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Abstract

The Advanced Neutron Source reactor (ANS), a
propoied Department of Energy research reactor currently
unde-zoing conceptual design at the Oak Ridge National
Labo=ztory (ORNL), will generate a thermal neutron flux
appresmating 10° M?— 57 The compact core necessary
to traduce this flux provides little space for the
shim scfety control rods, which are located in the central
annu.:s of the core. Without proper control rod drive
desi—. the control rod drive magnets (which hold the
contrz. rod latch in a ready-to-scram position) may be
unat.: to support the required load due 10 their restricted
size. Tais paper describes the force analysis performed on
the c:ztrol rod latch mechanism to determine the fraction
of ¢izivol rod weight transferred to the drive magnet.
This =‘ormation will be useiul during latch, control rod
drivs :nd magnet design.

[. INTRODUCTION

T-is report describes the force analvsis performed for
the ~cwanced Neutron Source (ANS) control rod fatch
When engaged. this mechanism holds the
cont::. rod in a cocked, ready-1o-scram position and upon
relez:: allows insertion of the control rod. The force
appl:Z to the latch (exerted primarily by the control rod
weicz: and accelerating spring force) is distributed
berw:za the laich release rod and the release rod guide
tube v the laich mechanism. The latch release rod is
supp:~ed by the control rod magnet force when the latch
is ec::ged. In order to accurately predict the required
mag:z:: force and design a suitable conirol rod drive

magr.:L it is necessary to know the distribution of force
throz:3 1he Jzich.

“Gxeraled by Martin Mariena Energy Systems, Inc., for the

U.S. Zepartment of Energy under Comtract No. DE-AC05-
S40RZ:1+00.

The laich consists of four disks, supported by the
laich release rod, which protrude through slots in the
release rod guide tube when the latch is engaged (Fig. 1).
The control rod, which is concentric with the latch release
rod guide tube, rests on the protruding portion of the
disks. When the release rod is lowered, the disks (guided
by angled grooves cut in the release rod) retract, allowing
the control rod to clear the latch mechanism and scram
(Fig. 2).

A similar analysis was performed for the ball latch
mechanism used in the High Flux [sotope Reactor
(HFIR)[1). This analysis generated a series of plots
showing how the force transferred through the latch to the
latch release rod was affected by the laich geometry,
Simplifications used in this analysis are

1. The ball force balance satisfies the two
equilibrium conditions that the sum of forces in
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Fig. 1. Control rod in latched position.
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Fizg. 2. Contral rod in uniatched position.

wo orthogonal directions must be zero;
however, the condition that the sum of the
moments is zero iS not addressed. Thus. the
ball is treated as a point mass.

[

The friction force, which is tangent to the ball
surface, is assumed to be proportional to the
normal force, with the constant of
proportionality being the static coefficient of
friction, p. In reality, the friction force can be
any value between zero and u times the normal
force.

With these simplifications, two static equilibrium
equations are sufficient 10 determine ihe force transferred
10 the latch release rod. The present analysis avoids these
assumptions, resulting in a more complicated and
presumably more accurate analysis. The analysis is
described in the following section, and results and
conclusions complete the paper.

II. ANALYSIS DESCRIPTION

The latch disk and the most general set of applied
forces are shown in Fig. 3. The applied forces consist of

1. the control rod force, P), which is applied at an
angle 6, in the vertical direction;

2. a reaction at the point of contact between the
upper half of the disk and the release rod
guidetube, defined by the angle ¢, with
horizontal component P, and vertical component
F,,

3. asimilar reaction at the point of contact berween
the lower half of the disk and the release rod
guide tube, also defined by 4. with horizontal
component P, and vertical component P and

4. a reaction at the contact point between the disk
and the laich release rod, defined by 4.. with

horizontal component P, and vertical component
P,

Note that the applied forces must be compressive (in the
directions shown in Fig. 3) since the disk is not fastened
to either the lawch release rod or the release rod guide
tube. Also, because there are six unknown forces and
only three static equilibrium equations, three additional
equations must be developed using energy methods to
obtain a general solution for the reactions. Alternately,
the problem may be solved on a case-by-case basis using
{inite-element techniques. In this analysis, an approximate
solution was obtained using a combination of the theory
of elasticity and energy methods. Finite-element
calculations were performed for several cases, and the
resulis between the two sojution methods were compared.
The approximate theory of elasticity solution will be
described first, followed by a description of the finite.
clement analysis.

A. Approximaie Theory of Elasticity Solution

The static equilibrium equations consist of

YF,=0=P,-P,—-P, . (1)

Fig. 3. Latch forces.



LF,=0=P, + P~ P, - P, )
¥ M, = 0 = PCos(d,) - P,Cos(d,) + P.Sin(d.)
- P,Cos(6.) + PSin(8.) + P Sin(x+4,)
— P.Cos(n+#6;) . 3

Additional equations are developed using Castigliano’s
theorem (theorem of complementary strain energy). This
theorem states that the partial derivative of the strain
energy, U, taken with respect 10 an unknown force P,
applied at point g, equals the displacement at g; in the
direction of P. If g, is a rigid support point and P; is a
reaction, the displacement at gq; is zero and

U _y s
35, =0 - )

Equation (4) can be applied 1o each redundant force 10
develop suificient equations, which when combined with

the static equilibrium equations, allow all reactions to be
determined.

The majority of the theory of elasticity solution
involves developing the additional equauons needed 10
find the redundant forces. This consists of

1. determining the disk stress distribution,

)

using the stress distribution to develop an
approximate strain energy expression, and

)

applving Casiigliano’s theorem 10 obiain the
necessary ¢suations.

Each step is descritad below.

Stress Distribution

The angles used in the derivation of the disk stress
distribution are defined in Fig. 4. A force P with
direction & is applied 10 the boundary of a disk of
diameter D at point A. The angle between point A and
the horizontal axis is defined as §. The angle AOB has
a measure of 23. The location of any point g on the disk
can be described using R, the distance from point A, and
@, the angle between lines Ag and AB.

Assuming plzne stress. the two-dimensional stress
field a1 ¢ due 10 a point load P at A is given by

-2PCos(a) )
I = T o = Tpr =0, (3

where

ogg is the normal stress in the direction of Ag,
o7 is the normal stress perpendicular 10 Ag,
rxr is the shear stress[2].

The force P causes a compressive stress. If the radial
stress at the surface is to be zero (i.e., if the disk is not
subjected to an external pressure), a uniform tensile force
of PSin(8)/(xD) must be applied to the disk surface t0
offset the uniform radial compression predicted by Eq. (5).
The stress tensor, T, at g, written in terms of a right-
hand coordinate system with Ag as the "X" axis, is

~2PCos(a)  PSin(g)

PR xR D g &
PSin(B)
+ T € &, 6)
In matrix form, Eq. (6) becomes
—2PCos{e)  PSin(g)
nR + aD 0
(7] = @)
0 PSin(B)
xD

The rotation matrix [M], which transforms [T] into X-Y
cocrdinates, is

Pi

B

Fig. 4. Angles used in strain energy calculation.



Cos(§)  Sin(§)
[M] = , ®)
=Sin(§) Cos(§)

where

§ = +a)

Using the rotation matrix. the matrix form of the stress
tensor [T] in X-Y coordinates is

(M =M} (T] M) %)

Superposition is used to find the stress tensor
resulting from the application of several forces. The
terms in Eqgs. (5) through (9) and the angles defined in
Fig. 4 are different for cach applied force, and the
summation occurs after rotating the stress tensor into the
X-Y coordinate system. Tzus,

(71 = E (M) T (M)

=1

(10)

Strain Enereov

The strain energy dezsity caused by the application
of several forces is assumel 10 be the superposition of the
strain energy density proiuced by each force applied
separately. This assumpticz. although not strictly justified,
results in a solution that zzpears. from comparisons with
the results of the finiiz-clement calculations, to be
sufficiently accurate for 1=z purpese of this analysis. An
explanation follows that —zy account for the accuracy of
the results obtained wher -sing this assumption.

The expression for iz strain energy density is given
in Eq. {11).

1 ~ - I - " ”
u;, = Z_E— Lan°l‘0” - v zdn- ZU}_i
=1 =1 =1 i=]
E
n 2
+ ) T
i=1 (11)
2G
where

o, is the normu! stres: in the x direction due o force
P7

i

o,; is the normal stres: in the y direction due to force
P.

i

1., is the shear stresc 2uc (0 force P,
E is the modulus of elasticity,

G is the modulus of rigidity,

v is Poisson’s ratio {2].

This equation involves squares and products of
summations of stress components. Terms formed by
squaring a stress component are always positive; however,
terms formed from a product of different stress
components can be either positive or negative. It is
speculated that these latter terms tend 10 cancel out,
making the sum of terms formed from squares of stress
components closely approximate the strain energy density.
The surviving terms are just those that wouid be
generated by assuming superposition of the strain energy
densities produced by each force applied separately.

The strain energy density written in principal

coordinates (in which the shear stress is zero) is given by

1 Vo0,

o= Sploy + ey - T (12)
where

o; is the principal stress in the jth direction.
Noting that Eq. (7) gives the principsl stress components

at any point caused by point force applied at the disk’s
surface, Eq. (12) becomes

_ L —2PCos(a)  PSin(g)
U= g R xD
PSin(g) *
xD
v ~2P.Cos(a;) PSin(B8))
E R + D
PSin(8) -
D 13)

The total strain energy is found by simplifying and
then integrating Eq. (13) over the volume of the disk

ax; Rmax;
1 6iCosi(a) | (1 - v)§i6,Cos(a)
U‘J JE R R
ay; “Rmin;

+ (1 - v)¢? dRdedz (14)



where

6,' = ‘ZP,'/F,

¢ = PSin(g/xD),

dRda = differential area,

dz = 1 (plane stress assumption),
ayy = angular limits on the integral,

Rumax, Rmin; = radial limits on the integral.

The limits on the integral in Eq. (14) are determined so
that integration occurs over the entire disk volume except
for the region experiencing plastic deformation under
force P. If oy is the yield suress of the disk material,
Rmin is determined by setling the principal stress equal
1 the yield stress

P 2Cos(a) Sin(8)
Oy =~

+ Rem T D : (13)

Equation (15) is solved for Rumin, defining the region of
piastic deformation. The relationship between a,. and
Rmin is shown in Fig. 3. from which it can be seen that

a =7F—0—n2+ Raalr | (16}
a, =06 -0 + 72 = Rexlr an
where

r=D2

Neglecting the plastic strain energy results in only a
very small crror in the strain energy expression since
typically, the plastic zone under each point force is small.
ZRmax is the maximum radial distance for anv angle a.
Consideration of the disk geometry shows that Rmax is
given by

Rmax = =2rCos(a + ¢ — 21 . (18)

The total strain energy for a disk subjected 1o several
point forces P, is given by

8-¢n2
+Rmin/2r ~Costa;+¢,-%
U=1 L §iCorita)

i=1 E 2R-
Gi—¢‘~+m2 Rmin;
-Rmin;2r

(1 - v)¢,6,Cos(a;) ) . )

+ R + 0 -v)s dRda . (19)
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(8) Region of plastic deformation
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(b) Determination of angles.

Fig. 5. Geometry used 1o calculate stress distribution in the
latch disk.



Application of Castigiiano’s Theorem

The application of Castigliano’s theorem requires
that Egq. (19) be integrated and the partial derivatives
taken of the resulting expression 1o vield the additional
equations needed to solve for the disk reactions. These
operations were performed using the Macsyma computer
code, which executes symbolic and numeric mathematical
magipulations{3].

A closed-form expression for the total strain energy
as a function of the P’s was obtained by integrating
Eq. (19). Using the static equilibrium equations [Egs. (1)
through (3)], forces P,, Py, and P; were rewritten in terms
of P, P, P, and P, and these expressions were
substituted into the integrated form of Eq. (19). The
resulting total strain energy expression is a function of the
unknown forces P, P, ard P.. and the known applied
force P.. Castigliano’s theorem was then used 10 generate
three simultaneous equations, which were sohved for the
unknown forces.

The results for this combination of forces showed
that both P, and P, were tensile. The calculation of
tensile forces. which cannot be developed in the latch
rechanism, indicates that either 100 many or 100 few
reaction forces have been included in the unalysis.
Because the analysis was performed using the most general
set of reaction forces, one of more of tha ussumed
rcactions had to be eliminated for all calculated reactions
10 be compressive. The analysis was repeated with P, and
P, set equal 10 zero. After substituting for P.. 7. and P.,
the integrated form of Eq. (19) is a funciion of only P,
2nd the known applied force. Castigliano’s theorem was
used to obtain sn equation that can be solved for P.. The
values of P. obwzined {rom this expressicn zre positive.
After P iIs known. the static equilibrium equations are
used to determine the values of P.. P,. and P.. which are
also positive (compressive in this case).

Eriction Coefficients

It has been assumed that the compressive forces
predicted by the above analysis can be developed in the
latch mechanism. In reality, the coefficient of static
friction limits the develored forces and. conseguently, the
acceplable latch configurations.

Because of the laich geomelry, slip can cccur only
where the disk contacts the laich release rod.  If the
predicied force is transferred from horizontal znd vertical
components into components normal and tangential to the
latch reiease rod surface, ihie friciion coefficient necessary
to develop the predicted force can be determined. The
coefficient of stauc friction is given by

u = FjF, , (20)
where F, and F, are the tangential and normal
components of the developed force. Latch geometries
that will not slip are those with required values of y less
than the actual coefficient of static friction.

B. Finite-Element Analvsis

The finite-element calculation plane stress analysis
was performed using the SUPERSAP finite-element
code[4]. The finite-element model of the latch disk
(distorted in the horizontal direction during printing) is
shown in Fig. 6. The mesh was selected after performing
several analyses with progressively finer meshes.
Comparing the results for the different meshes showed
that negligible changes in the results were obtained after
a certain mesh fineness was reached. The mesh nearest
this fineness level was used in the analvsis.

In Fig. 6, the lines at the disk boundary represent
the supports. Note that the disk uses a finer mesh near
the supports because the stresses and the rate of stress
change are greater in these regions. The analysis
calculates the disk deflection and the support reactions.
The analysis consisted of fixing both the support locations
on the right side of the disk and the location of the
applied vertical load. and then calculating the results as
the location of the left support varied. This corresponds
10 fixing #, and 4, in the theory of elasticity solution (the
amount the disk protrudes through the latch release rod

vuide tube) and varying 4. the angle of the latch release
rod.

AT

Fig. 6. Finite-elemeni representation of ANS laich disk.



III. RESULTS

The most useful result of this analysis is the vertical
component of the force transferred to the latch release
rod. The ratio of this force to the force applied to the
latch by the control rod, the transferred force fraction, is
the fraction of the applied force that is ultimately
supported by the control rod magnet. The results of the
theory of elasticity solution will be presented first,
followed by results obtained from the finite-element
calculations.

A. Theory of Elasricity Solution

Results of the calculations are shown in Figs. 7
through 10. Ezch figure shows the fraction of the applied
force transferrad to the latch release rod for varipus
combinations of §,, 5., and 6, It can be seen that the
largest change occurs as the result of changes in §, As
3, becomes grzater in magnitude, the slope of the laich
release rod suriace in contact with the disk becomes more
vertical. This results in more force being carried by the
guide tube, «i:1 a carrespanding decrease in the f{raction
of the applied {orce transferred 10 the laich release rod,
which ranges t2iween 0.05 and 0.4 as 4, ranges between
100 and 170°.

Changin; 7, and 4, has a smaller affect on the latch
force iransfer. Varving 4. from 0° 10 45° shows a fraction
of transferred ‘>rce change of ~0.1. InCreasing 4, slighily
increases the Inrce carried by the latch release rod.
Therefore, it :in be concluded that generally 4, and 4,
should be seizcied 10 be as small as possible. This will
minimize the Iorce carried by the laich release rod for
most valucs o7 2, resulling in 1he smallest contro) rod
drive magnet.

Svmbels  corresponding 1o various ratios of
tangential-to-~2rmal latch release rod force components
are included = Figs. 7 through 10. The symbols indicale
the coefficien: of siatic friciion necessary 1o prevent
slippage alL :=2 latch release rod. An example will
illustrale how :iae symbols are used. In Fig. 7, for 4, =
10° a symbc. corresponding 10 4 = 0.3 appears for
g, = 139°. Thus, a static friction.coefficient of 0.3 or
grealer is necessary to keep the system in equilibrium for
g, = 3% §,=10% and 4, > 13%°. Similarly, a static
friction coefficiznt of 0.4 is necessary for 4, = 3% 4, =
10° and 6, > .29°. The required static friction coefficient
increases as -. decreases (i.e., as the laich release rod
surface becomes more horizontal), The laich design is not
expected 10 be limited by the friction coefficient, however,
because typical values for hardened steels in contact range
between 0.7 z=d 0.8{5].
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B. Finite-Element Solution

The finite-element analysis was performed 1or two
latch geometries representing extremes of 4, and 4,
Figures 11 and 12 compare the fractions of applied force
carried by the latch release rod over a range of §,. This
was calculated -using the theory of elasticity -and -finite-
element solutions. The results show close agreement
between the two -methods of solution. This indicates that
the assumption used in the strain energy calculation is
valid, at least over the range of latch geometry spanned by
the cases used to generate Figs. 11 and 12. In Fig. 11
(8, = 5° 6. = 10°), the two solutions differ more (.04) for
the smaller values of ¢, and virtually coincide as 4,
approaches 180°. Figure 12 (4, = 30°, 4, = 45°) shows a
nearly constant difference of 0.03 over the entire range of
8,. The agreement between the two solution methods
allows greater confidence 1o be placed in the theory of
elasticity solution results.

IV. CONCLUSIONS

These results should be useful in both the latch
design and design of the control rod magnets. The laich
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Fig. 11. Comparison of theory of elasticity and finite-
element solution. 8, = 5, 8. = 10.
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geometry can be selected to obtain a desired force transfer
or may be used in conjunction with a release time analysis
to develop a design with a reasonable compromise

between force transfer and release time. The force
rransfer results will have a significant impact on magnet
size. Previous estimates conservatively assumed that all
control rod force was transferred to the latch release rod.
Since the actual transfer is in the range of 10 to 40% of
the applied force, the magnet force and size will be
reduced: considerably ‘from- earlier estimates. The close
agreement between the theory of elasticity and finite-
element results allows the analysis results to be used with
oreater confidence.
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