
1
ORNL/NUREG/TM-161

Noise Diagnostics for Safety 
Assessment Quarterly Progress Report 

for July-September 1977

R. C. Kryter 
K. R. Piety

Prepared for the U.S. Nuclear Regulatory Commission, 
Office of Nuclear Regulatory Research, under Interagency 

Agreements ERDA 40-551-75 and 40-552-75.

OAK RIDGE NATIONAL LABORATORY
OPERATED BY CARBIDE CORPORATION ■ DEPARTMENT OF ENERGY

OISTRtSUTION OF THIS DOCUMENT IS UNLIMITED

88 04



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image 
products. Images are produced from the best available 
original document.



Printed in the United States of America. Available from 
National Technical Information Service 

U.S. Department of Commerce 
5285 Port Royal Road, Springfield, Virginia 22161 

Price: Printed Copy $4.50; Microfiche $3.00

This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor 
any of their employees, contractors, subcontractors, or their employees, makes any 
warranty, express or implied, nor assumes any legal liability or responsibility for any 
third party’s use or the results of such use of any information, apparatus, product or 
process disclosed in this report, nor represents that its use by such third party would 
not infringe privately owned rights.



ORNL/NUREG/TM-161 
Dist. Category NRC-1

Contract No. W-7405-eng-26

INSTRUMENTATION AND CONTROLS DIVISION

NOISE DIAGNOSTICS FOR SAFETY ASSESSMENT 
QUARTERLY PROGRESS REPORT FOR JULY-SEPTEMBER 1977

R. C. Kryter and K. R. Piety
------ NOTICE-

This report was prepared as an account of work 
sponsored by the United States Government. Neither the 
United States nor the United States Department of 
Energy, nor any of their employees, nor any of their 
contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or 
nrncess disclosed, or represents that its use would not

Prepared for the U.S. Nuclear Regulatory Commission, 
Office of Nuclear Regulatory Research, under Interagency 

Agreements ERDA 40-551-75 and 40-552-75.

Manuscript Completed: November 9, 1977

Date Published - November 1977

NOTICE This document contains information of a preliminary nature 
and was prepared primarily for internal use at the Oak Ridge National 
Laboratory. It is subject to revision or correction and therefore does 
not represent a final report.

OAK RIDGE NATIONAL LABORATORY 
Oak Ridge, Tennessee 37830 

operated by
UNION CARBIDE CORPORATION 

for the
DEPARTMENT OF ENERGY

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED





iii

ABSTRACT

The development of advanced calculational methods for understanding 

and quantifying commonly encountered neutron noise sources (e.g., coolant 

boiling and vibrations of fuel, control rods, and other reactor internals) 
in LWRs is proceeding on schedule, with completion of the initial noise- 

equivalent source formulation and generation of a working cross section 
library being the major accomplishments this quarter. A work plan for 
investigating experimentally the propagation of acoustic disturbances in 
complex, massive, metallic structures is being formulated and a portion 
of the instrumentation and apparatus necessary to pursue this loose-parts- 

oriented work was obtained, but a full experimental program is not yet 
underway, owing to delays in obtaining certain key equipment. Development 
and application assessment activities for the year in the area of automated 

signature analysis methods for nuclear reactors and rotating machinery 

are summarized in a paper recently presented at an international special­

ists' conference.



1. RESEARCH ACTIVITIES

R. C. Kryter

1.1 In-Core Monitoring Methods

With assistance from the author of the MATTEO computer program and 

from numerical computations experts at ORNL, the inadequate convergence 
encountered earlier with the iterative solution of the two-phase flow 

continuity equations was overcome, and MATTEO now produces satisfactory 
results. An anticipated major modification to the TASK computer program, 

which solves the one-dimensional, multi-group kinetics equation to yield 
frequency-dependent fluxes, proved unnecessary. Close comparisons between 
steady-state fluxes produced by TASK and ANISN (a widely recognized neutron 

transport code) verified the problem formulation and data input.
Considerable effort was required to generate a suitable cross section 

set for input to the TASK and VART computer programs. We decided to use 
the NRC 218-group microscopic set instead of those compiled by Hansen and 
Roach because the NRC set will give a better treatment of neutron upscat- 
tering in the thermal energy region, which is important to the boiling 
sub-channel problem being studied. Subroutines for entering the collapsed 

(4-energy-group) cross sections produced by the AXMIX code into the vari­

ational method program VART were written and tested.
Significant progress was also made in the initial coding of VART, 

particularly the noise-equivalent source computation. This new code will 

be ready for initial testing early in the first quarter of FY 1978.
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1.2 Loose-Parts Monitoring Systems

With the conclusion of interviews with LPMS suppliers and users 

having been completed late in July, confirmatory assessment needs in this 
area have come into sharper focus. Throughout this quarter we continued 
to refine the investigative program outlined in the third quarter progress 
report (ORNL/NUREG/TM-133), with particular attention given to task prior­

ities, interfacing activities, and milestone accomplishments.
Procurement of instrumentation and apparatus necessary to pursue our 

identified development objectives proceeded, but somewhat more slowly than 
had been anticipated last quarter. Difficulties with two major items 
caused this delay: (1) no commercial source of supply could be found for 
a standardized impacting apparatus meeting our requirements, so this will 
have to be designed and assembled in-house, and (2) identification and 

purchase of a suitable commercial 4-channel transient signal capture instru­
ment required more effort and time than originally estimated. However, 
our orders for high-temperature accelerometers, line-driving acoustic 

emission transducers, charge- and voltage-sensitive preamplifiers, cables, 
etc. were filled in early September, and magnetic mounting blocks were 
obtained (on loan) for preliminary measurements. Also, an initial impact 

test fixture (machinist's surface plate) was obtained and modifications 

to accept stud-type accelerometer mountings were initiated.
The frequency responses of the acoustic transducers and preamplifiers 

received were measured using sinusoidal excitation tests, and initial 
measurements of metallic impacts on the surface plate test fixture were 
made, using a conventional 2-channel analog oscilloscope in lieu of a 
more accurate digital transient signal capture instrument. These preliminary
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tests, which will be confirmed later under more controlled conditions, 
verified the conformance of the equipment to the manufacturers' speci­

fications but also revealed unit-to-unit response differences that will 
have to be accounted for in subsequent studies.

1.3 Surveillance and Monitoring by Noise Analysis

On the basis of programmatic guidance from NRCrRSR and the Noise 
Surveillance and Diagnostics Review Group, work objectives originally 
planned for this subtask (concerned with automated monitoring techniques 
for rotating machinery) were reconsidered. It was suggested that we 

examine the subjects of (1) pressure boundary crack and leak detection in 
LWRs, (2) stability monitoring of BWRs by means of nonperturbative or noise- 
related techniques, and (3) applicability of surveillance methods and 

failure-predictive statistical algorithms to reactor protection and engi­
neered safeguard systems, all to be considered as candidates for possible 

expansion of our FY 1978 work scope. These areas were reviewed cursorily 

in August and September, and our findings will be presented at the next 

Review Group meeting.
Although no longer an on-going activity, as explained above, work 

directed towards automated signature analysis was carried out early in 
FY 1977 but not previously reported. We therefore consider it appropriate 
to devote this last quarter's focus report (Section 2) to this topic by 

reproducing a paper by K. R. Piety that was presented at the Second 

Specialists' Meeting on Reactor Noise (SMORN-II) in Gatlinburg, Tennessee, 

September 19-23, 1977.
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2. FOCUS REPORT-TASK 3a, 
SURVEILLANCE AND DIAGNOSTICS BY NOISE ANALYSIS

STATISTICAL ALGORITHM FOR AUTOMATED SIGNATURE ANALYSIS 
OF POWER SPECTRAL DENSITY DATAa

K. R. Piety
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

INTRODUCTION 

Scope of the Work

A statistical algorithm has been developed and implemented on a minicomputer system for 
ou_line> surveillance applications. Power spectral density (PSD) measurements on process 
signals are the performance signatures that characterize the "health" of the monitored 
equipment. Statistical methods provide a quantitative basis for automating the detection 
of anomalous conditions. The surveillance algorithm has been tested on signals from neutron 
sensors, proximeter probes, and accelerometers to determine its potential for monitoring 
nuclear reactors and rotating machinery.

Background

Diagnostic information has been obtained from applications of signature analysis in both 
rotating equipment (1-5) and nuclear reactors (6-11). A drawback to utilizing the signature 
analysis method for surveillance activities is the demand it places on personnel. With an 
automated system, this burden would be relieved, and personnel could give their attention to 
equipment most in need of attention. Additionally, an automated signature analysis system 
would have sufficient sensitivity to provide an early warning of an incipient failure. This 
would allow better scheduling of maintenance and would enhance diagnosis of a problem con­
dition by documenting its development.

An impediment to the automation of signature analysis for anomaly detection has been the 
lack of a quantitative basis for determining when significant changes have occurred. In 
earlier work at ORNL, we investigated the use of a hyperellipsoid enclosure algorithm (12-13) 
and a decoupled variables approach (14) to automate signature analysis for on-line monitoring 
applications. These algorithms incorporated general, multivariate statistical techniques to 
analyze a set of random and stationary variables whose composition was quite flexible. In 
contrast to the generality of these earlier algorithms, the statistical techniques utilized 
in this algorithm are derived strictly for the PSD descriptor, and will be referred to as 
the PSD statistical recognition (PSDREC) algorithm. The benefits gained that offset the 
loss in generality of this method are: (1) the learning time necessary to establish normal 
behavior is reduced; (2) all available PSD estimates (rather than a preselected few, limited 
by storage requirements) can be examined, thus minimizing preprocessing judgments; (3) the 
ability to differentiate the rate of change of monitored behavior is greater; and (4) identi­
fication of spectral changes is more direct.

aPaper presented at the Second Specialists' Meeting on Reactor Noise, 
Gatlinburg, Tennessee, September 19-23, 1977.
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METHODOLOGY OF SURVEILLANCE TECHNIQUE

During an initial learning period, PSDREC forms the initial baseline signatures and a sta­
tistical description of the normal variations that occur. The monitored system is assumed 
to be operating normally or at least acceptably during this period. The detection of anom­
alous conditions is determined by examining decision discriminants which quantitate certain 
types of spectral deviations. The limiting criteria that are applied to the discriminants 
are predicted from input parameters that define the monitoring procedure. The predicted 
criteria are corrected for the specific behavior observed during the initial learning 
period. Additional correction is allowed at specified intervals if normal conditions 
prevail.

Baseline Signatures

A baseline signature is the standard against which each set of PSD measurements is compared. 
Two separate baseline signatures (designated "Base PSD" and "Trend PSD") are maintained to 
describe the rate at which a change is occurring. The Base PSD characterizes operational 
behavior at the time monitoring is initiated; once the Base PSD includes a specified number 
of PSD estimates, it is never changed. Comparisons against the Base PSD allow maximum sensi­
tivity to slowly developing phenomena. However, the value of Base PSD comparisons is reduced 
if normal cycles of change are present in the data.

The Trend PSD is the signature which characterizes the most recent period of normal opera­
tion. A candidate to replace the Trend PSD is calculated repetitively at specified inter­
vals. During monitoring, this replacement is allowed only if comparisons of incoming PSD 
estimates against the Trend PSD during that interval did not detect significant variations. 
Although the Trend PSD adaptively follows slow changes, comparisons against the Trend PSD 
will detect abrupt or rapidly developing conditions. Comparisons of the candidate (Trend)
PSD against the Trend PSD and the Base PSD allow the detection of the more gradual changes.

Decision Discriminants

PSDREC calculates eight statistical discriminants that are formed from ratios of a set of 
PSD measurements obtained on-line with a baseline set. The discriminants detect (1) fluctu­
ations in the integral power of the spectrum, (2) spectral shape changes, (3) deviations in 
the magnitude of individual PSD estimates at a given frequency, and (4) shifts in the fre­
quency of spectral peaks. The sensitivity of multiple discriminants to certain spectral 
changes is greater than that of a single global measure, such as the Mahalanobis distance 
(12-14) Use of several discriminants also offers a possibility of requiring certain com­
bined or coincident deviations as means of preventing alarms during normal phenomena which 
produce changes that are statistically significant. The eight discriminants help to iden­
tify what type of spectral change is occurring, to quantify its magnitude, and to initiate 
plots that give a clear, visual indication of the detected variation. These discriminants 
can be formed on the complete set of PSD estimates or on any subset (or any collection of 
up to ten subsets).

Prediction and Correction

PSDREC initially calculates theoretical limiting criteria for the discriminants. These 
criteria can be strictly applied only if the data has a gaussian amplitude distribution and 
the individual PSD estimates are independent (additionally for one criterion, the frequency
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spectrum is assumed to be white). During the learning period, the discriminants are tested 
against the predicted criteria in order to determine how closely the data follow the assump­
tions stated. Also, during learning, the means and variances calculated from the actual 
sampled population are used to correct, in a heuristic manner, the theoretically derived 
criteria values. In essence, the discriminant formed from the PSDs is transformed, using 
the sample mean and variance, to produce a distribution that has the mean and variance of 
the theoretical distribution that was assumed in deriving the limiting criterion. In prac­
tice, a transformation is applied in an equivalent fashion to alter the limiting criterion 
so as to maintain the chosen false alarm rate. This prediction-correction procedure maxi­
mizes the use of the information available from the original assumptions and reduces the 
amount of data required during learning to establish appropriate limiting values.

Two-Level Alarm Logic

The discriminants are checked against two sets of criteria values. The alert level criteria 
are less conservative, and violations at these limits must occur on two consecutive occasions 
before the significance of a change is acknowledged and an alarm is sounded. At the danger 
level, an exceedance of any criteria immediately generates an alarm. This type logic pro­
vides protection against alarming for an occasional statistical deviant without sacrificing 
sensitivity to excessive deviations even if they occur intermittently.

STATISTICAL CONSIDERATIONS 

Discriminants Defined

The test discriminants are based on the ratio of a test PSD, P(f^) , with an appropriate 
baseline PSD, P (f^. The independent variable, f^, identifies the frequency of that esti­
mate. The first discriminant, D^., is an integral measure that is sensitive to differences 
in the integral power in a total of r estimates contained in the frequency intervals selected 
for analysis:

DI log 10
ErCV
i

i

This discriminant is dominated by the estimates with larger absolute magnitudes and is rela 
tively unaffected by changes in estimates that are one or two orders of magnitude smaller.

The second and third discriminants examine the minimum and maximum ratios of individual 
estimates, respectively:

DXI = Min log 10
P(f±)
P*(fi) for all i

and

DIII Max log10
PCf^
p*(f±) for all i

Discriminants D^ and I>III are singular measures of deviations and are completely unaffected
by the absolute magnitudes of the PSDs.
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The fourth discriminant is the mean ratio constructed from the set of ratios at the r indi­
vidual frequencies. This discriminant is a measure of the Integral difference between 
spectra:

DIV = r ?-g10 P(f1)
*

P (f^

This discriminant gives equal weight -to all components, regardless of their absolute magni­
tudes. It is sensitive to uniform spectral shifts; however, it is subject to cancellation 
effects from terms of opposite signs (l.e., ratios greater than or less than unity), and 
this limits its ability to detect spectral variations where offsetting deviations are present. 
Another composite ratio is constructed using the second moment of the ratios to eliminate 
this limitation:

log 10
PCf^
P*(fi)

2

This discriminant is a measure of the variance of the set of ratios or, alternatively, it is 
the average squared distance between the test and baseline spectra on a log scale.

The sixth discriminant is an application of the sign test (15,16) to the set of log ratios:

= Larger{(Number of Log Ratios > Median) or (Number of Log Ratios < Median)} .

The seventh and eighth discriminants are based on the number and length of sequences of con­
secutive log ratios (runs) above or below the median (median * 0):

Dyjj • (Number of Runs > Median) + (Number of Runs < Median)

Iand

= Max Length}(Runs > Median) or (Runs < Median)} .

These latter three discriminants are global measures of changes in spectral shape, and they 
are not influenced by the absolute magnitudes of the individual PSDs or the magnitude of a 
single ratio in any way.

Theoretical Limiting Criteria

The first five discriminants are derived as parametric tests based on an assumption that the 
time waveform, xCt)> the monitored signal has a gaussian amplitude distribution. Since 
the Fourier transform is a linear process, the resulting real and imaginary Fourier compo­
nents at each frequency, ^(f^) and XjXfp, are also independent gaussian variables. The 
PSD estimate at f^ is given by

^(f^ = xj (ft) + X^ (f±) . (1)

The sum of the squares of n independent gaussian variables results in a chi-square distri- 
2but ion, x > with n degrees of freedom; hence, it follows that

^fi> A
P(f1) 2 (2)
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where PCf^ is the true (unknown) PSD at To obtain a consistent estimate of the true
PSD functions, a smoothed PSD estimate, P, is constructed by averaging the estimates derived 
from different time records. Since chi-square variables have the property

'■a+b
2.2X, +

an ensemble averaged estimate over n records gives (17)

?(fl) xL
-------— = —?S. C •,P(f±) 2n U

The ratio of two PSD estimates taken at different times, assuming that the true PSD of the 
signal has not been altered, yields a ratio of chi-square variables:

Vfi>/P(fi> , vv , xkA _ (4.

P2(fi)/P(fi) X2n2/2n2

The new random variable which results is an F-variable with 2n^ and 2n2 degrees of freedom. 
The F-variable can assume only nonnegative values, and has a nonsymmetric distribution for 
n2 > 2, If a log-^Q transformation is applied to an F-variable, the resulting distribution 
has improved symmetry characteristics, as shown for a particular case in Fig. 1. Addi­
tionally, the log^q F-variable can assume negative and positive values with approximately 
equal likelihood. A functional approximation (18) is available to calculate the percentile
points L (v,,v_) for the log,„ F„ distribution:p 1 2 1U 2n^ 2n2

VvV = log10 [Fp(v1>v2)] “ I^ioT • (5)

where

w
Xp (h + X) 1/2

(6)

and

(7)

x - 3
x = -y— • <8>

o

Here, x^ is the corresponding percentile for the gaussian statistic.

This approximation can be used directly to predict the limiting criteria for the minimum 
and maximum log ratios for individual frequency estimates (discriminants D^ and Djjj)• 
it is assumed that the time signal has a white frequency spectrum as well as a gaussian 
amplitude distribution, a predicted limit for the log of the ratio of integral power can be 
calculated from the same approximation. If the integral power is a sum over r independent 
estimates, then the degrees of freedom are increased to = 2rn^ and v2 = 2rn2.
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The PSD estimates from an FFT calculation are assumed to be independent (if a Hanning window 
is applied to the time data, only every other estimate is independent), and, thus, the derived 
set of individual log ratios represents a set of independent variables having the same popu­
lation distribution. These ratios may be viewed equivalently as a set of independently 
sampled values from the same probability distribution. The same is true for the set of 
squared log ratios. Thus, discriminants DIV and Dy, which are formed from sums over the 
respective sets, meet the conditions for which the central limit theorem (CLT) applies. If 
we define

Pj/f)
y ' 108 ^f) (9)

and

2z = y » (10)

then

IV
= 7 t

i-i
(ii)

and

= I Vr Zi ' (12)
i=l

By the CLT, Dj.^ and are distributed approximately as gaussian variables (becoming more 
exact as r -*■ ") with

'J(DVI) = yy * (13)

C(DIV) = ^ * (14)

(15)

and

«(V - - (16)

These theoretical means and variances can be expressed in terms of the polygamma functions 
for which functional approximations exist (18) (refer to Appendix A). The limiting criteria 
are then chosen, based on a gaussian distribution with the predicted means and variances. 
Discriminants DVI through DVIII, which are based on the signs, number of runs, and the 
longest run in the set of ratios, are nonparametric tests. The sign test (15,16) for the 
paired sample case hypothesizes the equality of the means for populations that are symmetri­
cal and continuous. If the populations are not symmetric, the hypothesis applies to the 
medians. When two PSDs that have been averaged over a different number of blocks are com­
pared, the paired samples are necessarily drawn from chi—squared distributions with dif­
ferent degrees of freedom, and this introduces skewness. The validity of the test can be
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restored if the ratios are given "signs" based on their relationship to the median of the 
assumed F-distribution. Under this approach, each sign has an equal likelihood of occur­
rence. Therefore, the limiting criterion for this discriminant is based on the binomial 
distribution with a trial probability of 1/2. For large sample sets containing r ratios, 
the discriminant can be tested against the normal curve approximation to the binomial 
distribution:

VI
DVI ~ rtJVI

aVI

where uVI = r/2 and aVI = /r/4 .

(17)

The two test runs have been proposed as techniques for testing the assumption of randomness 
in a set of sampled data. If the test PSD is statistically identical to the baseline PSD, 
the log ratios are a set of sampled values from the same population and should be randomly 
distributed about the median. On the other hand, if a small shift has occurred over some 
portion of the spectra, a long run may develop, or the number of runs may be altered sig­
nificantly. When the sample size, r, is greater than 20, a standardized gaussian variable, 

^, can be constructed from and the expected number of positive, p, and negative, n,
runs (15,16):

VII
DVII ~ PVII

avn (18)

where

2pn ,'Vll n + p + 1 (19)

and

aVII
2pn(2pn - p - n)__1 1/2

(p + n)2 (p + n - 1)J (20)

If the predicted median is the true median of the population, p and n are equal to r/2.

The limiting criterion for the longest run is based on a formula that predicts M(R^), the 
mean number of runs of length k or greater than would be expected in r samples:

M(V r - k + 2 (21)

If the expected number of runs of length k or greater is small, the probability of such an 
event occurring is unlikely. The value of k can be found in an iterative manner, choosing 
a value ('vO.OOl) for M(R^) and using an initial guess for k given by

M(V
r

f.n(0.5)k = (22)
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Correction with Learned Parameters

During the learning period, the means and variances are calculated from the sample data.
These sample statistics are used to correct the criteria values, with an assumption that the 
shapes of the theoretical distributions are approximately correct and only the magnitudes of 
the first and second moments are in error. For the integral power discriminant, , the in­
terval of acceptability is altered by normalizing the theoretical criteria with the predicted 
mean and standard deviation and by normalizing the calculated discriminant values with the 
measured sample mean and standard deviation:

The notation that will be adhered to in this paper designates theoretical means and standard 
deviations by u and a, and measured sample means and standard deviations by M and S. The 
criteria are denoted by C, and the superscripts u and £ denote the upper and lower limits, 
respectively.

As above, the corrections for the minimum and maximum individual ratios (D^ and are
normalizations of theoretical criteria and the calculated discriminant:

II -“ll

II
II II

II
(24)

and

III ^ni< ciii " wni

siii ain (25)

Thus,

and

where

DII > (CII ^LR

DIII < (CIII fe) ^R

(26)

(27)

= sample mean of individual log ratios,

SLR = Sjj. = SII;|. = sample standard deviation of the individual log ratios.

The composite ratio discriminants are gaussian variables according to CLT, and the calculated 
parameters are substituted for the predicted values:

Div - %
SLR ^

< CIV ’
(28)
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and

^SLR
SSLR ^

< C.V ’ (29)

where M is the sample mean of the square of the individual log ratios, and S_T„ is the oLK SLR
sample standard deviation of the square of the individual log ratios.

The nonparametric tests are strictly valid only if the true median of the population of log 
ratios is known. The predicted median for a F-distribution is obtained from Eqs. (5)
through (8) by setting Xp = 0.0. Instead of calculating the sample median to correct the 
inadequacies of the predicted value, the relative proportion, f^, of the population greater 
than the predicted median is tabulated. The correction for is altered by exchanging 
in Eq. (17) for « rfp* The theoretical standard deviation is retained because it is a 
conservative estimate. In a similar fashion, the 0^^ correction procedure alters the 
predicted mean and variance by setting p = rf^ and n = r - p.

The Dypp discriminant has a robust character and is relatively insensitive to small errors 
in the predicted median. The experience to date has indicated that a correction procedure
is unnecessary; however, later applications may prove otherwise. This might be accomplished

k 1/2by replacing the factor (1/2) in Eq. (21) by (f ) , where f is the larger of f or
a-fp).

RESULTS

Implementation and Program Evaluation

The surveillance algorithm has been implemented on a Digital Equipment Corporation PDF 11/20 
minicomputer with 28K words of memory. The complementary hardware includes 2.5M words of 
disk storage, an analog-to-digital converter, a line printer, and a CRT terminal. The 
programming is largely in FORTRAN; assembly language routines are used only to accomplish 
functions not available through FORTRAN or, in the case of the FFT routine, to speed up 
execution.

Disk storage is required for storing programs and retaining selected data. Two data files 
are maintained; one stores the control and statistical parameters and the other stores the 
baseline signatures. These files require about 2N + 600 words of disk storage for each 
signal analyzed (N = No. of PSD estimates calculated by the FFT routine). The program 
version implemented for evaluation monitors only one signal and will perform FFT analysis 
on data blocks of 2048 or less. After operation of the program is initiated, monitoring 
will continue in a repetitive fashion until the user interrupts operation from the CRT 
terminal. Operation of the program can be reinitiated as long as the data files are 
preserved.

The performance of the algorithm was evaluated using a test signal from a gaussian, white 
noise generator. The predicted criteria proved adequate in this situation, and negligible 
correction was required as a result of the statistics calculated during the learning period. 
The individual discriminants exhibited different detection sensitivities to a given spectral 
alteration, as expected from their formulations. Also, it was demonstrated that gradual
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changes in the spectra could be tracked by the Trend PSD, but they were always detected, as 
planned, by the Base PSD comparisons.

Monitoring Signals from Neutron Sensors

Neutron data were recorded during an experiment performed at the High Flux Isotope Reactor 
(HEIR) that has been previously reported (12,13). This experiment included a 12-hr period 
during which the reactor operated normally, followed by several hours during which small, 
control-rod oscillations were induced artificially to create perturbations of less than 0.1% 
in the reactor power. The PSDREC algorithm established the baseline signatures and completed 
the learning phase within 1 hr. (In previous experiments with the more general algorithms 
(12-13), a 12-hr learning period was required.) During the 12 hr of normal operation, the 
algorithm verified that conditions were normal. Figure 2 shows the baseline spectrum and 
a spectrum measured during normal conditions. Rod oscillations were detected, and spectral 
changes were noted (Figs. 3-6). Discriminant values calculated during these anomalous con­
ditions are listed in Table 1. A comparison of the table values with the spectra illustrates 
the ability of the discriminants to quantitate spectral variations.

For another test, data were recorded at the Edwin I. Hatch 1 nuclear power plant of the 
Georgia Power Company (13). Approximately 12 hr of data were recorded for four local power 
range monitors (LPRMs) in this boiling water reactor at a fixed operating condition. Addi­
tional data were also recorded on another occasion at different plant conditions (11).
These data were used to test the hypothesis that the corrected criteria for any LPRM could 
be applied to another LPRM despite individual variations between their spectra. The 
hypothesis was proved to be true. The four LPRMs had been selected impartially. Their 
spectral signatures are displayed in Fig. 7a and b. Signals for the initial baseline sig­
natures and the learning period were from LPRM 12-45C. When these signals were replaced 
with signals from LPRM 04-296, the algorithm inmediately sounded an alarm. However, after 
the algorithm had been instructed to accept a new baseline, subsequent monitoring indicated 
that normal conditions prevailed. No additional learning was necessary. This same sequence 
of events was repeated for other LPRM signals recorded at different operating conditions. 
Monitoring under all tested conditions required forming a new baseline signature only; no 
additional learning was necessary to adjust the discriminant criteria.
These results indicate that separate learning periods are not necessary for each LPRM. Thus, 
a large number of the LPRMs in a BWR might be monitored with minimal time required for learn­
ing. Further, an efficient way to handle different operating conditions might be to alter 
only the baseline signatures when process variables indicate that the reactor operator has 
modified the operational mode. If an anomalous condition were to be introduced by, or to 
occur at the same moment as, the operational change, the subsequent anomalous state would 
not be detected as long as it remained stable. However, the surveillance system would sense 
further deterioration if it occurs. For processes such as baseloaded power plants, where a 
given operational mode is maintained for a relatively long time period, such a procedure 
would be particularly attractive since a single learning period would be sufficient and the 
algorithm would not be required to retain statistical parameters and signatures for many 
different conditions.

Monitoring Signals from Rotating Machinery

Vibrations from rotating equipment are frequently measured with proximeter probes or accel­
erometers. Both types of sensor s were installed on a small (1/20 hp), variable speed
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Fig. 5. Spectral density and spectral ratio plots generated as a
result of the anomalous conditions created by test signal 3.
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result of the anomalous conditions created by test signal 4.
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TABLE X Statistical discriminants resulting from rod oscillation
anomalies at the HFIRa

DI DII Dni DIV Dv DVI DVII DIII

Normal
Criteria: (0.603,1.610) 0.0561 5.1794 +4.13 ±3.87 (5,21) (5,21) 14

TS1 i.ei^ 0.516 6.96fc 5.82fc 8.98fc 19 6 16*

TS3 1.479 0.637 5.34fc 5.21fc 4.74fc 17 10 8

TS4 1.262 0.305 4.77 2.34 4.09i 15 7 9

TS2 0.923 0.3947 3.021 2.24 sag2* 14 9 6
aListed in order of decreasing severity. 

Indicates value out of normal bounds.
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(a) LPRM 12-45C

(b) LPRM 04-29C
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Fig. 7. Baseline signature from LPRMs in the Hatch Unit I Reactor.
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(c) LPRM 44-37C

(d) LPRM 28-29C

0 3 6 9 12 15 18 21 24 27 30 33

FREQUENCY (Hz)

Fig. 7. Baseline signature from LPRMs in the Hatch Unit I Reactor (continued).



23

electric motor in a laboratory. A slotted wheel was attached to the drive shaft to provide, 
with the aid of a light source and photocell, 24 pulses per revolution. These pulses estab­
lished the rate at which the computer sampled the vibrational signals. This synchronization 
of the sampling with motor shaft rotation allowed the FFT analysis to be performed as a 
function of harmonic orders instead of frequency.

Vibrational signals from rotating equipment have a different character from neutron noise. 
Neutron noise spectra generally resemble filtered white noise, rolling off at varying slopes 
over the frequency interval. If resonant structures are present, they appear as broad peaks 
in the spectra. In contrast to this, vibrational signals appear to be a composite of sinu­
soidal signals, many having a nearly constant amplitude. The spectra thus comprise a series 
of sharp spikes. Two phenomena complicate surveillance of these relatively periodic signals. 
First, some of the sinusoids are rotationally related, and others are structurally related. 
Thus, some peaks are fixed in frequency, and others are fixed In order. When varying speed 
operation is analyzed, the locations of some peaks shift, regardless of whether the analysis 
is based on order or frequency. However, such shifting of can be categorized only as normal. 
The effect of this shifting is important because perfectly constant speed operation is not 
achievable. Small variations ('''1%) will result in a detectable shift, even though the varia­
tions of the rotational frequency are less than the frequency resolution of the analysis 
employed.

The second phenomenon is the appearance of small step—changes in peak amplitudes. The ampli­
tude of an estimate has a small variance for a period and then changes abruptly to a new 
level (again with a small variance), even though the operating conditions of the motor re­
main unchanged. The amplitude may later return to its original value, or change to some 
other value. This type of variation has been observed on a time scale from hours to days. 
Although these variations are small, their nonrandom manner of appearance causes problems for 
statistical methods. More work is necessary to find the best way to deal with these effects.

Two anomalous conditions, unbalance and shaft rubs, were purposely introduced into this setup. 
A 4-g weight 4 cm from the center of the shaft was detected. A plot of the ratio of the PSD 
measured with the motor out of balance (using a proximeter probe) to the Trend PSD is shown 
in Fig. 8. A flexible wire sprung against the shaft introduced a much smaller deviation from 
normal operation. A ratio plot for this anomaly is shown in Fig. 9. The differences between 
discriminant values for these anomalies and all normal variations (including two phenomena 
discussed above) are apparent and could be established by human evaluation of the results. 
However, the criteria values selected by the program, even after learning, were not adequate 
(there were too many false alarms). It may be that preprocessing the signal or additional 
detection logic based on empirical results would provide sufficient discrimination and there­
fore acceptable false alarm rates, but this has not been attempted to date.

Planned Surveillance Demonstration in Commercial Nuclear Power Plant

A 6-month demonstration of these surveillance techniques is planned for the winter of 1977.
An expanded version of the PSDREC algorithm will be used to monitor four to eight neutron 
sensors in an operating power reactor (the site is uncertain). The demonstration will be 
completely passive and will require no reactor operational changes of any type. The purpose 
of the demonstration will be to verify that the algorithm can automatically accommodate
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normal operational changes or to identify conditions for which additional algorithm adjust­
ment or development is necessary. Although no anomalous conditions will be introduced or 
even simulated in the planned demonstration, we anticipate that we will be able to use 
operational tests to some extent to verify the ability of the algorithm to detect unusual 
conditions. This was the case in a test at the Hatch 1 nuclear plant where a turbine bypass 
valve test and a rod cycling test were detected (13).

SUMMARY AND RECOMMENDATIONS

The PSDREC algorithm was demonstrated to be sensitive for spectral effects which could indi­
cate incipient malfunction. The algorithm is limited to surveillance applications for which 
the PSD is an adequate descriptor. The ability of the algorithm to automatically establish 
criteria for the statistical discriminants was adequate for neutron surveillance applica­
tions where the signals have a random, broad-band character. However, in rotating machinery 
applications, the criteria determined by the algorithm produce too many false alarms. Never­
theless, at least for some anomalies (such as unbalance), the changes in the discriminants 
are clearly distinguishable from the normal variations. The addition of some heuristic de­
tection logic, such as requiring certain patterns of discriminant deviations, may alleviate 
the problem with false alarms. More work in this area is in progress.

The logic structure and the statistical tests implemented in PSDREC quantify spectral changes 
and serve as a statistical model against which the variations of a given monitored system can 
be compared. This comparison determines if the behavior of the monitored system is consis­
tent with the random, stationary model that was assumed; if not, the analyst may be required 
to incorporate additional logic to handle unanticipated variations. The performance of the 
algorithm can serve as a guide for the decisions made in this tailoring process.

The effectiveness of PSDREC is untested for situations where many normal operational modes 
are possible. When the operational states are maintained for relatively long intervals, the 
algorithm can exchange baseline signatures if there is access to the process control param­
eters . The demonstration planned for a commercial nuclear power plant is expected to vali­
date this approach.
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APPENDIX A

The expressions necessary to calculate the mean and the variance of the gaussian distribu­
tion which describes the DIV discriminant are given first:

(A-l)

where

(A-2)

Then

(A-3)

and

(A-4)

since

Y = log (A-5)
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Let

and

Then

y1 - in

y2 =

("Li/2"1)

(X2n2/2n2) *

(A-6)

(A-7)

Py S.n(10)do) [v + v] (A-8)

and

y Ln(10)
(10) [0yl + <Iy2 J 1/2

(A-9)

According to Ref. 16, the first and second moments of Eqs. (A-6) and (A-7) are given by the 
digamma and trigamma functions,

pyl - iKn^ - ^n(n1) and Oyl - i|i (n^ ;

V>y2 = ^(n2) - Jln(n2) and Oy2 » ip (n^ .

(A-10)

(A-ll)

The asymptotic expansions for and iji are

iKn) - S-n(n) “ - ^----+ 7^-4 + .. . , (A-12)
12n 120n 252n

.1, . 1.1.1 1 . 1 1 .* (n) = n + 2 + 3-----5 ---7-----9
2n 6n 30n 42n 30n

(A-13)

The expressions necessary to calculate the mean and variance of is an extension of those
for DIV

DV = r £
i-1

(A-14)

where

z = logK] = Y (A-15)

Thus, CLT yields

P(DV) = pz (A-16)

and

_2a ay = (A-17)
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Since

u = E(z) = E(yz) , (A-18)

where E( ) is the expectation operator.

Pz = E

pz = E

j^(y - wy)2 + 2y py - pjj

[(y - v2] + 2uy E(y) - yy

2 , 2y = a + y ,z y y

a2 = E 
z [(z-V2] 'E j [y2' (% + ,J5)]

[2vy(7 ~ V ' °y] jE Uy - V + 2yy(y -

{'E ^ (y - Py)4 + 4py(y - Wy)3 - 2oy(y - py)2

+ |2yy(y - py) - oy

Y4 + 4u Y3 - 2a4 + E I 4p2 (y - p )2 
c y c y y y

- 4p a (y - y ) +y y y

n-

2 v4 ^ . v3 4 , . 2 2 a +4y Y -a +4yaz c y c y y y

(A-19)

(A-20)

(A-21)

(A-22)

(A-23)

(A-24)

(A-25)

(A-26)

The mean and variance of Y are available from the expressions for Djy! however, expressions 
for the third and fourth central moments of Y must be derived. By definition.

Y4 - E(y - py)4 = [j^y] E [(yi - pyl) - (y2 - Py2)] (A-27)

Let

6yl - yl " V (A-28)

and

6y2 y2 ' vy2 ' (A-29)

Then

Yc ” E [(l5yl Sy2) ] [in(10)] (A-30)
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Assuming yl and y2 are independent.

E Kl - “Jl ‘,2 * “n ‘U - “,1 sy2 + ‘‘,21 ,„(10)
) [ — 
/ [_ !n(l

34
(A-31)

Y4 = f + 602 62 + Y4
c ^ 1c yl y2 2c

Similarly,

>E [(6yl " 6y2) ] [s.n(10) ] ’

= E(4yi-355i V + 3V [irfior]

(A-32)

CA-33)

(A-34)

Y-' = f Y3 - Y3 ^ f—^-- 1
c ^ 1c 2c ) [in(10)J (A-35)

3 3 4 4Reference (16) defines Y^, Y,^, Y^c , and Y2c in terms of the polygamma functions:

yL = • Y2c - ^"(“2) • (A-36)

4Jyi Y4c = *-(n2) + 3oJ2 , (A-37)

and gives asymptotic expansions as follows:

*"(10 (A-38)

*"'(n) >^ + -r + -r--4 + -^-- — + ••• • (A_39)
3 4 5 7_9 iin n n n 3n n

To summarize the preceding discussion, the calculations! procedure is:
3 3 4

1. Calculate numerical values for u^, uy2, o^2, Y^c> Y2c> Y^, and Y2c , using the 
asymptotic expansions.

~3 ”4

2. Calculate by combining the above parameters: ay, Yc> and Y^ , using Eqs. (A-8),
(A-9), (A-35), and (A-32).

3. Calculate p^, using Eq. (A-21); and o^ using Eq. (A-26).

4. Calculate p(DIV), using Eq. (A-3); °(DIV) using Eq. (A-4); p(Dv), using Eq. (A-16); 
and o(D ), using Eq. (A-17).
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