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_ANTENNA-PLASMA COUPLING THEORY FOR ICRF HEATING
. ‘ OF LARGE TOKAMAKS

A. Ram and A. Bers

Massachusetts Institute of Technology

o  Plasma Fusion Cenuir
Cambridge, Massachuseits 02139, U.S.A.

A number of experiments (TFR, PLT) have reported significant heating of ions in.a -
- plasma by waves in the ion-cyclotron range of frequencies (ICRF).- These waves are excited
“in the plasina by an antenna structure consisting of a current carrying conductor near the -
plasma wall in the shadow of the limiter. An effective coupling of the external radio-
frequency (rf) power to the plasma is achieved when these rf current carrying conductors are
shielded from the plasma by a metal screen which locally shorts out tlie toroidal component
of the electric field leaving the poloidal component unaffected. The screen also prevents the
- plasma from penetrating to the rf conductor. In this paper we study the coupling characteris-
- tics of such an antenna structure by analysing a model where a thin current sheet is placed
~between a fully conducting wall and a sheet of anisotropic ‘conductivity representing the
screen. The inhomogeneous plasma in the shadow of the limiter is assumed to extend from
" the screen onwards away from the antenna. The excitation of the fields inside the plasma are
found by analysing the radiation properties of this current sheet antenna. We assume that the
current distribution of the antenna is given and that the fields excited inside the plasma are
absorbed in a single pass. In all experiments to-date the cross-sectional plasmas are relatively
* small so-that the rf conductor is a half-loop around the plasma in the poloidal.direction.
However, for reactor size plasmas this cannot be done and the antenna dimensions will be
small compared to the plasma cross-sections. We, thus, assume an antenna of finite poloidal
and toroidal extent with dimensions small compared to the plasma minor radius. We further
approximate the coupling geometry by a slab model (Figure 1).  The z-axis is taken to be
along the plasma inhomogeneity, the y-axis along the poloidal direction and the z-axis along
.the toroidal magnetic field. - e
The fields in the vacuum and the plasma are Fourier transformed in y and z and are
taken to have a dependence of the form exp(ikyy 4+ ik.z — iwt). The plasma in the coupling
region near the screen is assumed to be described by its cold dielectric tensor:

K, —iKx 0 o ' o
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the summation being over the ion-species, v is the cyclotron frequency, w, is the plasma

frequency and, w is the external frequency. The inhomogeneity in the toroidal magnetic field -

1s introduced through w. and that in the density through w,. The cold plasma dispersion
relation leads to the existence of two components of the ICRF wave - the slow and the fast
modes. These waves decouple as |Kj| > |K |, Kx inside the plasma. The slow wave has a
resonance at the point where |k, | = 0 which occurs at low densities near the edge of the
-plasma. In order to-avoid the coupling to the slow wave we choose the density at the screen
to be such that the slow wave is not excited inside the plasma. This density also ensures that
" |Kyl > |k |, Kx from the screen onwards into the plasma. So we consider only the coupling
to the fast wave, The fast wave z-component of the electric field in the plasma E? is zero. The
. other two components of the electric ﬁe]d inside the plasma are given by".
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Prev10usly the field solutlons for ﬁmte n,, were examined analytlcally for the Egs. (5- 8) with
all the derivatives of the dielectric tensor elements set to zero 2. -In-this paper we give the
- results of solving (numerically) Eqs (5-8) without neglecting these denvatlves Only those -
solutions which give power flow into the plasma are considered.

The fields in the free space region between the wall and screen, and containing the

- current sheet, are described by a superposition of the full set of transverse-electric (TE) and
transverse-magnetic (TM) modes. (The TEM ﬁelds related to the feed of the antenna sheet

are ignored). These fields are given by: :
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~where s = I refers to the vacuum region between the wall and the antenna, and s = IT to the
region between the antenna and the screen. Setting H%, = H®_ = 0 gives the TE mode and

setting B9, = E®_ =0 gives the TM mode. We assume that the antenna is carrying a current
- inthey dnectron at frequency w. with the current densrty grven by:

T =Kb@)FW)GE) § BT

where Ko is the surface current density. amphtude and: F(y) and G(z) are the dlmensronless _
profile factors of the current. Letting E,0 be the complex amplitude of the electric field
componentE inside the plasma, the constants H°,, H*_, E*,, E*_, and E, can be determined

by satisfying the boundary conditions at the wall, antenna and the screen.

The radiation impedance of the antenna is obtamed by applymg the complex Poynting
- theorem at the surface of the antenna Z. v :

| 12 -1’ : - .' o ' c
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where I=Ko /G(é_) dz- is‘the.current‘

On matching the boundary conditions at the conducting wall, antenna, ‘and the screen the
~ fields at the antenna can be expressed in terms of the fields 1n51de the plasma. Then the
' 'complex unpedance can be expressed as: : . .'

aap e [oroners

where the intrinsic‘impedance,zk, ié given by D - o . _ |
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ﬁ’(kg), 5(kz) are the Fourier transforms of F(y), G(z)respectively, and£7(z) = EP(x)/{f‘(k kz)} -



To detelmme EP we solve thc Egs. (5-8) by assuming an outgoing wave at a short distance-
away from- the scrcc,n inside the plasma Then the differential equation for E? (Eq. (6)) is

integrated backwards in z to determine E” at the screen (z = b).

The first term in the expression of 2, is purely imaginary and contributes only to the
reactive part of the impedance. This would be the radiation impedance of the antenna if
the screen were to be replaced by a perfectly conducting wall. If we choose the antenna
spectrum to be uniform in y and 2, this reactive part has a logarithmic singularity as k, — oo.

This singularity is a consequence of the infinite charge required at the antenna ends in y to
maintain the assumed uniform current. The experimental situation is closer to that shown in
Figure (2) where the feed lines to the antenna are included. Here the current flows smoothly
through tl:e antenna and there is no singularity. We approximate this situation by having the
-antenna in a finite sized rectangular box with fully conducting walls whose y dimension is
the same as the length of the antenna in y and whose z dimension is larger than the antenna -
~length in 2 (Figure '3). Then the singularity at the y-ends of the antenna is removed and

this shiould give a good approximation to the reactive loading of the antenna in an actual -
* situation. This particular problem can again be solved in terms of the free-space modes of the
‘box. The reactive part of the antenna impedance is found to be: -
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and, 2d(> L,) is the length of the box in. the z-direction. If we now assume a uniform
current proﬁle then F,, is nonzero for m = 0 only. Thus, the double sum in Eq. (16) is
reduced to just a single sum over n which converges rapidly to give a finite contribution to
. the reactive impedance. The contribution to the total reactive impedance from the second
term of Eq. (15) is found to be very small compared to. the reactive impedance evaluated
~ from Eq. (16). The resistive part of the antenna impedance is just.the real part of the second
term of Eq. (15). _

The power ﬁow into the plasma is glven by

11

Ppp=Re 2(2 @ / dk, | _dk E}HZ" (17

As an example we apply the above results to a tokamak plasma consxstmg of just
deuterium and electrons with the following parameters: major radius = 3 m., minor radius
(to the screen) = 1.27 m., density at the screen = 2 x 10" cm—3, peak den31ty (at.center) =
5 x 10" cm—3, toroidal magnetlc field = 35 kG, w = 2wep == 3.35 x 108 sec—1, ¢ = 5cm,
b=3cm, L, = 60cm, L, = 40 cm, d = 25 cm and a uniform current profile in y and 2.
With the above choice of edge density we make sure that the slow wave is not excited at the



edge. For a parabolic density profiie the real part of the integrand of Eq. (14) is plotted as -
a function of n, and n, in Figure (4). We find that the major contribution to the resistive
impedance of the antenna comes from the region n, 5% 0. The total resistive impedance is
calculated to be. R4 = 9.58 Q. -If we set n, = 0 in Eqgs. (5-8) then we would get a resistive -
impedance of 6.7 Q/meter of antenna length in y. For an antenna with L, = 60 cm, this
would give a resistive impedance of 4 Q. This is less than half the value obtained when we
take into account the appropriate n, spectrum. In our previous work? where we accounted
for the n, spectrum, but the derivatives of the dielectric tensor elements were set to zero, a
total resistive impedance of 21.0 © was obtained for the same parameters and profiles; this is
more than twice.the value obtained from the exact theory which does not set the derivatives
“of the diclectric tensor elements to zero.

From our results we find that the major contribution to R4 comes from the n, < 0 part .
of the spectrum. We, thus, conclude that a set of poloidal antennae phased 10 excite a current
spectrum biased towards n, << 0 would couple more effectively 1o the plasma. For the above
parameters, we also find that (2Pp./12) of Eq. (17) is 9.4 Q. Comp'mng thistoR, = 9.58 Q
we find that almost all of the power emitted from the antenna is going into the plasma. The
reactive impedance from Eq. (16) is calcu]ated tobe X4 = 22.5Q. ThlS reactive lmpedance is
completely inductive.

. If we keep all parameters fixed as above but change the density profile to a gaussian, we
get R4 = 18.30. Hence, for the same edge density a more gradual increase in the density
from the edge leads to better coupling,

This work is supported by DOE Contract No. DE-ACO2 78ET-51013
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FIGURE I FIGURE 2

Slab geometry model used for the analyses. Schematic representation of the
actual coupling structure.
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FIGURE 3 ; FIGURE 4

Geometry used for evaluating the Real part of the antenna impedance
reactive impedance of the antenna. plotted as a function of ny and n, .

The dimension in z is 2d.
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