

in transportation cost functions and the importance of a general specificati 

that will not impose unnecessary restrictions upon technology. In particula 

it has illustrated that conventional econometric estimates of trucking cost 

functions are not very reliable and hence not very useful for policy purpose 

for two fundamental reasons: First, the output of the trucking firm is

heterogeneous by its very nature. Hence, simple measures of output such 

as ton-miles will fail to capture the true relationships between cost and 

output. Second, it is likely that the trucking firm is subject to joint 

production. Hence, efforts to describe technology by a simple homothetic 

production function, such as the Cobb-Doublas or the CES production function 

may lead to serious biases of estimation.

To test these hypotheses, v:e developed a general quality-separable 

hedonic cost function that permitted nonhomothetic production and 

quality adjustments, and estimated it using a cross-section of 171 firms 

in the Eastern United States in 1972. This (and similar) hedonic 

regressions indicated the following results, which have important policy 

implications.

1. The level of service in terms of length of haul, size of 
shipment, and share of LTL traffic does affect costs. In 
particular, evidence of increasing returns to scale exists 
when ton-miles is used as an output measure, but fails to 
exist when output is adjusted for quality differentials.
This implies that any economies that might exist are 
economies of density or of service, not economies of 
scale of output perse.
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2. When measured in terms of quality-adjusted output, 
trucking firms face U-shaped marginal and average cost 
curves for a very wide range of factor prices. Over a 
wide range of outputs, however, these curves are close to 
being flat. Nevertheless, firms can be found on both sides 
of the point of minimum average costs. The distribution
of firms along this curve has not been calculated, so it 
only is possible to say at this point that the very 
largest firms should be discouraged from further expansion, 
ceteris paribus. It is quite certain, however, that the 
larger firms are facing declining returns to scale.

3. There are substantial nonhomotheticities in the structure 
of trucking firms' production. Consequently, any 
attempt to model their technology using a homothetic 
cost or production function (such as the Cobb-Douglas
or the CES) is a serious misspecification. The non- 
homotheticities make global generalizations about returns 
to scale impossible, though they are not so large that the 
general character of scale returns is seriously altered for 
reasonable (with an order of magnitude of the mean) relative 
prices. As scale expands, factor shares change: large 
firms spend proportionately less on fuel and capital, and 
more on labor and purchased transportation; but these 
effects are small.

Of course, the preliminary nature of the findings must be stressed.

At the very least, we must extend the sample to other regions and other years 

to see if our findings are robust. In addition, we should extend the hedonic 

output function to incorporate the effects of traffic density and the composition 

of output to obtain more information about the extent of economies of scale 

in the trucking industry.
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Nevertheless, these results clearly indicate the perils of con­

ventional econometric estimates of trucking costs. If production is joint 

and if output is heterogeneous, we clearly want to take these facts into 

account in specifying cost functions. Otherwise, we may make the wrong 

policy decisions based on biased estimates of misspecified cost functions.
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APPENDIX

THE ESTIMATION OF REGIONAL FACTOR PRICES

The basic problem in establishing prices for both purchased 

transportation and fuel is that while each firm's total expenditures 

on these goods is observed, the quantities purchased are not. Instead, 

an indirect measure of quantity purchased is available.

For fuel, for instance, we know the firm's vehicle miles with 

firm-owned trucks, and the number of vehicle miles rented with and 

without drivers. Since vehicles rented with drivers typically include 

fuel within the rental price,these miles are subtracted from the total 

to obtain the vehicle miles for which the firm provided fuel.

Using this mileage figure, a fuel cost per vehicle mile can be 

calculated for each firm; this would be an appropriate fuel price 

measure if every vehicle got the same mileage per gallon. An inspection 

of these figures, however, reveals that if this were true, fuel prices 

varied between firms by a factor exceeding ten. It is clear that a 

constant miles per gallon assumption is inappropriate.

The factors that would appear to most directly affect fuel mileage 

are vehicle size, and the percentage of miles driven on interstate 

highways. Reasonable proxies for these variables are average size of 

shipment and average length of haul, respectively. Thus, we can write:

FUELS
VEH. MILE. = $/Fuel Gallon • Fuel Gallons 

Mile

pr*<Kq 12>

(A.l)

l^This is borne out in the model below: when a parameter measuring the 
percentage of rented with driver vehicle miles whose fuel is paid for 
by the firm, this parameter is negative, small, and not significantly 
different from zero.
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where pr is the price of fuel in region r and i subscripts denote firm- 

specific variables. A stochastic specification of (A.l) might be-^

VTOTITt " [PreUr^'ft,’l•,^2)eU^:|e,’ (A-2>

2 ? 2 where u ^ N(0,o ), u ^ N(0,a .), and n ^ N(0,o ). Taking logs
i Up y Uy f)

of both sides and specifying a translog function for 4)(*)» we have:

£n[VEOrLE] = £npr + + a2^Jlnq2"Jln^2^

+ ^ B^Unq^Anq^]2 + 812C^nq]-^q'1 ][tnq2-£nq2] (A.3)

+ ^ B22^ln^z'in^2 + ur + u4> + n*

In this model the three separate variance components ur, u^, and n cannot 
3/ 2 2 2be identified;-although the sums a,, + a,, + c can be estimated for each

Uv< uar 4>
region. Since these estimates do not lead one to reject the hypotheses

of homoscedasticity across regions, this assumption is made here.

The estimate of equation (A.3) is given in Table A1; the "natural 

terms" are direct estimates of the regional prices, whereas the coefficients 

of the logarithmic terms correspond to the a's and B's in (A.3).

The estimates of the cross-terms (3's) are all insignificant; thus 

the gallons/mile function (J^q-j^) can be effectively interpreted by 

examining the linear terms only. If we take average size of shipment and 

average length of haul as proxies for truck size and interstate highway 

mileage respectively, then both variables have the right sign, though

£/ Alternative stochastic specifications, such as additive errors in a 
variance-component model, give inferior results.

—/ Appropriate assumptions in a time series cross-section model would 
lead to identification, however.
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Table A.l

ESTIMATES OF REGIONAL FUEL PRICES

COEFFICIENT VALUE STANDARD ERROR
PRICE, NEW ENGLAND .06359 .01451

PRICE, NORTH MID ATLANTIC .07065 .01125
NATURAL

PRICE, MIDDLE ATLANTIC .07694 .01355 TERMS

PRICE, CENTRAL STATES EAST .06794 .01271

PRICE, CENTRAL STATES WEST .07231 .01332

AVERAGE LENGTH OF HAUL -.2699 .2051

AVERAGE SHIPMENT SIZE .4285 .2275
LOGARITHMIC

(HAULT -.1192 .7025 TERflS

HAUL-SIZE -.0791 .5232

(SIZE)2 .3171 .5011

DEPENDENT VARIABLE IS LOG(FUEL EXPENDITURES/VEHICLE-MILE)

R2 = .3094 
Ssr = 12173
LOG LIKELIHOOD FUNCTION = -21.86 
OBSERVATIONS =171
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their standard errors are somewhat larger than is desirable. In the 

absence of a priori expectations for the regional prices, it is difficult 

to evaluate these estimates. In interpreting these estimates, it must 

be remembered that they include fuel taxes, which do differ by region, 

and that they are for 1972, before the August 1973 Arab oil boycott, 

which raised prices more in New England than in other regions.

A similar model was used to estimate regional prices for purchased 

transportation:

£n RENimaiT? = pr £npr + altiln AVHAUL-£nAVHAUL] (A.4)

+ a2[£n AVSIZE-£n AVSIZE] + a3[Jln(l+DRIVER)-Jln(l+DRIVER) 

+ a4[£n(l+DRIVER)-£n(l+DRIVER)][£n AVHAUL-£nAVHAUlJ 

+ a5[£n(l+DRIVER)-Jln(l+DRIVER)][ilnAVSIZE-£n AVSlZEj

where DRIVER is the percentage of rented vehicle miles rented with driver.

The sample for the estimation for (A.4) was reduced to 101 observa­

tions by eliminating the 70 firms that reported purchasing rail, air, or 

water transportation, since separate expenditures on these categories 

were not available from TRINC's, though they are reported to the ICC.

In addition, separate figures for average haul and average shipment size 

in rented vehicles are not available, so overall firm averages are used. 

Again, these variables serve as proxies for interstate highway mileage 

and vehicle size respectively.

The results are reported in Table A.2 Once again, the cross terms 

are insignificant, and the linear non-price terms have the correct sign; 

they are also statistically significant by the usual tests. Since the
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Table A.2

ESTIMATES OF REGIONAL PURCHASED TRANSPORTATION PRICES

COEFFICIENT VALUE STANDARD ERROR
LOG PRICE, NEW ENGLAND -.031135 .629987
LOG PRICE, NORTH MID ATLANTIC -.436373 .552856
LOG PRICE, MIDDLE ATLANTIC -.265030 .524977
LOG PRICE, CENTRAL STATES EAST -.752058 .508918
LOG PRICE, CENTRAL STATES WEST -.209309 .607896

SIZE .970295 .393755
HAUL -1.04077 .330888
% RENTED WITH DRIVER (RWD)+1 1.66230 .698720
SIZE-% RWD+1 .570943 1.21665
HAUL*% RWD+1 -.961638 1.10031
U RWD+1)2 2.55511 4.55707

ANTILOGS OF ESTIMATED LOG PRICES:
PRICE, NEW ENGLAND .969345
PRICE, NORTH MID ATLANTIC .646377
PRICE, MIDDLE ATLANTIC .767183
PRICE, CENTRAL STATES EAST .471395
PRICE, CENTRAL STATES WEST .811145

DEPENDENT VARIABLE IS LOG(PURCH. TRANSP. EXPENDITURES/RENTED VEHICLE-MILES)

R2 = .2666 
SSR = 144.952
LOG OF LIKELIHOOD FUNCTION = -167.381 
OBSERVATIONS = 101
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price terms were not estimated directly (the nonlinear algorithm failed to 

converge properly in our initial attempts), we take the antilog of the 

estimated price logarithms as our regional price estimates; the standard 

errors of these estimated were not calculated. However, from Table A.2, 

there is reason to believe that they are comparatively large.
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Chapter Five

Interindustry Relations in the Surface Freight 

Transportation Industries

Federal transportation policy not only influences transportation 

rates and the allocation of shipments among the various modes, but also 

affects the allocation of economic activity among industries. By causing 

changes in transportation rates, changes in federal transportation 

policy cause changes in the price of transportation services relative 

to other commodities or services. These, in turn, lead to changes in 

the allocation of economic activity among industries and the producer 

prices of these industries, which in turn can affect the demand for
♦

transportation services. Consequently, it is desirable to develop a 

general equilibrium framework that can be used to analyze the impact of 

transportation rates upon the allocation of economic activity among 

industries. This can then be used to feed back into the models of 

equilibrium in the transportation industries.

This chapter discusses our initial efforts to develop such a 

general equilibrium analysis, using an interindustry model with variable 

coefficients that reflects the impact of federal transportation policy 

upon all sectors of the economy. Section I briefly discusses the general 

approach used, while Section II outlines the specific methodology used to 

estimate variable interindustry coefficients. Section III presents our 

empirical results and discusses why they are unsatisfactory. Section IV 

then discusses how changes in federal transportation policy can be analyzed 

within the context of the conventional input-output framework.
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I. An Overview of Interindustry Analysis

The usual approach followed to evaluate interindustry effects is 

the familiar input-output analysis, first developed by Leontief. 

According to this approach, the basic relationships for production and 

prices are respectively given by the following equations:

X = AX + Y (5.1)

or

X = (I - A)'1 Y (5.1a)

P' = aQw + P'A (5.2)

or

P’ = a^d-A)'1 (5.2a)

where X = Vector of total output

A = Matrix of input-output coefficients 

Y = Vector of final demand

P = Vector of prices

aQ = Matrix of direct primary factor input

w = Vector of prices of the primary factor.

Thus, AX represents the intermediate demand of all industries. In 

the original Leontief formulation, the matrix A was given by the pure 

technological requirements of the industry. No substitutions between 

factor inputs were permitted.-^ This is clearly a very restrictive

However, subsequent formulations have shown that if there is only one 
primary factor, relative prices are independent of final demand and no 
substitution among factors is desirable. For a full discussion of this 
and related points, see Samuelson (1966).
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requirement and runs counter to usual views of producers' optimizing 

behavior. Thus, it is desirable to modify the traditional input- 

output framework of Leontief to relax the assumption of fixed pro­

duction coefficients and the lack of substitutability among primary 

factors and other inputs.

Hudson and Jorgenson (1974) have recently developed a model that 

attempts to yield interindustry coefficients from the profit-maximizing 

behavior of the firm rather than from pure technological requirments.

In this case, the matrix (A) of input-output coefficients is made 

endogenous and determined by the relative prices of factor inputs.

Thus, instead of the rigid utilization of factors and materials on 

the part of firms, the Hudson-Jorgenson formulation of the problem 

permits substitution among factors and materials in response to changes 

in relative factor prices. Therefore, instead of eqs. (5.1) and (5.2), 

we write the production and pricing relationships in the economy as

X = (I - A(w)):1Y (5.3)

P' = a0w(I - A(w))*1 (5.4)



-152-

In this flexible input-output analysis, a change in the prices of 

primary factors not only has a direct impact upon the vector of produce) 

prices through the vector of primary factors (w), but it also has an 

indirect impact through the input-output matrix, A(w). Moreover, in 

contrast to conventional input-output analyses, even if the vector of 

final demand remains constant, the vector of total output will generally 

change as the utilization of inputs changes in response to the change 

in the prices of primary factors.

Although transportation is clearly a produced activity, since the 

prices of its services are determined by the regional transportation 

models described above, transportation can be taken as a primary factor 

of production for the purposes of this interindustry analysis. Conse­

quently, by using a flexible input-output analysis, we can determine hov 

changes in the transportation rate structure affect interindustry coef­

ficients, correnodity prices, industry outputs, and factor demands.

II. Structure of the Analysis

Because we are interested in analyzing the impact of transportation 

policy upon fairly broad aggregates, we incorporate a model of producer 

behavior for the following nine broad categories of commodities: 

durable manufactures 

nondurable manufactures 

feed grains
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other agriculture

construction

services

non-food materials and non-food mining 

coal

petroleum and petroleum products.

The first seven industries comprise a materials aggregate, while the 

last two comprise an energy aggregate.

Instead of estimating specific factor demand equations for each 

produced aggregate and primary input, we make use of the familiar duality 

theorems of Samuelson (1966) and Shephard (1970), which assert that 

production relations can be completely described either by physical 

quantities, as in production functions, or by price relations, as in 

cost functions. These theorems assume, of course, perfect competition 

and constant returns to scale. Therefore, as long as we assume that 

these conditions are met for each of the nine industry groups, a price 

possibility frontier can be estimated which relates the price of each 

commodity to the prices of its inputs.

Thus, the relative price relationships take the following form:

PI = PI(AI, PK, PL, PE, PM, PT) I = 1...9 (5.5)

where PI = the price of the output of industry I

AI = a measure of Hicks neutral technical change in industry I 

PK = the price of capital

PL = the wage rate

PE = a price index for aggregate energy inputs

PM = a price index for aggregate materials
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PT = a price index for transportation services.

This price possibility frontier is defined on the prices of the component 

aggregate inputs if the overall price possibility frontier (characteri- 

izing the whole economy) is separable and homogeneous in the elements 

of the aggregate. Leontief (1947) has shown that this requires that the 

relative shares of elements within an aggregate are independent of 

prices of goods outside the aggregate. Thus, in undertaking this analysi: 

we must assume separability between the aggregates, materials and energy, 

although we do not need to assume that separability exists among the 

components of each aggregate.

Given this price possibility frontier, input-output coefficients

can be obtained by a two-step procedure. First, the shares of the
2/aggregate inputs are found by the identity:—

8£nPI PJ-XJI _ PJ _ ,r ^
3£nPJ " PI-XI ‘ PI aji

where PJ is the price of input J and XJI is the amount of J needed to 

produce I, whose total output is XI. Therefore, PJ*XJI/PI*XI is the 

factor share of input J; and XJI/XI (or a..) is the technical coeffi-J *
cient of production denoting the elemnent of the input-output matrix 

at row J, column I. The complete input-output matrix is obtained by 

finding the price possibility frontier for both the materials and energy 

aggregates defined on their elements. This enables us to separate

out all the interindustry relations by disaggregating the factor shares 

.
- For a full discussion of this and related points, see Hudson and 

Jorgenson (1974).
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of the energy and material input. For instance, if PD is the price of 

durable manufactures, PM the price of material inputs and XD and XM are 

outputs defined analogously, the input-output coefficient for the durable 

manufacture input to output I is:

The first term is obtained from estimating the aggregate price 

possibility frontier (3S,nPK/9tnPM); the second term is obtained from 

estimating the materials price frontier; the price ratio of commodity 

I to durable manufactures is given. Having obtained the input-output 

coefficients, it is possible to carry out the usual calculations to 

obtain intermediate factor demands, total output requirements and the 

prices of all intermediate and final goods under the assumption that 

prices are independent of the composition of final demand.

A transcendental logarithmic (translog) function was used to 

estimate the price frontiers. This provides a local, second order 

approximation around a given point of expansion (usually taken to be 

the sample mean) to an arbitrary function. Thus, the frontier defined 

on the prices of aggregate inputs is given by the following expression:

PM-MI XD-PD 
PI-XI * MI-PM (5.7)

JtnPJ + 1/2 Z Z BTir UnPJ JlnPF (5.8)

I = 1...9

J,F = K,L,E,M,T.
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The prices of energy and materials are considered to be endogenous; 

the prices cf the primary factors capital and labor are determined by 

a macroeconomic model that is independent of the interindustry analysis; 

and the price of the "primary" factor transportation is determined by 

a regional transportation model.

Similarly, the price frontiers for energy and materials are given by

£nPM = + Z am JlnP,. + 1/2 Z Z 6__ JlnP,. £nPn (5.9)om _ m r „ mrq r qr r q ^

r,q = (seven material inputs)

JinPE = aoE + Z ar£ £nA + 1/2 Z Z 6mrq JlnPr £nPq (5.10)

r,q = (two energy inputs).

From the relationships given in equations (5.8) - (5.10), the price 

possibility frontier and input-output coefficients can be obtained by 

the method outlined above. Alternatively, factor share equations which 

are formally equivalent to equations (5.8) - (5.10) may be estimated as 

was done by Hudson and Jorgenson (1974).

p^—i^j = cij£ + Bj^inPK + Bj^^inPL + Bj^inPE + Bj^S-nPM + Bj^jS-nPI (5.11a)

= “ll + 6iLK£nPK + BiLL£nPL + siLEilnPE + BILM£nPM + BiLT£nPT (5.11b)
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PE-EI _ 
PI-XT “

PM•MI _ 
PI-XI

PT-TI _ 
PI-XI

aIE + 6iEKJlnPK + SiE|_£nPL + BIEE«.nPE + 6IEMJ,nPM + BIET£nPT

0tIM + ^IMK^nP^ + ^IML^nP*' + ^IME^nP^ + ^IMM^nP^ +

aIT + + 2jjE^nPL + BjjE^nPE + Bjy^fcnPM + Bjyy2-nPT

(5.1k)

(5.lid)

(5.lie)

While the relationships given in eq. (5.11) were estimated by

Hudson-Jorgenson (1974) and are likely to yield more stable estimates,

they require the factor shares of all aggregate inputs to each industry

group. Since these data were not available to us, we estimated equa-
3/tions (5.8) - (5.10) using readily available price data.-

III. Criticisms and Results 

A. Criticisms

The Hudson-Jorgenson Study has stimulated considerable controversy 

since its publication and has engendered a variety of criticisms.-^ 

While many of its flaws specifically deal with its applicability to 

the energy sector, there are more fundamental problems, which prevent

3/-In fact, they were apparently not available to Hudson and Jorgenson 
either, who used data constructed from three input-output tables 
formulated over the sample period. The remaining years' data were 
found by some interpolation techniques not specified by the authors. 
The estimation of fourteen parameters with three effective data 
points cannot be expected to yield valid results as one simply cannot 
span a higher dimensional space from a lower one. For a good 
discussion of this and related points, see Khazzoom (1967).

—^See, in particular, the criticisms contained in the Workshop of 
the Electric Power Research Institute (1976).
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the proposed modification to the transportation sector from being valid.

Indeed, it is the basic theoretical flaws that interfere with our

proposed approach since the criticisms of the method as it is applied

to energy do not hold much force in the transportation sector

The fundamental problem with the approach presented by Hudson and

Jorgensen and followed here is the lack of linkages between the vector

of final demand and the vector of prices. Thus, according to this

approach, the prices of primary factors and the level of final demands

are determined by a macroeconomic model which is independent of the

interindustry analysis. The interindustry relationships have no effect

upon macroeconomic activity except through the identity of supply and 
n

demand PC*C = Z PI*CI, where the left-hand term represents the value 
1

of consumption and the right-hand term represents the sum of the value 

of consumer goods in each industry. Similar equations are necessary for

—major criticism of the Hudson-Jorgenson analysis has to do with 
forecasting the impact of future energy price changes. Since the 
translog function represents an approximation around a point of 
expansion, the use of the translog function is only justified for 
estimating smoothly changing series and obtaining local estimates of 
the specified function. Thus, its ability to predict is greatly 
hampered as data move further away from the point of expansion.
This is. a serious flaw in making projections in the energy sector, 
particularly from estimates over the sample period used by Hudson- 
Jorgenson (1947-71). Since future price changes in petroleum may 
be expected to be more dramatic than those during the sample period 
or occur in discrete jumps rather than conform to historical patterns, 
the translog approximation may be quite poor in the range of projected 
price changes, especially if techniques cannot be devised to maintain 
the same degree of substitutability between factors as in the sample 
period. The prescription may be to analyze actual technical possibili­
ties rather than relying on past market performance. These shortcomings 
are not damaging when applied to transportation. In contrast to the 
very large movements of energy prices, which differ greatly from those 
in the estimated period, alterations in transportation prices can be 
expected to be small and not far removed from experienced values. Thus, 
present technological relations can adequately adjust to the scenarios 
suggested by regulatory changes.
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government, investment and imports. As Phoebus Drymes (1976) notes, 

the macroeconomic and interindustry relations can be solved quite indepen­

dently save for aggregate summation constraints.

This suspicion of more fundamental linkages between the inter­

industry model, which determines input-output coefficients, and the 

macroeconometric model, which determines primary factor prices and 

final demands, leads to a further major criticism from a theoretical 

level. Because of the existence of more than one primary factor of 

production, the nonsubstitution theorem of Samuelson has been mis­

applied. Hudson and Jorgenson contend that "This theorem states that 

for given prices of the factors of production and competitive imports, 

the prices of domestic availability of the output of each sector are 

independent of the composition of final demand." (1974,p. 468).

While true, this result is inappropriate for their or the present 

analysis. With more than one primary factor, this statement can have 

one of two meanings. First, all primary factors except one can be 

traded for that one at constant prices. This, however, is equivalent 

to the statement that all factors except one can be transformed into 

that one by a simple production scheme: Factor j = a. x Factor 1 for

all j primary factors. As originally pointed out by Samuelson (1966, 

p. 522), this strains the concept of a "primary" factor and actually 

returns us to the one true primary factor case. If this meaning is 

incorporated into the estimation of the price possibility frontier, we 

would have to expect perfect multicollinearity in the specified price 

possibility frontier since PK = a^PL and P-j- = a^PL for all other 

"primary factors" except labor, which we designate as the true primary 

factor.



-160-

Alternatively, we can treat cap tal, labor and transportation as 

true primary factors and permit thei relative prices to vary over the 

sample period. In this case, the us al nonsubstitution theorems do not 

apply, and there is not a unique technologically-determined price 

vector that can allocate resources independently of the composition 

of final demand. As demand for goods whose production uses one of the 

factors intensively rises, the return to that factor will generally 

rise as well causing changes in relative producer prices, which should lea< 

to changes in the composition of final demand. In the terminology of 

the Leontief system, the price vector of the economy is the "normal" 

vector to the production possibility surface. With more than one 

primary factor, the production possibility surface is piecewise 

linear and consequently has more than one normal vector. Thus there is 

no unique producer price vector that is independent of final demand.

The theorem cited by Hudson-Jorgenson can only be meaningful as a tauto­

logy such as "given the prices of all goods which determine factor prices, 

the price of domestic availability is independent of final demand."

The fact that the factor prices are determined in a different model does 

not circumvent the need to determine the price vector jointly with final 

demand.

This independence causes problems with the econometric specification 

of the price frontier. If factor prices are dependent on final demand, 

the price possibility frontier should be written as:

PI * PI(PK(Y), PL(Y), PT(Y), pi(Y)........PN(Y)) (5.12)

where Y represents the vector of final demands. In terms of input-
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output analysis this can be written as:

P = w(Y)[I-A(w(Y))]'1 (5.12a)

But the final demand vector itself depends upon producer prices:

Y = Y(P1...PN) (5.13)

As these equations suggest, the problem is that the proposed metholodogy 

attempts to estimate prices separately when in fact they are part of 

a simultaneously determined system with a high proportion of jointly 

determined variables. This would lead to biased estimates, and make 

the economic implications of the estimated price functions suspect.

A further difficulty with the Hudson-Jorgenson approach involves 

its level of aggregation. While highly aggregated studies are fre­

quently criticized for the loss of usefulness in policy making, some 

theoretical problems are also worth noting. As mentioned before, the 

price possibility frontier is defined only when production is separable. 

This implies that aggregation has been carried out and that shares 

within the aggregate are independent of prices outside the aggregate. 

With industry groups as broad as "durable manufactures" or "agriculture, 

construction and nonfuel mining" it is not likely that this holds. 

Indeed, all the duality theorems such as Shephard's Lenma relating 

factor demands to cost fucntions rely on the single firm as the unit 

of analysis. It is not clear that these theorems are at all applicable 

to broad commodity classes.This level of aggregation may well 

introduce severe specification error in the estimation.

—^For a good discussion of this point, see Sewall (1976).
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B. Econometric Results

In spite of these theoretical problems, the present study attempted 

to fit the price possibility frontier directly to the translog specifi­

cation using only price data. The data used were indices reported 

quarterly (1953-1973) on the prices of the nine commodity groups and 

five aggregates: capital, labor, energy, materials, and transportation

services. All data came from the Department of Commerce Survey of 

Current Business except for the price of capital services and the price 

of transportation services.-^

The price possibility frontiers were estimated with a nonlinear

technique which allowed the appropriate homogeneity and symmetry
8/constraints to be imposed- along with the exogenously determined rate 

of technical progress in each sector. In addition, corrections were 

made for autocorrelation (which was very high), and instrumental 

variables were used to correct for problems of simultaneity in the 

materials and energy sectors.

By using the factor share equations given above (eq. (5.11)), it 

is possible to obtain an independent check of the plausibility of the 

results obtained from estimating the production possibility frontier 

directly using price data. Unfortunately, although the estimated

— The price of capital services was provided by*the MFP (MIT, Federal 
Federal Reserve, University of Pennsylvania) macroeconometric model; 
the price of transportation services was constructed from prices of 
railroad services (Association of American Railroads "Yearbook of Rail 
way Facts"); inland waterways (American Waterway Operators, Inc., 
"Inland Waterborne Commerce Statistics"); and regulated motor 
carriers (ICC, "Transport Statistics in the U.S.").

8/— See Chapter 3, above, for a discussion of these constraints.
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price equations were reasonable in terms of standard statistical tests, 

the implied factor shares were inadmissible since they often did not 

lie between zero and one. Table 5.1 gives the estimated equation for 

durable manufactures, which was typical of all of those estimated.

While the R is high and the coefficients are generally statistically 

significant, the economic implications of the equations are unacceptable. 

Since the a..'s represent the factor share of the respective aggregate 

input evaluated at the mean of the prices, the results are clearly 

incorrect. In addition, the series of implied factor shares varied 

widely over the sample period, contrary to the historical record.

That the results obtained using pure price data were incorrect is

not surprising. Usually, quantity-related data, such as measures of

capital utilizaiton in cost function or joint estimation of factor

demands and cost functions, are needed to supplement the estimation of

duality relationships. Consequently, while formally equivalent to the

factor share equations estimated by Hudson-Jorgenson, the estimation

of the price possibility frontier by price data alone is not likely
9 /to yield admissible results- and data on actual factor shares or 

interindustry coefficients are needed. Unfortunately, however, such 

data do not exist to permit a time series analysis of interindustry 

relationships. Consequently, we are forced to return to more conven­

tional methods.

g /
— For a good discussion of this point, see Burgess (1975). Dhrymes 

(1976) has made a similar point.
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Table 5.1

Estimated Equations for Durable Manufactures

Linear Terms Quadratic Terms

K L E M T

aK
-.045 |

(.0005) i
K -.225

(.003)
.111

(.008)
.854

(.001)
-2.510
(.019)

1.800
(.013)

aL -.119 i

(.002) |

L -14.6
(.054)

-6.87
(.031)

21.8
(.063)

-.466
(.040)

aE -.071 |
(.001) i

E -3.67
(.032)

9.29
(.073)

.403
(.053)

aM 1.042 '
(.003) |

M -25.2
(.165)

-3.38
(.094)

aT .193 |
(.003) '

T 1.64
(.076)

R2 = .997

Autocorrelation Coefficient = .934 

(Standard Error = .001)

Note: El^urcs in parentheses represent standard errors.
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IV. A Conventional Input-Output Analysis

Since the incorporation of flexible coefficients does not 

appear to be feasible, we now turn to a traditional input-output 

analysis with exogenously altered technical coefficients. The 

limitations of the assumption of fixed coefficients do not impinge 

severely on an analysis of transportation industries for two main 

reasons. First, as mentioned earlier, changes in transportation 

prices or technical relations are generally small, and since expen­

ditures on the transportation sector are usually a small propor­

tion of industrial inputs, it is not unreasonable to expect very 

small adjustments to the change in price of such services. Second, 

the peculiar nature of transportation services and its competing 

commodities in the factor demand markets make the assumption of 

no substitution less damaging. The main "substitute" for trans­

portation services is generally not the usual alternative mix of 

inputs, but rather a change of location of a producing firm. A 

firm may well respond to changes in transportation costs (especially 

of one mode vis a vis another) by relocating at a point where 

total transport costs for its inputs and marketable outputs are 

at a minimum. In the short run, however, the ability to change 

location is strictly limited since there is often a large fixed 

capital investment tying the firm to a specific point in space.

Because the savings in transportation are probably small, relocation 

is not warranted. However, second-order effects of changes in 

freight rates may influence substitution; as rates rise, industries 

may substitute away from factors intensive in transportation services.
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Nevertheless, we will have to tolerate the problems of this 

effect.

The method of analysis takes the form of simulating technical 

change (literally interpreted as a change of techniques) in the 

relevant transportation industries. This posits a change in the 

structure of production due to regulatory intervention in the 

transportation industries.

The method is best illustrated by example. It is well known 

that the railroad industry is characterized by chronic excess 

capacity and therefore, that firms operate on a short run, rather 

than long run cost curve. Changes in regulatory practices, which 

induce the firm to operate efficiently, act as technical progress. 

The coefficients corresponding to the "new" technique may then be 

incorporated into the input-output matrix by reducing the elements 

of the column of the railroad industry by the appropriate amount.

In particular, this requires reducing the amount of the fixed 

factor used per unit output and changing the coefficient for 

certain capital equipment in the railroad column. By assuming that 

the vector of final demand is unchanged, it is possible to calculate 

the following by the formulae given in eqs. (5.1) and (5.2): 

fixed new total production requirements; intermediate demands; 

and price vectors.

Thus, the impact of federal transportation policy upon 

interindustry relationships could be determined in a multi-step 

procedure. First, the change in policy must be translated into a
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change in the relevant cost functions, demand functions, or market 

structure. Second, a new equilibrium with respect to rates, 

outputs and factor usage (both primary and produced) must be calcu-
W

lated from the regional transportation models. Third, these 

changes in factor utilizations must be translated into the 

appropriate changes in the technical coefficients of the columns 

of the input-output matrix. Fourth, the change in outputs among 

modes could be translated into changes in the row values of the 

input-output matrix for the transportation industries. Finally, 

given the changed column and row vectors of the transportation 

industries, new solutions can be obtained for outputs and producer 

prices. Thus, while less elegant than the Hudson-Jorgenson formu­

lation, this approach should permit some interindustry response 

to changes in federal transportation policy.

To estimate the impact of changes in federal transportation 

policy upon interindustry relationships, the 1967 BEA input/output 

table was consolidated into a forty industry table with seven 

disaggregate transportation sectors: rail, urban transportation

services, trucking, inland water transportation, air, pipeline 

and other transportation services. This table, reported in dollar 

transactions rather than in technical coefficients, was computed 

in producer's prices. Thus, transportation services used are 

credited to the transportation sector and the interindustry effects 

of transportation can be obtained.

For a full discussion of these models see Chapter 2, below.
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For illustrative purposes we postulate a 5 percent increase in 

the efficiency of the rail and trucking industries, that is, 5 

percent less of all inputs are needed for the same output. This 

implies, of course, that the columns for the rail and trucking 

industries are reduced by 5 percent in the input-output matrix. Whi 

unrealistic for evaluating the impact of changes in regulatory 

policy, this example gives some feel for the sensitivity of the 

system to changes in the interindustry coefficients of the transpor­

tation industries.

Table 5.2 presents the percentage change in the prices of each 

industry, respectively engendered by a 5 percent increase in the 

efficiency of the rail or trucking industry, while Table 5.3 present 

similar percentage changes in total output. In both cases, the char 

in prices and outputs yield reasonable and expected results. The 

greatest savings from a more efficient railroad sector (besides 

transportation services) occur in heavy, transportation intensive 

industries such as lumber, paper products, stone, clay and glass 

products, primary metals and metal products. Greater reduction on 

average occurred with changes in the trucking sector, the largest 

ones being in industries similar to those most affected by rail witi 

the addition of livestock and processed foods. The larger average 

reductions over a broader sample of industries in response to 

technical changes in trucking seem intuitively plausible, since 

smaller users would tend to use the more flexible and smaller-load 

trucking services over rail. Least affected, understandably, were
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industries where material inputs are a small fraction of 

total inputs. These include wholesale and retail trade, insurance, 

banking, and services. Thus, we can see that the freight trans­

portation industries have greatest affect on the industrial 

production sectors of the national economy and will most likely 

affect the income distribution between regions through increasing 

the competitive advantage of industrial areas.
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Table 5.2

in Efficiency in Rail and Trucking Industries

Rail Trucking
Livestock .041 .090
Grain .036 .049
Other Agriculture, Forestry, Fishing .025 .048
Mining (exc. Coal, Petroleum) .049 .041
Coal Mining .046 .040
Crude Petroleum .017 .019
Construction .031 .048
Ordinance .046 .051
Food Products .036 .073
Textile Products .024 .053
Lumber/Furniture .086 .055
Paper Products .059 .050
Chemicals, Plastics .050 .045
Petroleum refining .023 .043
Rubber, leather .047 .059
Stone, Clay, Glass .105 .160
Primary Metals .086 .061
Metal Products .056 .054
Machinery .029 .034
i;it'< tr icnl (Hjiiipnii iit .027 .034
Motor vehicles .058 .055
Airrrafl .028 .036
Other transportation equipment .069 .067
Other equipment .037 .046
Railroad 3.36 .052
Passenger trains .048 .087
Motor freight .044 4.15
Water transport .041 .162



Table 5.2 (cont'd.)

\ i r l r.ins|'i>rl . ().’ 1 .084
i’ i pel i nr .(HD .070
Transportation Services .01 ! .016
Coirjimnicat ions/l’t ilit ies .031 .023
Wholesale and retail trade .004 .011
Finance, insurance, real estate .007 .007
Services .008 .012
State and Federal Government .108 .125
Imports 0 0
Dummy industries .044 .082
Rest of world 0 0
Government, household industry 0 0
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Table 5.3

Percent Savings in Total Output with 5 Percent Increase

in Efficiency in Rail and Trucking Industries

Rail Trucking
Livestock .005 .008
Grain .006 .023
Other Agriculture, Forestry, Fishing .009 .010
Mining (exc. Coal, Petroleum) .047 .019
Coal Mining .031 .034
Petroleum (crude) .077 .160
Construction .061 .012
Ordinance .001 .001
Food Products .003 .005
Textile Products .011 .012
Lumber, Furniture .027 .010
Paper Products .023 .040
Chemicals, Plastics .023 .026
Petroleum Refining .089 .192
Rubber, Leather .016 .083
Stone, Clay, Glass .044 .018
Primary Metals .059 .015
Metal Products .039 .015
Machinery .024 .011
Electrical Equipment .014 .011
Motor Vehicles .003 .015
Aircraft .002 .002
Other Transportation Equipment .106 .007
Other Equipment .011 .015
Rai1 roads .308 .094
Passenger Trains (Urban) .105 .024
Motor Freight .043 .731
Water Transport .028 .044



Table 5.3 (cont'd.)

Air Transport .044 .038
Pipeline .085 .202
Transportation Services .615 1.30
Communications/Utilities .035 .049
Wholesale and Retail Trade .013 .042
Finance, Insurance, Real Estate .036 .039
Services .019 .051
State and Federal Government .040 .018
Imports 0 0
Dummy Industries .044 .083
Rest of World 0 0
Government, Household Industry 0 0
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Since the calculations were made with the fixed coefficient 

assumption intact, these results serve as a lower bound on the 

potential savings on intermediate goods. Any substitution will 

offer opportunities to save additional amounts as inputs are 

chosen with an eye to economizing in the face of price changes. 

Therefore, these results give conservative estimates of interin­

dustry effects. Furthermore, since many of the same industries 

appear to be tied to both rail and truck, it is likely that 

further intermodal competition and substitution of producing firms 

will yield substantial savings. The logical next step of this 

research is to incorporate the specific knowledge of the freight 

transportation sectors obtained in the regional transportation 

models in order to specify correctly the change in the direct 

interindustry relations engendered by regulatory changes.
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Chapter Six

Models of Income Determination

Having outlined the regional transportation model and the inter­

industry model, let us now consider the linkages among regional 

transportation outputs and prices, interindustry relationships, 

and the level of regional and national incomes. These interrela­

tionships can be made explicit by considering a model of regional 

income determination, discussed in Part I of this chapter, and a 

small-scale national macroeconometric model, discussed in Part II.
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I. Regional Income Model

Let us now consider the interrelationships between the regional 

transportation model and the regional income model. Briefly stated, 

the equilibrium in the regional transportation market affects the 

levels of regional economic activity in two important ways. First, 

the demand for labor in the transportation industries has a direct impact 

upon regional employment and income. Second, the transportation rate 

structure in any region relative to that of the nation as a whole can 

influence the location and investment decision of firms and thus affect 

regional income and employment. Similarly, regional income levels can 

have a direct impact upon the demand for transportation services, while 

regional wage structures can affect the demand for labor within the 

transportation industries. Thus, if we view the transportation indus­

tries as only one sector within a regional economy, it is clear that 

there are bound to be many linkages between the equilibrium in the 

transportation industries and that of the entire regional economy.

This analysis attempts to capture the major linkages and concentrates 

upon the interrelationships among regional income, employment, and 

transportation. To this end, we will develop employment, wage, and 

personal income relationships and show how they interact with the 

regional transportation model. In doing this, our goal is not to develop 

a fully specified model of regional income determination, but rather to 

utilize a somewhat aggregative model that will capture the main 

elements of the problem.

A. The Structure of Regional Models

Macroeconometric modeling has a well established tradition on the 

national level. The pioneering work of Klein (1955) in the early 1950's
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has been expanded and developed until there are now a number of large 

scale econometric models of the national economy that can be used for 

forecasting levels of economic activity and for evaluating alternative 

monetary and fiscal policies.-^ While these models do not have a per­

fect track record with respect to all sectors of the economy, on the 

whole their performance indicates,that it is possible to forecast the 

vehavior of the national economy with a reasonable degree of accuracy.

It is only in the past decade that serious econometric modeling 

on the state or regional level has been developed. On the state level, 

models of Massachusetts (1975), Michigan (1965), California (1972) and 

Mississippi (1975) have been developed, while on the local level a 

model of Philadelphia (1975) has been developed and one of Boston is 

currently under construction (1976). Although none of these models has 

been as fully developed as the more established national models (e.g., 

the Wharton or the FMP models), the forecasting record of these models 

indicates that it is possible to explain and forecast the economic 

behavior of a state or a region reasonably well.

The theory underlying the national macroeconometric models is 

generally well defined. All of these models rely on a Keynsian aggregate 

demand framework; thus, much of these models is built around the national 

income equilibrium condition that income equals the sum of final demand 

(consumption, investment, government expenditures and the net trade 

balance). The analysis then proceeds to explain the components of 

final demand on a disaggregate level, the determinants cf aggregate 

supply, and the relationships between the "real" and the monetary sectors

1/See, for example, the FMP Model (1968), the Wharton Model (1967), the 
U.S. Department of Commerce, B.E.A. Model (1966), as well as a number 
of models developed by private consulting firms, e.g.. Chase Economet­
rics and Data Resources, Inc.



-178-

One of the under pinnings of all national macroeconometric models 

is the national income accounts, which not only provide the data but 

an analytical, Keynsian framework on which to develop a model. Unfor­

tunately, there are no data equivalent to the national income accounts 

on the state or regional level, making the analytical framework upon 

which to build a state or regional macroeconometric model less obvious. 

While the Michigan Model (1965) attempted to analyze regional income 

determination in a Keynsian framework, recent regional models (e.g. 

the Massachusetts Model (1975), the Mississippi Model (1975), and the 

California Model (1972)) have been built around the excellent regional 

data bases in employment and wages. In this case, the models tend to 

take on more of a supply-oriented, microeconomic general equilibrium 

character than the demand-oriented, macroeconometric national models. 

Indeed, their analytical under pinnings lie in the neoclassical theory 

of the firm and the simultaneous determination of employment, output, 

wages, and producers' prices.

Since the level of transportation rates relative to other prices 

plays a key role in an integrated transportation policy model, it 

seems logical to adopt a neoclassical approach, which incorporates 

relative price differentials, in modeling regional income levels. As 

such, we draw upon the analytical framework developed in the Massachuse 

Model (1975) and its predecessors. Because, however, the focus of 

this analysis is the interrelationships among the transportation 

industries and the rest of the regional economy, transportation rates 

and employment will play a central role in this modeling effort that 

they have not had in previous regional models.
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The structure of the regional income model is illustrated in 

Figure6.1. Regional employment is assumed to depend upon regional 

factor costs (transportation, labor, capital, and energy) relative 

to those of the nation and regional income. Regional wages are 

related to national wages and regional employment growth. Given

wages and employment, we can then determine labor income, and from that, 

we can derive measures of gross state product. Personal income is 

given by the sum of labor and nonlabor income. Finally, the regional 

consumer price index is determined by the regional transportation rate 

structure and the national CPI.

Since employment plays a central role in this analysis, we first 

discuss its determination. We then consider the other components of 

the regional income model: wages, income, output, and consumer prices; 

and show how the transportation industries and the rest of the regional 

economy are linked.

B. Employment

In analyzing employment, it is useful to distinguish between the 

so-called export industries, whose output levels are highly sensitive 

to regional cost differentials, and the so-called home industries, whose 

output is tied to the local, regional economy. Manufacturing indus­

tries are generally thought to fall into the former group, as are 

agricultural and extractive activites with a natural resource base. 

Activities such as services, construction, retail and whoesale trade 

are generally thought to fall into the latter category.

In so far as the manufacturing industries are not tied to any 

specific resource base, they are highly mobile and will tend to be
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Figure 6.1 
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responsive to regional differentials in factor costs, including trans­

portation. Since the extractive and agricultural industries are clearly 

tied to a resource base, they are not particularly mobile. Neverthe­

less, because transportation costs play a large role in their delivered 

price, it is likely that transportation rates can have a significant 

impact upon their levels of output and employment. Hence, it seems 

reasonable to model the behavior or each of the export industries in a 

similar fashion.

In contrast, the home industries are largely tied to the local 

economy and should not be particularly sensitive to regional differ­

entials in factor prices. Thus, we will analyze this group of indus­

tries in a manner somewhat different from that followed with respect 

to the export industries.

1. The Export Industries

For the purpose of the regional income analysis, it is convenient 

to combine the agriculture and livestock categories into a single 

agricultural sector and to combine the coal and petroleum categories 

into a single extractive sector. The regional model will thus have 

the following four industries: durable manufacturers, nondurable 

manufacturers, agriculture, and energy raw materials.

In order to assess the impact of regional differentials in trans­

portation rates upon regional income levels, we should know how these 

differentials affect flows of capital and labor in and out of the 

region. This, in turn, requires a full general equilibrium analysis 

of the simultaneous determination of output, employment, capital 

utilization, and factor migration. Since, however, data are not
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available to support the analysis on this level of detail, we must be 

content with a reduced-form determination of employment instead of 

using a fully-specified structural model.

The extent to which reduced-form equations are used in the analysis 

in large part depends upon the adequacy of the data. While data on 

employment and wages are generally available and reliable in a fairly 

disaggregate level, data on investment, capital, and real output are 

quite poor. Moreover, regional data on producer's prices are non­

existent. Consequently, it seems reasonable to adopt a reduced form 

approach that substitutes for output, capital, and producer's prices 

in the employment equations. While this approach has the admitted 

defect that it does not make explicit the structure through which 

changes in relative factor costs affect the level of economic activity, 

it has the distinct advantage of limited data requirements.

Because the export sectors primarily produce for the national 

market, we analyze the share of national employment in industry i 

that takes place in region d. In structuring these employment 

equations, our general behavioral postulate is that firms locate to 

maximize profits and will thus be sensitive to production and distri­

bution costs. Production costs are reflected in relative labor costs, 

relative capital costs, relative fuel costs, and relative transporta­

tion costs; distribution costs are reflected in relative levels of 

disposable income.

Our formal point of departure is the neoclassical theory of the 

firm. We assume that production is characterized by a constant-returns- 

to-scale, Cobb-Douglas production function utilizing capital (K), labor 

(L), energy (E) and transportation (T), with neutral technological
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2/change.- Thus:

er Bod sid>Br-3
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(6.1)

where represents the output of industry i in region d; L^, E^,

and K^d respectively represent the physical amounts of labor,

energy, transportation, and capital used by industry i in region d;

represents a technological change factor of industry i in region

d;.Aid represents a scale factor associated with industry i in region 
id id idd; and B-j , B^ , £3 represent the parameters of the production function.

If the firm maximizes profits, it sets the marginal product of 

each factor equal to the real factor price. Using these marginal pro­

ductivity conditions, we can eliminate the producer’s price variable 

and express capital, energy, and transportation in terms of labor.

By substituting the resulting expression into the production function 

and solving for employment we obtain the following expression (note 

that we omit the industry and regional subscripts for notational 

simp!icity):

, .. 1-Bt-Bo-B, B1+B2+e3‘1 Bo -60 Bo -Bo
L = (A~*) (e~ j ( -1-- 2_3) (_i) 2 (_2) 3

31
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(6.2)

where w,r,f, and t respectively represent the factor prices of labor, 

capital, energy, and transportation.

2/— The basic analytical framework is quite similar to the one utilized 
in the national interindustry model. In that case, however, we dealt 
with prices and translog approximations of the underlying technology, 
while in this case we deal with physical quantities and a specific 
functional characterization of technology.
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If national employment in that industry is also determined by 

similar considerations, we obtain a similar expression for national 

employment. If we, furthermore, assume that technology does not differ 

among regions, we can express regional employment as a proportion of 

national employment by the following expression:

L
L u

(-)V
8rl

1-6re2'e3 s_
Qu

(6.3)

where the subscript "u" refers to the national variable.

Equation (6.3) thus relates the regional share of employment in

a given industry to regional differences in factor prices, output

levels, and technological change.

While data on regional output as measured by gross regional

product exist, they are seriously flawed; not only because they are

derived from data series in labor income, but also because they are
3/measured in terms of current dollars.- Consequently, we have elected 

to eliminate the output variable by substitution. We thus postulate 

that the proportion of total output produced in any given region 

depends upon relative factor costs and the levels of personal income 

and write:

— The fact that they are derived from series as labor income creats 
substantial problems of simultaneous equation bias; the fact that they
are expressed in money terms requires that they be deflated by an 
appropriate price index. Unfortunately, however, data on producers' 
prices do not exist, and use of a proxy could create substantial 
measurement errors.
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While the specific form of this equation is not uniquely related to 

cost-minimization under specific assumptions, the choice of the 

explanatory variables is intended to reflect the factors that are 

relevant in the locational decision. In eq. (6.4), w,f,t and r 

respectively represent the costs of labor, energy, transportation, and 

capital, with the subscripts again reflecting the national variables. 

Thus, a-|, ^ and are expected to be negative since an increase 

in the cost of any factor relative to its national average should cause 

a movement away from that region. Similarly, should be positive 

since an increase in regional income relative to that of the nation 

should increase employment in that region.

Substituting eq. (6-4); into eq. (6.3) collecting terms, and taking 

logs yields the following estimating equation:

£n(L/Lu) = p0 + p1t+ y2 £n(w/wu) + y3 £n(f/fu) (6.5)

+ u4 £n(t/tu) + p5 £n(r/ru) + y6 £n(Y/Yu)

where t represents a time trend and the coefficients are defined as 

follows:
u = An a + JlnA,, - £.nA o o u
li, = xu - X

y2 = Bj + 0^-1

y3 = B2 + a2

y3 = ^3 + a3 
U4 = l-erB2-B3+a4

^5 = a5
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The expected sign of yQ is not known a priori. The sign of y-j 

will be positive or negative, depending upon whether neutral tech­

nological change in the region is less than or greater than that of 

the nation as a whole. The sign of ^ should be negative since both 

the factor substitution effect (B-j-l) and the location effect (a^) 

should be negative. The expected signs of y3> y^, and y^ are indeter­

minate and depend upon whether the negative location effects (02* “3* 

and cx^) dominate the positive factor-substitution effects 

(e2> and l-B^-Bg-B^). The sign of yg is expected to be positive 

since it reflects the positive location effect.

Equation (6.5) thus relates the share of employment of a given 

industry to the level of regional factor costs relative to that of 

the nation and the level of regional income relative to that of the 

nation. Consequently, by estimating these equtions, it should be 

possible to quantify the impact of changes in regional transportation 

rates upon regional levels of employment in the export industries.

2. Transportation

As explained in Chapter Two, above, it is possible to derive 

factor demand equations from the transportation estimated cost functions 

Consequently, by using the regional cost functions derived for each 

mode, we can derive regional employment functions for each mode. By 

summing the implied labor demands we can thus obtain estimates of the 

employment in the regulated transportation industries in each region.

3. Home Industries

In our analysis, we have combined all of the remaining industries 

into a category which we have called "other". This includes the service
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trade, construction and related industries, as well as the non-regulated 

transportation industries. Since these industries are oriented to the 

local market, it is unlikely that regional differentials in factor 

prices will have much bearing on their output or employment levels.

Again, we assume that we can characterize production of the home 

industries by the following coristant-returns-to-scale, Cobb-Douglas 

production function:

Q hd

hd chd
1 (6.6)

where the subscripts h and d respectively refer to the home industry 

and the relevant region. If we assume cost minimization, we can 

utilize the marginal productivity conditions and solve for to 

derive an expression that is identical in form to eq. (6.2). Unfortun­

ately, however, this contains the variable Q^, which represents the 

real value of output in the home industries and for which we have no 

data series. Nevertheless, by using personal income as a proxy for this 

variable and taking logs, we can utilize the following equation to 

estimate the employment in the home industries, which we represent 

by the "other" category:

£nLhd = Yo + Y1 £'nT + y2 ^n(wd/rd^ + y3 £n^wd/fd^

+ Y4 *n(wd/td) + Y5 *n Yd
(6.7)

where x represents a time trend; y represents a linear combination of
0

the production coefficients, represents a measure of neutral techni­

cal change, y2 = Y3 = -B2» Y4 = -B3 and Y5 = 1 •
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Thus, using eqs. (6.5) and (6.7) we can estimate regional 

employment in the export and home industries (exclusive of the regulated 

transportation industries). By utilizing the factor demand equations 

derived in conjunction with the modal cost functions, we can also 

estimate regional employment in the regulated transportation industries 

and thus obtain measures of total employment by broad industry aggregate 

and by region.

B. Wage and Income Relationships

Although specific data on hourly wages exist for the manufacturing 

industries, they do not exist for the other sectors. Hence, it is more 

convenient to utilize the BEA's data on personal income, which gives 

wage and salary income by sector. We can thus define aggregate wage 

in sector i in region d by:

WS? = Yws^/eJ

where Yws^ represents earned labor income in sector i in region d;

El? represents employment in industry i in region d; and ws!? represents 

the average labor payments in sector i in region d. We thus postulate 

that average wage and salary payments are related to their national 

counterparts, the change in regional employment, and the ratio of the 

regional CPI to the national CPI and thus specify:

ws? = ws^[ws^, AE?, CPId/CPIu] (6.8)

where wsd and wsV respectively represent average wages and salaries 

in industry i in region d and in the nation as a whole; AEd represents 

the change of employment in region d and industry i; and CPId and CPIU
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respectively represent the regional and national CPI.

Since total labor income represents the product of employment and 

average wage and salary payments, we can simply derive total regional 

labor income as:

YLd = I(wsJ)(Ej) (6.9)
i

«

where i ranges over the export, transportation, and home industries.

Total personal income is the sum of labor income, proprietor's 

income, property income, and transfers less contributions for social 

insurance. Equation (6.9) gives the labor component of this total, 

but neglects the other categories. At this point, it is not clear 

whether it is necessary to estimate a separate equation for each 

category or whether it is acceptable to estimate an equation for 

non-labor personal income. Since transportation does not affect non­

labor personal income, little seems to be gained by disaggregating 

it into its components. Hence, it seems reasonable to estimate a 

simple relationship for non-labor personal income and relate this 

variable to its national counterpart.

As indicated above, gross regional product by sector is derived
4/

from wage and salary income by sector according to a standard formula.- 

Consequently, there is no real linkage flowing from gross regional 

product to employment by definition. Therefore, although it might 

prove desirable to include estimates of gross regional product for 

the sake of completeness, such estimates add little information that 

Is not already contained in the estimates of total labor income.

^This is described in detail in Friedlaender, Treyz, and Tresch (1975).
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We now turn to questions of price determination. In so far as 

transportation rates may affect consumer prices, it is useful to 

introduce prices explicitly into the analysis. We thus postulate 

that the regional CPI depends upon regional transportation rates, 

the level of personal income relative in the region relative to that 

of the nation, and the regional unemployment rate and thus write:

CPId = CPId(CPIu, td, Yd/Yu, ud) (6.10)

where CPId and CPIU respectively represent the regional and national 

CPI, td represents the regional structure of transportation rates, Yd 

and Yu respectively represent regional and national personal income, 

and ud represents the regional unemployment rate.

To close the model we need to estimate relationships for the 

regional unemployment rate. The most theoretically sound approach 

to this problem involves specifying a labor supply equation and 

then estimating unemployment as a residual between labor demanded and 

supplied. However, this would require the specification of a large 

number of equations having to do with population growth, migration, 

etc., and would extend the analysis in a direction that is probably 

unnecessary for the problem at hand. Hence, it is probably a reason­

able alternative to explain the regional unemployment rate directly, 

relating it to the national rate and the rate of growth of regional 

personal income and write:

ud = ud(Uu, AYd) (6.11)

where ud and Uu represent regional and national unemployment rates 

and AYd represents the growth in regional income.
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We have now specified the foundations of the following three 

models: a regional transportation model; a national interindustry 

model; and a regional income model. In each case, we have specified 

the relationships in the sub-model in terms of its own relevant 

variables and in terms of those that feed in from the other sub-models, 

with the exception of a number of national macroeconomic variables 

having to do with income, factor prices, consumer price and so forth. 

Hence, to close the system we must develop a national macroeconomic 

model and specify the missing variables.

B. Macroeconometric Model

A number of variables are required to close the various sub-models 

The national interindustry model needs data on final demand by sector 

and the price of capital and labor, while the regional model needs data 

on national personal income, consumer prices, and the unemployment rate 

Since these variables are all interrelated, we must develop a small- 

scale macroeconometric model to specify these interrelationships and 

to estimate equations for these variables.

As indicated above, the art of macroeconometric model building is 

well advanced, and there are a large number of existing models that 

range in size from the small-scale Fair model (1971) to the enormous 

FMP model (1968). Since questions associated with fiscal and monetary 

policy are not particularly relevant to the problem at hand, it 

probably makes sense to deal with fairly aggregative models that do not 

consider in great detail the channels through which monetary or fiscal 

policy work. Thus it may be reasonable to adapt the Fair model (1971)
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to our analysis. As an alternative, we could also adapt the model 

developed by Hudson and Jorgenson (1974) in their analysis of energy 

pol icy.

Since we have not fully explored the structure of the existing 

small-scale macroeconometric models, little would be gained from 

making a specification of such a model de novo. Clearly such a 

model would require the determination of gross national product by 

broad sector and its components: consumption, investment, government,

and net exports. It would similarly require the determination of 

sectoral wages, consumer prices, the interest rate and the unemployment 

rate. These are the traditional elements of a full Keynsian model, 

and their analysis and estimation is well grounded in macroeconomic 

theory and its applications in the existing macroeconometric models. 

Thus, although we have not yet developed the specification of the 

macroeconometric model needed to close the system, this is a straight­

forward task that we will undertake at the appropriate time.
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Chapter Seven 

Summary and Extensions

This volume has described our first year's work in developing a 

number of integrated models that can be used to evaluate a wide range 

of federal transportation policies affecting the surface freight industries.

By simulating the response of the system to changes in federal 

transportation policies,.these models are specifically aimed at 

evaluating the impact of a wide range of transportation policies upon 

the following kinds of variables: traffic allocations, rates, profi­

tability, costs, employment by transportation industries; outputs, 

employment, prices, and factor prices by industries for the nation as 

a whole; employment, income, and wage by industry and by region.

This analysis will provide a vehicle for quantifying the impact of 

transportation policy upon a wide range of fairly aggregative economic 

variables that not only provide measures of economic efficiency, but 

also provide measures of the gainers and losers of a given change in 

transportation policy by industry (both within transportation and 

elsewhere), by region, and by factor.

To this end, this volume contained the general specifications 

of the following four models:

- a model of the regional transportation markets;

- an interindustry model;

- a model of regional incomes and employment;

- a national small-scale macroeconometric model.

Before we can fully evaluate the impact of policy, we must 

calibrate these models. Thus, the bulk of our effort in the second
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year of this project will go toward data gathering and calibration 

of these models. At the moment, we have concentrated upon the estima­

tion of demand and cost functions for the trucking and rail industries 

in the Official Territory, and Chapter Four contained a report on 

our preliminary analysis of trucking costs. In terms of methodology, 

probably the most striking finding is the need to take quality of 

output into account in estimating cost functions as well as demand 

functions. Unless the relevant quality variables are taken into account 

in the estimated cost functions, serious misspecifications and biases 

may result, leading to incorrect policy conclusions. During the coming 

year, we plan to extend this analysis to all the regions in the country 

and, if resources permit, to the water and pipeline modes.

We have also made a preliminary analysis of interindustry relation­

ships, which was discussed in Chapter Five. This indicates that instead 

of estimating the interindustry coefficients endogenously, they will 

have to be determined exogenously. Thus, considerable effort must 

be spent determining how changes in the relevant modal cost functions, 

demand functions, and market equilibria can be translated into changes 

in the interindustry coefficients.

We have just begun the implementation of the regional and national 

macroeconometric models. Reports on our progress in these areas will 

be made during the coming year.

Since these models are being developed for policy analysis, we 

hope to be able to perform some policy simulations during the coming 

year. Thus a major effort will be devoted to the area of scenario 

development and the determination of a number of alternative policies
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that can be evaluated in the context of our models. A large number 

of these will be based on the legislation currently pending and recently 

passed concerning deregulation of the air, trucking, and rail industries. 

We will not limit ourselves to regulatory proposals, however, but will 

also consider the implications of removing some of the current incon­

sistencies of federal transportation policy with respect to the various 

modes. For example, we can analyze the implications of treating all 

modes equally with respect to user charges or the provision of infra­

structure. In addition, we plan to assess the impact of the establish­

ment of rate bands in the rail and trucking industries, subsidies for 

light density service, rail consolidation, trucking merger policies, etc.

Since this phase of the research is aimed at specific policy 

analysis, we hope to work closely with members of government during 

this time to ensure that we are analyzing the most relevant transpor­

tation policies.

Obviously, the development of these models for all modes and 

regions is an enormous task, and their integration into an integrated 

simulation model is an even bigger one. Nevertheless, preliminary 

analysis already indicates that new and important insights into the 

impacts of policy can be obtained from these models. Thus, it is hoped 

that these models can be used for actual policy evaluation in the 

coming year.



-196-

References

Volume III

Adams, F.G., C.G. Brooking and N.J. Glickman, "On the Specification 
and Simulation of a Regional Econometric Model: A Model of the 
Mississippi," Review of Economics and Statistics, Sept. 1975.

Barten, A.P., "Maximum Likelihood Estimation of a Complete System 
of Demand Equations," European Economic Review, Fall, 1969.

Baumol, W.J., Business. Behavior, Value, and Growth (rev. ed.), 
(Harcourt, Brace & World, New York), 1967.

Berndt, E.R. and N.E. Savin, "Estimation and Hypothesis Testing
in Singular Equation Systems with Autoregressive Disturbances," 
Econometrica, Vol. 43, No. 5-6, Sept., Nov. 1975.

Berndt, E.R., B.H. Hall, R.E. Hall and J.R. Hausman, "Estimation
and Inference in Nonlinear Structural Models," Annals of Economic 
and Social Measurement, Vol. 3, No. 4, Oct. 1974, pp.653-668.

Berndt, E.R. and D.O. Wood, "Technology, Prices, and the Derived 
Demand for Energy," Review of Economics and Statistics, Vol.
LVII, No. 3, Aug. 1975, p. 259.

Burgess, David F., "Duality Theory and Pitfalls in the Specification 
of Technology," J. Econometrics, Vol. 3, 1975, pp. 105-121.

Caves, Douglas W. and L.R. Christensen, "Modeling the Structure of 
Production in the U.S. Railroad Industry," Mimeo, Sept. 1976.

Christensen, L.R. and W.H. Greene, "Economies of Scale in U.S. Elec­
tric Power Generation," J. Polit. Econ.,.Vol. 84, No. 4, Part 1, 
Aug. 1976.

Christensen, L.R., D.W. Jorgensen and L.J. Lau, "Transcendental 
Logarithmic Production Functions," Review of Econ. and Stat.,
Vol. LV, No. 1, Feb. 1973, pp. 28-45.

Cyert, R.M. and J.G. March, A Behavioral Theory of the Firm,(Prentice 
Hall, Englewood Cliffs, N.J.), 1963.

deLeeuw, R. and E. Gramlich, "The Federal Reserve--MIT Econometric 
Model," Federal Reserve Bulletin, Jan. 1968.



-197-

Dhrymes, Phoebus, "Feedback and Issues in Model Validation," Electric 
Power Research Institute, Proceedings of the Workshop on Modelling 
the Interrelationships Between the Energy Sector and the General 
Economy, Stanford, CA, 1976.

Diewert, W.E., "An Application of the Shephard Duality Theorem: A
Generalized Leontief Production Function," J. Polit. Econ.,
Vol. 79, 1971, pp. 481-507.

Diewert, W.E.', "Applications of Duality Theory," in D.A. Kendrick and 
M.D. Intreligator, (eds.), Frontiers of Quantitative Economics,
Vol. II, (North-Holland, Amsterdam), 1974, pp. 106-174.

Diewert, W.E., "Functional Forms of Profit and Transformation Functions," 
J. Economic Theory, Vol. 6, 1973, pp. 248-316.

Diewert, W.E., "Homogeneous Weak Separability and Exact Index Numbers," 
IMSSS, Rpt. No. 122,‘Stanford Univ., Jan. 1974.

Douglas, G.W. and J.C. Miller, III, Economic Regulation of Domestic 
Air Transport: Theory and Policy, [The Brookings Institution, 
Washington, D.C.), 1974.

Douglas, G.W. and J.C. Miller, III, "Quality Competition, Industry 
Equilibrium, and Efficiency in the Price-Constrained Airline 
Market," American Economic Review, Vol. LXIV, 1974, pp. 657-669.

Eads, G., M. Nerlove and W. Raduchel, "A Long-Run Cost Function
for the Local Service Airline Industry," Rev, of Econ. & Stat.,
Aug. 1969.

Eichorn, W.', "Fisher's Tests Revisited," Econometrica, Vol. 44,
March 1976, pp. 247-256.

Evans, M.K. and L.R. Klein, The Wharton Econometric Forecasting Model, 
Univ. of Pennsylvania, Economics Res. Unit (Philadelphia, PA),
1967.

Fair, R.C., A Short Run Model of the U.S. Economy, (D.C. Heath, 
Lexington, MA), 1971.

Fellner, W., Competition Among the Few, (A.P. Knopf, New York), 1949.

Fisher, F.M., "Approximate Aggregation and the Leontief Conditions," 
Econometrica, Vol. 37, July 1969, pp. 457-469.

Fisher, I., The Making of Index Numbers, (Cambridge), 1922.



-198-

Friedlaender, A.F., The Diler;ma of Freight Transport Regulation,
(The Brookings Institute, Washington, D.C.), 1969.

Friedlaender, A.F., et al., "Policy Review and Scenario Development," 
Alternative Scenarios for Federal Transportation Policy, Vol. II, 
(Ki.I.T. Center for Transportation Studies, Cambridge, MATi 
Jan. 1977.

Friedlaender, A.F., G. Treyz and R. Tresch, "A Quarterly Econometric 
Model of Massachusetts and its Fiscal Structure," Mimeo, 
(Cambridge), June 1975.

Glickman, N.J., "An Econometric Forecasting Model for the Philadel­
phia Region," J. of Regional Sci., April 1971.

Griliches, Zvi, "Cost Allocation in Railroad Regulations," Bell J. 
of Economics and Manaaement Sci., Vol. 3, No. 1, Spring 1972, 
pp. 26-41.

Hall, R.E., "Technological Change and Capital from the Point of View 
of the Dual," Rev. Econ. Studies, Vol. 35, 1968, pp. 35-46.

Hall, R.E., "The Specification of Technology with Several Kinds of 
Output," J. Polit. Econ., Vol. 81, No. 4, July/Auq. 1973, 
pp. 878-892.

Hanock, Giora, "Generation of New Production Functions through Duality, 
in D.L. McFadden (ed.), An Econometric Approach to Production 
Theory, (North-Holland, Amsterdam), forthcoming.

Hanock, G., "Production and Demand Models with Direct or Indirect 
Implicit Additivity," Econometrica, Vol. 43, No. 3, May 1975, 
pp. 395-420.

Hudson, E. and D.W. Jorgenson, "U.S. Energy Policy and Economic Growth: 
1975-2000," Bell J. of Management Sci., Vol. 5, No. 2, Autumn 1974

Jacobsen, S.E., "Production Correspondences," Econometrica, Vol. 38 
1970, pp. 754-771.

Jorgensen, D.W. and L. Lau, "Duality and Differentiability in Pro­
duction," J. Economic Theory, Vol. 9, 1974, pp. 23-42.

Jorgensen, D.W. and L. Lau, "Duality of Technology and Economic 
Behavior," Rev. Econ. Studies, 1975.

Keeler, T. E., "Airline Regulation and Market Performance," Bell J. 
of Management Sci., Vol. 3, No. 2, Autumn 1972, pp. 399-425.



-199-

Keeler, T.E., "Railroad Costs, Returns to Scale, and Excess Capacity," 
Rev, of Econ. & Stats., May 1974.

Khazzoom, J.D., "A Discussion of the Hudson-Jorgenson Model of U.S.
Energy Policy and Growth," E.P.R.E., Proc. Workshop on Modelling 
the Interrelationships Between the Energy Sector and the Gen.
Econ., Stanford, CA, 1976.

Klein, L.R. and A.S. Goldberger, An Econometric Model of the United 
States, (North-Holland, Amsterdam), 1955.

Kneafsey, James T., "Costing in Railroad Operations: A Proposed Metho­
dology," Studies in Railroad Operations and Economics, Vol. 13, 
(M.I.T. Dept, of Civil Eng'g., Cambridge, MA), March 1975.

Lau, L., "A Characterization of the Normalized Restricted Profit 
Function," J. Econ. Theory, Vol. 12, Feb. 1976, pp. 131-163.

Lau, L. "A Characterization of the Normalized Restricted Profit 
Function," Tech. Rpt. No. 134, Inst, for Math. Studies in the 
Social Sciences, (Stanford Univ., Stanford, CA), June 1974.

Lau, L. "Profit Function of Technologies with Multiple Inputs and 
Outputs," Rev, of Econ. & Stats., Vol. 54, 1972, pp. 281-289.

Leontief, Wassily, "Introduction to the Theory of the Internal Structure 
of Functional Relationships," Econometrica, Vol. 157, No. 4,
Oct. 1947.

Leontief, W.W., Studies in the Structure of the American Economy,
(Oxford Univ. Press, New York), 1953.

Liebenberg, M., A.A. Hirsch and J. Popkin, "A Quarterly Econometric
Model of the United States," Survey of Current Business, March 1966.

Marris, R., The Economic Theory pf Managerial Capitalism, (The Free 
Press of Glencoe, New York), 1964.

McFadden, D., "Cost, Revenue, and Profit Functions," in D.L. McFadden 
(ed.), An Econometric Approach to Production Theory, (North- 
Holland, Amsterdam), forthcoming.

Moore, T.G., Freight Transportation Regulation: Surface Freight and
the I.C.C.,(American Enterprise Institute, Washington, D.C.), 1972.

Nerlove, M., "Returns to Scale in Electric Supply," in C. Christ (ed.). 
Measurement in Economies: Studies in Mathematical Economies and 
Econometrics, in Memory of Yehuda Granfeld, (Stanford Univ. Press, 
Stanford, CA), 1963.



-200-

Oramas, U. A., The Cost Structure of Regulated Trucking, Ph.D. Thesis, 
Mass. Inst, of Tech., Dept, of Civil Eng'g., May 1975.

Rosen, S., "Hedonic Prices and Implicit Markets: Product Differen­
tiation in Pure Competition," J. Polit. Econ.,Vol. 82, 1974, 
pp. 34-55.

Samuel son, Paul A., Foundations of Economic Analysis, (Harvard Univ. 
Press, Cambridge, MA), 1947.

Samuelson, P.A., "Prices of Factors and Goods in General Equilibrium," 
Rev. Econ. Studies, Vol. 21, 1953-1954, pp. 1-20.

Samuelson, P.A. and S. Swamy, "Invariant Economic Index Numbers and
Canonical Duality: Survey and Synthesis," Amer. Econ. Rev., Vol. 6' 
1974, pp. 566-593.

Samuelson, P.A., "A New Theorem on Nonsubstitution," in The Collected 
Scientific Papers of Paul A. Samuelson, Vol, I, 0. Stiglitz (ed.), 
(M.I.T. Press, Cambridge, MA.), 1966, pp. 520-535.

Sewall, V.'., "Aggregation and Specification Problems," in E.P.R.I.,
Proc. Workshop on Modelling the Interrelationships Between the 
Energy Sector and the Gen. Econ., Stanford, 1976.

Shephard, R.W., Cost and Production Functions, (Princeton Univ.
Press, Princeton, N.J.), 1970.

Shephard, R.W., Theory of Cost and Production Functions, (Princeton 
Univ. Press, Princeton, N.J.), 1970.

Spady, R. and A.F. Friedlaender, Econometric Estimation of Cost .
Functions in the Regulated Transportation Industries,
TM.I.T. Center for Transportation Studies, Cambridge MA), 1976.

Star, S. and R.E. Hall, "An Approximate Divisia Index of Total Factor 
Productivity," Econometrica, Vol. 44, March 1976, pp. 257-263.

Suits, D.F., "An Econcmetric Model of Michigan," Res. Seminar in 
Quantitative Economics, Univ. of Michigan, Ann Arbor, Mich.,
June 1965.

Theil, H., Economics and Information Theory, Chicago, 1967.

Tornquist, L., "The Bank of Finland's Consumption Price Index,"
Bank of Finland Monthly Bulletin, Vol. 10, 1936, pp. 1-8.

Uzawa, H., "Duality Principles in the Theory of Cost and Production," 
Interntnl. Econ. Rev., Vol. 5, 1964, pp. 216-220.

Varian, H., Lecture Notes on Microeconomic Theory, Mimeo, M.I.T., 1975.

4U.S. GOVERNMENT PRINTING OFFICE: 1977 732-561/274 1-3



REQUEST FOR FEEDBACK TO 
The DOT Program Of University Research

D0T-TST-77-80

YES NO
□ D Did you find the report useful for your particular needs?

If so, how?

□ □ Did you find the research to be of high quality?

□ D Were the results of the research communicated effectively
by this report?

□ □ Do you think this report will be valuable to workers in the
field of transportation represented by the subject area of 
the research?

Q D Are there one or more areas of the report which need 
strengthening? Which areas?

D D Would you be interested in receiving further reports in this 
area of research? If so, fill out form on other side.

Please furnish in the space below any comments yot iay have concerning the 
report. We are particularly interested in further elat ation of the above 
questions.

COMMENTS

Thank you for your cooperation. No postage necess^ff if mailed in the U.S.A.



RESEARCH FEEDBACK
Your comments, please ...

This booklet was published by the DOT Program of University Research and 
is intended to serve as a reference source for transportation analysts, planners, 
and operators. Your comments on the other side of this form will be reviewed 
by the persons responsible for writing and publishing this material. Feedback 
is extremely important in improving the quality of research results, the transfer 
of research information, and the communication link between the researcher 
and the user.

FOLD ON TWO LINES. STAPLE AND MAIL

Fold Fold

DEPARTMENT OF TRANSPORTATION 
OFFICE OF THE SECRETARY 

Washington, D.C. 20590

Official Business

PENALTY FOR PRIVATE USE. 1300

POSTAGE AND PEES PAID 
DEPARTMENT OP 
TRANSPORTATION

DOT 518

Office of University Research 
Office of the Secretary (TST-60)
U. S. Department of Transportation 
400 Seventh Street, S.W. 
Washington, D.C. 20590

Fold Fold

IF YOU WISH TO BE ADDED TO THE MAIL LIST FOR FUTURE 
REPORTS, PLEASE FILL OUT THIS FORM.

Name---------------------------------- --------------------------------------------------------------------------------------Title___________________
Use Block Letters or Type

Department/Office/Room _________________________________________________________________ ____________

Organization ___________________ ______________________________________________________________ ______

Street Address ______________ ______ ______________________________________________________ ___________

City-------------------- ------------------------------------------------------------------------------------State_________________________  Zip


