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SHORTING TIME OF MAGNETICALLY INSULATED REFLEX-ION DIODES
FROM THE NEUTRAL-ATOM CHARGE~EXCHANGE MECHANISM

ABSTRACT

In a magnetically insulated diode, collision-free electrons return to the
cathode and no electron current is present at the anode. Electron transport
to the anode is studied in this paper. Steady-state space-charge-limited flow
is assumed initially. Breakdown of ion flow occurs when static neutral atoms
at the anode undergo charge exchange, which results in neutral atoms drifting
across the diode. These are subsequently ionized by reflexing ions producing
electrons trapped in Larmor orbits throughout the diode. These electrons drift
to the anode via ionization and inelastic collisions with other neutral atoms.

Model calculations compare the effects of foil and mesh cathodes. Steady-
state space-charge-limited ion current densities are calculated. The neutral
atom density at the cathode is determined as a function of time. The shorting
time of the diode is scaled versus the electrode separation d, the diode
potential VO’ the magnetic field, and the initial concentration of static
neutral atoms. The neutral atom flux at the cathode is found to equal the ion
flux at the anode in 10 (d/cm) nanoseconds, where 4 is the diode separation.
The neutral atom density at the cathode reaches its equilibrium value in about
100 (d/cm) nanoseconds. The diode shorting time varies as dz/vo, and is

exponentially dependent on the initial neutral atom concentration.

INTRODUCTION

We consider the one-dimensional magnetically insulated reflex ion
ciiccde.l"4 Electron motion is treated relativistically. We use cylindrical
coordinates r, 6, z. Azimuthal symmetry is assumed, with the electric field
parallel to the z axis, an anode at the z = ( plane, a cathode at the z = 4
plane. A separate current along the z axis creates an azimuthal magnetic field
that falls off with r, the radial distance from the z axis. This magnetic
field is so strong that elecirons emitted at the cathode cannot reach the
anode, but return instead to the cathode. The cathode is a thin foil or mesh.

The positive ions traverse the cathode, returning through it several times
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before losing all their energy. Curvature of the ion motion in the magnetic
field is neglected. We take the potential to be a function of z only. We
reglect any radial dependence and solve a one-dimensional problem.

In crossed uniform electric and magnetic fields, the collision-free orbit
of an electron has a c¢cycloidal shape. The electron starts from rest at the
cathode. Provided the magnetic field exceeds 2 critical strength B*, the
electron advances a maximum distance b towards the anode, and turns back toward
the cathode.

The key factor in shorting a magnetically insulated diode is the deviation
of electrons from collision-free paths, such that they fail to return to the
cathode. One mechanism for electron drift across a diode is provided by large-
angle coulombic collisions, which can produce a noticeable shift towards the
anode of the center of an electron's orbit. That mechanism is not considered
here. A second mechanism proceeds as follows: Ionization of a neutral atom
by the orbiting electron produces a second electron, whose subsequent orbit
lies a significant fraction of b closer to the anode than did the orbit of the
initiating electron. In this work, we consider how the ionization and inelas-
tic scattering from neutral deuterium atoms may promote electron transit across
a magnetically insulated dicde of width d.

Qualitatively, if the electron transit tiwme across the diode gap is com-
parable to the positive ion transit time, then desired operation of the diode
has broken down and we say the diode is shorted. This electron transit time
depends sensitively on the neutral atom concentration Ng, via the mean free
path for electrons to ionize a neutral atom. The neutral atom concentration
at the cathode varies with time. We will apply a model developed by D. S.
Prono, H. Ishizuka, E. P. Lee, B. W. Stallard, and W. C. Tuzner5 to determine
Ng as a function of time. 1In this model ions at the anode are accelerated
towards the cathode. Charge exchange occurs between the ions and static
neutral atoms in the anode vicinity, resulting in moving neutrals that sub-
sequently arrive at the cathode. The neutral crossing time depends on the
initial distribution of the static neutrals and also on the ion currents in
the diode. The ion currents are calculated assuming space-charge-limited flow
at both the anode and the cathode. The radial variation of tne magnetic field
and the electric potential is neglected, resulting in a one-dimensioual
problem that is solved numerically. The static neutral atoms are assumed to
be uniformly concentrated at the anode for a thickness of 0.1 cn. The

shorting time of the diode is calculated as a function of various initial
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static neutral concentrations, and of the diode potential and magnetic field.
Diodes short with the following assumed scenario of events: The diode is
instantaneously put into steady-state space-charge-limited ion flow, with
electron flow restricted to the cathode region by a given applied magnetic
field. Charge exchange between ions and static neutrals occurs, producing
neutral atoms which drift across to the cathode. The neutral atoms are sub-
sequently ionized by reflexing ions, resulting in electrons trapped in Larmor
orbits throughout the diode. These electrons ionize and inelastically scatter
from more neutral atoms resulting in momentarily static electrons. These
electrons are accelerated towards the anode in a Larmor orbit. We define the
diode as shorted when the electron current density at the anode equals the ion

current density.

REFLEX ION SPACE-CHARGE EQUATION

The starting equations are Poisson's equation for the potential, conserv-
ation of energy for the ions and electrons, conservation of momentum for elec-
trons in the radial direction, and a reflex ion energy distribution at the
cathode. We will determine the potential assuming the electron motion is
collision free.

In terms of n, the electron density; NO’ the density of positive ions
that have never traversed the cathode; and N, the reflex ion density, Poisson's

equation is

2
9——%=4ne(n- N - Ny - (1)
dz

The electric potential is ¢, and is assumed to be a function of z only,
hence the absence of radial and azimuthal derivatives in Eq. (1). The
electric field is given by E = -d¢/dz. The boundary conditions on the

potential for space-charge-limited flow are that

at the anode ¢ = Vv, and ¢ =0
0 dz
(2)
at the cathode ¢ = 0, and g% =0 .

We will use the relation that the current density j is equal to the velocity

times the charge density. In steady state, by charge conservation, j must be
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independent of z. This together with conservation of energy and momentum will
evolve expressions for the right hand side of Eq. (1) that are known functions
of z, of the magnetic field, and of J and j (which are, respectively, the

anode ion current density and the cathode electron current density). Though
one-dimensional motion is assumed throughout, these quantities will depend on
r. as the magnetic field B depends on r. Eguation {1) can be integrated once
analytically to obtain an exact equation for the electric field in the vicinity
of the anode. We will determine the ion and electron current density J and j
from the resulting first-order differential equations.

In the vicinity of the cathode, an approximation is required to obtain
the electric field analytically, as electron path curvature is included.
Figure 1 shows the path of a typical ion and a typical electron. The ions are
all assumed to be singly ionized; e is the proton charge, M the ion mass, and
m the electron mass. The electrons are assumed to be produced at rest at the
cathode, and the ions are produced at rest at the anode. Conservation of

energy results in
1
2 My© = eV0 - ed (3)

for the ion kinetic energy, and
2
mc (y - 1) = ed (4)
for the electron kinetic energy, where
2 2
Y = 1/[1-tv/e)?] (5)

and c is the speed of light.

We define the azimuthal component of the magnetic field as

B=-— , (6)

where r is the radial distance and B0 is a constant. Then conservation of

canonical momentum yields

B

=2 (z -
=g 209

A, (7)

where A is the magnitude of the vector potential.
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Fig. 1. Geometry of the axially symmetric magnetically insulated ion diode.
The cathode is a mesh or foil labeled K, and the anode is labeled A. An axial
current goes down the center line, producing an azimuthal magnetic field that
bends the path of the electrons into a cycloid. The positive ions reflex
several times through the cathode befeore ending at the cathode.

Using Eq. (5) in BEa. (7), we have

2 Az

2
vVe—2 —[1- (v/a°]) . (8)
m2+A2/c2 z

~

Substituting Eg. (5) and Eq. (8) into Eq. (4) results in

2 2 2 4
(vz/c)2 =1 - Ac +me . (9)

(mc2 + ed)



Thus

3 . 2
=21 23 i = 23 (1 + e/mc”) 7
[+ 1 el ——— —— ZeQ e 1 0
24 ety? Cl\ 2t 324" 222
tme ed) me mcc r“m“c

Thus the electron density has been expressed in terms of the current density j
leaving the cathode, the potential ¢ within the gap, and the magnetic field

B within the gap. The factor of 2 comes from all the electrons returning to
the cathode. Equation (10) for the electron density contributes to Eg. (1)
only where the electrons exist, If the radical in Eg. (10) is negative, then
the electrons cannot exist there, and the entire term n is omitted from

Eq. (1). The initial ions Ny can exist everywhere in the gap (0 < z < d) as
their curvature is ignored. The reflex ion distribution N is limited
depending on the energy distribution assumed at the cathode.

We now consider the reflex ion energy distribution. We introduce a
reflex ion energy distribution f. This is the energy distribution of ions
that have passed through the cathode boundary. This distribution is
normalized in terms of J, the anode ion current density. The maximum energy
of the reflex ion distribution is V, from energy considerations, but since
ions lose energy by passing through the cathode and its electron sheath, the
ion energy distribution must extend down to zero energy. Let eT = energy, so
T represents a (variable) potential. At the anode, the average number of

times an ion is incident on the anode is

Vo
n=1=+ -[ £(mdar . (11)
0

The reflex ion density can be expressed in terms of f as

v £ (T) 4T

0
]; [ze ]1/2 . (12)

eN = 2J
M (T-9

The factor J results from the reflex ion distribution being normalized in

terms of J; that is, f is the distribution at the cathode per unit ion-current



emitted at the anode. The factor of 2 in Eq. (l2) comes because every reflex
ion is reflected at same point in the diode, where T = ¢$(z). The reflex
density N varies with position because the potential ¢ varies with position
z. At a given location z, where the potential is ¢(z), only those ions whose
energy at the cathode [eT > ed(z)] was at least ed(z) will contribute to the
reflex ion density (at z). For NO' the density of ions on their initial

pass from the anode to the cathode, we have

J J
eN_ = v - (13)

0 v, [2e W, - ¢)]l/2 '
S 0

where J is the ion current density emitted at the anode. Usually, with the

assumption of one-dimensional motion, J will be independent of the other two
coordinates. However, with the reflex magnetically insulated diode, we will
find J depends on the radial coordinate r even though the potential at z = 0
and at z = d is independent of (r,8). This radial dependence of J comes

from the magnetic field B depending on r. We seek relations of J and j, the
ion and electron current densities, for various reflex energy distributions

f. We are able to solve for J and for j as we have four boundary ccnditions,
see Eq. (2), to apply. Two boundary conditions are required to solve Egq. (1),
which i5 a second-order differential equation; the other two boundary
conditions determine J and j. It is convenient to normalize the current

densities in terms of the Child-Langmuir current density:

PN oA
390 =% 9 Vm 2o
(14)
. 4 [ee 32
JO = EO 9 M (V ) /d .
The electron's mass is represented by m; the ion mass, by M.
It is convenient to introduce dimensionless coordinates:
x = z/d s0 0<x<1
= ¢/V0 so 0<uc<l (15)
= T/V0 so 0<E <1l .

~



Then substituting Egs. (10-13) into Eq. (1), we have

dzu L3 ) 2J fl v f(g)dg
dx2 J0 ¥l - u “u
eV0
23 (l + — u) (16)
+ - me - .
. eV 5 Bg (x - 1)2d2 1/2
J0 u + u - > 2
2mc r mc 2eV0

Now the electrons contribute to Eq. (16) only where the radical in the last
term is non-negative. As x approaches zero, u approaches 1, and this radical
goes negative at the electron cutoff boundary, called x = b. In terms of the
normalized potential at the cutoff of electron density, U = u(b), we have,

from setting the radical in Eg. (16) to zero,

r 2 eVOUz 12
b=1———\12mc ev U+ ' (17)
B.d 0 2
0 2nc

Jd
as the boundary for electron collision-free motion near the cathode. For the
magnetically insulated diode, 0 < b < 1. The critical magnetic field is found
from Eq. (17) by setting b = 0, r to rmx’ and U = 1.
For certain simple distributions f, we can construct analytic first
integrals of Eq. (16).6 Now define

S(u) [ dv £E) d8 ’ (18)
E -v

where S(u) is the number of reflex ions between the anode and the point where

the potential is u. Then integrating Eq. (16) by the factor

du
fzd—x'dx
results in
2
(gg) =4 (Vl o+ S(u)) . (19)
x J0



Thus the electric field in the anode region is given by the square root of

Eg. (19), and u as a function of x is found from

1

X =[ |. du (20)

u i‘l(S(u)+ﬁ)jll/2 '

J

[0

For the region b < x < 1 near the ca hode, we have

du 2 4J
(E) =———0[1—V1—u +5(0) - s(1]

2
du (1 + eV0 u/mc”) (21)

+ %i jm(x)
o4 o 2 x-1° Vo 2

2me (1 - b)2 2mc2

where we have used Eq. (17) to obtain Eg. (21). We cannot evaluate the
integral in Eg. (21) as it stands since we must know x as a function of u, or
conversely, u as a function of x. That is precisely the problem we want to
solve, This problem arises only in the cathode region of the magnetically

insulated reflex ion diode.

We approximate the last term of the radical in Eg. (21) as

2
Q-x2_, (}1)3/2 + (1 - A (2)2 , (22)
- b2 U U

where A is a parameter determined from S(u). Substituting Eg. (22) into
FEg. (21) and integrating for small u results in a gquadratic equation that can
be solved for A; see the appendix for some details.

Inserting Eq. (22) into Eq. (21) we have for arbitrary U:

2 .
Q) ML vITT+s0) -sw] + M rwau (23)
dx J0 Jo
where
u 2
du (1 + eVO/mc u)
I(u,AU) = f . o . (29)
av ev U~ 3/2 Al 1/2
0 o+ L 2 {uy+ 2 3.9—] + (1 -8 |5}
2 2 U U
2mc 2me -

This integral can be analytically evaluated. Note U is a constant.
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Equations (19) and (23) are solved numerically and the cathode and anode
current densitics j and J are found by requiring the electric fields to be
continuous at the electron turning point b. The turning point b is found by

requiring the potential to be continuous at the turning point.

NEUTRAL ATOM FLUX FROM ATOM-POSITIVE-ION CHARGE
EXCHANGE AT THE ANODE

The neut. a3l atom flux is determined by a charge exchange model developed
by Prono et al.5 In this model a static neutral atom concentration ny is
assumed to exist near the anode. 1Initially no moving neutrals exist anywhere,
and the neutral atoms are in the region 0 < x < X ax’ Xnax is a parameter
set to 0.1 am here. At t = 0, the steady-state space-charge-limited positive
ion current begins passing through these static neutral atoms. Some of the
positive ions undergo charge exchange, resulting in drifting neutral atoms and
in static ions that are accelerated to repeat the process. This model treats
the electric field E as constant over the region of the initial neutral atom
concentration. The enerqgy dependence of the ion-neutral-atom charge-exchange

cross section shown7 in Fig. 2 is modeled as

2, 2
o—co/(1+W/w0) ' (25)

15 2

where w is the ion energy, w0 = 10 keV, and 00 =2 x 10 cm.

The result of the model is a distribution function g of drifting neutral atoms

given by5
g = g ‘:F e BW Hix - ) [1 - e'CB(x"’w’/B] , (2v)
0
where
@ =n, 0, wo/eE ’ (27)
- 1
B=1=% (28)
-an/2
c=e /2 (29)
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Fig. 2. Proton-induced charge-exchange cross sections on (a) atomic, and (b)
molecular, hydrogen. The data shown here were compiled from various sources.
For more detail, see Ref. 7.
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F is the steady-state ion flux leaving the anode, H is the unit step function,
equal to zero (one) for negative (positive) argument, and W and X are

normalized energies and locations given by

=
]

w/Wo (30)

and

>
n
=]
qQ
£

(31)

In Eqs. (26-37), B is a model parameter, given in Eq. (28), and not the
magnetic field.

We assume these neutral atoms drift without interaction across the diode
after leaving the static central atom concentration. This neglects any
further charge exchange between drifting neutrals and reflexiny ions. Charge
exchange between the drifting neutral and a reflex ion would slow the drift of
neutrals across the diode.

The number of neutrals that have crossed the diode will now be calculated
from the distribution function g. This number can be obtained as a function
of time. When the neutral concentration at the cathode is large enough for
collisionless electron flow to break down, we say the diode has shorted out.

The number of neutral atoms per cm2 that originated at the anode and
are present a distance d beyond the boundary of the original neutral

concentration is given by

./V=f vg [t - a/v] av = r g vt - a] av . (32)
da/t a/t

Using Eq. (26) in Eg. (32), the integrals can be evaluated in terms of
tabulated functions. The result is:

Ft } -BaL -BX ~-CBX | _-aL -X
=§E-e - e - e e - e

- %g 1’%%2 ’Vﬁ [érf(VEK) - eerﬁEf] - ¢ CBX [erf(Vﬁ) - erf(Vﬁi)] % ' (33)
0

where L = Mdz/zwotz, and M is the ion mass.
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In Eq. (33), t is restricted to t > 4 (34)
This restriction is the time for the most energetic neutral atom to cross

the diode. 1If we assume a uniform electric field in the diode, with a

potential of 2 MeV, that the ions are deuterons, and that the neutral atoms

extend 9% of the way from the anode to the cathode, then the minimum time is

¢ =4 Mc2d _d / 3672 ~9 3,2
0 c 2ev0x‘c 2.2(0.09) ¢ :

This minimum time is about 3 ns (3 x 107°?

sec) for d = 1 cm. The restriction
of £g. (34) also implies oL < X.

An approximation of Eq. (33), valid for large times for the flux is

n g.w,.m
_F_ _ afdao _
G=%z=F [exp(———ZeE ) 1 ] . (35)

The flux G of neutral atoms at the cathode is the first line of Eq. (33)

divided by t. To use Eq. (35) or Eq. (33) we write the space-charge~limited

ion flux as

J eV 3/2
J 0 J 20 0 1 ions
F = -——<-—> =(——> 1.7 x 10 < ) . (36)
J0 e J0 Mev (g_)z cmz-sec
cI
Thus, typical anode fluxes are of the order of 1020 —zons
cm--sec

CALCULATION OF DIODE SHORTING TIME

We define the electron avalanche current density as

i, =—"P_, (37)

where n is the electron density as a function of time, b is the scale of the
Larmor orbits in the magnetic field, T is the transit time for an electron to

go one orbit, and P, is the probability that an electron undergoes a

t
large-angle interaction during a single Larmor orbit. If this has occurred,

the electron can move a distance of order b farther from the cathode.
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The shorting time is found by equating the electron avalanche current
density to the positive ion current density. When these are equal we say the
diode operation has broken dewn.

The electron density n is calculated from solving the differential

equation

dn o
L L 38
at - 6% (38)

where G is the time-dependent neutral atom flux in the diode and P® is the
probability of ionizing a neutral atom per centimeter path length of the

neutral,

Including the ionization of neutrals by ions, by reflexing ions, and by

electrons, we have

x+Ax +
P* ={1 - exp [— f (noe + N oi)dx] Y45 S (39)
X

When the ionization probability is small, we have for the rate of increase of

the electron concentration

dn +
ac = G (noe + N oi) ' (40)

where N+ is the concentration of positive ions, oi is the cross section for
ionizing neutrals by positive ions,7 and oe is the cross section for
ionizing neutrals by electrons.7 See Figs. 3 and 4 for the energy-dependent
cross sections. These cross sections have been energy averaged for use in
Eq. (40).

The neutral atom flux can be found from Eq. (33) as

F - - - - -
G___EE_{eBaL_eBx_eBCX (eaL_eX)} ) (41)
2 2 . - :
where L = Md /2w0t . For large times, and large X, this flux approaches
an/2
m - -
¢ = F(Ee*2 . {1-ex[e 1]}=F(e°‘“/2 - 1) = F/BC . (35)

14
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Fig. 3. Electron ionization cross sections of (a) atomic, and (b) molecular,

hydrogen.

The data shown here were compiled from various sources. For more

detail, see Ref. 7.
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Fig. 4. Proton-induced ionization cross sections of (a) atomic, and (b)
molecular, hydrogen. The data shown here were compiled from various sources.
For more detail, see Ref. 7. The solid curves are predicted by theory; the
broken curves represent a practical fit to the data.
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Using this asymptotic limit for the neutral flux, an analytic solution may be
found for n(t). Arguments based upon this approximation help to explain the
gqualitative behavior of the shorting time.

With n(t = 0) = 0, the solution to

dn _ + an/2 _
gt = (0, + NO,) F [e 1] (42)
is
N+O. UeFt/BC
n(t) = 5 [e -1- UeFt/BC] . (43)

e

Equating the electron avalanche current density, Eq. (37), to the

positive ion current density eF, and using Eg. (43), we have for the shorting

time t_,
]

b aye -
-1 - UeFts/BC] m (IN°0b) = eF . (44)

+
N o, [ o _Ft_/BC
i e s
e
U
e

The large-angle electron cross section in Eq. (44) has been set to three times
the electron-neutral ionization cross section because ionization is about one
third of the total cross section. N° is the density of neutral atoms for

asymptotically large times.

Defining:
= - on/2 _ )
T = oeFts/BC = ceFts (e 1) ., (45)

Eq. (44) can be written

2mbd

T i vy
(' -1-1) = - 3 (46)

N'0,3N b

i™o

and solved for T numerically.
The shorting time found from Eqs. (45) and (46) is a function of magnetic
field strength and the assumed initial neutral atom concentration, via the

parameter o; see Eq. (27). Equation (43) shows that the electron density in
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the diode rises initially as tz, but eventually rises exponentially with a
timeiconstant BC/FUe.

iThe exact solution to Eq. (38) is found numerically, using Eq. (41) for
the ﬂeutral atom flux. The resulting expression for the time-dependent
electron density is substituted into Eq. (37). ‘The resulting expression for
the electron avalanche current density is then used to determine the diode

shorting time.

‘The results of this calculation are presented in Figs. 17-23.

STEADY-STATE SPACE-CHARGE-LIMITED
MAGNETICALLY INSULATED DIODE OPERATION

Calculations for the anode current in the magnetically insulated diode
have been made for two assumed distributions of reflexing ions. The first
distribution, peaked at low reflex ion energies, is characteristic of a thin
foil when the range is proportional to ion energy raised to the 1.8 power.
Another proposed cathode about which the ions would reflex is an open mesh.

We assume the resulting reflex ion energy distribution to be peaked at high
energies. The assumed form of the normalized quadratic distribution is shown
in Fig, 5. An open mesh cathode, with the ione either passing through without
interaction, or being stopped and trapped by the mesh, would result in a

delta-function reflex-ion energy distribution peaked at 6 = 1. By including

1.0 L L
i Foil spectrum—, /7
= 08 |- ,’ —
Y- - / -
r /
. 3 0.6 / —
Fig. 5. Energy spectra of the Rt /
reflex ions at the cathode. The g " Mesh / 7
foil spectrum (solid curve) is S 04} es spectrum-\’, —
peaked at low energy, and the mesh o F P _
spectrum (broken curve) is peaked at § /7
tiigh energy. The energy is & 02| /’ —
expressed here as a (dimensiiness) | ”/' u
fraction of the diode potential V. 0 I
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Normalized reflex ion energy (£)



some scattering and energy loss by ions during transit, one may justify the
quadratic distribution which is used.

The energy distribution of reflex ions at the cathode affects the
equilibrium current density of positive ions at the anode. This is so because
the reflex ions spread out between the cathode and anode. The greater the
quantity of positive charge there is near the anode, the smaller the positive
ion current density. 1In Fig. 6 we show the fraction of reflex ions whose
energy exceeds a given value of £ = ¢/V0. This fraction is larger for
the mesh distribution than for the foil distribution.

If the potential increased at a constant rate from the cathode to the
anode (constant electric field), then Fig. 6 would also show the fraction of
reflex ions extending a given distance from the cathode towards the anode. We
see that at £ = 0.8, the mesh distribution has about 5 times the number of
ions that the foil distribution has. This explains why the anode current
(shcwn in Fig. 9) is smaller for the mesh than for the foil spectrum. This
also explains why the mesh-current-to-foil-current ratio decreases for larger
values of 7n, where 1 is the average number of times an ion enters the
cathode,

Figure 7 shows the potential distribution for a typical foil and mesh
spectrum for the case of (rB*/rmxB) = 0.1. The potential distributions are
similar to each other, although the electric field near the anode is smaller
for the mesh spectrum. The potential varies smoothly from the anode to the

cathode.

Fig. 6. Fraction of reflex ions
whose energy exceeds a given
amount. The energy is expressed
here as a (dimensionless) fraction
of the diode potential Vy. The
case of a foil cathode is repre-
sented by the solid curve, and that
of a mesh cathode by the broken
curve.

0
1.0 0.8 0.5 0.2 0

Normalized reflex ion energy &

Fraction of population with energy exceeding ¢
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Fig. 7. Potential distribution
within the diode for two typical
cases. The solid curve is for a
foil cathode, and the broken curve
is for a mesh cathode. n, the
number of times an ion enters the

cathode, is equal to 2u. rB*/rpyB
= 0.1.

Normalized diode potential

0 [ N B T I N |
0 0.2 04 0.6 0.8 1.0

Fraction z/d of electrode separation

Figure B shows the limits of the electric field distribution as the
magnetic field is varied. n is 20 for each case. The electric field in the
anode region is plotted in units of Vo/d. The calculated electric field
reproduces the Child—Langmuir8 variation (E « xl/3) near the anode. .

Near the cathode (not shown in Fig. 8) the electric fields also approach

zero. There is more variation of the electric fields near the cathode with

variation of the magnetic field, as expected.
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Fig. 8. Electric field distribution
within the diode outside the cathode
sheath of electrons. The limits are
shown, between which the distri-
bution ranges as the magnetic field
is varied.
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The anode and cathode current densities, divided by the respective Child-
Langmuir values, are shown in Figs. 9 and 10. The anode current density de-
creases with n, and is about independent of (rB*/rmxB)_ The anode current
increases slightly for larger values of r, as the electron distribution then
extends part way across the diode towards the anode.

In contrast, the anode current density varies strongly with reflex ion
energy distribution and with n. The anode current density is about 3 times
greater for the low-energy-peaked foil spectrum than for the high-energy-
peaked mesh spectrum. Indeed, the ion flux at the cathode is less for the
mesh spectrum than for the case where reflexing is entirely absent. The
reverse is true for the low-energy-peaked foil spectrum. For the foil spec-
trum, the ion flux with reflexing, at the cathode, exceeds the Child-Langmuir
limit.

Figure 10 shows the electron current density at the cathode divided by
the Child-Langmuir limit. The electron current density extends only a short
distance into the diode gap before the magnetic field returns the electrons to
the cathode. The electron current density at the cathode varies strongly with
(rB*/rmxB). The range of this variation is surprising, so an analytic study
of Poisson's eguation is reproduced in the appendix. There the trend and

numerical values of the computer solution are reproduced for the case of large

0.26 — T 1 T T ] T
i _/
0.24 = —
0.22 E— n=s i
o 0.20 —
g o =10 :
S 0.18F ]
S -
5 016+ — Fig. 9. Anode ion current density
S 0.14 n versus radius. n is the number of
Il B n=20 times an ion enters the cathode.
§ 0.12 _ 3 The anode current density is
5 0.10 ————————— T T normalized to the Child-Langmuir
o n=5 ] current density. The radial
T 008 _ — coordinate is scaled to the magnetic
Z oosk n=10 —— field strength. The solid curves
i -20 - refer to a foil-cathode energy
0.04— n= — spectrum, and the broken curves, to
0.02 — _ a mesh spectrum.
0 B i 1 l 1 J l 1 1 ]
0 0.15 0.30 0.45
rBo/rnxBo
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Fig., 10. Electron current density emitted by the cathode versus radius. Jjj
is the Child-Langmuir current density. The radial coordinate is scaled to the
magnetic field strength. The solid curves refer to a foil cathode, and the
broken curves refer to a mesh cathode. n is the number of times an ion
enters the cathode.
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1 T T - Fig. 11, Diode potential at the
p electron boundary, versus radius.

u? N ’_ Three values of 1, the number of
£ 1071 b J times an ion enters the cathode, are
3 C n = 203 represented. The solid curves refer
ba =5 n=10 to a foil-cathode energy spectrum,
Y 1y T and the broken curve, to a mesh
1010_5 104 103 102 10-" spectrum. The radial coordinate is

scaled to the magnetic field
Boundary potential u (b} strength.

magnetic field. The electron current density also increases with the ion flux
at the cathode, as expected.

For magnetic fields stronger than the insulating magnetic field, the
electrons cannot cross the diode gap. How far an electron can get from the
cathode depends on the potential distribution. The boundary potential u(b)
where the electrons are turned by the magnetic field is plotted in Fig. 11
versus the magnetic field.

The variation of u(b) is as expected: The greater the positive ion
current density, the larger u(b) is, and the further the electrons get from
the cathode. The stronger the magnetic field, the smaller the boundary
potential u(b), and tke closer the electron turning point is to the cathode.

This concludes the discussion of the steady-state space-charge flow for a
magnetically insulated reflex ion diode. We turn now to the breakdown of the

space-charge magnetically insulated flow.

DIODE SHORTING TIME FROM CiARGE-EXCHANGE AT ANODE

In this section, we analyze the sequence of steps which cause the
space-charge-limited flow to break down: Neutral atoms £ill the diode gap,
and become ionized by the reflexing ions and by electrons. The ionization of
neutrals produces an electron avalanche whose current eventually equals and
exceeds the anode current (which is due to positive ion flow). The rise of
the avalanche electron current density to equal the ion current density
determines the shorting time.

The density and flux of neutral atoms away from the anode are propor-
tional to the space-charge-limited ion flux at the anode. See Fig. 9 for
typical values of this ion flux. The neutral density p at the cathode, from

neutrals that have crossed the diode gap, can be found from Figs. 12-15. This
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Fig. 12. Neutral atom (deuterium)
density at cathode versus time. F
is the anode ion flux. Curves are
labeled by X (the normalized
position along the axial direction),
and bv a.

density is found by integrating the distribution function, Eg.
velocities greater than d/to, where t

energetic neutral to cross the diode [Eq.

1/(cm2 -~ ns).
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Fig. 13. Neutral atom density at
cathode versus time., Curves are
labeled by X (the normalized

position along the axial direction),
and by a.

(26), over all

is the time required for the most

(34)]. The ion flux F has units of

The neutral density is expressed in atoms/cn3. Thus p/F has units of

ns/cm and is plotted versus time (in nanoseconds) in Figs. 12-15. The time-

dependent neutral density at the cathode is plotted for various values of X

and a. These were determined from the solution for the electric field, see

Fig. 14. Neutral atom density at
cathode versus time. Curves are
labeled by X (the normalized
position along the axial direction),
and by «a.
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Fig. 15. Neutral atom density at cathode versus time. Curves are labeled by
X (the normalized position along the axial direction), and by a.

Fig. B, near the anode. The key factor is that the density at the cathode
rises to within one half of its equilibrium value in about 50 ns for all cases
studied. This 50 ns time for the neutrals to cross the diode provides a lower
limit to the diode shorting time.

The anode flux F can be expressed in terms of J/JO, which may be read
from Fig. 9. From Eq. (26) for the flux we have:

3/2

ev .
F = (g—) 1.7 x 101t (M—e-%) /(d/cm) e
cm -ns

The equilibrium densities are plotted versus a in Fig. 16. By "equilib-

rium,” we mean the neutral atom density at the cathode after sufficient time of
diode operation in the space-charge-1limited mode.

25



ZE
n O 3
gz
[ 7
= E
. ® 2 102
Fig. 16. Asymptotic steady-state %;:3
neutral atom density at cathode 8 g
versus 0. The curves are for 73 2
constant X values. F is the anode ®E 10
ion flux. Note that « increases to :% ©
the left. EX
Ex
o f 1
<3
L1l 1 Illllllll llllll
102 10 1 10t 1072
a
The equilibrium density can be obtained from integrating
X
p(t) =f dv g(Xx, v) (47)

a/t

where g is the distribution function given by Eq. (26). The asymptotic

density becomes

o/F = [T (VB erf VBR - e B erf V)/BC , (48)
Zwo

where "erf" stands for the error function.

The electron avalanche shorting time is plotted in Fig. 17 versus a. The
shorting time is approximately proportional to e_a“/z. The shorting time
exceeds 103 ns if o is about 4 or less.

In Fig. 18 we plot the shorting time as a function of magnetic field for
various reflex ion spectra, with 0 equal to 4.

The mesh spectrum is associated with a large shorting time because the
reflex ion concentrations are smaller than for the cor -esponding foil
spectrum. Ionization of neutrals by collision with ions is therefore less
frequent, and electrons accumulate more slowly, prolonging the shorting time.

The curve shown in Fig. 17 suggests that for o = 5 or more, the
shorting time is determined by the time the neutrals take to reach the cathode.
This occurs at about 50 to 100 ns into the space-charge-limited mode, as seen

in Figs. 14 and 15.
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The scaling of the shorting time is shown in Figs. 19-23. Figure 19
shows a semilog plot of the shorting time versus a. This shows that shorting
time is proportional to e-an/z. In Figs. 20 and 21, we show the shorting
time versus the diode potential Vo, holding the diode gap & constant and the
magnetic field constant. The curves for various reflex ion spectra, and for
selected values of o, are all parallel; these curves show that shorting time

is inversely proportional to VO.
In Figs. 22 and 23, the shorting time is plotted versus the diode

separation, holding the potential difference across the gap fixed at 2.044
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upper curves (dashed), n = 5, and
the cathode is mesh. For the middle
curves (solid), n = 20, and the
cathode is foil. For the lower
curves (dot-dash-dot), n = 5, and
the cathode is foil.
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Fig. 23. Shorting time versus gap
separation. Magnetic field is held
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spectrum.

constant, and Vg = 4mc2/e.

MeV. The curves for various o are all parallel and show that the shorting
time is proportional to dz.
These curves have all used the deuteron mass for the ion leaving the

anode. The times will be reduced by a fector of 2 if protons leave the anode.

POSSIBLE FUTURE MODIFICATIONS

In this work we have calculated the electron avalanche shorting time from
a charge exchange mechanism at the anode. Static neutral atoms undergo charge
exchange with accelerated ions resulting in drifting neutrals that undergo no
further interaction.

Future work should include charge exchange of the drifting neutral atoms
with the reflexing ion distributions. Such subsequent re-exchange would slow
or reverse the direction of the neutrals. 1In either event the flow of

neutrals to the cathode would be slowed, increasing the shorting time.
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Secondarily, the time-dependence of the diode potential should be
included in a quasistatic approximation. Here the full pctential was assumed
turned on at t = 0. The 20-ns or s0 rise time of the diode potential should
be included in future work. As a result of including such a rise time for the
potential, a [see Eq. (27)] would vary with time because the anode electric
field would vary with time. Such a time variation of a might significantly
change the shorting time. The variation of the electric field with position
should be included. The distribution function used assumed an average
electric field. Finally, an approximation which takes into account the effect
of the electric field on the ionization and charge exchange cross section59
can be included.

Large electric fields tend to reduce the charge exchange cross section
and to enhance the ionization cross section. The first change would increase
the shorting time while the enhanced ionization cross section might decrease
the shorting time. Whether the electric field would cause significant
changes, or in which direction, is not clear.

Knowledge of the neutral atom distribution near the anode surface would
be very helpful.
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APPENDIX: STRONG MAGNETIC FIELD LIMIT OF CATHODE CURRENT

Let us consider the magnetic field to be so strong that the electron

current is nonrelativistic, and the potential where the electrons are is small

compared to mcz. Then Eg. (21) becomes:

2 ,
(g—:) ='Jﬂ[1-V1- u + S(0) - S(u)] +§1zw’6 (a-1)
0 0
=M g+l ovg (A-2)
o Jo

For u small compared to 1, taking the square root, we cbtain:

du_ [8 1/4 -
ax jO“ . (A-3)

Integrating Eq. (A-3) we obtain

3
e /_o 4 3/ )
1-x-= 85 3 u . (A-4)

*
: =
Using A'S rB /rmxB v

with Eq. (17), and neglecting U2 compared to U, we have

1-x=a0"%/0 + evyyamchH/2 . (A-5)

Equation (19), in the U + 0 limit becomes

1
(g_)l/z - f du = TI(0) . (A=6)
0 0 4[VI -0 +smw)

By equating electric fields inside and outside the electron boundary, using
Eq. (19) and E¢. (A-3), the electron current density becomes:

(_j__)gg_ [1+s (0]

; (A=7)
Jo 0 2 V0
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Using Eqs. (A-5, A-6, A-7) in Bg. (A-4), we find

VG = A'TI(0) x 132 . (A-8)
(1 + eVo/2)

This reflects the large magnetic field (small A') behavior cf U shown in

Fig. 11. And using Eq. (A-8) in Eg. (A-7), we see the cathode current density

varies inversely with A', as seen in the computer solution shown in Fig. 10.
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