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A3STRACT
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[ATRODUCTION

In conjunction with the planning for the Waste [solation Pilot Plant
(dIPP) which may be located near Carlsbad, MNew Mexicn, ~he need wes recog-
nized for a strassmeter to monitor stress changes in bedded salt. During
construction of the 4iPP facility, in situ stress changes will be monitoren
to verify code predictions and tn certify structura) integrity. To meet tr=
WIPP requirementc, several vibrating-wire stressmeters {VWS) with scft-rock
platens were purchased from IRAD Gage, Irc., Lebanan, NH, The princinia o
operation of the VWS is to wedge (preload) a cylinder, wnich has a ors-
iz2nsioned wire stretched diametrically across its hare, intn a borennlz, 87
czlibration, stress changes in the rock are related tn the perioc of
nscillation of the pretensinned wﬁre.l Since no calibration data was
availabla for the VWS in bedded salt, large 5locks of hedded salt werz
obtained from the Mississippi Chemizcal Cnmpany pntash mine in sautheast ‘ew
Mexico for the purpose of runring calibratica tests.

'

Followirg the canventianal calibrazion procadures,” the Ya3s were
calibrated in 46 x 45 x 30-czntimeter {cm} piorks of badded 52}t in a
universal tasting machine. Thes2 initial unizxial caliaraticns presentad

two problems:

1. It was dificult ta set tha gages a3t
2. The results were arrgtic and nnt rapr2isbla.

7o better understand these probisms, the YWS and hedded sait were inv2st -

qated seoarately. This paper discusses the stress-strain charact2-

sedded salt, a new platen design to solve the setting oroblem,
rmeter design, 3 new calibration tachniaque, and the field tria’ resy’ic

tnese new zpproaches.

The primary intant of this paper is ta desgcribe the cngracterist:
the newly devzloped bnrehole~inclusion stressmeters. 211 rocc tasts wers2
run §in bedded ait.  An exclanaticn of the senavior f 2e3122 salit Lener

various luading conditions is beyond the scope of this paoar.

-1 -



Strass-Strain Characteristics of Bedded Salt

After consylting with W, Wawersik,2 the type of tests thac should be
performed in order to better understand the behavior of bedded salt was
dacided upon. Data were obtained from a series of uniaxial loading tests in
anich stress-strain curves were generated. Loading and unloading were
recorded from repeated cycles. Specially designed extensometers with a
30.5-cm span were mounted directly on the salt blocks. Linear varianle dis-
placement transformers (LVDT) were used to measure the strain, and the cali-
brated input of the universal testing machine was used to determine the uni-

axial stress level.

The data from three different salt blocks are shown in Figure 1. Block
I was ru~ through four cycles. Runs 1 and 2 had a maximum input of 12.7
megapascals (MPa) and runs 3 and 4 had a maximum input of 19.3 MPa. Nate
tnat eacn succeeding loading tended to follew the preceding unloading, On
run 3 the input was held at 19.3 MPa for 8 minutes. During this time the
strain increased by 1200 microstrain but a stressmetar in the sare block did
nct show a change in its reading. The data from 8lacks IT and [I] are in-
civded t show the variations obtained from different 5locks. The vari-
ations seen are within *+ 5 percent, which is reasonable for different rock

samplas.

Figure ! shows that the sirass-strain curve for bedded salt is ngaliqear
5 congluded that a

and exhibits a large hysteresis. From this data it wi
meaningful calibration of a stressmeter would have to be obtained un the
first loading cycle. Under mine conditions an increase in the in situ

stress is the normal occurrence as mining progresses.

IRAD VWS Platen Redesign

The difficulties encountered in setting the VWS with soft rock platens
(figure 2) scemed to be caused by the gage's stiffness. As supplied, the
nlatens tended to embed themselves in the salt at the recommendeu preload.
To eliminate this problem the area of the platens had to 52 increased and/or

the stiffness of th2 gage reducsd.
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Fig. 2. Cross-sectional view of a VWS in a borehole

No attempt was made to redesign the basic VWS which appeared to be a
durable, reliable transducer. However, the way in which the platens apply
loading to the transducer was investigated with the SANDIA-BMINES computer
program which uses the finite element method.3 A cumplete description of
the modeling technigue used is contained in Reference 3., This study pointed
out two significant points:

1. The stiffness of the gage is strongly dependent on the angle
through which the body of the gage is Tpaded. As supplied (Figure 7}, the
pottom platen {gage shoe) loads the gage through a 120 degree angle and the
top of the gage is loaded across the flat of the wedge, This arrangement
gives a theoretical gage stiffness of 16.3 N/m x 10_8. Cecreasing the
Toading angle of the gage shoe to a line load gives a stiffness of 9.5 N/m x
10_8, or a decrezse in stiffness of 41 percent.



2. The study pointed out that the calculated gage stifrness depends on
the portion of the gage that is used as a reference. The above stiffness
values are r=ferenced to the outer surface of the YWS cylindar, If the gage
stiffness is based on the change in diameter of the cylinder bore, a 25 per-

cent increase in stiffness results.

Laboratory experiments were performed to verify the theoretical cre-
dictions and the results are shown in Figure 3. The upper two curves wers
run with the VWS in a press with the top of the gage loaded acrnss the
cylinder flat and the bottom of the gage in a lucite ble<x. The lucite
block simulated the bottom half of a 3.8-cm borehole. Decreasing the width
of the bottom platen from 3.05 cm to 1.27 cm resulted in a decrease in jage
stiffness of roughly 39 percent. The lower curve was an attempt to simulate
a line load on the top and bottom of the gage. This configuration resulted

in the least stiffness.
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Using the above results, new platens were designed to provide a line
load on the top and bottom of the gage. The new platens were also length-
ened so they would contact more of the borehole's surface. Extending the
platens beyond the gage body mecessitated making them thicker so that the

stressmeter would be the weakest part of the assembly.
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Fig. 4 - Extended platen design.

Figure 4 is a drawing of the extended platen design. The sensor shown
is a straingaged stressmeter which is described in the following section.
The extended platen can be approximeted by a cantilever beam of reactangular

cross-section. Equation (1) gives the deflection of a cantilever beam for a

uniformly distributed load.



where

8 = deflection, m

w = lgad, N/m

I = length, m

£ = modulus of elasticity, N/m2
I = moment of inertia, m .

Thegretically, the gage stiffness was shown to be 9.6 N/m x 1073,
Each extended platen supports 19 percent of the total load on the trans-
ducer. The stiffness of the extended platen (0.51-cm thick, 2.05-cm wide.
1.14-cm Tong) calculated from Equation (1), and with F = 2,07 x 1011
Nfme, £=0.114m, and 1 = 3.37 x 10720 o? 45 3.77 u/m x 1078,
Considering the load supported by the extended platen, the overall result
that the platen is 2.07 times stiffer than the vibrating-sire transducer.

v

The results of the many tests run with the new platen desiga indicatz

that the platen stiffness is adequate.

Design of few Aigid Inclusion Stressmeter

The [RAD-supplied VWS reauires a special deta logger to read its out-
put. A stressmeter whise output could be read with a conventional data
logger was preferred, and a new borehole-inclusion stressmeter was designed

tn this end.

Available straingages and bonding cemeats indicated that a transducer
could be designed using existing technolugy. The design of the straingaged
stressmeter {SG65; is shown in Figure 5. 3asically, the transducer consists
of an outer body with an exterior shape identical to the YWS except for two
graoves down the sides., The bady has a bore with a Morse taper t2 accept
the instrumented plug. Four alloy grid straingages [gage fecior of 2.05)
~ith a thermal coefficient of expansion matched to the brass plug are
mounted on the beam section of the plug. Two of the straingages read the
compression of the plug and the other two provide temperature compensaticn

1
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for the daeatstone bridee configuration. The side grooves are sized so tnat
the stiffness of the comp -te transducer essentially matckes the stiffness
of an IRAD VWS,

An unloaded SGS was temperature cycled in an oven. Over a tamparet.re
ringe of 21°C to 205°C the output with 18 Vdc excitation varies less than *
0.6 millivolts (mV}). This is equivalent tn * 0.8 MPa (* 115 057} stress
change in bedded salt. The calibration of the stressmeters in hedoed salt
is discussed in the sactinn antitied "Unizcial Stress Calibra~inns i1 Sedded

Salt.”

A common conCern in 4sing cemented striingages fnr lnngterT raadings is
creap 9¢ the cement bond. To check the stability af the SG3 wita extarded
alatens a unit was wedged in an aluminum black at more than tnree times the
normal creload. Thz total creep after 75 days was less than 0.5 percart.

Aftar the daevelsoment af SGS, hoth tae $3% and the VaS were inctided in

all subsequent labogratary and field testing.

-

Solit 3lack Calioration

ermirg Ire nnizcis!

In the past, experimenters have attemastad

sensitivity factor of borehole-inclusion sirassmetars with raspect
s : 1,5 . N
Young's modulus for the rock being monitored,™’ 6 Since zrarded sait dnec
not have a constant Young's moculus [figura 1), this approach wis 15t used.

e

A new apprnach was selacted to calibrate tha VWS apd SGS in sedded salt.

First, by using a specially designed split block, tha authors

sstablished a force-versus-output curve for each gage {including 2lat2ng 3n

setiing wedge) (Figurs 8). With the gage mouniad in tha split 2lsch, 2 uno -

varsa; tesiing machine was used 10 apply Xnowr fgrcz2s on The

scatter (* 23 percent) was found betwaan

dividual calibratizns. Using the Sandia intsractive statistizal
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Fig. 6 — Split block
calibration fixture
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from tnese aquatinns it is easy tc determine the przload setting force
and any subsequent faorce on the gage due to changes in the rock stress.
Reprated split-block calibrat 2ns on an SGS, which was remnved from the
split block after each run, indicated that each point was repeatable to
within + 0.3 mV.

An empirical approach was used to relate the force nn the stressmeter to
changes in rock stress. These tests are described in the following section.

niaxial Stress Calibrations in Bedded Salt

The test egquipment that was available for loading salt blocks dictated
that two opposite faces be loaded while the remaining surfaces stayed free,
4ith this type of test setup, the salt blocks were made as large as possible
while the capability of 13 MPa stress changes in a 2.7-megane.tons (MN) uni-
varsal testing machine was maintained. The 61 x 61 x 30.5-cm blocks witn a
4,78-cm borehole in the center af the large face kept the free surfaces 12.2
radii from the borehole. To provide data on block size effects, 15.2 x i5.2
x 12.6-cm blocks were also used for calibration. Figure 8a shows the - 7e
block test setup and 36 shows the small block test setup.

The change in force on the stressmeter versus input stress changes is
shown in Figure 9 (VWS) and Figure 10 (SGS). The change in force an the
stressmeters was determined by using the gage output and the split-block
calibration gata. Input stress was obtained from the calibrated input force
read on the universal testing machine divided by the area loaded.

Tne data from the SGS fall in a tighter band but the spreads seen on the
WS are reasonable for different rock samples. Notice that there is little
difference between the small and Targe block calibration curves. Fijure 9
in¢ludes the unioading curvae for large Block [I. Once the kaee of the cali-
bration curve (€-7 MPa) has been exceeded, the unlcading curve deviates from
the loading curve.

- 12 -
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By -omparing Figures 9 and 10, it ced be seen that the YWS large block
data essentially include the SGS data. Based on this observation, the cali-
bration curve for stressmeters was taken from the SC35 data /3NGN3 and 5NCO6
not shown] recar :d on large Block 111. Two straight lines were used to it
the data. Thes- traight lines, whicn were determined by least squares with
muitiale readings, are given in Equation (4) below.

MPa = 0.9745{4sF}

{4a)
“or
AF ¢ 8.15 kilanewtons {xN)
whern
MPa = stress change in bHeddad szlt
F = force change on gage, «"
MPa = 3,463 *+ 0.3727(aF)
(4b)
for
aF > 6.16 kN
where

MPa = stress charnge in bedded sait
4F = farce change an gage, ki

The preceding sectinns described how the stressmeter calibration data for
bedded salt were obtained. To implement the calibration da"a the following

procedure is used:

1. A least-sguares multiple regression curve is fit to
force-versus-gage output curve (Figure 7).

2. Similarly, a curve 1s fit to the stress-versus gage-force curve
{Figure 73},

~ 14 -
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The initial setting force {~ 6.5 kN) is subtracted from all sub-
sequent readings so that changes in stress ara irdicaten,

4. Tne abave curves are incorporated in a computer code which cai-
culates stress change for specific gage outputs.

Field Trial Missigsippi Chemical Mine

Recently, VWSs and SGSs wer2 installed in pillars in tne Mississippi

N

C.emical Company potasn mine. The mining being monitored utiiized 4
a0.percent extraction ratic, Trerefore, 2s mining progressed, the remaiaina
supoort pillars ultimately failed. 1In situ pillar stress charges <uc To the
mining were successfully monitored until after pillar slaboing had

occurred. The VWSs were recorded manually ance a day, and the SGSs were
menitored hourly on a conventional data lugge~. The data recorded sy 5G5S,
SNC02, and VWS, No. 349, are shewn in Figure 11, Good 2greement was ob-
rained between the YW4S and SGS. However, after the abave VWS reached its
maximum reading {caunt change of roughly 2200}, a drop in stress was in-

dicated. A corresponding drop did not occur in the SG3 reacings. |

B)

iact,
the 5G5S output cortinued to rise until an induced stress change of 27.6 MPa
was reached. The plateau seen on the SGS record corresponds to tha tims

period during which the mining equipment was shut down for maintenance.

W PELASIN s S St i R
MISSISSIPPI CHEMICAL Co.

26 4 EXPERIMLNT 1}
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1

Fig. 11 - Mississippi Chemical Ca.
borehole-inclusion stressmeter data
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Subsequent laboratory tests on the VWS duplicatec the mine behavior wnen
the input exceeded the range of the gage, The VWS with extended platens has
a maximum range of 12-14 MPa. In other words, when the range of the VWS is
exceeded an artifical drop in readings can occur. This behavior of the VWS
is apparently due to the excitation of harmonics in the wire.

In the Miss1ssippi Chemical Company experiment, an SGS, SNOO3, was in-
stalled in one pillar while a previously installed 58S, SN0OD2, was in-
dicating a stress change of 20.6 MPa. These data are also shown in Figu-e
11.  SG6S, SNOD3, shows a rapidly increasing stress change to a value
approximately 14 percent below the reading on SGS, SNOC2. Cable failure
occurred on SGS, SNOD3, at this point, The following section descrides a
Taboratory experiment which investigates this behavior in prestressed salt.

Laboratory Investigation of Prestressed Salt

For this experiment a small salt block (15.5 x 15.2 x 12.7 cm) was pre-
loaded to a stress of 6.78 MPa in a universal testing machine. An 3GS was
then set in the block. After 43 hours the input stress was increased to
9.04 MPa. Twenty-nine hours later th2 input stress was increased to 11.30
MPa. These results are shown in Figure 12. Observe that a behavior similar
to the Mississippi Chemical Company experiment was obtained. Once the knee
of the stress—strain curve for bedded salt (6-7 MPa) (Figure 1) is exceeded,

the meter readings approach the in situ stress.

L e e e e LA e e e e o e
2k SMALL SALT BLOCK TEST
X SGS [RNESENSSE,
I SNO0S 1
10+ B
LA <
2 sk ‘//IVPUT o u
=
z!= ]
o6k A
g5k —
2
oo B
3| _
S 4
-
0 FU PR RS T N S T | U S
1 2 3 q 5 6
TEME IN DAYS

Fig. 12 - Data from laboratory
investigation of prestressed salt
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These results suggest another experiment. What will a borehole-
inclusion meter read in bedded salt, which is seeing only the overburdei?

Plans are underway %o perform this experiment sometime curing 1979.

Summary ar i Conclusions

The new platen design described in this paper orovides for easy instal-
lation and repeatable readings when boreholz-inclusion stressmeters are used

in bedded salt.

An SGS has been designed witn sensitivity comparable to tha: cf the
VWS. The SGS also has a linear output, and a range that is at least three
times as great as the vibrating wire unit; it can also be recorded on con-

venttonal data loggers.

An empirical approach was used to calibrate the inclusicn stressmeters
in bedded salt. Field trials using this approach prcduced results in bedded

salt which appear viable.

The experiments run with the inclusion stressmeters and on hedded salt
indicate *that the stressmeters are neither a true stressmeter nor a true
strainmeter. The shape of the calibration curve indicates that they are
somewhat in between. Quring the salt-block calibrations it was found that
under high constant loads (19.3 MPa) the strain readings increased while the
stressmeter readings remeined constant, Finite 2lement techniaues ere
planned to see if it is possible to calculate tha observed behavior of the

stressmeters in bedded salt.
It is hoped that the stressmeter technigque discusser in this paper wiil

provide reliable data which will permit code Gevelopment and a better under-
standing of the behavior of bedded salt uncer various loading conditions.

-17 -
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