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Absiract

The Advanced Neutron Source reactor (ANS), a
prope^d Department of Energy research reactor currently
undergoing conceptual design at the Oak Ridge National
Laboratory (ORNL), will generate a thermal neutron flux
approximating lO3" A/'2— S~\ The compact core necessary
to produce this flux provides little space for the
shimiifety control rods, which are located in the central
annu!_i of the core. Without proper control rod drive
desip. the control rod drive magnets (which hold the
comr:. rod latch in a ready-to-scram position) may be
unab.: to support the required load due to their restricted
size. Tais paper describes the force analysis performed on
i'ne c: itrol rod latch mechanism to determine the fraction
of c:-.:rol rod weight transferred to the drive magnet.
Thii --formation will be useful during latch, control rod
d m : _nd magnet design.

I. INTRODUCTION
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The latch consists of four disks, supported by the
latch release rod, which protrude through slots in the
release rod guide tube when the latch is engaged (Fig. 1).
The control rod, which is concentric with the latch release
rod guide tube, rests on the protruding portion of the
disks. When the release rod is lowered, the disks (guided
by angled grooves cut in the release rod) retract, allowing
the control rod to clear the latch mechanism and scram
(Fig. 2).

A similar analysis was performed for the ball latch
mechanism used in the High Flux Isotope Reactor
(HFIR)[1]. This analysis generated a series of plots
showing how the force transferred through the latch to the
latch release rod was affected by the latch geometry.
Simplifications used in this analysis are
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r.is report describes the force analysis performed for
--.anced Neutron Source (ANS) control rod fatch
-ism. When engaged, this mechanism holds the
, rod in a cocked, ready-io-scram position and upon
; allows insertion of the control rod. The force
i to the latch (exerted primarily by the control rod
: and accelerating spring force) is distributed
en the latch release rod and the release rod guide
-y the latch mechanism. The latch release rod is
-ed by the control rod magnet force when the latch
;ged. In order to accurately predict the required
: force and design a suitable control rod drive

:"_ it is necessary to know the distribution of force
23 lJje kicJi.

"Oreraied by Martin Marietta Energy Systems, Inc., for the
U.S. Apartment of Energy under Contract No. DE-AC05-
S4QRIH0O.

1. The ball force balance satisfies the two
equilibrium conditions that the sum of forces in
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Fig. l. Control rod in latched position.
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Fig. 2. Control rod in unlatched position.

two orthogonal directions must be zero;
however, the condition that the sum of the
moments is zero is not addressed. Thus, the
ball is treated as a point mass.

2. The friction force, which is tangent to the ball
surface, is assumed to be proportional to the
normal force, with the constant of
proportionality being the static coefficient of
friction, p.. In reality, the friction force can be
any value between zero and n times the normal
force.

With these simplifications, two static equilibrium
equations are sufficient to determine ihe force transferred
to the latch release rod. The present analysis avoids these
assumptions, resulting in a more complicated and
presumably more accurate analysis. The analysis is
described in the following section, and results and
conclusions complete the paper.

II. ANALYSIS DESCRIPTION

The latch disk and the most general set of applied
forces are shown in Fig. 3. The applied forces consist of

1. the control rod force, />,, which is applied at an
angle 9X in the vertical direction;

2. a reaction at the point of contact between the
upper half of the disk and the release rod
guidetube, defined by the angle Qv with
horizontal component P2 and vertical component

3. a similar reaction at the point of contact between
the lower half of the disk and the release rod
guide tube, also defined by 8Z, with horizontal
component P, and vertical component P,\ and

4. a reaction at the contact point between the disk
and the latch release rod, defined by &-.. with
horizontal component Po and vertical component

Note that the applied forces must be compressjve (in the
directions shown in Fig. 3) since the disk is not fastened
to either the latch release rod or the release rod guide
tube. Also, because there are six unknown forces and
only three static equilibrium equations, three additional
equations must be developed using energy methods to
obtain a general solution for the reactions. Alternately,
ihe problem may be solved on a case-by-case basis using
finite-element techniques. In this analysis, an approximate
solution was obtained using a combination of the theory
of elasticity and energy methods. Finite-element
calculations were performed for several cases, and the
results between the two solution methods were compared.
The approximate theory of elasticity solution will be
described first, followed by a description of the finite-
element analysis.

.4. Approximate Theory of Elasticity Solution

The static equilibrium equations consist of

(1)

P3

P6

P7 P5

Fig. 3. Latch forces.



(2) where

Ma = 0 =

- P3Cos(0,)

-P7C0S(7r+C3) . (3)

Additional equations are developed using Castigliano's
theorem (theorem of complementary strain energy). This
theorem states thai the partial derivative of the strain
energy, U, taken with respect to an unknown force P,
applied at point qit equals the displacement at q{ in the
direction of P,. If qt is a rigid support point and P, is a
reaction, the displacement at qt is zero and

crraj is the normal stress in the direction of Aq,
a-jj is the normal stress perpendicular to A^,
TRT is the shear stress[2].

The force P causes a compressive stress. If the radial
stress at the surface is to be zero (i.e., if the disk is not
subjected to an external pressure), a uniform tensile force
of PSin(0)/(7r£>) must be applied to the disk surface to
offset the uniform radial compression predicted by Eq. (5).
The stress tensor, T, at q, written in terms of a right-
hand coordinate system with Aq as the "X" axis, is

SU
(4)

Equation (4) can be applied to each redundant force to
develop sufficient equations, which when combined with
the static equilibrium equations, allow all reactions to be
determined.

The majority of the theory of elasticity solution
involves developing the additional equations needed to
find the redundant forces. This consists of

1. determining the disk stress distribution,

2. using the stress distribution to develop an
approximate strain energy expression, and

3. applying Cistigliano's theorem to obtain the
necessary equations.

Each step is described below.

Stress Distribution

The angles used in the derivation of the disk stress
distribution are defined in Fig. 4. A force P with
direction 6 is applied to the boundary of a disk of
diameter D at point A. The angle between point A and
the horizontal axis is defined as 8. The angle AOB has
a measure of 2,9. The location of any point q on the disk
can be described using R, the distance from point A, and
a, the angle between lines Aq and AB.

Assuming plar.e stress, the two-dimensional stress
field at q due to a point load P at A is given by

= 0

T =
-2PCos(a) PSin(j3)

7f/? 7TZ)

(6)

In matrix form, Eq. (6) becomes

-2PCos(a) PSin(/3)
nR nD

m =
0

PSin(/3)
TtD

The rotation matrix [M], which transforms [7] into X-Y
cocrdinates, is

7k Fig. 4. Angles used in strain energy calculation.



[M\
Costf) Sin(?)

-Sin(O Cos(O
(3)

where

= -(« + a)

Using the rotation matrix, ihe matrix form of the stress
tensor [7] in X-Y coordinates is

[7] = [M] [7] [Aif (9)

Superposition is used to find the stress tensor
resulting from the application of several forces. The
terms in Eqs. (5) through (9) and the angles defined in
Fig. 4 are different for each applied force, and the
summation occurs after routing the stress tensor into the
X-Y coordinate svstem. Thus.

rv is the shear stre^c due Jo force P.,
E is the modulus of elasticity,
G is the modulus of rigidity,
1/ is Poisson's ratio [2].

This equation involves squares and products of
summations of stress components. Terms formed by
squaring a stress component are always positive; however,
terms formed from a product of different stress
components can be either positive or negative. It is
speculated that these latter terms tend to cancel out,
making the sum of terms formed from squares of stress
components closely approximate the strain energy density.
The surviving terms are just those that would be
generated by assuming superposition of the strain energy
densities produced by each force applied separately.

The strain energy density written in principal
coordinates (in which the shear stress is zero) is given by

m = I [St.] T] [Si.y (10)
(12)

Strain Enerev

The strain energy der.
of several forces is assume;
strain energy density prc
separately. This assumpiic:
results in a solution that s
the results of the finkc
sufficiently accurate for ir.
explanation follows that -
ihe results obtained wher.

where

•jity caused by the application
10 be the superposition of the

iuced by each force applied
-.. although not strictly justified,
rpears, from comparisons with
-element calculations, to be
; purpose of this analysis. An
r.- account for the accuracy of
_;ins this assumption.

The expres5ion for tr.; strain energy density is given
in Eq. (11).

U i =

o;i is the principal stress in the ;'th direction.

Noting that Eq. (7) gives the principal stress components
at any point caused by point force applied at the disk's
surface, Eq. (12) becomes

1

2£
-2P,.Cos(q.-)

» -2P;Cos(Q,)
irD

(13)

where

Z r«,

1G

The total strain energy is found by simplifying and
(11) then integrating Eq. (13) over the volume of the disk

aa is the normal sirm in the x direction due 10 force
P*
aM- is the normal stress in the v direction due to force

u =
6;COS :(Q,)

+ (1 - v)f- dRdadz ,

- i/)f,.6,Cos(a,-)
R

(14)



-2PJ*.

where

dRda = differential area,
tii = 1 (plane stress assumption),
a ^ = angular limits on ihe integral,
RmUi, RmiDi = radial limits on the integral

The limits on the integral in Eq. (14) are determined so
lhat integration occurs over the entire disk volume except
for the region experiencing plastic deformation under
force Pt. If oY is the yield stress of the disk material,
Rmin is determined by selling ihe principal stress equal
to the vield stress

P 2COS(Q) Sia(B)

Rmia
(15)

Equation (15) is solved for Rmia, defining the region of
piastic deformation. The relationship between a,_: and

is shown in Fig. 5, from which it can be seen that
(a) Region of plastic deformation

a , = 3 - o - fr,-2 +

a: = S - o + -i2 -

(26)

(17)

where

r = Dfl.

Neglecting the plastic strain energy results in only a
very small error in ihe strain energy expression since
typically, the plastic zone under each point force is small.
ZRma. is the maximum radial distance for any angle a.
Consideration of the disk geometry shows that Rmx is
given bv

Rmix = - > C O S ( Q -r 6 - ? i . (IS)

The total strain energy for a disk subjected to several
point forces P, is given by

+Rm'm/2r

-Rmia-'2r
fimin.

$ - e + 7t/2

-2Sln (Rmin 2r) ,

I

(b) Determination of angles.

R + (1 - dRda (19)
Fig. 5. Geometry used 10 calculate stress distribution in the

latch disk.



Application of Castieh'ano's Theorem = FJFm (20)

The application of Castigliano's theorem requires
that Eq. (19) be integrated and the partial derivatives
taken of the resulting expression to yield the additional
equations needed to solve for the disk reactions. These
operations were performed using the Macsyma computer
code, which executes symbolic and numeric mathematical
manipulations^].

A closed-form expression for the total strain energy
as a function of the P,'s was obtained by integrating
Eq. (19). Using the static equilibrium equations [Eqs. (.1)
through (3)], forces P :, Po, and P7 were rewritten in terms
of P,, P,, P4, and P5, and these expressions were
substituted into the integrated form of Eq. (19). The
resulting total strain energy expression is a function of the
unknown forces P,. P,. and Pa. and the known applied
force P.. Castigliano's theorem was then used to eenerate
ihree simultaneous equations, which were sohed for the
unknown forces.

The results for this combination of forces showed
that both P, and Pi were tensile. The calculation of
tensile forces, which cannot be developed in the latch
mechanism, indicates that either too many or too few
reaction forces have been included in the analysis.
Because the analysis was performed using the mo>t eeneral
>et of reaction forces, one or more of the assumed
reactions had to be eliminated for all calculated reactions
to be compressive. The analysis was repeated with P-. and
P. set equal to zero. .After substituting for P.. P.. and P-.
the integrated form of Eq. (19) is a function of only P<
and the known applied force. Castigliano's theorem was
used to obtain an equation that can be solved for P<. The
values of P< obizined from this expression are positive.
.After P? is known, the static equilibrium equations are
used to determine the values of P.. P,.. and P.. which are
also positive (compressive in this case).

Friction Coefficients

It has been assumed that the compressive forces
predicted by the above analysis can be developed in the
latch mechanism. In reality, the coefficient of static
friction limits the developed forces and. consequently, the
acceptable latch configurations.

Because of the latch geometry, slip can occur only
where the disk contacts the latch release rcJ. If the
predicted force is transferred from horizontal and vertical
components into components normal and tangential io the
latch release rod surface, ihe fricvion coefficient necessary
to develop the predicted force can be determined. The
coefficient of static friction is eiven bv

where F, and Fn are the tangential and normal
components of the developed force. Latch geometries
that will not slip are those with required values of p less
than the actual coefficient of static friction.

B. Finite-Elemeni Analysis

The finite-element calculation plane stress analysis
was performed using the SUPERSAP finite-element
code[4]. The finite-element model of the latch disk
(distorted in the horizontal direction during printing) is
shown in Fig. 6. The mesh was selected after performing
several analyses with progressively finer meshes.
Comparing the results for the different meshes showed
that negligible changes in the results were obtained after
a certain mesh fineness was reached. The mesh nearest
this fineness level was used in the analysis.

In Fig. 6, the lines at the disk boundary represent
the supports. Note that the disk uses a finer mesh near
the supports because the stresses and the rate of stress
change are greater in these regions. The analysis
calculates the disk deflection and the support reactions.
The analysis consisted of fixing both the support locations
on the right side of the disk and the location of the
applied vertical load, and then calculating the results as
the location of the left support varied. This corresponds
to fixing «[ and 62 in the theory of elasticity solution (the
amount the disk protrudes through the latch release rod
euide tube) and varying 6}. the angle of the latch release
rod.

- U •

Fig. 6. Finite-elemeni representation of ANS latch disk.



III. RESULTS 0.4:
Transferred Force Fraction

The most useful result of this analysis is the vertical
component of ihe force transferred to the latch release
rod. The ratio of this force to the force applied to the
latch by the control rod, the transferred force fraction, is
the fraction of the applied force that is ultimately
supported by the control rod magnet. The results of the
theory of elasticity solution will be presented first,
followed by results obtained from the finite-element
calculations.

A. Theory of Elasticity Solution

Results of the calculations are shown in Figs. 7
through 10. Each figure shows the fraction of the applied
force transferred to the latch release rod for various
combinations ct 5,, 5Z, and 8? It can be seen that the
largest change occun> as the result of changes in 6y As
5:, becomes greater in magnitude, the slope of the latch
release rod surface in contact with the disk becomes more
vertical. This results in more force being carried by the
guide tube, «7.\i a corresponding decrease in the fraction
of the applied force transferred to the latch release rod,
which ranges retween 0.05 and 0.4 as fl3 ranges between
100 and 170:.

Chancir.: .-, and ez has a smaller effect on the latch
force transfer. Varying 0 ; from 0° to 45" shows a fraction
of transferred force change of -0.1. Increasing 0, slightly
increases the force carried by the latch release rod.
Therefore, ii :^n be concluded that generally 0, and 0,
should be scr ied to be as small as possible. This will
minimize the force carried by the latch release rod for
mosi VUJDLS C: 9}, resulting in the smaJJesi conlroJ rod
drive magnet.

i. = 55°

0.3 -

o : -

o.i -
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u=o.3

- -=11.5

~ .=(1.6

-"< !00 110 i;ci ]'•:) SO !<O !M"I '."0 IM'I

- . i d e c I

Ftg. 7. Force transfer through ANS latch. ex = 5 deg.

TmfferreJ F.TCC Fraction

Symbols corresponding to various ratios of
tangeniial-to-r.ormal latch release rod force components
are included :r. Figs. 7 through 10. The symbols indicate
the coefficier.: of static friction necessary to prevent
slippage at :r.e latch release rod. An example will
illustrate hov% ".he symbols are used. In Fig. 7, for $•, =
10°, a symbcl corresponding to y. =* 0.3 appears for
8, = 139°. Thus, a static friction .coefficient of 0.3 or
greater is necessary to keep the system in equilibrium for
0j = 5°, 8, = 10°, and 82 > 139°. Similarly, a static
friction coefficient of 0.4 is necessary for Bx = 5°, ff, =
10°. arid 8, > '.19°. The required static friction coefficient
increases as .-• decreases (i.e., as the latch release rod
surface becomes more horizontal). The latch design is not
expecied to ne iimited by the friction coefficient, however,
because typical values for hardened steels in contact range
between 0.7 ar.d 0.8(5].

12U 1 ?0 !4fl i.;'

Fig. 8. Force transfer through ANS latch. 8, = 10 deg.
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Transferred Force Fraction
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B. Finite-Element Solution

The finite-element analysis was performed ibr two
latch geometries representing extremes of 0, and B-,.
Figures 11 and 12 compare the fractions of applied force
carried by the latch release rod over a range of 8y This
was calculated using the theory of elasticity and finite-
element solutions. The results show close agreement
between the two methods of solution. This indicates that
the assumption used in the strain energy calculation is
valid, at least over the range of latch geometry spanned by
the cases used to generate Figs. 11 and 12. In Fig. 11
(0, = 5°, 02 = 10°), the two solutions differ more (.04) for
the smaller values of 03 and virtually coincide as 0}

approaches 180°. Figure 12 (0 t = 30°, 0, = 45°) shows a
nearly constant difference of 0.03 over the entire range of
Sy The agreement between the two solution methods
allows greater confidence to be placed in the theory of
elasticity solution results.

IV. CONCLUSIONS

Fig. 9. Force transfer through ANS latch, s, = 20 deg. These results should be useful in both the latch
design and design of the control rod magnets. The latch

Trii^ferrid Force Friction

Theory of E:«::c.:% So:.:::n

> 15 "

\ Finne-EIemcnt

Solution

(deg)

Pig. 10. Force transfer through ANS latch, s, --• 30 deg.
Fig. 11. Comparison of theory of elasticity and finite-

element solution, s, = 5, e, = 10.'
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between force transfer and release time. The force
transfer results will have a significant impact on magnet
size. Previous estimates conservatively assumed that all
control rod force was transferred to the latch release rod.
Since the actual transfer is in the range of 10 to 40% of
the applied force, the magnet force and size will be
reduced considerably from earlier estimates. The close
agreement between the theory of elasticity and finite-
element results allows the analysis results to bt used with
greater confidence.
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