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Abstract

This is the final report of a three-year, Laboratory-Directed Research and
Development (LDRD) project at the Los Alamos National Laboratory
(LANL). The goal of this research has been to construct local high-order
difference approximations of differential operators on nonuniform grids that
mimic the symmetry properties of the continuum differential operators.
Partial differential equations solved with these mimetic difference
approximations automatically satisty discrete versions of conservation laws
and analogies to Stoke's theorem that are true in the continuum and therefore
are more likely to produce physically faithful results. These symmetries are
easily preserved by local discrete high-order approximations on uniform
grids, but are difticult to retain in high-order approximations on nonuniform
grids. We also desire the approximations to be local and use only function
values at nearby points in the computational grid; these methods are especially
efficient on computers with distributed memory. We have derived new
mimetic fourth-order local finite-difference discretizations of the divergence,
gradient, and Laplacian on nonuniform grids. The discrete divergence is the
negative of the adjoint of the discrete gradient, and, consequently, the
Laplacian is a symmetric negative operator. The new methods we are
deriving are local, accurate, reliable and efficient difference methods that
mimic symmetry, conservation, stability, the duality relationships and the
identities between the gradient, curl, and divergence operators on nonuniform
grids. These methods are especially powerful on coarse nonuniform grids
and in calculations where the mesh moves to track intertaces or shocks.

1. Background and Research Objectives

The goal of this research has been to develop more efficient, stable and accurate
methods for solving systems of nonlinear partial differential equations (PDEs). The discrete
approximation of differential operators is a critical element in any computer simulation based on
solving these equations. Most PDEs can be formulated in terms of invariant, first-order

differential operators, such as the divergence of vectors and tensors, the gradient of scalars and

* James M. Hyman, e-mail: jh@lanl.gov




vectors, and curl of vectors. These first-order differential operators are the main objects of
vector and tensor analysis and satisfy integral identities that are closely related to the
conservation laws of continuum models. We use these coordinate invariant first-order
operators to create high-quality finite-difference methods (FDMs) based on discrete analogs of
vector and tensor analysis. This eftort has resulted in new solution algorithms that mimic the
crucial properties, such as conservation laws or symmetries, of the PDEs being solved.

2. Importance to LANL's Science and Technology Base and National R&D
Needs

Developing discrete algorithms that capture all the important characteristics of the
physical problem is more ditficult as mathematical models become more complex to account for
additional physical processes and more complex domains or boundary conditions. These
mathematical models involve, in an essential role, the numerical solution of systems of
nonlinear PDEs. The ditficulties will be easier to overcome if we are able to derive new
discrete algorithms based on a general approach for solving these PDEs that can be applied to a
wide range of physical systems. Experience has contirmed that the best results are usually
obtained when the discrete model preserves the fundamental properties of the original
continuum model for the underlying physical problem. Robust, realistic algorithms for large-
scale simulations are more capable when they are based on solid mathematical theory and when
the discrete model maintains many of the important properties of the continuum model. These
properties include conservation laws, symmetries in the solution, and the nondivergence of

particular vector fields (i.e., they are divergence free).

Our research on mimetic difference approximations has reached a point where we have
a complete set of consistent discrete approximations tor the gradient, divergence and curl
operators on nonunitform grids in one, two and three spatial dimensions. These operators
preserve the underlying structure and mimic the integral properties of the ditferential operators,
including the divergence and circulation theorems. This past year we began comparing the new
methods with other standard finite difterence methods and found that the new algorithms are
more effective approaches in solving complex mathematical models in fluid dynamics,

combustion and nonlinear optics.

3. Scientific Approach and Accomplishments




We have concentrated on deriving discrete difference methods that automatically
preserve crucial properties of differential operators, such as conservation laws, and the
identities between the gradient, curl, and divergence operators. The discrete versions of the
divergence, gradient, curl, and Laplacian operators should be consistent with each other and
satisfy the standard vector identities. For example, in magnetohydrodynamics, taking the
divergence of the equation for the magnetic field B reveals that if B is initially divergence
fre e, then it
remains so, based on these identities. Numerically, if the identities are not satisfied, the
divergence of B will drift during the calculation. Stokes' theorem states that the exterior
derivative is the adjoint of the boundary operator with respect to the pairing induced by
integration. This operator generates the discrete versions of the divergence, gradient, and curl
operators; the discrete vector identities follow automatically from standard geometric identities.

The discrete analogs of integral identities can be used to construct discrete operators
satisfying these identities using the support-operator method (SOM). In the SOM, first a
discrete approximation is defined for a tirst-order differential operator, such as the divergence
or gradient, that satisfies the appropriate integral identity, such as Stokes' theorem. This initial
discrete operator, called the prime operator, then supports the construction of other discrete
operators, using discrete formulations of the identities for differential operators. For example,
if the initial discretization is defined for the divergence (prime operator), it should satisfy a
discrete form of Gauss' theorem. This prime discrete divergence, DIV, is then used to
support the derived discrete operator GRAD; GRAD is defined to be the negative adjoint of
DIV.

The SOM FDMs are based on fundamental mathematical principles that correspond to
basic physical principles, and these FDMs provide accurate, robust, and stable approximations
to differential operators on nonuniform structured and unstructured grids. Because the new
FDMs mimic the invariant properties of continuum differential operators, they require fewer
points to obtain the same accuracy when compared with many traditional methods. They also
lead to a deeper understanding of FDMs and of which physical laws are captured by an FDM.

These methods are especially effective on coarse grids and in calculations where the
mesh moves to track interfaces or shocks. We have developed some effective conservative,
fourth-order accurate approximations to nonlinear systems of hyperbolic equations being

solved on nonuniform grids. These approximations maintain their accuracy on moving,

tensor-product grids with random spacing in one, two and three dimensions. We have




compared the second- and fourth-order SOM FDMs with traditional FDMs in solving
conservation laws on extremely rough grids and demonstrated the advantages of the SOM
approach.

Mimetic difference operators, which preserve (mimic) the properties of the differential
operators, can also be investigated using tunctional analysis. This approach has been
successfully applied to the study of problems in mathematical physics. For example, the
method of orthogonal projections forms a considerable part of the theory of generalized
solutions, and Weil's theorem on orthogonal decomposition plays a fundamental role in
solving the Navier-Stokes equations. The difterence version of Weil's theorem, for square
grids in 2-D, can be used to construct high-quality FDMs for these equations.

Applying the algebraic topology to construct the discrete analog of the metric conjugacy
operator * on non-orthogonal, non-smooth, logically rectangular grids requires establishing a
complex set of definitions and mathematical tools. Moreover, this approach is natural for a
specific discretization of the vector field and cannot be easily used for many widely used
discretizations, including the usual nodal discretization of the Cartesian components of a

vector.

The language and tools of advanced calculus are more widely known and used for
formulating the theorems and concepts of vector and tensor analysis than is the language of
algebraic topology. This is especially true among researchers in the field of scientific
computing, solving systems of PDEs. Because this applied numerical community is our
primary audience, we formulate our discrete vector and tensor analysis without using the

language of algebraic topology.

Using the language of advanced calculus, we constructed different discrete
representations of scalar, vector, and tensor functions on logically rectangular grids and
defined projection operators between different spaces that preserve some important properties
of the functions. We also detined the discrete analog of the line integral, the potential vector,
the flux of the vector through a surtace, and the circulation of a vector along a contour and
construct discrete analogs for the gradient of scalar functions and investigate discrete analogs
for directional derivatives. The natural discrete analogs of the divergence, gradient, and curl
operators are based on coordinate invariant definitions and interpret these formulas in terms of
curvilinear coordinates, such as length ot elements of coordinate lines, areas of elements of
coordinate surfaces, and elementary volumes. We then define a discrete analog of the
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divergence operator based on Gauss' theorem and use Stokes' theorem to define a discrete
curl. We prove discrete versions of the standard theorems of vector analysis, including a
discrete Gauss' theorem: the discrete analog of the theorem that div A =0 if and only if A =
curl B, and curl A =0 if and only if A = grad ; the discrete analog of the theorem that if A
= grad @, then line integral does not depend on path; and, if line integral of some vector
function is equal to zero for any closed path, then this vector is the gradient of some scalar

function.

The new discrete approximations of the divergence, gradient, and curl using discrete
analogs of the integral identitics are satistied by the differential operators. These new discrete
operators are adjoint to the previously derived natural discrete operators defined using “natural’”
coordinate-invariant definitions, such as Gauss' theorem for the divergence. The natural
operators cannot be combined to construct discrete analogs of the second-order operators div
grad, grad div, and curl curl because of incompatibilities in domains and in the ranges of
values for the operators. The same is true for the adjoint operators. However, the adjoint
operators have complementary domains and ranges of values, and the combined set of natural

and adjoint operators allow a consistent formulation for all of the compound discrete operators.
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