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ABSTRACT

The development of advanced calculational methods for understanding
and quantifying commonly encountered neutron noise sources (e.g., coolant
boiling and vibrations of fuel, control rods, and other reactor internals)
in LWRs is proceeding on schedule, with completion of the initial noise-
equivalent source formulation and generation of a working cross section
library being the major accomplishments this quarter. A work plan for
investigating experimentally the propagation of acoustic disturbances in
complex, massive, metallic structures is being formulated and a portion
of the instrumentation and apparatus necessary to pursue this loose-parts-
oriented work was obtained, but a full experimental program is not yet
underway, owing to delays in obtaining certain key equipment. Development
and application assessment activities for the year in the area of automated
signature analysis methods for nuclear reactors and rotating machinery
are summarized in a paper recently presented at an international special-

ists' conference.



1. RESEARCH ACTIVITIES

R. C. Kryter

1.1 In-Core Monitoring Methods

With assistance from the author of the MATTEO computer program and
from numerical computations experts at ORNL, the inadequate convergence
encountered earlier with the iterative solution of the two-phase flow
continuity equations was overcome, and MATTEO now produces satisfactory
results. An anticipated major modification to the TASK computer program,
which solves the one-dimensional, multi-group kinetics equation to yield
frequency-dependent fluxes, proved unnecessary. Close comparisons between
steady-state fluxes produced by TASK and ANISN (a widely recognized neutron
transport code) verified the problem formulation and data input.

Considerable effort was required to generate a suitable cross section
set for input to the TASK and VART computer programs. We decided to use
the NRC 218-group microscopic set instead of those compiled by Hansen and
Roach because the NRC set will give a better treatment of neutron upscat-
tering in the thermal energy region, which is important to the boiling
sub-channel problem being studied. Subroutines for entering the collapsed
(4-energy-group) cross sections produced by the AXMIX code into the vari-
ational method program VART were written and tested.

Significant progress was also made in the initial coding of VART,
particularly the noise-equivalent source computation. This new code will

be ready for initial testing early in the first quarter of FY 1978.



1.2 Loose-Parts Monitoring Systems

With the conclusion of interviews with LPMS suppliers and users
having been completed late in July, confirmatory assessment needs in this
area have come into sharper focus. Throughout this quarter we continued
to refine the investigative program outlined in the third quarter progress
report (ORNL/NUREG/TM-133), with particular attention given to task prior-
ities, interfacing activities, and milestone accomplishments.

Procurement of instrumentation and apparatus necessary to pursue our
identified development objectives proceeded, but somewhat more slowly than
had been anticipated last quarter. Difficulties with two major items
caused this delay: (1) no commercial source of supply could be found for
a standardized impacting apparatus meeting our requirements, so this will
have to be designed and assembled in-house, and (2) identification and
purchase of a suitable commercial 4-channel transient signal capture instru-
ment required more effort and time than originally estimated. However,
our orders for high-temperature accelerometers, line-driving acoustic
emission transducers, charge- and voltage-sensitive preamplifiers, cables,
etc. were filled in early September, and magnetic mounting blocks were
obtained (on loan) for preliminary measurements. Also, an initial impact
test fixture (machinist's surface plate) was obtained and modifications
to accept stud-type accelerometer mountings were initiated.

The frequency responses of the acoustic transducers and preamplifiers
received were measured using sinusoidal excitation tests, and initial
measurements of metallic impacts on the surface plate test fixture were
made, using a conventional 2-channel analog oscilloscope in lieu of a

more accurate digital transient signal capture instrument. These preliminary



tests, which will be confirmed later under more controlled conditions,
verified the conformance of the equipment to the manufacturers' speci-
fications but also revealed unit-to-unit response differences that will

have to be accounted for in subsequent studies.

1.3 Surveillance and Monitoring by Noise Analysis

On the basis of programmatic guidance from NRCrRSR and the Noise
Surveillance and Diagnostics Review Group, work objectives originally
planned for this subtask (concerned with automated monitoring techniques
for rotating machinery) were reconsidered. It was suggested that we
examine the subjects of (1) pressure boundary crack and leak detection in
LWRs, (2) stability monitoring of BWRs by means of nonperturbative or noise-
related techniques, and (3) applicability of surveillance methods and
failure-predictive statistical algorithms to reactor protection and engi-
neered safeguard systems, all to be considered as candidates for possible
expansion of our FY 1978 work scope. These areas were reviewed cursorily
in August and September, and our findings will be presented at the next
Review Group meeting.

Although no longer an on-going activity, as explained above, work
directed towards automated signature analysis was carried out early in
FY 1977 but not previously reported. We therefore consider it appropriate
to devote this last quarter's focus report (Section 2) to this topic by
reproducing a paper by K. R. Piety that was presented at the Second
Specialists' Meeting on Reactor Noise (SMORN-II) in Gatlinburg, Tennessee,

September 19-23, 1977.



2. FOCUS REPORT-TASK 3a,
SURVEILLANCE AND DIAGNOSTICS BY NOISE ANALYSIS

STATISTICAL ALGORITHM FOR AUTOMATED SIGNATURE ANALYSIS
OF POWER SPECTRAL DENSITY DATAa

K. R. Piety
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

INTRODUCTION
Scope of the Work

A statistical algorithm has been developed and implemented on a minicomputer system for
ou_line’ surveillance applications. Power spectral density (PSD) measurements on process
signals are the performance signatures that characterize the "health" of the monitored
equipment. Statistical methods provide a quantitative basis for automating the detection

of anomalous conditions. The surveillance algorithm has been tested on signals from neutron
sensors, proximeter probes, and accelerometers to determine its potential for monitoring

nuclear reactors and rotating machinery.

Background

Diagnostic information has been obtained from applications of signature analysis in both
rotating equipment (1-5) and nuclear reactors (6-11). A drawback to utilizing the signature
analysis method for surveillance activities is the demand it places on personnel. With an
automated system, this burden would be relieved, and personnel could give their attention to
equipment most in need of attention. Additionally, an automated signature analysis system
would have sufficient sensitivity to provide an early warning of an incipient failure. This
would allow better scheduling of maintenance and would enhance diagnosis of a problem con-

dition by documenting its development.

An impediment to the automation of signature analysis for anomaly detection has been the

lack of a quantitative basis for determining when significant changes have occurred. In
earlier work at ORNL, we investigated the use of a hyperellipsoid enclosure algorithm (12-13)
and a decoupled variables approach (14) to automate signature analysis for on-line monitoring
applications. These algorithms incorporated general, multivariate statistical techniques to
analyze a set of random and stationary variables whose composition was quite flexible. In
contrast to the generality of these earlier algorithms, the statistical techniques utilized
in this algorithm are derived strictly for the PSD descriptor, and will be referred to as

the PSD statistical recognition (PSDREC) algorithm. The benefits gained that offset the

loss 1in generality of this method are: (1) the learning time necessary to establish normal
behavior is reduced; (2) all available PSD estimates (rather than a preselected few, limited
by storage requirements) can be examined, thus minimizing preprocessing judgments; (3) the

ability to differentiate the rate of change of monitored behavior is greater; and (4) identi-

fication of spectral changes is more direct.

aPaper presented at the Second Specialists' Meeting on Reactor Noise,
Gatlinburg, Tennessee, September 19-23, 1977.



METHODOLOGY OF SURVEILLANCE TECHNIQUE

During an initial learning period, PSDREC forms the initial baseline signatures and a sta-
tistical description of the normal variations that occur. The monitored system is assumed
to be operating normally or at least acceptably during this period. The detection of anom-
alous conditions is determined by examining decision discriminants which quantitate certain
types of spectral deviations. The limiting criteria that are applied to the discriminants
are predicted from input parameters that define the monitoring procedure. The predicted
criteria are corrected for the specific behavior observed during the initial learning
period. Additional correction 1is allowed at specified intervals if normal conditions

prevail

Baseline Signatures

A baseline signature is the standard against which each set of PSD measurements 1is compared.
Two separate baseline signatures (designated "Base PSD" and "Trend PSD") are maintained to
describe the rate at which a change is occurring. The Base PSD characterizes operational
behavior at the time monitoring is initiated; once the Base PSD includes a specified number
of PSD estimates, it is never changed. Comparisons against the Base PSD allow maximum sensi-
tivity to slowly developing phenomena. However, the value of Base PSD comparisons 1is reduced

if normal cycles of change are present in the data.

The Trend PSD is the signature which characterizes the most recent period of normal opera-
tion. A candidate to replace the Trend PSD is calculated repetitively at specified inter-
vals. During monitoring, this replacement is allowed only if comparisons of incoming PSD
estimates against the Trend PSD during that interval did not detect significant variations.
Although the Trend PSD adaptively follows slow changes, comparisons against the Trend PSD
will detect abrupt or rapidly developing conditions. Comparisons of the candidate (Trend

PSD against the Trend PSD and the Base PSD allow the detection of the more gradual changes.

Decision Discriminants

PSDREC calculates eight statistical discriminants that are formed from ratios of a set of
PSD measurements obtained on-line with a baseline set. The discriminants detect (1) fluctu-
ations in the integral power of the spectrum, (2) spectral shape changes, (3) deviations in
the magnitude of individual PSD estimates at a given frequency, and (4) shifts in the fre-
quency of spectral peaks. The sensitivity of multiple discriminants to certain spectral
changes 1is greater than that of a single global measure, such as the Mahalanobis distance
(12-14) Use of several discriminants also offers a possibility of requiring certain com-
bined or coincident deviations as means of preventing alarms during normal phenomena which
produce changes that are statistically significant. The eight discriminants help to iden-
tify what type of spectral change is occurring, to quantify its magnitude, and to initiate
plots that give a clear, visual indication of the detected variation. These discriminants
can be formed on the complete set of PSD estimates or on any subset (or any collection of

up to ten subsets).

Prediction and Correction

PSDREC initially calculates theoretical limiting criteria for the discriminants. These
criteria can be strictly applied only if the data has a gaussian amplitude distribution and

the individual PSD estimates are independent (additionally for one criterion, the frequency



spectrum is assumed to be white). During the learning period, the discriminants are tested
against the predicted criteria in order to determine how closely the data follow the assump-
tions stated. Also, during learning, the means and variances calculated from the actual
sampled population are used to correct, in a heuristic manner, the theoretically derived
criteria values. In essence, the discriminant formed from the PSDs is transformed, using
the sample mean and variance, to produce a distribution that has the mean and variance of
the theoretical distribution that was assumed in deriving the limiting criterion. In prac-
tice, a transformation is applied in an equivalent fashion to alter the limiting criterion
so as to maintain the chosen false alarm rate. This prediction-correction procedure maxi-
mizes the use of the information available from the original assumptions and reduces the

amount of data required during learning to establish appropriate limiting values.

Two-Level Alarm Logic

The discriminants are checked against two sets of criteria values. The alert level criteria
are less conservative, and violations at these limits must occur on two consecutive occasions
before the significance of a change is acknowledged and an alarm is sounded. At the danger
level, an exceedance of any criteria immediately generates an alarm. This type logic pro-
vides protection against alarming for an occasional statistical deviant without sacrificing

sensitivity to excessive deviations even if they occur intermittently.

STATISTICAL CONSIDERATIONS
Discriminants Defined

The test discriminants are based on the ratio of a test PSD, P(f") , with an appropriate
baseline PSD, P (£~. The independent variable, £f7, identifies the frequency of that esti-
mate. The first discriminant, D"., is an integral measure that 1is sensitive to differences

in the integral power in a total of r estimates contained in the frequency intervals selected

for analysis:

ErCcv

DI loglo

This discriminant is dominated by the estimates with larger absolute magnitudes and is rela

tively unaffected by changes in estimates that are one or two orders of magnitude smaller.

The second and third discriminants examine the minimum and maximum ratios of individual

estimates, respectively:

P (f1)
DXI = Mi lo for all i
o 910 px(£i)
and
PCEt”
D M for all i
rr M 190 ey

Discriminants D~ and DIII are singular measures of deviations and are completely unaffected

by the absolute magnitudes of the PSDs.



The fourth discriminant is the mean ratio constructed from the set of ratios at the r indi-
vidual frequencies. This discriminant is a measure of the Integral difference between

spectra:

DIV = r =2 —gl0 P(f1)

P (£7

This discriminant gives equal weight -to all components, regardless of their absolute magni-
tudes. It is sensitive to uniform spectral shifts; however, it is subject to cancellation
effects from terms of opposite signs (l.e., ratios greater than or less than unity), and

this limits its ability to detect spectral variations where offsetting deviations are present.
Another composite ratio is constructed using the second moment of the ratios to eliminate

this limitation:

PCEt”
1
910 P*(fi)

This discriminant is a measure of the variance of the set of ratios or, alternatively, it is

the average squared distance between the test and baseline spectra on a log scale.

The sixth discriminant is an application of the sign test (15,16) to the set of log ratios:
= Larger{ (Number of Log Ratios > Median) or (Number of Log Ratios < Median)}

The seventh and eighth discriminants are based on the number and length of sequences of con-

secutive log ratios (runs) above or below the median (median * 0):
Dyjj ¢ (Number of Runs > Median) + (Number of Runs < Median)

and

= Max Length} (Runs > Median) or (Runs < Median)}

These latter three discriminants are global measures of changes in spectral shape, and they
are not influenced by the absolute magnitudes of the individual PSDs or the magnitude of a

single ratio in any way.

Theoretical Limiting Criteria

The first five discriminants are derived as parametric tests based on an assumption that the
time waveform, =xCt)> the monitored signal has a gaussian amplitude distribution. Since
the Fourier transform is a linear process, the resulting real and imaginary Fourier compo-
nents at each frequency, "~ (f7") and XjXfp, are also independent gaussian variables. The

PSD estimate at f* is given by

~M(EN = x3 o (fR) 4+ XN (f1) (1)

The sum of the squares of n independent gaussian variables results in a chi-square distri-

2
bution, x > with n degrees of freedom; hence, it follows that

Afp A

P(£f1) 2



where PCf~ 1is the true (unknown) PSD at To obtain a consistent estimate of the true

PSD functions, a smoothed PSD estimate, P, is constructed by averaging the estimates derived

from different time records. Since chi-square variables have the property
2.2
'Hatb X *

an ensemble averaged estimate over n records gives (17)

?(f1) xL
= —7S. Ce
2n u

The ratio of two PSD estimates taken at different times, assuming that the true PSD of the

signal has not been altered, yields a ratio of chi-square variables:

N\ f£i>/P(fi> , ~r~r , xIl= 2N (4,

P2 (fi) /P (£f1) X2n2/2n2

The new random variable which results 1is an F-variable with 2n” and 2n2 degrees of freedom.
The F-variable can assume only nonnegative values, and has a nonsymmetric distribution for
n2 > 2, If a log-"Q transformation is applied to an F-variable, the resulting distribution
has improved symmetry characteristics, as shown for a particular case in Fig. 1. Addi-
tionally, the log”o F-variable can assume negative and positive values with approximately

equal likelihood. A functional approximation (18) is available to calculate the percentile

points Lp(vi,va) for the log1U FQnA 200 distribution:
<\ = logl0d [FP(VI>V2)] “ I”ioT (5)
where
Xp (h + X)1/2
w (6)
(7)
and
x -3
X = —xy— <8>

Here, x” 1s the corresponding percentile for the gaussian statistic.

This approximation can be used directly to predict the limiting criteria for the minimum
and maximum log ratios for individual frequency estimates (discriminants D~ and DJJJg):

it is assumed that the time signal has a white frequency spectrum as well as a gaussian
amplitude distribution, a predicted 1limit for the log of the ratio of integral power can be
calculated from the same approximation. If the integral power is a sum over r independent

estimates, then the degrees of freedom are increased to = 2rn”® and v2 = 2rn2
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The PSD estimates from an FFT calculation are assumed to be independent (if a Hanning window

is applied to the time data, only every other estimate is independent), and, thus, the derived

set of individual log ratios represents a set of independent variables having the same popu-
lation distribution. These ratios may be viewed equivalently as a set of independently
sampled values from the same probability distribution. The same is true for the set of
squared log ratios. Thus, discriminants DIV and Dy, which are formed from sums over the
respective sets, meet the conditions for which the central limit theorem (CLT) applies. If

we define

Pj/f)
y ' 108 ~£) (9)
and
2
Z =Yy (10)
then
=7 t ‘s
v o (ii)
1-1
and
=1 Vv
r Zi (12)
i=1
By the CLT, Dj.” and are distributed approximately as gaussian variables (becoming more
exact as r -1 ") with
'J(DVI) = yy * (13)
c(DIV) = — = (14)
(15)
and
«(V - — (16

These theoretical means and variances can be expressed in terms of the polygamma functions
for which functional approximations exist (18) (refer to Appendix A). The limiting criteria
are then chosen, based on a gaussian distribution with the predicted means and variances.
Discriminants DVI through DVIII, which are based on the signs, number of runs, and the
longest run in the set of ratios, are nonparametric tests. The sign test (15,16) for the
paired sample case hypothesizes the equality of the means for populations that are symmetri-
cal and continuous. If the populations are not symmetric, the hypothesis applies to the
medians. When two PSDs that have been averaged over a different number of blocks are com-
pared, the paired samples are necessarily drawn from chi—squared distributions with dif-

ferent degrees of freedom, and this introduces skewness. The validity of the test can be
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restored if the ratios are given "signs" based on their relationship to the median of the
assumed F-distribution. Under this approach, each sign has an equal likelihood of occur-
rence. Therefore, the limiting criterion for this discriminant is based on the binomial

distribution with a trial probability of 1/2. For large sample sets containing r ratios,
the discriminant can be tested against the normal curve approximation to the binomial

distribution

DVI ~ rtJvI

(17)
VI avl

where uvVI = r/2 and avVl = /r/4

The two test runs have been proposed as techniques for testing the assumption of randomness
in a set of sampled data. If the test PSD is statistically identical to the baseline PSD,
the log ratios are a set of sampled values from the same population and should be randomly
distributed about the median. On the other hand, if a small shift has occurred over some
portion of the spectra, a long run may develop, or the number of runs may be altered sig-
nificantly. When the sample size, r, 1s greater than 20, a standardized gaussian variable,
~, can be constructed from and the expected number of positive, p, and negative, n

runs (15,16):

DVII ~ PVII

(18)
VII avn
where
2
Wil n%p + 4 (19)
and
2pn(2pn - p - n)__11/2
a (20)

VII (p+n)2 (p+n-1)J
If the predicted median is the true median of the population, p and n are equal to r/2.

The limiting criterion for the longest run is based on a formula that predicts M(R"), the

mean number of runs of length k or greater than would be expected in r samples:

M (<7 r -k + 2 (21)

If the expected number of runs of length k or greater is small, the probability of such an
event occurring is unlikely. The value of k can be found in an iterative manner, choosing

a value ('v0.00l) for M(R") and using an initial guess for k given by

v

£.n(0.5)
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Correction with Learned Parameters

During the learning period, the means and variances are calculated from the sample data.
These sample statistics are used to correct the criteria values, with an assumption that the
shapes of the theoretical distributions are approximately correct and only the magnitudes of
the first and second moments are in error. For the integral power discriminant, , the in-
terval of acceptability is altered by normalizing the theoretical criteria with the predicted
mean and standard deviation and by normalizing the calculated discriminant values with the

measured sample mean and standard deviation:

The notation that will be adhered to in this paper designates theoretical means and standard
deviations by u and a, and measured sample means and standard deviations by M and S. The
criteria are denoted by C, and the superscripts u and £ denote the upper and lower limits,

respectively.

As above, the corrections for the minimum and maximum individual ratios (D" and are

normalizations of theoretical criteria and the calculated discriminant:

—»11
II I II (24)
II II
and
A - " 4
nl< CIII wni
III (25)
SIII ain
Thus,
DII > (CII ~LR (26)
and
DIII < (CIII fe) ~R (27)
where

= sample mean of individual log ratios,
SLR = SgJg. = SII;|. = sample standard deviation of the individual log ratios.

The composite ratio discriminants are gaussian variables according to CLT, and the calculated

parameters are substituted for the predicted values

H O,
Div - % - (28)
SLR ~
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and
~SLR
< C. (29)
SSIR  ~ v
where MOLK is the sample mean of the square of the individual log ratios, and SSER is the

sample standard deviation of the square of the individual log ratios.

The nonparametric tests are strictly valid only if the true median of the population of log
ratios is known. The predicted median for a F-distribution is obtained from Egs. (5)
through (8) by setting Xp = 0.0. Instead of calculating the sample median to correct the
inadequacies of the predicted value, the relative proportion, £%, of the population greater
than the predicted median is tabulated. The correction for is altered by exchanging

in Eq. (17) for « rfp* The theoretical standard deviation is retained because it is a
conservative estimate. In a similar fashion, the O0~" correction procedure alters the

predicted mean and variance by setting p = rf® and n = r - p.

The Dypp discriminant has a robust character and is relatively insensitive to small errors

in the predicted median. The experience to date has indicated that a correction procedure
is unnecessary; however, later applications may prove otherwise. This might be accomplished

k 1/2
) /

by replacing the factor (1/2 in Eq. (21) by (f ) , where f is the larger of f or

a—fp) .

RESULTS
Implementation and Program Evaluation

The surveillance algorithm has been implemented on a Digital Equipment Corporation PDF 11/20
minicomputer with 28K words of memory. The complementary hardware includes 2.5M words of
disk storage, an analog-to-digital converter, a line printer, and a CRT terminal. The
programming is largely in FORTRAN; assembly language routines are used only to accomplish
functions not available through FORTRAN or, in the case of the FFT routine, to speed up

execution

Disk storage is required for storing programs and retaining selected data. Two data files
are maintained; one stores the control and statistical parameters and the other stores the
baseline signatures. These files require about 2N + 600 words of disk storage for each
signal analyzed (N = No. of PSD estimates calculated by the FFT routine). The program
version implemented for evaluation monitors only one signal and will perform FFT analysis
on data blocks of 2048 or less. After operation of the program is initiated, monitoring
will continue in a repetitive fashion until the user interrupts operation from the CRT
terminal. Operation of the program can be reinitiated as long as the data files are

preserved

The performance of the algorithm was evaluated using a test signal from a gaussian, white
noise generator. The predicted criteria proved adequate in this situation, and negligible
correction was required as a result of the statistics calculated during the learning period.
The individual discriminants exhibited different detection sensitivities to a given spectral

alteration, as expected from their formulations. Also, it was demonstrated that gradual



14

changes 1in the spectra could be tracked by the Trend PSD, but they were always detected, as

planned, by the Base PSD comparisons.

Monitoring Signals from Neutron Sensors

Neutron data were recorded during an experiment performed at the High Flux Isotope Reactor
(HEIR) that has been previously reported (12,13). This experiment included a 12-hr period
during which the reactor operated normally, followed by several hours during which small,
control-rod oscillations were induced artificially to create perturbations of less than 0.1%
in the reactor power. The PSDREC algorithm established the baseline signatures and completed
the learning phase within 1 hr. (In previous experiments with the more general algorithms
(12-13), a 12-hr learning period was required.) During the 12 hr of normal operation, the
algorithm verified that conditions were normal. Figure 2 shows the baseline spectrum and

a spectrum measured during normal conditions. Rod oscillations were detected, and spectral
changes were noted (Figs. 3-6). Discriminant values calculated during these anomalous con-
ditions are listed in Table 1. A comparison of the table values with the spectra illustrates

the ability of the discriminants to quantitate spectral variations.

For another test, data were recorded at the Edwin I. Hatch 1 nuclear power plant of the
Georgia Power Company (13). Approximately 12 hr of data were recorded for four local power
range monitors (LPRMs) in this boiling water reactor at a fixed operating condition. Addi-
tional data were also recorded on another occasion at different plant conditions (11).

These data were used to test the hypothesis that the corrected criteria for any LPRM could
be applied to another LPRM despite individual variations between their spectra. The
hypothesis was proved to be true. The four LPRMs had been selected impartially. Their
spectral signatures are displayed in Fig. 7a and b. Signals for the initial baseline sig-
natures and the learning period were from LPRM 12-45C. When these signals were replaced
with signals from LPRM 04-296, the algorithm inmediately sounded an alarm. However, after
the algorithm had been instructed to accept a new baseline, subsequent monitoring indicated
that normal conditions prevailed. ©No additional learning was necessary. This same sequence
of events was repeated for other LPRM signals recorded at different operating conditions.
Monitoring under all tested conditions required forming a new baseline signature only; no
additional learning was necessary to adjust the discriminant criteria.

These results indicate that separate learning periods are not necessary for each LPRM. Thus,
a large number of the LPRMs in a BWR might be monitored with minimal time required for learn-
ing. Further, an efficient way to handle different operating conditions might be to alter
only the baseline signatures when process variables indicate that the reactor operator has
modified the operational mode. If an anomalous condition were to be introduced by, or to
occur at the same moment as, the operational change, the subsequent anomalous state would
not be detected as long as it remained stable. However, the surveillance system would sense
further deterioration if it occurs. For processes such as baseloaded power plants, where a
given operational mode is maintained for a relatively long time period, such a procedure
would be particularly attractive since a single learning period would be sufficient and the

algorithm would not be required to retain statistical parameters and signatures for many

different conditions.

Monitoring Signals from Rotating Machinery
Vibrations from rotating equipment are frequently measured with proximeter probes or accel-

erometers. Both types of sensor s were installed on a small (1/20 hp), variable speed
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Fig. 4. Spectral density and spectral ratio plots generated as a
result of the anomalous conditions created by test signal 2.
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Fig. 5. Spectral density and spectral ratio plots generated as a
result of the anomalous conditions created by test signal 3.
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Fig. 6. Spectral density and spectral ratio plots generated as a
result of the anomalous conditions created by test signal 4.
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TABLE X Statistical discriminants resulting from rod oscillation
anomalies at the HFIRa

DI DII Dni DIV Dv DVI DVII DIII

Normal
Criteria: (0.603,1.610) 0.0561 5.1794 +4.13 +3.87 (5,21)  (5,21) 14
el i.ein 051 6-96t  5.82% .98k . 16+
753 1.479 0.637 O3B 5.2l 474k 10 8
754 1.262 0.305  4.77 2.3 09 g5 7 9
7S2 0.923 0.3947 3.021  2.24 S39% 44 9 6

alListed in order of decreasing severity.

Indicates value out of normal bounds.
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electric motor in a laboratory. A slotted wheel was attached to the drive shaft to provide,
with the aid of a light source and photocell, 24 pulses per revolution. These pulses estab-
lished the rate at which the computer sampled the vibrational signals. This synchronization
of the sampling with motor shaft rotation allowed the FFT analysis to be performed as a

function of harmonic orders instead of frequency.

Vibrational signals from rotating equipment have a different character from neutron noise.
Neutron noise spectra generally resemble filtered white noise, rolling off at varying slopes
over the frequency interval. If resonant structures are present, they appear as broad peaks
in the spectra. In contrast to this, vibrational signals appear to be a composite of sinu-
soidal signals, many having a nearly constant amplitude. The spectra thus comprise a series
of sharp spikes. Two phenomena complicate surveillance of these relatively periodic signals.
First, some of the sinusoids are rotationally related, and others are structurally related.
Thus, some peaks are fixed in frequency, and others are fixed In order. When varying speed
operation 1is analyzed, the locations of some peaks shift, regardless of whether the analysis
is based on order or frequency. However, such shifting of can be categorized only as normal.
The effect of this shifting is important because perfectly constant speed operation is not
achievable. Small variations ('''1%) will result in a detectable shift, even though the varia-
tions of the rotational frequency are less than the frequency resolution of the analysis

employed

The second phenomenon is the appearance of small step—changes in peak amplitudes. The ampli-
tude of an estimate has a small variance for a period and then changes abruptly to a new
level (again with a small variance), even though the operating conditions of the motor re-
main unchanged. The amplitude may later return to its original value, or change to some
other value. This type of variation has been observed on a time scale from hours to days.
Although these variations are small, their nonrandom manner of appearance causes problems for

statistical methods. More work is necessary to find the best way to deal with these effects.

Two anomalous conditions, unbalance and shaft rubs, were purposely introduced into this setup.
A 4-g weight 4 cm from the center of the shaft was detected. A plot of the ratio of the PSD
measured with the motor out of balance (using a proximeter probe) to the Trend PSD is shown
in Fig. 8. A flexible wire sprung against the shaft introduced a much smaller deviation from
normal operation. A ratio plot for this anomaly is shown in Fig. 9. The differences between
discriminant values for these anomalies and all normal variations (including two phenomena
discussed above) are apparent and could be established by human evaluation of the results.
However, the criteria values selected by the program, even after learning, were not adequate
(there were too many false alarms). It may be that preprocessing the signal or additional
detection logic based on empirical results would provide sufficient discrimination and there-

fore acceptable false alarm rates, but this has not been attempted to date.

Planned Surveillance Demonstration in Commercial Nuclear Power Plant

A 6-month demonstration of these surveillance techniques is planned for the winter of 1977
An expanded version of the PSDREC algorithm will be used to monitor four to eight neutron
sensors in an operating power reactor (the site is uncertain). The demonstration will be
completely passive and will require no reactor operational changes of any type. The purpose

of the demonstration will be to verify that the algorithm can automatically accommodate
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normal operational changes or to identify conditions for which additional algorithm adjust-
ment or development is necessary. Although no anomalous conditions will be introduced or
even simulated in the planned demonstration, we anticipate that we will be able to use
operational tests to some extent to verify the ability of the algorithm to detect unusual
conditions. This was the case in a test at the Hatch 1 nuclear plant where a turbine bypass

valve test and a rod cycling test were detected (13).

SUMMARY AND RECOMMENDATIONS

The PSDREC algorithm was demonstrated to be sensitive for spectral effects which could indi-
cate incipient malfunction. The algorithm is limited to surveillance applications for which
the PSD is an adequate descriptor. The ability of the algorithm to automatically establish
criteria for the statistical discriminants was adequate for neutron surveillance applica-

tions where the signals have a random, broad-band character. However, in rotating machinery

applications, the criteria determined by the algorithm produce too many false alarms. Never-
theless, at least for some anomalies (such as unbalance), the changes in the discriminants
are clearly distinguishable from the normal variations. The addition of some heuristic de-

tection logic, such as requiring certain patterns of discriminant deviations, may alleviate

the problem with false alarms. More work in this area is in progress

The logic structure and the statistical tests implemented in PSDREC quantify spectral changes
and serve as a statistical model against which the variations of a given monitored system can
be compared. This comparison determines if the behavior of the monitored system is consis-
tent with the random, stationary model that was assumed; 1if not, the analyst may be required

to incorporate additional logic to handle unanticipated variations. The performance of the

algorithm can serve as a guide for the decisions made in this tailoring process.

The effectiveness of PSDREC is untested for situations where many normal operational modes

are possible. When the operational states are maintained for relatively long intervals, the
algorithm can exchange baseline signatures if there 1is access to the process control param-
eters. The demonstration planned for a commercial nuclear power plant is expected to vali-

date this approach.
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APPENDIX A

The expressions necessary to calculate the mean and the variance of the gaussian distribu-

tion which describes the DIV discriminant are given first:

where

Then

and

since

(A-1)

(A-2)

(A-3)

(A-4)

Y = log (A=5)
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Let
- i CTLZ2M)
and
(X2n2/2n2) '
Then
Py  S.5%0) [V + V]
and
(10] [0yl + ayz2g 172
y Ln(10)

(A-6)

(A=T)

According to Ref. 16, the first and second moments of Egs. (A-6) and (A-7) are given by the

digamma and trigamma functions,

pyl - iKn” - “n(nl) and Oyl - i (n™
Vy2 = ~(n2) - Jln(n2) and O0y2 » i (n" .
The asymptotic expansions for and ii are
iKn) - S-n(n) - ————+ 77~-4 + .. ’
12n 120n 252n
1, 1 -1 1 1 1
*7ln) =n+ :% + 3---—- 5 ——= 7= 9
2n 6n 30n 42n 30n
The expressions necessary to calculate the mean and variance of is an extension of
f D
or D,
DV = r i;
i-1
where

Thus, CLT yields

P(DV) Pz

and

aay

(A-10)

(A-11)

(A-12)

(A-13)

those

(A-14)

(A-15)

(A-16)

(A-17)
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Since

where E( ) 1is the expectation operator.

N .
oy — g 1~ WY)2 + 2¥ py - PJ]

pz = E [(y - V2] + 2uy E(y) - vy

2 2
y_=a +y°
y y

TRV TRyt (B 0)]

S A A VAN B

L}
E {(y - Py)a + 4dpy(y - Wy)3 - 20y(y - py)2

ra—
+ l2yy(y - py) - oy

Y4 + 4u Y3 - 2a4 + E 14p2 (y - p )2

c y ¢ Y y y

-4dp a  (y -y ) +

yy y

2 v4d 3 4 .2 2
a +4 ¥° —a® +4va
c yy c Yy yy Yy

The mean and variance of Y are available from the expressions for Djy!

for the third and fourth central moments of Y must be derived. By definition.

v -5y -ppt = [JAV] E - eyl - 2 - By2))

Let

6yl - yl " T
and

6y2 w2 ' wy2 '
Then

Yc 7 E [(5y1 Sy2) 1 [in(10)]

(A-18)

(A-19)

(A-20)

(A-21)

(A-22)

(A-23)

(A-24)

(A-25)

(A-26)

expressions

(A-27)

(A-28)

(A-29)

(A-30)
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Assuming yl and y2 are independent.

) [—— 34
EK1L - 21 52* ™“Yn U - ™2™,1 sy2 + 521 » (10
1+ 8Y /o .n((l ) (A-31)
Ya = £ + 602 62 + Y4
c A 1c vl y2 2c (A-32)
Similarly,
>E [(6yl " ey2) ] [s.n(10) ] !
CA-33)
= E(ly1-31 V + IV [1rf107] (a-34)
Yy' = fvys -YyY3 ~ f—"—1
c N 1c 2c ) [in(10)J (R=35)
) % 3. L4 4 )
Reference (16) defines Y™, Y,”, Y”c , and Y2c in terms of the polygamma functions:
. = .
Y Yoc - AM(N2) (A-36)
J4| Y4c = *-(n2) + 30J2 , (A-37)
y1
and gives asymptotic expansions as follows:
**(10 (A-38)
AN () > 4 mr 4+ —r——4 4+ =N —— 4 ees (A_39)
n3 n4 n5 n7%n9 n"
To summarize the preceding discussion, the calculations! procedure is:
3 3 4
1. Calculate numerical values for u”, uy2, o2, Y"c> Y2c¢> Y”, and Y2c , using the
asymptotic expansions.
—3 T4
2. Calculate by combining the above parameters: ay, Yc> and Y~ , using Egs. (A-8),

(A-9), (A-35), and (A-32).

3. Calculate p”, using Eg. (A-21); and o” using Eq. (A-26).

4. Calculate p(DIV), using Eqg. (A-3); °(DIV) using Eq. (A-4); p(Dv), using Eq. (A-16);

and o(D ), using Eq. (A-17).
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