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_ EMITTANCE GROWTH OF AN INTENSE ELECTRON BEA I

Abstract

We use the single-particle radial equation of motion to
identify nonlinear forces which lead to an emittance
growth in a focusing channel consisting of solenoids. For
a uniform density beam, the two dominant effects are the
axial velocity variations within a solenoid due to the
particles’ azimuthal velocity and changes in the particle’s
energy due to radial motion and the radial electric space-
charge field. We derive estimates for the emittance
growth for a space-charge dominated beam due to these
effects, both for the case of a hard focus to a small beam
waist and for the case where there is gentle beam
scalloping. We also briefly catalog less important
emittance growth mechanisms.

1 INTRODUCTION

In this paper, we will analyze the emittance growth of a
continuous, intense electron beam in a transport channel
made up of short discrete solenoids. Our goal is to derive
formulas for the emittance growth for the case that the
beam is focused to a small waist and for the case the beam
is radially oscillating (either due to a mismatch or the
discreteness of the focusing solenoids). By far, the most
important effect is due to beam-density nonuniformities;
however, we will assume that a uniform-density beam can
be generated, and we will thus find emittance growth
estimates for a uniform-density beam, which would be
then useful for evaluating beamline designs. We will
assume that the electron beam does not reach an
equilibrium or periodic phase-space distribution. For
simplicity, we will assume that all elements are perfectly
aligned and that the focusing elements are perfect with no
fringe fields. The emittance growth will be dominated by
effects arising from axial velocity variations within the
soleniods (due to a radial-dependent azimuthal velocity,
and which leads to particles at larger radii spending more
time within the solenoid and thus being overfocused) and
from changes in the particles’ energy (due to the coupling
between the radial space-charge force and a particle’s
radial velocity). For a nominal 4-kA, 6-MeV electron
beam, the normalized emittance growths from these
mechanism can easily exceed 200 mm mrad.

2 RADIAL EQUATION OF MOTION

The radial equation of motion for a particle within the
beam within the central part of a solenoid (where the
applied magnetic field from the solenmd is purel ax1a1)
is given by B ¥

d va
m fj}:) =ek, +e(vyBy, —v,Bg)+evyB,, +—— ™

where y is the relativistic mass factor, B,,, is the total
external axial magnetic field (from both the solenoid and
the diamagnetic effect from the image currents in the
beampipe), B, is the diamagnetic axial magnetic field
induced from the beam current opposing the solenoidal
field, B, is the azimuthal magnetic field from the space
charge, and E, is the radial electric field from the space
charge, all at the position of the particle, and e and m are
the electronic charge and mass, respectively. For
balanced flow, the solenoid strength is adjusted such that
the linear part of the combination of evyB,, and the
centrifugal force will cancel the linear part of the resulting
space-charge force. There is also a potential depression
within the beam (a variation of y that is a function of
radius). Our approach will be to expand the radial
equation of motion in terms of the variation of y, to

lowest order, which we will then use to estimate the
emittance growth for the two cases.

We will assume that the particles have no intrinsic
angular momentum (there is no axial magnetic field at the
location of the cathode) and that the external magnetic
field is radially constant. Thus, the azimuthal velocity
can found by application of Busch’s Theorem [1] (the
conservation of angular momentum):

j (Boyt + By )vdv 2

where v is a dummy variable for the radial integration.
We will use Gauss’ Law to find the radial electric field,
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where p is the charge density. The diamagnetic field is
given by

Bao = [ ‘oot dv @

where r, is the radial edge of the beam. The diamagnetic

field is small, and, to first order, only the azimuthal
velocity depending on the externally applied solenoidal
field needs to be considered in Eqn. (4). We can write the

relativistic mass factor as y(r) =y, +y,(r), where y, is
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the mass factor along the axis (r=0). Let us assume that
the space-charge density is of the form p=p,r"
Explicit evaluation of the above integrals for this charge
density profile gives [2]
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where B is the total axial magnetic field. The azimuthal
velocity in terms of the magnetic field on axis and the
relativistic mass factor on axis is given by
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The beam-induced azimuthal magnetic field in Eqn.
(7) is given in terms of the vector potential by
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If the beam is converging or diverging, there is a nonzero
radial vector potential, and if the beam is being focused in
a solenoid, the axial derivative of the radial vector
potential is nonzero {3]. In that case, the azimuthal
magnetic field is approximated by
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where the scalar potential at the beam radius is
¢, = yymc® /e, and where y, is the difference in the

relativistic mass factor between the center and radial edge
of the beam.

Using dots to refer to time derivatives and primes to
refer to axial derivatives, we have
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and
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where we are defining v, to be the axial velocity at the

axis and v to be the relative axial velocity,
v,(r)=v, +v(r). After combining the focusing term

and the centrifugal acceleration term, and combining the

r” terms and dividing through by a factor of ¥ , Eqn. (1)

becomes
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where ¥ =8r/10r, —13/10 and y* is an effective

relativistic mass factor. To lowest order in the small
quantities, the radial force equation becomes in terms of
the parameters evaluated on axis
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For a uniform density beam after a drift of length 7, we
find that the integrated radial divergence is given by
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where r, is the initial radial divergence and where we are
using the definition of the focal length of a solenoid,
S =4y2m*v2 116*B:. Note that the effect of the potential

depression of the beam exactly cancels the effect of the
diamagnetic field, leading to a purely linear focusing
force and no emittance growth. However, there are four
terms present that lead to an emittance growth, even for a
uniform density beam. These are: (1) the axial velocity
shear (which will arise from the conservation of energy
and the particles’ azimuthal velocity), (2) the chi term
(which is from the axial derivative of the radial vector
potential), (3) the radial space-charge term (for balanced
flow, y * is independent of radius, and the nonlinear term

scales as 72 /1%), and (4) the radial velocity term (which

arises from the divergence of the beam leading to energy
variations). For most cases of interest, terms 2 and 3 are
small, and we will only consider terms 1 and 4 in the next
section.

Nonlinear space-charge forces arising from a
nonuniform charge density can easily dominate these
effects; special care must be made to ensure the beam
density is uniform.

(13)




3 EMITTANCE GROWTH ESTIMATES

~

3.1 Emittance growth in the hard focusing case

" There are two effects worth considering when the
beam is focused to a tight waist. First, inside the solenoid
itself there is an axial velocity shear. Second, there is a
significant convergence of the beam as it travels to the
waist. We will assue as nominal parameters y, =12.74,

I=01m, f=06m, and the beam radius in the final
focus solenoid is 7, = 0.03 m.

Inside the solenoid, the wvariation in the axial
velocity (v, = v, +v) is given by
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The divergence in the beam introduced by the solenoid is
then (ignoring all terms except for the terms depending on
the solenoid’s focal length)
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The normalized, 90% emittance growth from the
nonlinear part of this divergence is
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For the nominal parameters given, the emittance growth is
about 70 mm mrad.

After the solenoid, the divergence term in Eqn. (13)
dominates. We need to be a little careful because the
beam radius is changing over the axial range we are
interested in. The growth of the radial divergence is
given by
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where ¢ is the distance from the beam waist. The
differential emittance growth is
NOR
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where 1, =4nemc’ /e. This expression is easy to

integrate, using r, = ¢, / L, where r,,, is the beam
radius at the solenoid and L is the total separation

between the solenoid and beam waist. We find the total
accumulated emittance growth at the final focus to be
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For the previous parameters and a final focus length L of
60 cm, the emittance growth is about 180 mm mrad.

3.2 Emittance growth for a scalloping beam

In general, the beam is not in completely balanced,
uniform flow or being focused hard to a waist. The
solenoids are discrete, and the beam-edge radius gently
undulates down the beamline. We can estimate the
emittance growth for a length / of scalloping motion, by
using the divergence term in Eqn. (13) while assuming
that the beam radius is a constant.

In this case, the accumulated nonlinear divergence
after a length / is given by

eE y ¥ 2 I Ir 3 —2

a’=2 -
7aﬂ1A "y

r=1 (20)

yamcz rb2

where now & is the rms divergence of the scalloping of
the radial beam edge (let us say it is on the order of 20
mrad). For this case, the normalized, 90% emittance
growth is given by
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Note that neither the beam radius and the beam energy
does not enter this equation. For the other parameters
used in the previous example, the normalized, 90%

emifttance growth is about 6(107°)/. This emittance

growth will continue accumulate, and can become very
large over long beamlines of several tens of meters.
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