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SHORTING TIME OF MAGNETICALLY INSULATED REFLEX-ION DIODES 

FROM THE NEUTRAL-ATOM CHARGE-EXCHANGE MECHANISM 

ABSTRACT 

In a magnetically insulated diode, collision-free electrons return to the 
cathode and no electron current is present at the anode. Electron transport 
to the anode is studied in this paper. Steady-state space-charge-limited flow 
is assumed initially. Breakdown of ion flow occurs when static neutral atoms 
at the anode undergo charge exchange, which results in neutral atoms drifting 
across the diode. These are subsequently ionized by reflexing ions producing 
electrons trapped in Larmor orbits throughout the diode. These electrons drift 
to the anode via ionization and inelastic collisions with other neutral atoms. 

Model calculations compare the effects of foil and mesh cathodes. Steady-
state space-charge-limited ion current densities are calculated. The neutral 
atom density at the cathode is determined as a function of time. The shorting 
time of the diode is scaled versus the electrode separation d, the diode 
potential V., the magnetic field, and the initial concentration of static 
neutral atoms. The neutral atom flux at the cathode is found to equal the ion 
flux at the anode in 10 (d/cm) nanoseconds, where d is the diode separation. 
The neutral atom density at the cathode reaches its equilibrium value in about 

2 100 (d/cm) nanoseconds. The diode shorting time varies as d /V_, and is 
exponentially dependent on the initial neutral atom concentration. 

INTRODUCTION 

We consider the one-dimensional magnetically insulated reflex ion 
1-4 diode. Electron motion is treated relativistically. We use cylindrical 

coordinates r, 6, z. Azimuthal symmetry is assumed, with the electric field 
parallel to the z axis, an anode at the z = 0 plane, a cathode at the *, = d 
plane. A separate current along the z axis creates an azimuthal magnetic field 
that falls off with r, the radial distance from the z axis. This magnetic 
field is so strong that electrons emitted at the cathode cannot reach the 
anode, but return instead to the cathode. The cathode is a thin foil or mesh. 
The positive ions traverse the cathode, returning through it several times 
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before losing all their energy. Curvature of the ion motion in the magnetic 
field is neglected. We take the potential to be a function of z only. We 
neglect any radial dependence and solve a one-dimensional problem. 

In crossed uniform electric and magnetic fields, the collision-free orbit 
of an electron has a cycloidal shape. The electron starts from rest at the 

* cathode. Provided the magnetic field exceeds a critical strength B , the 
electron advances a maximum distance b towards the anode, and turns back toward 
the cathode. 

The key factor in shorting a magnetically insulated diode is the deviation 
of electrons from collision-free paths, such that they fail to return to the 
cathode. One mechanism for electron drift across a diode is provided by large-
angle coulombic collisions, which can produce a noticeable shift towards the 
anode of the center of an electron's orbit. That mechanism is not considered 
here. A second mechanism proceeds as follows: Ionization of a neutral atom 
by the orbiting electron produces a second electron, whose subsequent orbit 
lies a significant fraction of b closer to the anode than did the orbit of the 
initiating electron. In this work, we consider how the ionization and inelas­
tic scattering from neutral deuterium atoms may promote electron transit across 
a magnetically insulated diode cf width d. 

Qualitatively, if the electron transit time across the diode gap is com­
parable to the positive ion transit time, then desired operation of the diode 
has broken down and we say the diode is shorted. This electron transit time 
depends sensitively on the neutral atom concentration N , via the mean free 
path for electrons to ionize a neutral atom. The neutral atom concentration 
at the cathode varies with time. We will apply a model developed by D. S. 
Prono, H. Ishizuka, E. P. Lee, B. W. Stallard, and W. C. Turner to determine 
M as a function of time. In this model ions at the anode are accelerated 
9 
towards the cathode. Charge exchange occurs between the ions and static 
neutral atoms in the anode vicinity, resulting in moving neutrals that sub­
sequently arrive at the cathode. The neutral crossing time depends on the 
initial distribution of the static neutrals and also on the ion currents in 
the diode. The ion currents are calculated assuming space-charge-limited flow 
at both the anode and the cathode. The radial variation of tne magnetic field 
and the electric potential is neglected, resulting in a one-dimensional 
problem that is solved numerically. The static neutral atoms are assumed to 
be uniformly concentrated at the anode for a thickness of 0.1 cm. The 
shorting time of the diode is calculated as a function of various initial 
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static neutral concentrations, and of the diode potential and magnetic field. 
Diodes short with the following assumed scenario of events: The diode is 

instantaneously put into steady-state space-charge-limited ion flow, with 
electron flow restricted to the cathode region by a given applied magnetic 
field. Charge exchange between ions and static neutrals occurs, producing 
neutral atoms which drift across to the cathode. The neutral atoms are sub­
sequently ionized by reflexing ions, resulting in electrons trapped in Larmor 
orbits throughout the diode. These electrons ionize and inelastically scatter 
from more neutral atoms resulting in momentarily static electrons. These 
electrons are accelerated towards the anode in a Larmor orbit. We define the 
diode as shorted when the electron current density at the anode equals the ion 
current density. 

REFLEX ION SPACE-CHARGE EQUATION 

The starting equations are Poisson's equation for the potential, conserv­
ation of energy for the ions and electrons, conservation of momentum for elec­
trons in the radial direction, and a reflex ion energy distribution at the 
cathode. We will determine the potential assuming the electron motion is 
collision free. 

In terms of n, the electron density; N , the density of positive ions 
that have never traversed the cathode; and N, the reflex ion density, Poisson's 
equation is 

^-| = 4iie(n - N - N ) . (1) 
dz 

The e l e c t r i c potent ia l is <|>, and i s assumed to be a function of z only, 
hence the absence of radial and azimuthal der ivat ives in Eq. (1). The 
e l e c t r i c f ie ld i s given by E = -d<J>/dz. The boundary conditions on the 
poten t ia l for space-charge-limited flow are that 

at the anode <b = V„, and - ^ = 0 ; 
° d Z (2) 

at the cathode <b = 0, and -=* = 0 
dz 

We will use the relation that the current density j is equal to the velocity 
times the charge density. In steady state, by charge conservation, j must be 
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independent of z. This together with conservation of energy and momentum will 
evolve expressions for the right hand side of Eq. (1) that are known functions 
of z, of the magnetic field, and of J and j (which are, respectively, the 
anode ion current density and the cathode electron current density). Though 
one-dimensional motion is assumed throughout, these quantities will depend on 
r, as the magnetic field B depends on r. Equation (1) can be integrated once 
analytically to obtain an exact equation for the electric field in the vicinity 
of the anode. We will determine the ion and electron current density J and j 
from the resulting first-order differential equations. 

In the vicinity of the cathode, an approximation is required to obtain 
the electric field analytically, as electron path curvature is included. 
Figure 1 shows the path of a typical ion and a typical electron. The ions are 
all assumed to be singly ionized; e is the proton charge, M the ion mass, and 
m the electron mass. The electrons are assumed to be produced at rest at the 
cathode, and the ions are produced at rest at the anode. Conservation of 
energy results in 

| MV 2 = eV Q - e* (3) 

for the ion kinetic energy, and 

2 mc (y - 1) = e(f> (4) 

for the electron kinet ic energy, where 

Y2 = l / [ l - { v / c ) 2 ] , (5) 

and c i s the speed of l i g h t . 
We define the azimuthal component of the magnetic f ie ld as 

B 
B = — , (6) 

cr ' 
where r is the radial distance and B. is a constant. Then conservation of 
canonical momentum yields 

ymv r = — (z - d) = A , (7) 

where A is the magnitude of the vector potential. 
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Fig. 1. Geometry of the axially symmetric magnetically insulated ion diode. 
The cathode is a mesh or foil labeled K, and the anode is labeled A. An axial 
current goes down the center line, producing an azimuthal magnetic field that 
bends the path of the electrons into a cycloid. The positive ions reflex 
several times through the cathode before ending at the cathode. 

Using Eq. (5) in Eq. (7), we have 
.2 

r 2 , , 2 , 2 m + A / c 
[ l - (v / c ) 2 ] . (8) 

S u b s t i t u t i n g Eq. (5) and Eq. (8) i n t o Eq. (4) r e s u l t s in 

2 2 2 4 
, / , 2 i A c + m c 
(v / c ) = 1 = T 

Z (mc + e<|>r 

(9) 



Thus 

en = 2± = 2j = 2j (1 + e/mc2) 
v ~ " r A 2C 2 • mV y 2 

j_ (mc + e<)>) J 
2e i + e 2

ii_ B0 ( z- d> 2" 
2 2 4 2 2 4 

mc m c r m c 

1/2 (10) 

Thus the electron density has been expressed in terms of the current density j 
leaving the cathode, the potential <j> within the gap, and the magnetic field 
B within the gap. The factor of 2 comes from all the electrons returning to 
the cathode. Equation (10) for the electron density contributes to Eq. (1) 
only where the electrons exist. If the radical in Eq. (10) is negative, then 
the electrons cannot exist there, and the entire term n is omitted from 
Eq. (1). The initial ions N Q c a n exist everywhere in the gap (0 < z < d) as 
their curvature is ignored. The reflex ion distribution N is limited 
depending on the energy distribution assumed at the cathode. 

We now consider the reflex ion energy distribution. We introduce a 
reflex ion energy distribution f. This is the energy distribution of ions 
that have passed through the cathode boundary. This distribution is 
normalized in terms of J, the anode ion current density. The maximum energy 
of the reflex ion distribution is V Q from energy considerations, but since 
ions lose energy by passing through the cathode and its electron sheath, the 
ion energy distribution must extend down to zero energy. Let eT = energy, so 
T represents a (variable) potential. At the anode, the average number of 
times an ion is incident on the anode is 

A = 1 + J ° f(T)dT . (11) 
0 

The reflex ion density can be expressed in terms of f as 

eN = 2J V f (T) dT 
•̂  [ r « - •>] 1/2 ' (12) 

The factor J results from the reflex ion distribution being normalized in 
terms of J; that is, f is the distribution at the cathode per unit ion-current 

6 



emitted at the anode. The factor of 2 in Eq. (12) comes because every reflex 
ion is reflected at some point in the diode, where T = <J>(z). The reflex 
density N varies with position because the potential $ varies with position 
z. At a given location z, where the potential is <{>(z) , only those ions whose 
energy at the cathode [eT >̂  e<{>(z)] was at least e<j>(z) will contribute to the 
reflex ion density (at z). For N , the density of ions on their initial 
pass from the anode to the cathode, we have 

e , i0 • 7" " f J ,11/2 ' | 1 3 1 

where J is the ion current density emitted at the anode. Usually, with the 
assumption of one-dimensional motion, J will be independent of the other two 
coordinates. However, with the reflex magnetically insulated diode, we will 
find J depends on the radial coordinate r even though the potential at z = 0 
and at z = d is independent of (r,6). This radial dependence of J comes 
from the magnetic field B depending on r. We seek relations of J and j, the 
ion and electron current densities, for various reflex energy distributions 
f. We are able to solve for J and for j as we have four boundary conditions, 
see Eq. (2), to apply. Two boundary conditions are required to solve Eq. (1) , 
which is a second-order differential equation; the other two boundary 
conditions determine J and j. It is convenient to normalize the current 
densities in terms of the Child-Langmuir current density: 

„ 4 fie .„ ,3/2 .,2 
v e o 5 Vr (V / d ' 

(14) 
„ 4 /2e .„ ,3/2.,2 

J0 = £0 9 ST ( V / d * 
The electron's mass is represented by m; the ion mass, by M. 

It is convenient to introduce dimensionless coordinates: 

x = z/d so 0 £ x £ 1 

u = <{>/V0 so 0 < u £ l (15) 

C = T/VQ so 0 < £ < 1 . 
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Then substituting Eqs. (10-13) into Eq. (1), we have 

dx2 J, vr 
2J r

1 V 0 f ^ 
J vr-~ 0 u 

\ mc / (16) 

eVQ 2 B 2 (x- l)2d2' 
u + r u -

2mc 2 2 r mc 2eV„ 

1/2 

Now the electrons contribute to Eq. (16) only where the radical in the last 
term is non-negative. As x approaches zero, u approaches 1, and this radical 
goes negative at the electron cutoff boundary, called x = b. In terms of the 
normalized potential at the cutoff of electron density, U = u (b) , we have, 
from setting the radical in Eq. (16) to zero, 

b = 1 " B^d \ 2mc
2 eV„ U + 

2mc2 

1/2 
(17) 

as the boundary for electron collision-free motion near the cathode. For the 
magnetically insulated diode, 0 < b £ lr The critical magnetic field is found 
from Eq. (17) by setting b = 0, r to r , and U = 1. 

mx 
For certain simple distributions f, we can construct analytic first 

integrals of Eq. (16). Now define 

S(u) = / dv / * « ; > ^ (18) 

where S(u) is the number of reflex ions between the anode and the point where 
the potential is u. Then integrating Eq. (16) by the factor 

/ »s* 
results in 

<2 

(£) - T A * ^ ••<->) (19) 
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Thus the electric field in the anode region is given by the square root of 
Eq. (19) , and u as a function of x is found from 

- f r du 
4J 
J„ (s(u) + "Vl - u ) 

1/2 (20) 

For the region b < x < 1 near the ca hode, we have 

2 

@ 
43 [l - V l - u + S(0) - S( •)] 

+ i i r u w _ I 
du (1 + eV_ u/mc ) (21) 

+
e V 0 2 (x- I ) 2 / , e V Q 2> 

U + U - - '—r ( U + U 
2mc (1 - b) \ 2mc 

1/2 

where we have used Eq. (17) to obtain Eq. (21). We cannot evaluate the 
integral in Eq. (21) as it stands since we must know x as a function of u, or 
conversely, u as a function of x. That is precisely the problem we want to 
solve. This problem arises only in the cathode region of the magnetically 
insulated reflex ion diode. 

We approximate the last term of the radical in Eq. (21) as 
2 (1 - x)_ 

(1 - b) ! ^r^-Mt) 2 - (22) 

where A is a parameter determined from S(u). Substituting Eq. (22) into 
Eq. (21) and integrating for small u results in a quadratic equation that can 
be solved for A; see the appendix for some details. 

Inserting Eq. (22) into Eq. (21) we have for arbitrary U: 
v2 (dx) = " f t1 -VrT^ + s(0) ~ S ( u ; ] + f- K U' A' U> ' (23) 

where 

K u,A,U) = I f 
du (1 + eV /mc u) 

,^,-L^)(,g'\a-,\T 2mc 2mc 

1/2 

This integral can be analytically evaluated. Note U is a constant. 
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Equations (19) and (23) are solved numerically and the cathode and anode 
current densities j and J are found by requiring the electric fields to be 
continuous at the electron turning point b. The turning point b is found by 
requiring the potential to be continuous at the turning point. 

NEUTRAL ATOM FLUX PROM ATOM-POSITIVE-ION CHARGE 
EXCHANGE AT THE ANODE 

The neutral atom flux is determined by a charge exchange model developed 
by Prono et al. In this model a static neutral atom concentration n is 
assumed to exist near the anode. Initially no moving neutrals exist anywhere, 
and the neutral atoms are in the region 0 < x < x ; x is a parameter 

J max' max e 

set to 0.1 cm here. At t = 0, the steady-state space-charge-limited positive 
ion current begins passing through these static neutral atoms. Some of the 
positive ions undergo charge exchange, resulting in drifting neutral atoms and 
in static ions that are accelerated to repeat the process. This model treats 
the electric field E as constant over the region of the initial neutral atom 
concentration. The energy dependence of the ion-neutral-atom charge-exchange 

7 cross section shown in Fig. 2 is modeled as 

a = o 0 / (l + w 2/w Q
2) , (25) 

-15 2 where w i s the ion energy, w = 10 keV, and o . = 2 x 10 cm . 
The r e s u l t of the model i s a d is t r ibut ion function g of d r i f t ing neutral atoms 
given by 

g ^ e ^ H t X - O W ) [ l - e - ^ - ^ / B ] , ( « , 

where 

Q = n A CT0 V e E ' ( 2 7 ) 

B = Y^-C > (28) 

C = e - O T / 2 . (29, 
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10" 14 

o 
O 1Q-16 

-15 

OJ 1 0 " 1 6 

c o 

O 1 ( J -17 

10 -18 
10 

"~i 1—r-q 1 1—r-q 1 1—r-rj 1 1—rr 
(a) Charge exchange cross-section protons on atomic hydrogen 

Proton energy (eV) 

1 0 " I D r 1 1—r—r 

(b) Charge exchange cross-section for molecular 
hydrogen ( H + + H 2 - H+ + H) 

j i _ i . - i • • I • I J l_L 
10* 10 J 10' 4 106 10b 

Proton energy (eV) 

Fig. 2. Proton-induced charge-exchange cross sections on (a) atomic, and (b) 
molecular, hydrogen. The data shown here were compiled from various sources. 
For more detail, see Ref. 7. 
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P is the steady-state ion flux leaving the anode, H is the unit step function, 
equal to zero (one) for negative (positive) argument, and W and X are 
normalized energies and locations given by 

W = w/W Q (30) 

and 

X = n f t aQ x . (31) 

In Eqs, (26-37), B is a model parameter, given in Eq. (28), and not the 
magnetic field. 

We assume these neutral atoms drift without interaction across the diode 
after leaving the static central atom concentration. This neglects any 
further charge exchange between drifting neutrals and reflexin^ ions. Charge 
exchange between the drifting neutral and a reflex ion would slow the drift of 
neutrals across the diode. 

The number of neutrals that have crossed the diode will now be calculated 
from the distribution function g. This number can be obtained as a function 
of time. When tho neutral concentration at the cathode is large enough for 
collisionless electron flow to break down, we say the diode has shorted out. 

2 The number of neutral atoms per cm that originated at the anode and 
are present a distance d beyond the boundary of the original neutral 
concentration is given by 

' vg [t - d/v] dv = j g [vt - d] dv . (32) 
d/t J6/t 

Using Eq. (26) in Eq. (32) , the integrals can be evaluated in terms of 
tabulated functions. The result is: 

^ Ft j -BOL -BX -CBX T -OL -Xl / ^ = - j e - e - e [e - e Jj 

^j lpJVB ferf(VBX) - erfV55L~]- e " C B X [erf (Vx) - erf(VoL)l{ , (33) Fd 
BC 

2 2 where L = Md /2W Qt , and M is the ion mass. 
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QtM In Eq. (33), t is restricted to t > d -^~— . (34) 

This restriction is the time for the most energetic neutral atom to cross 
the diode. If we assume a uniform electric field in the diode, with a 
potential of 2 MeV, that the ions are deuterons, and that the neutral atoms 
extend 9% of the way from the anode to the cathode, then the minimum time is 

/Mc2d = d f 
V 2eVQX c \H 

_d Med _ d / 3672 __ d 2 
0 " c J 2eV.X c \ 2.2(0.09) ~~ c 

-9 This minimum time is about 3 ns (3 x 10 sec) for d = 1 cm. The restriction 
of Eq. (34) also implies OL < X. 

An approximation of Eq. (33), valid for large times for the flux is 

F KW-0-
The flux G of neutral atoms at the cathode is the first line of Eq. (33) 

divided by t. To use Eq. (35) or Eq. (33) we write the space-charge-limited 
ion flux as 

3/2 
„ J / J o \ /J \, n i n 2 0 ( e V o \ 1 ions 

(-)'• 
\cm/ 

Thus, typical anode fluxes are of the order of 10 l o n 

2 cm -sec 

CALCULATION OF DIODE SHORTING TIME 

We define the electron avalanche current density as 

neb _ ,-_, 
Ja T t 

where n is the electron density as a function of time, b is the scale of the 
Larmor orbits in the magnetic field, T is the transit time for an electron to 
go one orbit, and P is the probability that an electron undergoes a 
large-angle interaction during a single Larmor orbit. If this has occurred, 
the electron can move a distance of order b farther from the cathode. 
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The shorting time is found by equating the electron avalanche current 
density to the positive ion current density. When these are equal we say the 
diode operation has broken down. 

The electron density n is calculated from solving the differential 
equation 

£-GP- , (38) 

where G is the time-dependent neutral atom flux in the diode and P° is the 
probability of ionizing a neutral atom per centimeter path length of the 
neutral. 

Including the ionization of neutrals by ions, by reflexing ions, and by 
electrons, we have 

= <1 - exp - I (na + N+a.)dx V £ .'bx . (39) 

When the ionization probability is small, we have for the rate of increase of 
the electron concentration 

|J = G (noe + N V ) , (40) 

where N is the concentration of positive ions, a. is the cross section for 
. . . 7 x 

ioniz ing neutrals by pos i t ive i o n s , and a i s the cross sec t ion for 
7 e 

ioniz ing neutrals by e l ec trons . See F i g s . 3 and 4 for the energy-dependent 

cross s e c t i o n s . These cross s e c t i o n s have been energy averaged for use in 

Eq. (40) . 

The neutral atom flux can be found from Eq. (33) as 
_ F / -BaL -BX -BCX . -aL -X . \ . . . . 
G = — < e - e - e (e - e ) > , (41) 

2 2 
where L = Md /2w t . For large t imes , and large X, t h i s f lux approaches 

G - re"* 2 - 1, {l - ^ [ e ^ - l ] }. F { e « / 2 _ 1 } „ F / B C . ( 3 5 ) 
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(b) Ionization of molecular hydrogen by electrons 
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Fig. 3. Electron ionization cross sections of (a) atomic, and (b) molecular, 
hydrogen. The data shown hero were compiled from various sources. For more 
detail, see Ref. 7. 
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Fig. 4. Proton-induced ionization cross sections of (a) atomic, and (b) 
molecular, hydrogen. The data shown here were compiled from various sources. 
For more detail, see Ref. 7. The solid curves are predicted by theory; the 
broken curves represent a practical fit to the data. 
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Using this asymptotic limit for the neutral flux, an analytic solution may be 
found for n(t). Arguments based upon this approximation help to explain the 
qualitative behavior of the shorting time. 

With n(t = 0) = 0 , the solution to 

dt = (no + N+a.) F [ e
a 7 r / 2 - l] (42) 

is 

N +a. T a Ft/BC I 
n(t) = — — e S - 1 - a Ft/BC o u e J 

e 

* U I a Ft/BL 1 
i I a I 

(43) 

Equating the electron avalanche current density, Eq. (37), to the 
positive ion current density eF, and using Eq. (43), we have for the shorting 
time t , s 

N+cr. V a Ft /BC -| . 
e e - 1 - o Ft /BC |r (3N°a b) = eF . (44) 

a
e L e s J T e 

The large-angle electron cross section in Eq. (44) has been set to three times 
the electron-neutral ionization cross section because ionization is about one 
third of the total cross section. N° is the density of neutral atoms for 
asymptotically large times. 

Defining: 

T = a Ft/BC = a Ft (e a i T / 2 - l) , (45) 
e s e s \ / 

Eq. (44) can be written 

r /2mbd 
V e V0 (eT -1 - t) • J 6 V ° 2 , (46) 

N 0\3N„b l 0 

and solved for T numerically. 
The shorting time found from Eqs. (45) and (46) is a function of magnetic 

field strength and the assumed initial neutral atom concentration, via the 
parameter a; see Eq. (27). Equation (43) shows that the electron density in 
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the diode rises initially as t , but eventually rises exponentially with a 
timeiconstant BC/Fa . i e 

jThe exact solution to Eq. (38) is found numerically, using Eq. (41) for 
the neutral atom flux. The resulting expression for the time-dependent 
electron density is substituted into Eq. (37). The resulting expression for 
the electron avalanche current density is then used to determine the diode 
shorting time. 

The results of this calculation are presented in Figs. 17-23. 

STEADY-STATE SPACE-CHARGE-LIMITED 
MAGNETICALLY INSULATED DIODE OPERATION 

Calculations for the anode current in the magnetically insulated diode 
have been made for two assumed distributions of reflexing ions. The first 
distribution, peaked at low reflex ion energies, is characteristic of a thin 
foil when the range is proportional to ion energy raised to the 1.8 power. 
Another proposed cathode about which the ions would reflex is an open mesh. 
We assume the resulting reflex ion energy distribution to be peaked at high 
energies. The assumed form of the normalized quadratic distribution is shown 
in Fig. 5. An open mesh cathode, with the ions either passing through without 
interaction, or being stopped and trapped by the mesh, would result in a 
delta-function reflex-ion energy distribution peaked at 8 = 1. By including 

Fig. 5. Energy spectra of the 
reflex ions at the cathode. The 
foil spectrum (solid curve) is 
peaked at low energy, and the mesh 
spectrum (broken curve) is peaked at 
high energy. The energy is 
expressed here as a (dimensionless) 
fraction of the diode potential VQ. 

0 0.2 0.4 0.6 0.8 1.0 
Normalized reflex ion energy (£) 
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some scattering and energy loss by ions during transit, one may justify the 
quadratic distribution which is used. 

The energy distribution of reflex ions at the cathode affects the 
equilibrium current density of positive ions at the anode. This is so because 
the refletc ions spread out between the cathode and anode. The greater the 
quantity of positive charge there is near the anode, the smaller the positive 
ion current density. In Fig. 6 we show the fraction of reflex ions whose 
energy exceeds a given value of E, = <t>/v"0. This fraction is larger for 
the mesh distribution than for the foil distribution. 

If the potential increased at a constant rate from the cathode to the 
anode (constant electric field), then Fig. 6 would also show the fraction of 
reflex ions extending a given distance from the cathode towards the anode. We 
see that at E, = 0.8, the mesh distribution has about 5 times the number of 
ions that the foil distribution has. This explains why the anode current 
(shewn in Fig. 9) is smaller for the mesh than for the foil spectrum. This 
also explains why the mesh-current-to-foil-current ratio decreases for larger 
values of n, where TI is the average number of times an ion enters the 
cathode. 

Figure 7 shows the potent ial d i s t r ibu t ion for a typ ica l fo i l and mesh 
spectrum for the case of (rB*/r B) = 0 . 1 . The po ten t i a l d i s t r ibu t ions are 

mx 
similar to each other, although the electric field near the anode is smaller 
for the mesh spectrum. The potential varies smoothly from the anode to the 
cathode. 
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Fig. 6. Fraction of reflex ions 
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Fig. 7. Potential distribution 
within the diode for two typical 
cases. The solid curve is for a 
foil cathode, and the broken curve 
is for a mesh cathode, n, the 
number of times an ion enters the 
cathode, is equal to 20. rB*/rmxB 
= 0.1. 

Figure 8 shows the limits of the electric field distribution as the 
magnetic field is varied, n is 20 for each case. The electric field in the 
anode region is plotted in units of V /d. The calculated electric field 
reproduces the Child-Langmuir variation (E °c x ' 3 ) near the anode. 
Near the cathode (not shown in Fig. 8) the electric fields also approach 
zero. There is more variation of the electric fields near the cathode with 
variation of the magnetic field, as expected. 

Fig. 8. Electric field distribution 
within the diode outsidg the cathode 
sheath of electrons. The limits are 
shown, between which the distri­
bution ranges as the magnetic field 
is varied. 
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The anode and cathode current densities, divided by the respective Child-
Langmuir values, are shown in Figs. 9 and 10. The anode current density de­
creases with n, and is about independent of (rB*/r B). The anode current 

mx 
increases slightly for larger values of r, as the electron distribution then 
extends part way across the diode towards the anode. 

In contrast, the anode current density varies strongly with reflex ion 
energy distribution and with n. The anode current density is about 3 times 
greater for the low-energy-peaked foil spectrum than for the high-energy-
peaked mesh spectrum. Indeed, the ion flux at the cathode is less for the 
mesh spectrum than for the case where reflexing is entirely absent. The 
reverse is true for the low-energy-peaked foil spectrum. For the foil spec­
trum, the ion flux with reflexing, at the cathode, exceeds the Child-Langmuir 
limit. 

Figure 10 shows the electron current density at the cathode divided by 
the Child-Langmuir limit. The electron current density extends only a short 
distance into the diode gap before the magnetic field returns the electrons to 
the cathode. The electron current density at the cathode varies strongly with 
(rB*/r B). The range of this variation is surprising, so an analytic study 
of Poisson's equation is reproduced in the appendix. There the trend and 
numerical values of the computer solution are reproduced for the case of large 
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Fig. 9. Anode ion current density 
versus radius. r\ is the number of 
times an ion enters the cathode. 
The anode current density is 
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field strength. The solid curves 
refer to a foil-cathode energy 
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Boundary potential u (b) 

Fig. 11. Diode potential at the 
electron boundary, versus radius. 
Three values of n, the number of 
times an ion enters the cathode, are 
represented. The solid curves refer 
to a foil-cathode energy spectrum, 
and the broken curve, to a mesh 
spectrum. The radial coordinate is 
scaled to the magnetic field 
strength. 

magnetic field. The electron current density also increases with the ion flux 
at the cathode, as expected. 

For magnetic fields stronger than the insulating magnetic field, the 
electrons cannot cross the diode gap. How far an electron can get from the 
cathode depends on the potential distribution. The boundary potential u(b) 
where the electrons are turned by the magnetic field is plotted in Fig. 11 
versus the magnetic field. 

The variation of u(b) is as expected: The greater the positive ion 
current density, the larger u(b) is, and the further the electrons get from 
the cathode. The stronger the magnetic field, the smaller the boundary 
potential u(b), and the closer the electron turning point is to the cathode. 

This concludes the discussion of the steady-state space-charge flow for a 
magnetically insulated reflex ion diode. We turn now to the breakdown of the 
space-charge magnetically insulated flow. 

DIODE SHORTING TIME FROM CHARGE-EXCHANGE AT ANODE 

In this section, we analyze the sequence of steps which cause the 
space-charge-lirnited flow to break down: Neutral atoms fill the diode gap, 
and become ionized by the reflexing ions and by electrons. The ionization of 
neutrals produces an electron avalanche whose current eventually equals and 
exceeds the anode current (which is due to positive ion flow). The rise of 
the avalanche electron current density to equal the ion current density 
determines the shorting time. 

The density and flux of neutral atoms away from the anode are propor­
tional to the space-charge-limited ion flux at the anode. See Fig. 9 for 
typical values of this ion flux. The neutral density p at the cathode, from 
neutrals that have crossed the diode gap, can be found from Figs. 12-15. This 

23 



10" 

10 J 

E 
i-

10' 

10 

I I I I I I I I 1 1 1 

X = 2 X = 20 
a = 0.070-^ a = 0.700-y 

X= 1 
a = 0.035 

X= 10 
a = 0.350 

10" 1 10 
J l_L 

10' 

Normalized density p/F of 
neutral atoms (ns/cm) 

10" 

_ 10 
en 

0) 
E 

,3 _ 

10 ' -

10 

_ 1 1 1 1 | —I 1 I 1 | r - T T T 

/ o = 0.116 

'_ 
y - X = 2 
/ a = 0.233 

- X = 20 -
- a = 2.333- -
- X = 10 -

— . Q = 1.166-, / — 

/ I ^ I i ' 1 * * r 1 i \ i i i i 
10 10 ' 10 J 

Normalized density p/F of 
neutral atoms (ns/cm) 

Fig. 12. Neutral atom (deuterium) 
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Fig. 13. Neutral atom density at 
cathode versus time. Curves are 
labeled by X (the normalized 
posi t ion along the axial d i r ec t ion ) , 
and by a. 

density i s found by integrat ing the d i s t r ibu t ion function, Eq. (26), over a l l 
ve loc i t i e s greater than d/ t , where t i s the time required for the most 
energet ic neutral to cross the diode (Eq. (34) | . The ion flux F has units of 

2 
l/(cm - ns ) . 

The neutral density is expressed in atoms/cm . Thus p/F has units of 
ns/cm and is plotted versus time (in nanoseconds) in Figs. 12-15. The time-
dependent neutral density at the cathode is plotted for various values of X 
and a. These were determined from the solution for the electric field, see 

Fig. 14. Neutral atom density at 
cathode versus time. Curves are 
labeled by X (the normalized 
position along the axial direction), 
and by a. 
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Fig. 15. Neutral atom density at cathode versus time. Curves are labeled by 
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Fig. 8, near the anode. The key factor is that the density at the cathode 
rises to within one half of its equilibrium value in about 50 ns for all cases 
studied. This 50 ns time for the neutrals to cross the diode provides a lower 
limit to the diode shorting time. 

The anode flux F can be expressed in terms of J/J«r which may be read 
from Fig. 9. From Eq. (36) for the flux we have: 

/ v \ 3 / 2 

= ft) - - ° n fe) / F = ^~ /(d/cm)' ions 
2 

cm -ns 

The equilibrium densities are plotted versus a in Fig. 16. By "equilib­
rium," we mean the neutral atom density at the cathode after sufficient time of 
diode operation in the space-charge-limited mode. 

25 



Fig. 16. Asymptotic steady-state 
neutral atom density at cathode 
versus a. The curves are for 
constant X values. F is the anode 
ion flux. Note that a increases to 
the left. 
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The equilibrium density can be obtained from integrating 

p(t) = I dv g(X, v) 
Jd/t 

where g is the distribution function given by Eq. (26) . The asymptotic 
density becomes 

(47) 

p/F = f VBX -CBX . e erf Vx) /BC (48) 

where "erf" stands for the error function. 
The electron avalanche shorting time is plotted in Fig. 17 versus a. The 

—OCTT/2 shorting time is approximately proportional to e . The shorting time 
exceeds 10 ns if a is about 4 or less. 

In Fig. 18 we plot the shorting time as a function of magnetic field for 
various reflex ion spectra, with a equal to 4. 

The mesh spectrum is associated with a large shorting time because the 
reflex ion concentrations are smaller than for the cov -esponding foil 
spectrum. Ionization of neutrals by collision with ions is therefore less 
frequent, and electrons accumulate more slowly, prolonging the shorting time. 

The curve shown in Fig. 17 suggests that for a = 5 or more, the 
shorting time is determined by the time the neutrals take to reach the cathode. 
This occurs at about 50 to 100 ns into the space-charge-limited mode, as seen 
in Figs. 14 and 15. 
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Fig. 17. Diode shorting time versus 
a. The solid squares represent 
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For 

The scaling of the shorting time is shown in Figs. 19-23. Figure 19 
shows a semilog plot of the shorting time versus a. This shows that shorting 

-our/2 time is proportional to e . I n Figs. 20 and 21, we show the shorting 
time versus the diode potential V"n, holding the diode gap d constant and the 
magnetic field constant. The curves for various reflex ion spectra, and for 
selected values of a, are all parallel; these curves show that shorting time 
is inversely proportional to V n. 

In Figs. 22 and 23, the shorting time is plotted versus the diode 
separation, holding the potential difference across the gap fixed at 2.044 
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Fig. 19. Scaling of shorting time 
versus a. Diode gap is fixed at 
0.7 cm, for a mesh spectrum. The 
diode potential V 0 is fixed at 
4mc2/e, and rB*/rmxB =0.1. 
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Fig. 21. Shorting time versus gap 
potential. Diode gap is fixed at 
1.0 cm., and magnetic field is 
fixed. Broken lines correspond to a 
mesh-cathode energy spectrum, and 
solid lines, to a foil spectrum. 

Fig. 20. Shorting time versus gap 
potential, n is 20, diode gap is 
fixed at 1.0 cm., and rB*/rmxB = 
0.1. Broken lines correspond to a 
mesh-cathode energy spectrum, and 
solid lines, to a foil spectrum. 
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MeV. The curves for various a are all parallel and show that the shorting 
2 time is proportional to d . 

These curves have all used the deuteron mass for the ion leaving the 
anode. The times will be reduced by a factor of 2 if protons leave the anode. 

POSSIBLE FUTURE MODIFICATIONS 

In this work we have calculated the electron avalanche shorting time from 
a charge exchange mechanism at the anode, static neutral atoms undergo charge 
exchange with accelerated ions resulting in drifting neutrals that undergo no 
further interaction. 

Future work should include charge exchange of the drifting neutral atoms 
with the reflexing ion distributions. Such subsequent re-exchange would slow 
or reverse the direction of the neutrals. In either event the flow of 
neutrals to the cathode would be slowed, increasing the shorting time. 
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Secondarily, the time-dependence of the diode potential should be 
included in a guasistatic approximation. Here the full potential was assumed 
turned on at t - 0. The 20-ns or so rise time of the diode potential should 
be included in future work. As a result of including such a rise time for the 
potential, a [see Eq. (27)] would vary with time because the anode electric 
field would vry with time. Such a time variation of a might significantly 
change the shorting time. The variation of the electric field with position 
should be included. The distribution function used assumed an average 
electric field. Finally, an approximation which takes into account the effect 

Q 
of the electric field on the ionization and charge exchange cross sections 
can be included. 

Large electric fields tend to reduce the charge exchange cross section 
and to enhance the ionization cross section. The first change would increase 
the shorting time while the enhanced ionization cross section might decrease 
the shorting time. Whether the electric field would cause significant 
changes, or in which direction, is not clear. 

Knowledge of the neutral atom distribution near the anode surface would 
be very helpful. 
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APPENDIX: STRONG MAGNETIC FIELD LIMIT OF CATHODE CURRENT 

Let us consider the magnetic field to be so strong that the electron 
current is nonrelativistic, and the potential where the electrons are is small 
compared to mc 2. Then Eq. (21) becomes: 

(dx) = r̂ t1 - v r r T + S ( 0 ) - S ( u ) 3 + f - 2 1 * < A - X > 
- ~4J „ 4j , < r 

= - — Ku + -r- 2 Vu . 
J 0 D0 

For u small compared to 1, taking the square root, we obtain: 
d u _ f§J 3-/4 
dx " 

Integrating Eq. (A-3) we obtain 

(A-2) 

(A-3) 

* Using A'= rB /r B , 

2 with Eq. (17), and neglecting U compared to U, we have 

1 - x = A«U 1 / 2/(l + eV Q/2mc 2) 1 / 2 . (A-5) 

Equation (19), in the U •*• 0 limit becomes 

AL.U/2 = r1 _ ^ T I ( 0 ) m { A . 6 ) 

V o/ •'o 4 [ n - u + s(u)J 
By equating e lectr ic f i e lds inside and outside the electron boundary, using 

Eq. (19) and Eq. (A-3), the electron current density becomes: 

ft) L̂ [i + s (0)] 
J 0 2VU 
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Using Eqs. (A-5r A-6, A-7) in Bq. (A-4) , we find 

yg.A'TKO) xl 5 . { A_ 8 ) 

(1 + eVQ/2)L/* 

This reflects the large magnetic field (small A') behavior of U shown in 
Fig. 11. And using Bq. (A-8) in Eq. (A-7), we see the cathode current density 
varies inversely with A', as seen in the computer solution shown in Fig. 10. 

34 


