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ABSTRACT

A postirradiation examination was conducted on a zircaloy-clad,
U02-fdeled, pressurized water reactor (PWR) type rod which had been
tested in the Power Burst Facility as part of the Irradiation Effects
Test Seriés of the Thermal Fuels Behavior Program. The fuel rod, previously
irradiated to a burnup of 15 800 MWd/t was subjected to a power ramp from
28 to 55 kW/m peak power at an average ramp rate of 4 kW/m/min. Posttest
fuel restructuring and relocation, fission product redistribution, and

fuel rod cladding deformation were evaluated and analyzed.
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SUMMARY

A PWR-type, zircaloy-clad, UOZ-fue]ed rod was examined after testing
in the Thermal Fuels Behavior Program Irradiation Effects Test Series-
Test IE-ST-2. The test was performed in a pressurized water reactor
environment in the in-pile test loop of the Power Burst Facility (PBF).
The posttest examination was conducted to determine the condition of a
previously irradiated (15 800 MWd/t) fuel rod which had been exposed to
a power ramp from 28 to 55 kW/m rod peak power at an averége ramp rate
of 4 kW/m/min. '

Extensive fuel cracking and possible central void formation was
observed in a region just above the rod axial peak power location. The
fission product cesium was‘determined to have migrated away from this
region and toward the bottom of the fuel rod. Both of these observa-
tions suggest fuel temperatures were high and fuel melting may have
“occurred in this region. This region, as well as another region about
one-third of the distance from the bottom of the rod, showed substantial
cladding deformation. The maximum ovality (ratio of major to minor
diameter) observed was 1.029 and the maximum decrease in wall thickness
was 17% of the original wall thickness.

The rod did not fail as a result of the power ramﬁ even though
relatively large cladding deformations occurred, probably as a result of
pellet/cladding interaction. The cause of the apparent high fuel
temperatures and unusually large cladding deformations cannot be defined

at this time.
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POSTIRRADIATION EXAMINATION RESULTS FOR THE IRRADIATIOHN
EFFECTS TEST IE-ST-2 ROD IE-002

I. INTRODUCTION

Fuel rod behavior studies are being conducted in the Thermal Fuels
Behavior Program (TFBP) as part of the Nuclear Regulatory Commission's
Water Reactor Safety Research Fuel Behavior Program[]]. The TFBP is
conducted by EG&G Idaho, Inc., under contract to the Department of
Energy. The work is performed in the Power Burst Facility (PBF) at the
Idaho National Engineering Laboratory (INEL). Experimental data are
being obtained from in-pile tests and postirradia-tion examinations for
use in the verification of analytical models being developed to predict
the behavior of light water nuclear reactor fuel rods under normal and
postulated accident conditions.

The Irradiation Effects Test IE-ST-2 was conducted to provide data
on the behavior of irradiated fuel rods subjected to a power ramp and to
film bdi]ing operation. The Test IE-ST-2 results have been compared to
model calculations and are reported in Reférence 2. The postirradiation
examination results from the two rods which operated in film boiling are

reported in Reference 3.

The purpose of this report is.to document the results of the non-
destructive postirradiation examinations performed on Rod IE-002, one of
four fuel rods used in Test IE-ST-2. This rod was not examined along
with the other rods[31 since it had not experienced fiim boiling - a
major objective for the four rods in Test IE-ST-2. However, this provided
an opportunity to determine the condition of a previously irradiated
fuel rod[a] which had been exposed to a power ramp without subsequent
film boiling operation. The nondestructive examination was performed to
‘evaluate the general condition of the rod and to obtain pellet-cladding
interaction strain and fission product redistribution data which can be

used in model verification studies. ' ;

[a] Irradiated in the Saxtan reactor, a small, prototype pressurized

water reactor, designed by Westinghouse Electri -
the USAEC. g ric Corporation for



.A brief descfiption of the Rod IE-002 fuel rod désign, previous
irradiation history, adaptation for PBF testing, and test history in PBF
is provided in Section II of this report. The results of the examination
are presented in Section III and are discussed in Section IV. The

appendices discuss the measurement techniques used in the examination.
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IT. EXPERIMENT DESIGN AND CONDUCT

Fuei Rod iE-00Z was a previously irradiated fuel rod subsequently
operated in the PBF Test IE-ST-2. Section 1 describes the fuel rod
dimensions and Tabrication procedures as well as the previous irradiaticn
history. Section 2 presents a summary of Test IE-ST-2. These topics

are discussed in greater detail in Reference 2.

1. FUEL ROD DESIGN AND IRRADIATION HISTORY

Fuel Rod IE-002 was remotely fabricated from Saxton fuel Rod 829,
which had a previous average burnup of 15 800 MWd/t and a peak cladding-
fluence of approximately 1.1 x 102] n/cm2 (> 1 MeV). Reported time-
averaged peak power for this rod in the Saxton reactor was 39.5 kW/m.

The reported axial power peak from the Saxton irradiation was located
approximately 0.3 m from the bottom of the rod. The top end cap was
replaced with an instrumented end cap and the fuel rod was backfilled
with a 77.7% helium and 22.3% argon gas mixture to a pressure of 2.67 MPa.
The gas mixture used simulates the thermal conductivity of fill gas and

(41

several weeks between the time the rod was backfi]]ed;éhd the time it

fission gases removed from similar Saxton fuel rods However, in the
was loaded into the reactor test space, some of the backfill gas had
leaked out through the Mg0 insulation in the 12 m long extension cable
connecting the plenum thermocouples to the instrumentation outside of
the reactor. At the beginning of the test the rod internal pressure was
2.0 MPa.

The rod was clad with zircaloy-4 tubing having a nominal outside
diameter of 9.93 mm and a nominal wall thickness of 0.592 mm. The fuel
rod was approximately 0.97 m long (not including the instrumented end
cap) and had a nominal active fuel stack length of 0.88 m. The fuel
pellets (9.5 wt¥ 235
on the characteristics of Saxton fuel rods is presented in Reference 4.

U) were of é dished-end design. Additional information



A 17-MPa strain-post pressure transducer, mounted on the instrumented
end cap at the upper end of the rod, was used to monitor fuel rod
internal pressure. A sheathed, magnesium-oxide-insulated, Chromel-Alumel
(Type K) thermocouple was positioned in the plenum to monitor the plenum

gas temperature.

The fuel rod was provided with two, grounded junction, beryllium-
oxide-insulated, tungsten-rhenium (W5%Re/W26%Re) alloy wire, zircaloy-
sheathed thermocouples to measure the cladding surface temperature.

These thermocouples were spring-loaded against the outer surface of the
fuel cladding with an approximately three-pound preload. The thermocouples
were located 0.62 m above the bottom of the rod.

2. TEST CONDUCT

Rod IE-002 was one of four rods tested in the Irradiation Effects
Test IE-ST-2. The test was conducted in a simulated pressurized water
reactor (PWR) environment in the PBF in-pile test loop. The test sequence
and rod power during the test are shown in Figure 1. A discussion of
the methods used to measure and calculate rod powers and uncertainties
in these measurements is provided in Reference 2. The rod was operated
at peak power levels up to 28 kW/m for a périod of about 39 hours. This
precohditioning period included nine hours during which a gap conductance
test was performed. Follawing the preranditioning period, the power in
Rod IE-002 was ramped at-4 kW/m/min from 28 to 55 kW/m peak power; about
16 kW/m hIgTer than the reported peak power (39.5 kW/m) during Saxton

operation

After one hour at this high power level, the coolant flow was
reduced to about 55% of the original flow for 30 seconds and then to 50%
forhan additional 60 seconds to force the rods into film boiling operation.
The test was then terminated and rod power quickly reduced to zero.
While film boiling did occur on two of the four fuel rods in this test,
fuel rod finstrumentation indicated film boiling did not occur onfRod__
IE-002 due to the lower power of this rod relative to the others.
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Fig. 1 Fuel rod power for Rod IE-002 during irradiation in Test IE-ST-2.

Figure 2 shows the time-averaged axial power distribution for the
previoué irradiation of the fuel rod in the Saxton reactor and the
normalized axial power profile of the rod from the irradiation in
Test IE-ST-2. The power peak from the Saxton irradiation is located
approximately 0.3 m from the bottom of the rod and the power peak from

Test IE-ST-2 is located at approximately 0.5 m.



Time-averaged axial power distribution (kW/m)
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III. EXAMINATION RESULTS

Rod IE-002 was nondestructively examined to determine the overall
rod condition, any restructuring or relocation of the fuel, cladding

deformation, and fission product redistribution.

1. POSTTEST FUEL ROD CONDITION

Rod IE-002 was examined to establish the overall posttest condition
of the rod. The entire rod was covered with a thin, dark oxide. A wear
mark at the 0.46-m elevation resulted from contact with one of the fuel
rod centering screws.

Figures 3 and 4 show the rod at 0 and 180 degrees, respectively. The
peak power location (0.492 m) and the region which contained cracked
fuel (0.55 to 0.62 m) (Section III, 2) are indicated in the figures.
Some ]37Cs migrated away from this region (Section III, 4) and wall
thinning also occurred in this region (Section III, 3.2). No discoloration
or other obvicus change was seen in the cladding outer surface at this
Tocation, which confirmed the instrumentation indications that the rod

did not operate in film boiling as a result of the flow reduction.

2. FUEL RESTRUCTURING AND RELOCATION

Rod IE-002 was posttest neutrographed to evaluate the restructuring
and relocation of the fuel as a result of the test operation. Fuel Rod
829, from which Rod IE-002 was fabricated, had been neutrographed prior
to test rod assembly. Figure 5 shows the pre- and posttest neutrographs.
The fuel rod was neutrographed at the General Electric Company (GE)
Vallecitos Nuclear Center near Pleasanton, California during the pretest
nondestructive examination[4]. Following Test IE-ST-2 the rod was
neutrographed at the Argonne National Laboratory Transient Reactor Test
Facility (TREAT) at the INEL.
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The GE neutrograph shows greater definition of individual pellet-to-
pellet gaps and cracks, whereas these features appear exaggerated in the
TREAT neutrograph. The pretest neutrograph shows fuel cracking resulting
from operation in the Saxton reactor. Pellet number 37, located about
0.8 m from the bottom of the fuel rod,[a] was severely cracked. In the
same general region (Pellets 36 through 39), the posttest neutrograph
shows four pellets that were severely fractured. The degree of cracking
appears somewhat exaggerated by the TREAT neutrograph. Whether this
fuel breakup is a result of handling while the rod was being modified
for use in the test or whether it is a result of the test is not clear.
Two pellets at the top of the fuel stack were also broken. This breakage
was probably due to handling when the end cap was installed. Pellet 12
at 0.20 m was cracked as shown in the pretest neutrograph; however, no
additional cracking of this pellet occurred as a result of testing.

Some indication‘of centerline void formation which may be associated
with fuel melting was noted in the region from 0.55 to 0.62 m. Destructive
examination would be required to verify this assumption; howevef, the

]37Cs, as reported in Section III, 4, is an indication of

migration of
elevated fuel temperatures which, again, may be associated with fuel

- melting.

3. CLADDING DEFORMATION

The amount of cladding deformation was determined by a pulsed eddy
[5]

A discussion of the results of these measurements is provided in the

current scan Cladding wall thickness and outer diameter were measured.
following sections. Appendix A presents a description of the scanning
equipment and a discussion of the accuracy and repeatability of the
results. V

[a] The bottom of the fuel stack was 0.013 m from the bottom of the
rod. :
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3.1 Diameter

The cladding outer diameter was generally unchanged from the
pretest condition, except for two axial locations: 0.345 and 0.580 m.
Figure 6 shows the cladding pre- and posttest .outer diameter at these
locations. The pretest diameter measurements showed some ovality, with
the maximum diameter at.60 degrees and the minimum diameter at 150 degrees.
(Ovality is defined as the ratio of maximum diameter to the diameter at
90 degrees from the location of the maximum diameter.) The maximum
pretest ovality was 1.007, occurring at the 0.58-m elevation. Posttest
results indicated the circumferential location of the maximum diameter
had shifted to 30 degrees, with the minimum diameter at 120 degrees.
The maximum posttest ovality was 1.029, also located at 0.58 m.

3.2 C(Cladding Wall Thickness Variations

Cladding wall thickness was uniform over ‘the length of the fuel rod
after irradiation in the Saxton reactor. However, after irradiation in
Test 1E-ST-2, decreases in wall thickness wére measured at two regions:
0.22- to 0.36-m elevation, the region of maximum power in the Saxton
reactor; and 0.42- to 0.62-m elevation, the region of maximum power in
PBF operation. Figure 7 shows the wall thickness as a function of
orientation for two elevations in the lower region and three elevations
in the upper region. The maximum decrcase in wall thickness; 0.102 mm
(17%), occurs at 0.330 m. The average wall thickness in the lower
region was 0.546 mm, a reduction of 0.046 mm (8%)f The average wall
thickness in the upper region was 0.575 mm, a reduction of 0.017 mm

(3%). No evidence of cladding ridging was observed at pellet interfaces.

The minimum wall thickness and maximum ovality were determined
along the length of the fuel rod. These data, plotted in Figure 8, show
two regions of cladding deformation. However, from the plot it can be
seen that the regions of diameter change are offset axially from the
regions of wall thinning by approximately 0.05 m, upward.

12
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4. FISSION PRODUCT REDISTRIBUTION

Fuel Rod IE-002 was gamma scanned pre- and posttest. These data
are presented in Appendix B. A decrease in gross gamma activity in both

scans correlates well with the area of broken fuel shown in Figure 5.

The fuel rod was also spectral gamma scanned for the following:
497 kev O3y, 622 kev '%%Rn, 662 kev '37cs, 724 kev Pzr, 756 kev Pzr,
765 keV 95Nb, and 2186 keV ]44Ce. Results are presented iniTab]e 1.
The 765 keV

95Nb, and 662 keV ]37Cs gamma intensities are plotted as a
function of axial location in Figure 9. Both the

95Nb and 137

decrease in the region containing broken fuel (0.55 to 0.62 m). The
137

Cs intensities

Cs intensity increases toward the bottom of the rod. Figure 10 shows
the ratio of 662 keV ]37Cs intensity to the 765 keV 95
function of axial location. " This plot shows the migration of

Nb intensity as a
]37Cs from
the 0.55- to 0.61-m region, above the power peak location, toward the

bottom 0.2 m of the fuel rod.
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Iv. DISCUSSION

Rod IE-002 was nondestructively examined to determine the effects
of the power ramp on the condition of the rod. The rod survived the
ramp and high-power hold period without cladding failure. A uniform
black oxide covered the entire surface of the rod. No cladding defects
were visuaj1y detected. However, unusual cladding deformation, fuel
relocation and restructuring evidence, and fission product redistribution
were found in the postirradiation examination in two axial locations
along the rod corresponding to the reported[4] high-power region (0.30 m)
during Saxton operation and just abov?4§he high-power region (0.49 m)
d

of the rod during Saxton operation was not detected in the gross gamma

during the test in PBF. The reporte power skewing toward the bottom

scan of the rod.
A spectral gamma scan detected gross migration of fission product

Cs from the 0.55- to 0.62-m region toward the bottom of the rod. In

this same region, indications of void formation at the center of the

137

pellets were observed in the posttest neutrograph. These findings

indicate that fuel temperatures were very high in this region and

possibly some fuel melting had occurred. This same begion is the

location expected to operate in film boiling during the flow reduction A
phaée of the test. However, on-line instrumentation, the visual appearance
of the rod, and the absence of cladding collapse all indicate that the rod
did not operate in film boi]ing. The cause of the anomalously high fuel

temperature cannot be explained at this time.

In this same region, relatively large cladding deformations occurred
with maximum cladding wall thickness locally decreasing by about 9% at
the 0.58-m rod elevation as compared with wall thickness measured after
operation-in the Saxton Reactor. Cladding deformations also occurred

from the 0.22- to 0.36-m rod elevation, the region of maximum rod powe.
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during Saxton operation. A maximum wall thickness decrease of 17%
occurred at the 0.33-m rod elevation. Prior to PBF operation wall
thickness was relatively uniform, with no regions showing evidence of
cladding wall thinning.

Rod IE-002 survived a high power ramp without failure. Fuel
restructuring and fission product migration evidence suggest anomalously
high fuel temperatures occurred in a region just above the peak power
region of the rod. In this same region and in the region of maximum
power during Saxton operatioun, large and unusual cladding deformations
occurred, apparently a result of pellet/cladding interaction strains
‘induced by the power ramp. The irradiation=damaged c]addfng (>1 x 102]nvt)
was capable of withstanding these large deformations without failure.
"The cause of the anomalous cladding deformations, fuel restructuring,
and fissinn product migration cannot be explained at this time. These
_occurrences have not been observed to-date on other.Saxton-irradiated
rods similarly tested in the Irradiation Effects Test Series.
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APPENDIX A
PULSED EDDY CURRENT SCANNING

Fuel Rod IE-002 from Test IE-ST-2 was scanned by pulsed eddy
current (PEC) methods[A_]] both before and after testing. The PEC
scanner provided outer diameter and wall thickness information. Scans

were taken at 30-degree intervals around the fuel rod.

Many of the orientations on fuel Rod IE-002 were scanned twice.
Figure A-1 shows an example of two scans at one orientation for both the
outer diameter channel and the wall thickness channel. The repeatability
of these measurements was excellent. The accuracy of the diameter and
wall thickness measurements was estimated to be within +0.008 mm. The

precision of these measurements was 0.003 mm.
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APPENDIX B
GAMMA SCANS

Fuel Rod IE-002was gamma scanned both before and after Test
IE-ST-2 to document the relative lievel of gamm ray activity as a
function of distance along the fuel stack and to determine any changes
that occured as a result of the PBF testing. The data were taken with a
Nal scintillation detector coupled to a multicannel pulse height

analyzer and strip chart recorder.

A Slo-Syn stepping motor provides the rod scanning drive and
positioning mechanism which allows setting the test interval to +0.03 mm.
The fuel rod was situated in front of the Nai collimator slit (0.051 x 1.270 mm)
and the output of the Nal detector was received by the strip chart
recorder as the fuel rod was driven past the collimator slit at a
slow, constant rate. The strip chart recording speed was matched to the
positioning rate (8.46 mm/s) of the fuel rod past the collimator. A
standard ]37Cs source was monitored before and following the gamma scan
to determine whether any electronic drift in the initial and final data

recording occurred during the scan.

The top and bottom of the fuel stack were identified by step-
scanning past the detector-collimator. A rapid change in the gamma ray
intensity occurred at the end of the fuel stack.

Figure B-1 shows the pre- and posttest gross gamma scans. A
different scale was used for the two scans, as shown in the figure
by the ]37Cs shource run before and after each scan. The pretest scan
shows a decrease in activity at the area of cracked fuel located 0.546
to 0.577 m from the bottom of the fuel stack. The decrease in posttest
activity from 0.55 to 0.62 m indicates more extensive fuel cracking as
a result of the test. This activity decrease was also found to be a

result of ]37Cs migration away from this area.
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