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CHAPTER 1

INTRODUCTION

1.1 Background and motivation
Earthquake resistant design procedures recognize, either 

implicitly or explicitly, that structures may respond inelas- 
tically even to moderate intensity ground motions. Insofar as 
earthquake motions are of an extremely complex nature, a number 
of structural factors influence the response as well.

Admitting that detailed nonlinear dynamic computations can 
be carried out, in principle, no matter how complicated the 
motion and the system may be, and regardless of the valuable 
information that may be so obtained, one can achieve reliable 
results only by calculating responses to several representative 
ground motions and examining the statistics of the response. On 
the other hand, since the present knowledge on nonlinear dynamic 
characteristics of structural materials does not seem to permit 
an accurate description of a structure, a number of analyses may 
also be required to account for variations in structural 
properties and different modeling techniques. Designs based on 
inelastic time history analyses of multi-degree of freedom 
systems may be justified in some circumstances; they may not be 
feasible for the vast majority of structures, however.

Particularly attractive for its simplicity is the design 
spectrum approach. The method is based on the approximation that 
nonlinear effects can be accounted for by a linear analysis of



the structure using design coefficients determined from inelastic 
design spectra for single degree of freedom systems (67 ,70). 
Even if a more rigorous procedure is deemed necessary for a 
particular application, the design spectrum method is ideally 
suited for preliminary design.

The advantage of using single degree of freedom systems is 
that response computations for a large number of actual 
earthquake motions, combined with a range of values for structure 
related parameters, can be carried out at a reasonable cost. In 
this manner, the influence of the various factors affecting the 
response, as well as their relative importance, can be assessed. 
This information is conveniently summarized in the form of 
response spectra, wherefrom rational estimates of the response of 
more complex systems can be made. On the other hand, examination 
of the characteristics of earthquake response spectra, combined 
with observations of the effect of damaging earthquakes on real 
structures, and consideration of a number of factors regarding 
expected earthquake intensities at a given site, permit one to 
develop a set of simplified design rules that are synthesized in 
the form of design spectra.

Response spectra for single degree of freedom elastic 
systems have been computed for various input motions including 
simple ground disturbances and earthquake accelerograms (17,26,
48,115,116); average elastic spectra (47), and statistical 
analyses of elastic response spectra (38,41,65,71,77,98), have 
also been reported. Primary attention is given in these studies 
to the amount of damping of the systems. Although inelastic
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response spectra for simple elastoplastic systems subjected to 
earthquake and ground shock motions have been obtained (91,114,
115,116), statistical analyses consistent with the procedures 
developed for the elastic case have not been reported.

On the basis of the findings of some of the above elastic 
and inelastic response studies, and from consideration of other 
pertinent information, Newmark and Hall have proposed recommenda­
tions to derive design spectra for various conditions (73,74,75).

Because of the limited data available, coefficients 
independent of the damping factor are used to derive inelastic 
spectra from the elastic spectrum, which is equivalent to the 
assumption that damping has a similar effect on both linear and 
nonlinear responses. There are some indications to the contrary, 
however. Thus, it appears necessary to consider additional data 
to account for damping in an explicit manner.

Considerable effort has been devoted recently to the study 
of the behavior of structural materials and components under 
cyclic loading. Special attention has been given to reinforced 
concrete elements that may deteriorate, in the sense of losing 
stiffness and strength, under load reversals. It is of interest 
to examine the significance of these effects in terms of 
inelastic response spectra. This has not been considered in 
detail heretofore.

1.2 Purpose and outline of the study
The dynamic response of single degree of freedom nonlinear 

systems subjected to earthquake excitations is considered to



estimate the effect of structural damping combined with inelastic 
behavior and the effect of various types of material nonlinear­
ity.

Inelastic response spectra, obtained for a range of 
conditions, are analyzed statistically to make quantitative 
estimates of the effect of the various parameters, and with the 
purpose of deriving improved rules for constructing inelastic 
design spectra. In turn, a great deal of insight on the nature 
of nonlinear responses is gained.

In Chapter 2, experimental results available in the 
literature on structural behavior under cyclic loading are 
reviewed with the purpose of defining the resistance functions 
and range of damping values used in the study. On this basis, 
three types of nonlinear model are chosen: elastoplastic, 
bilinear, and stiffness degrading; the latter was specially 
developed for this study and has some advantages over other 
relationships available. Relative damping values of 2, 5, and 10 
percent of critical are selected in combination with the 
elastoplastic model; damping of 5 percent is used for bilinear 
and stiffness degrading systems to permit comparisons with the 
elastoplastic case.

In Chapter 3, a description is given of the systems 
considered and of the ten earthquake records used as base motion. 
The procedure used to compute responses is described, and the 
corresponding results are summarized in the form of inelastic 
response spectra. These results are discussed and observations 
are made regarding the influence of the parameters under study.
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A procedure for the statistical analysis of the data is 
developed in Chapter 4. From this analysis, factors for deriving 
the characteristic trapezoidal spectrum are obtained. As an 
intermediate step in the statistical analysis, single frequency 
statistics that are relevant for a number of reasons are 
obtained; in particular, average spectra can be constructed from 
which general conclusions can be reached regarding the effects of 
damping and the type of nonlinearity on inelastic response.

The various factors involved in the establishment of earth­
quake design spectra are presented in Chapter 5. A key point, 
the estimation of the earthquake hazard at a given site, is 
discussed in some detail. Rules for the construction of design 
spectra, and particular examples are given. Comparisons are made 
of design spectra and actual response spectra.

Chapter 6 contains a summary of the conclusions of the 
study.

1.3 Notation
The symbols used in the text are defined where they are 

first introduced. For quick reference, a list of the most impor­
tant ones follows:
A * peak ground acceleration; also used as a subscript to

indicate normalization to ground acceleration
a = subscript referring to the acceleration axis of the

spectrum
C = damping constant
COV * coefficient of variation
D => peak ground displacement; also used as a subscript to

indicate normalization to ground displacement
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d = subscript referring to the displacement axis of the
spectrum

f = undamped natural frequency in cycles per second
fdv = frequency at the knee between the displacement and the 

velocity regions of the spectrum
f = frequency at the knee between the velocity and the accel­

eration regions of the spectrum
k = stiffness of elastic systems or initial stiffness of ine­

lastic systems
kg = strain hardening stiffness of bilinear and stiffness 

degrading systems
m = mass of the system
p = parameter in the general expressions for deamplification 

factors
p = probability level
Q = general designation for any of the peak ground motion 

parameters (A, V, or D); also used as a subscript to 
indicate the nature of normalized quantities

q = parameter in the general expressions for deamplification
factors

R = resistance function, force in the spring
R = maximum resistance m
Ry = yield point resistance
r = parameter in the general expressions for deamplification

factors
S = any spectral quantity
Sa = spectral acceleration
Se = ordinates of the elastic design spectrum 

= spectral displacement
= spectral velocity

S = ordinates of the inelastic design spectrum for a ductility 
y value y
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ratio between the strain hardening stiffness and the elas­
tic stiffness, taken as 0.03 in this study
natural period of vibration
relative displacement of the system with respect to the 
ground
relative velocity of the system 
relative acceleration of the system 
maximum relative displacement of an elastic system 
maximum relative displacement
maximum relative displacement in the positive direction of 
motion
absolute value of the maximum relative displacement in the 
negative direction of motion
deformation corresponding to the yield point
peak ground velocity; also used as a subscript to indicate 
normalization to ground velocity
frequency band variance
single frequency variance
subscript referring to the velocity axis of the spectrum
absolute displacement of the system
absolute velocity of the system
absolute acceleration of the system
absolute displacement of the ground
absolute velocity of the ground
absolute acceleration of the ground
damping factor as a fraction of the critical damping 
deviation from the mean for probability level p
correction factor to account for the difference between
d> and d> py y
ductility factor
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a = frequency band standard deviation, also indicated as
= single frequency standard deviation

$ * factors that applied to the ground motion estimates givee the ordinates of the elastic design spectrum
<l> » deamplification factors that applied, to the elastic designy spectrum give the ordinates of the inelastic design 

spectrum
<f>p^ = de»amplification factor for probability level y
y ■ factors that applied to the ground motion estimates givep the ordinates of the inelastic design spectrum
¥ * frequency band average, equal to 4^
ip - any normalized spectral quantity
ijr(f) ■ average of ip values at frequency f
n * frequency band coefficient of variation, also indicated as

ft y
ft * single frequency coefficient of variation 
id * undamped circular frequency in rad/sec
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CHAPTER 2

BEHAVIOR OF STRUCTURES UNDER CYCLIC LOADING 
AND MODELING FOR ANALYTICAL PURPOSES

2.1 Introduction
Structures subjected to earthquakes may undergo several 

reversals in direction of displacements. It is clear from the 
literature that in such circumstances the nonlinear behavior of 
the structure differs from that under monotonically increased 
loading. Stiffness and strength degradation phenomena, which may 
affect the energy absorption and energy dissipation capacities, 
are particularly relevant to earthquake resistant design.

An important number of experimental results are already 
available, from tests on a wide variety of structural systems, 
ranging from simple beams to entire buildings, and various models 
for load deformation relationships have been suggested to 
analytically predict the actual response of the corresponding 
systems. It must be pointed out, however, that experimental work 
on structural hysteresis has not yet produced all the information 
required for the solution of the problem regarding the mechanical 
behavior of a real structure under severe dynamic loading.

Real buildings have been instrumented and measurments have 
been obtained during actual earthquakes or in forced and free 
vibration tests (37,103). Notwithstanding the fact that this 
information has led to significant results concerning member 
strains, variation of natural periods, degree of damping, and



soil-structure interaction effects, data have been generally 
obtained under moderate excitations which have not induced 
important inelastic deformations. It has been pointed out that 
information on the nonlinear behavior of actual buildings and 
their surrounding soil is needed (11), but too few results are 
available (83).

Laboratory tests on members, subassemblages and reduced 
scale models, using shaking tables or quasi-static load 
reversals, are the natural option. It is unfortunate, though, 
that the results of dynamic tests are given, in most cases, in 
the form of force or displacement time histories instead of force 
displacement curves, thus, the hysteretic behavior cannot be 
readily assessed. Several hundred papers on pseudostatic testing 
have been published during the last few years. A comprehensive 
review of the literature would be a tremendous task. Instead, a 
few specific contributions will be discussed with the purpose of 
defining the load deformation functions and range of damping 
values used later on in this study.

2.2 Reinforced Concrete Members and Frames
Consider first a doubly reinforced concrete member whose 

behavior is controlled by flexure, i.e., stresses relate 
primarily to bending, and assume premature crushing is prevented 
by means of an under-balanced reinforcement ratio. The general 
characteristics of the behavior of such an element, under 
quasi-static load reversals, are qualitatively illustrated by the 
load deflection curve shown in Figure 2.1. Notably, there is a
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degradation in the reloading stiffness rfhen the element is 
subjectel to a nev* cycle exceeding the maximum deformation 
attained in the previous one.

The factors which influence the shape of the hysteresis 
loop, thoroughly discussed by Sozen (104) and Bresler (19), are 
the following: (a) Amount of longitudinal reinforcement in 
relation to the concrete area and the stress-strain properties of 
the reinforcing steel, (b) amount of cracking in terms of the 
distribution and width of cracks, (c) effectiveness of bond 
between steel and concrete, (d) shear stresses and amount of web 
reinforcement, (e) local and overall distortions at joints, and 
(f) instability of longitudinal reinforcing bars.

It has been pointed out that, while some of the above 
factors are inherent to hysteretic behavior, others constitute 
deficiencies wnich should be considered only to be avoided (104). 
Typical of the latter are inadequately proportioned joints, 
insufficient web reinforcement for shear and stability of 
longitudinal bars, and lack of adequate detailing for bond 
resistance. For example. Figure 2.2.a shows the load deflection 
curve for a reinforced concrete member without adequate web 
reinforcement; the decay in strength with cycling is notable. 
Figure 2.2.b features a typical slip loop due to loss of 
anchorage after two complete cycles.

A word of caution is necessary when referring to "adequate" 
web reinforcement. Acceptable results have been obtained, in 
terms of no shear strength decay with cycling, by assigning all 
the shear to the transverse reinforcement while neglecting the



contribution of the concrete (94,121). However, this appears to 
be the case only for members with moderate to slender 
proportions. The shear-span to depth ratio M/Vd, where M and v 
are the moment and the shear at the critical section, seems to be 
a reasonable classification criterion. Referring to columns, 
Sozen (105) has mentioned a value of 2 as the limit below which 
the member should be referred to as a "shear column." For such 
members, even large amounts of transverse reinforcement do not 
seem always to prevent the strength decay with cycling (20,107); 
there is need to determine the maximum moment capacity that can 
be developed while ensuring stable hysteretic response under high 
shear stresses.

The effect of axial load must also be discussed. Wight and 
Sozen (121) tested members with a shear-span to depth ratio of 
about 3 and axial forces applied in such a way that the possible 
P-6 effect was minimal. They observed that increasing the axial 
load from zero to one half the balance load tended to retard the 
decay in stiffness and strength with cycling. This bears out the 
intuitive behavior. Elements with no axial load present wider 
cracks which may not close properly when the load is reversed 
because of permanent elongation of the reinforcement; this may 
result in through-the-depth cracks carrying shear by aggregate 
interlocking resistance. This kind of resistance rapidly 
deteriorates under load reversals by abrasion of the contacting 
surfaces. Moderate axial loads would then be beneficial in 
providing confinement to arrest, to some degree, the otherwise 
rapid deterioration. On the other hand, axial compression has a
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positive effect on the moment capacity of typically proportioned 
flexural sections (under balanced condition); the ultimate 
curvature decreases though.

Atalay and Penzien (8) tested members with shear span to 
depth ratios of 5.5 and axial forces ranging from 25 to 75 
percent of the balance load. They concluded that increasing the 
axial load decreases the ultimate lateral displacement capacity 
and enhances strength and stiffness degradation. It must be 
pointed out however that the testing configuration was such that 
the P-6 effect was present and partly responsible for the 
strength decay featured by the load deflection curves at large 
cyclic amplitudes.

The P-6 effect is schematically illustrated in Fig. 2.3. 
The curve denoted by P=0 represents an ideal force deformation 
relationship for a member without axial load; is the yield 
moment of the cross section. The effect of a constant axial load 
may be taken into account by substracting the dashed line "b" 
representing the geometric stiffness P/h, from the dashed line 
denoted by "a". The latter corresponds to the load deformation 
relation obtained by computing the moment capacity of the section 
including the favorable effect of compressive stresses. It is 
apparent that the lateral load capacity of the column declines as 
the lateral displacement increases; the strength of the section, 
however, is fully developed. If no deterioration ocurred, the 
curve labeled P^O would envelope the loops resulting from load 
reversals. On the contrary, if strength is not sustained, the 
loops will not reach such envelope.



P-6 effects make inverted pendulum structures particularly 
vulnerable to earthquakes. In the case of frame buildings, 
however, the predominant design philosophy is one of strong 
column, weak girder (6) . Special code provisions (4) are 
intended to insure that yielding occurs in the beams rather than 
in the columns. Even though this does not guarantee that all 
columns will remain elastic during a strong earthquake (14,86), 
the chance of instability problems is substantially diminished.

The effect of alternating loads on the behavior of 
reinforced concrete frames is similar to that observed in 
members. If proportions and detailing are such that failures 
other than by flexure are prevented, the lateral capacity is 
almost insensitive to the repetition of loading; in contrast, the 
stiffness deteriorates rapidly as the amplitude of the deforma­
tions and the number of cycles increase (16,39,87). Typical 
hysteresis loops for frames are shown in Figures 2.4 and 2.5.

Various studies have pointed out the importance of bond and 
anchorage of reinforcing bars (39,92). A particularly critical 
bond demanding situation arises in beam column joints of frames 
under lateral loading as the main reinforcement is pulled from 
one side of the joint while being pushed from the other. 
Slippage of the reinforcement may cause pronounced degradation of 
the hysteresis loops, not only regarding stiffness but strength 
as well, even in absence of shear problems.

Corner connections presenting commonly used reinforcement 
details have been found to fail, even under static loading, at a 
small fraction of the capacity of the adjoining members (80) . In
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structures required to dissipate energy under load reversals, the 
full capacity of the members adjacent to a connection must be 
developed and sustained during inelastic excursions. Extensive 
discussion on the behavior of beam column joints, the essential 
requirements for satisfactory performance and recommendations for 
proportioning and detailing are available (5,87). Limitations of 
the recommendations and areas of needed research have also been 
pointed out (5).

2.3 Reinforced Concrete Walls
Because reinforced concrete walls are frequently the 

principal elements resisting lateral loads in multistory 
buildings, they have been called shear walls. As Park and Pauley 
point out (87), the name is an unfortunate one; in seismic design 
the main concern is for relatively t tall walls that behave 
essentially in flexure. Again, ductility is realized by 
preventing shear, anchorage or crushing modes of failure prior to 
a bending failure. Short walls, or "true shear walls" (92), are 
subjected to low flexural stresses and have large shear capacity, 
so that their load-deflection curve is practically linear up to a 
basically brittle failure; they should be designed and analyzed 
for elastic behavior only.

There is no general consensus on the delimitation between 
the two wall categories. Walls having a height to depth ratio of 
less than 0.5 to 1.0 have been classified as "short" or pure 
shear type; it must be noted though, that the shear span to depth 
ratio is a more appropiate index for classification (92) since



the former does not provide information on the existing 
combination of shear and flexural stresses. The following 
discussion refers to the behavior of flexural walls.

As the initial part of an extensive experimental program at 
the Portland Cement Association (81) , eight 1/3 scale walls were 
tested under cyclic loading. Controlled variables included the 
shape of the cross section (rectangular, barbell and flanged), 
the amount of flexural reinforcement, and the amount of hoop 
reinforcement around the main flexural reinforcement. Shear 
reinforcement was provided according to the ACI 318-71 Code (4). 
All specimens had shear span to depth ratios of about 2.4. Load 
deformation curves for two rectangular and two barbell specimens 
are shown in Figure 2.6. All these specimens had the same 
horizontal and vertical web reinforcement; the main flexural 
reinforcement, concentrated at the edges of the wall, and the 
special confinement reinforcement varied as indicated in the 
figure. Detailed discussion of the performance of the specimens 
is given in the original report. It is of interest to remark 
here that the behavior of the walls in Figure 2.6 is essentially 
that of a ductile flexural member; defining as yield displacement 
that corresponding to the load which produces yielding of all the 
main reinforcement, and taking as maximum displacement that 
corresponding to the last cycle before strength deterioration, 
ductility factors ranging from about 6 to 10 are obtained. It 
must be borne in mind however that such ductilities are smaller 
than those expected in slender flexural members. The 
characteristic stiffness degradation and pinching of the
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hysteresis loops is also apparent.
Similar observations can be made from tests conducted at the 

University of California, Berkeley (120). One-third scale walls 
corresponding to the lower three stories of a ten-story prototype 
building were tested. Special emphasis was placed on simulating, 
in a pseudostatic manner, the effect of actual earthquake loading 
conditions by applying gravity forces and overturning moments as 
shown in Figure 2.7.b. The figure also shows the general 
dimensions and details of the wall specimens as well as the 
lateral loading histories and the resulting hysteretic diagrams. 
These walls attained maximum ductilities of the order of 4 and 6. 
The shear span to depth ratio was about 2.3.

Due to functional requirements, structural walls in 
multistory buildings are often pierced by vertical rows of 
openings. This frequently results in relatively short and deep 
spandrel beams. Experiments have shown that the strength and 
ductility of coupling beams can be improved if diagonal 
reinforcement is used instead of the conventional arrangement of 
longitudinal bars and vertical stirrups (9,87). Two 1/4 scale 
seven-story coupled walls -one with conventionally reinforced 
beams, the other with diagonally reinforced beams- were tested to 
verify the overall structural behavior in terms of stiffness 
degradation, ductilities attained, and energy dissipation 
capacity (87,89). In every respect, the wall with diagonally 
reinforced beams performed better. The load deformation 
histories for the two walls are reproduced in Figure 2.8.

In a similar fashion, suitable detailing of the beam rein­



forcement at beam-wall junctions in frame-wall assemblies has 
been proved effective in improving the overall hysteretic re­
sponse of the structure (88).

2.4 Masonry Construction
Even though masonry is historically one of the oldest 

costruction materials, and regardless of its widespread 
geographic employment, its seismic behavioral characteristics are 
perhaps the most poorly known of all structural materials. The 
reasons for this limited knowledge are presumably due to a number 
of factors. First, and perhaps the most important, masonry 
refers to a vast range of materials such as stone, adobe, clay, 
and concrete units, each of which in turn varies widely in 
geometrical and mechanical properties. In addition, reinforce­
ment, grouting and enclosing frames may or may not be provided, 
thus further broadening the variety of masonry forms. This 
evidently makes difficult the process of using past experience 
and interpreting experimental data into comprehensible models of 
some generality. A second factor is the orthotropic and 
nonhomogeneous character of masonry. This has led to a wide 
variety of testing techniques as a result of the efforts made for 
obtaining load configurations and boundary conditions compatible 
with the material properties under study. For example, Omote et 
al.(82) elaborate on the various methods used and relationships 
formulated in relation to shear strength. Furthermore, even the 
standard procedure for determining the compressive strength has 
been questioned (45). Finally, the unsatisfactory performance of
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some types of masonry during earthquakes has probably given a 
negative image to all masonry forms regarding their ability as 
seismic resistant materials. However, it is indeed gratifying 
that extensive research programs on masonry buildings are being 
carried out (64) .

The behavior of unreinforced, unconfined masonry panels 
under cyclic loads is not of particular interest. Below a 
certain stress level the walls behave in a practically linear 
fashion, at higher stresses the panels fail in a brittle manner 
(79). In the following, the cyclic behavior of reinforced 
masonry walls, and masonry infilled reinforced concrete frames 
will be discussed.

At present, there is not sufficient information for 
predicting the behavior of reinforced masonry walls. Mayes and 
Clough (63) summarized the scarce results available on load 
capacity and performance under cyclic loads. Such results 
correspond to walls with height to depth ratios of less than or 
about two. Their principal conclusions are summarily reproduced 
in the following: (a) There are two major modes of failure, a 
shear or diagonal tension failure characterized by diagonal 
cracking, and a flexural failure characterized by yielding of the 
tension steel and compressive failure at the toe of the wall; (b) 
ultimate strength can be predicted with reasonable accuracy in 
the flexural mode of failure; there is no adequate method for 
predicting the ultimate capacity in the shear type of failure, 
however, some simplified criteria are available for some kinds of 
panels under certain loading conditions; (c) the flexural mode of



failure has a more stable inelastic cyclic behavior and 
ductilities of at least 2 can be attained, continued loading to 
deflections consistent with maximum ductility leads to severe 
strength and stiffness degradation; (d) masonry walls in the 
shear failure mode have essentially no ductility and experience 
significant load and stiffness losses after the ultimate capacity 
is reached; such walls should be designed for elastic behavior.

Filler walls are often used as partitions or exterior walls. 
Unless adequately isolated to prevent interaction with the frame, 
filler walls must be considered active structural elements. It 
is generally known that the behavior of the frame-wall composite 
cannot simply be obtained from a superposition of the behavior of 
its individual components. On the other hand, infilled frames 
are several times stiffer and stronger than bare frames, and can, 
if properly designed, dissipate considerable amounts of energy 
after panel cracking.

Although Fiorato et al.(36) used monotonic loading, their 
study is worth mentioning here since it seems to be the first 
including a number of multistory systems. They tested eight 
one-story one-bay specimens, twelve five-story one-bay specimens, 
and six two-story three-bay specimens representing 1/8 scale 
models of full scale frames; unreinforced clay masonry infill was 
used and some panels presented openings. The five story models 
behaved initially in a flexural manner; shear cracking of the 
wall panels at later stages of loading did not preclude the 
development of yielding in the frame reinforcement. Actually, 
observed ultimate loads showed reasonably good agreement with the
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capacities calculated on the basis of yielding of the column 
reinforcement. After initiation of shearing cracks, shear was 
resisted by the columns with the intact portions of the wall 
acting as braces; failure resulted by either shearing of both 
columns or shearing of the compression column only while the 
flexural capacity of the tension column developed. Five-story 
specimens with a low amount of reinforcement in the columns, 
about one percent, failed by yielding before shear cracks 
developed in the walls. The behavior of the one-story specimens 
was governed, from the beginning, by the shear rigidity of the 
wall. This points to the need for determining the proper 
combination of shear and bending stresses and the conditions for 
ductile behavior with maximum utilization of the shear capacity.

Esteva (31) investigated the cyclic behavior of full scale 
one-story one-bay unreinforced masonry panels confined by 
reinforced concrete frames. It was found that tension cracking 
at the corners of the frame greatly impairs the capacity of the 
system for resisting further load cycles. Even though develop­
ment of the shear capacity of the panel was not affected by the 
resistance of the frame, stable hysteresis loops were observed 
only when failure of the frame was prevented by providing 
additional transverse reinforcement at and near the corners.

Klingner and Bertero (56) tested 1/3 scale models 
representing subassemblages of an eleven-story moment resisting 
reinforced concrete frame; one bare frame and three infilled 
frames were subjected to axial loads plus quasi-static cycles of 
reversed shear and overturning moment, simulating the action of



gravity and earthquake loads in the prototype structure. The 
specimens were specifically designed and constructed so as to 
obtain frame members with high rotational ductility and 
resistance to degradation. Closely spaced infill reinforcement 
was used to achieve gradual panel degradation. The panel 
thickness was limited so that the infill cracking resistance was 
smaller than the combined shear capacity of the columns and much 
smaller than the shear associated with overall flexural failure. 
It was concluded that infilled frames so designed had several 
advantages over comparable bare frames. Besides their larger 
stiffness and strength, the increase in energy absorption and 
dissipation capacities was so important that it far exceeded the 
negative effect of larger inertial forces due to the increase in 
stiffness. A typical load deflection curve is shown in Fig. 
2.9. As progressive panel deterioration occurred, the system 
asymptotically approached the strength of the corresponding bare 
frame mechanism.

The foregoing studies indicate that, in contrast to 
unbounded masonry walls, masonry infilled frames may present 
desirable characteristics from the earthquake resistant design 
point of view. The observed cyclic behavior is susceptible of 
modeling for analysis, however, there is still need for further 
research to establish, in a more definitive manner, the effect of 
the various parameters involved and their influence on the 
possible modes of behavior.
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2.5 Structural Steel Systems
Results from experiments by Popov and Stephen (95) serve to 

illustrate the behavior of steel beams. They tested wide-flange 
section cantilever beams connected to a column stub fixed to a 
reaction frame. All specimens exhibited stable hysteresis loops 
as shown in Figure 2.10.a. Most of the specimens finally failed 
by local buckling of the flanges.

Similarly shaped hysteresis loops are characteristic of 
unbraced steel frames subjected to cyclic horizontal loads (23), 
as shown in Fig. 2.10.b. This will be the case, in general, 
provided that ductile connections can be achieved, lateral 
instability and local buckling are avoided and second order 
effects (P-6) are not important.

Improperly designed joints may not permit development of the 
full capacity of the individual elements of a frame. Krawinkler 
(58) has discussed the findings of various experimental studies 
on beam-column joints and made suggestions for improved design 
criteria. Studies have also shown that the development of local 
buckling and lateral torsional buckling is severely accelerated 
and accentuated by load reversals (15); consequently, use of 
sections with low width to thickness ratios was recommended.

The behavior of beam-columns and unbraced frames subjected 
to relatively high vertical load in addition to cyclic lateral 
loading is illustrated in Fig. 2.10.C. In the first cycle, the 
maximum capacity is smaller than that of the case with no axial 
load; the negative slope of the load deflection curve is due to 
the P-6 effect. In subsequent cycles, the load carrying capacity



increases steadily as a result of strain hardening of the steel 
(93,117).

The cyclic behavior of braced frames has been studied by 
Wakabayashi (118). The typical pinching of the hysteresis loops, 
shown in Fig. 2.11.a, is due to the lateral deflection necessary 
for the buckled brace to be effective again. This behavior can 
be predicted by analysis; for this purpose, detailed studies of 
the individual behavior of the bracing elements have been 
conducted (119).

An alternate bracing system has been developed with the 
purpose of increasing the ability of braced frames to dissipate 
energy (100). The idea was basically motivated by the interest 
in reducing the previously described pinching effect. Two 
eccentrically braced frames were tested and found to have 
excellent energy dissipation capabilities. A typical load 
deformation curve is shown in Figure 2.11.b.

2.6 Nonlinear load-deformation models.
The studies reviewed in the foregoing sections reveal that 

there is a wide spectrum of hysteretic forms. The various 
researchers have not only attempted to explain the effect of the 
diverse parameters involved, but, ingeniously, experimented new 
alternatives to correct or eliminate some of the detrimental 
effects of cyclic loading. Even though not all the answers are 
available yet, a wide variety of models have been proposed to 
simulate behavioral phenomena observed under diverse circum­
stances. Before elaborating on the particular characteristics of
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the models used in this study, the bases for their selection must 
be established.

In first place, the scope of the model needs to be 
specified. One possible approach is to start modeling at the 
material level for predicting the behavior of sections, then 
members, and finally the structure. Attempts have also been made 
to start at the section level and model only those regions of the 
structure expected to reach the inelastic range by means of mo­
ment curvature relationships for example. Alternatively, one may 
consider a model as representative of a complete subassemblage or 
an entire structure. The latter approach is the most appropriate 
for this study because of the following reasons: (a) It is 
consistent with the assumptions underlying the use of the 
inelastic spectrum method, i.e., a complex structure is 
represented by a single degree of freedom system. The force 
restoring characteristics of such system must be in accordance 
with the overall behavior of the structure; (b) It is of main 
concern to gain insight on the general trends of the response of 
nonlinear systems. The model should then be representative of a 
family of structures rather than a particular one. Regardless of 
the valuable information that can be obtained from the 
lower-level approaches, they are necessarily related to specific 
designs since sectional properties are needed to define the 
corresponding load deformation functions; (c) Presumably, the 
resistance function of a complete structure is not particularly 
sensitive to local deficiencies. Local imperfections at a 
particular connection or excessive cracking of an individually



overloaded member should not compromise the behavior of the 
entire structure. It is reasonable to expect that such defects 
will be filtered out and will not affect the shape of the load 
deflection relationship to a great extent.

On this basis, let us consider the various shapes of 
hysteresis loops sketched in Fig. 2.12. Type I is the upper 
bound, regarding loop area, that can be attained. This behavior, 
characteristic of intrinsically ductile, nondeteriorating sys­
tems, can be modeled by means of Ramberg-Osgood skeleton curves 
(97) completed with rules for unloading and reloading (54,62). 
Although approximated, the bilinear model has been widely used 
because of its simplicity. Type II characterizes the behavior of 
stiffness degrading structures; there can be some differences in 
the behavior from one system to another, but the illustrated 
shape has a certain degree of generality. It has been represent­
ed by the well known Clough's and Takeda-Sozen's models (27,108). 
Type III is in general representative of behavior under high 
shear and typical of slip phenomena in connections.

It must be noted, however, that the loops shown in Figure 
2.12 do not present strength deterioration, i.e., all of them 
reach the spine curve and would follow it if the deformation 
increased. Naturally, as discussed earlier, some systems can not 
maintain the maximum load after a few yielding excursions. This 
is undesirable and efforts must be made to avoid it, unless there 
is another source of strength in the structure to prevent 
collapse.

It is of primary interest to study the earthquake response
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of systems of types I and II since these cover a wide range of 
structural behavior. A bilinear model will be used to represent 
the first type. Two reasons support this selection: first, 
simplicity, and second, the bilinear model is the next step from 
the elasto-plastic model, the only change being the non-zero 
second branch stiffness. A further step could be to consider the 
rounded Ramberg-Osgood curves, but this will not be included in 
this study.

The selection of the model for stiffness degrading 
structures belonging to Type II requires some additional 
comments. As observed in the previous review of experimental 
studies, as well as in most of the available evidence, the 
specimens are driven through succesive full yielding cycles. 
However, under earthquake excitation, structures undergo a fairly 
large number of small loading cycles before, between and after 
yielding cycles. Model deficiencies, leading to spurious 
results, are often encountered in the literature as a consequence 
of the lack of provisions for treating incomplete and small 
amplitude loops. This problem has been discussed in more detail 
elsewhere (99). The Takeda-Sozen model, which has checked very 
favorably against experimental dynamic responses, is a good 
example of the many constitutive rules that may be needed for 
defining an unambiguous model; sixteen rules govern the different 
stages of loading indicated in Figure 2.13 (84). Otani and Sozen 
(84,85) have also used a simplified version of the previous 
model, as shown in Fig. 2.14. Basically, the initial tri-linear 
spine and the varying unloading stiffness were excluded; a total



of eleven rules were needed in this case.
A new model was developed for this study. Although a close 

relative of the Otani-Sozen model, the new model was conceived to 
fulfill the following objectives: (a) Generality of the 
constitutive rules. This is desirable not only for comprehensi­
bleness but also because additional features can be implemented 
in the future without disrupting the general structure of the 
model. In turn, it results in shorter and clearer computer code; 
and (b) Avoidance of inconsistencies arising from unclosed loops 
(99).

The new stiffness degrading model, illustrated in Fig. 
2.15, consists of an initially bilinear spine and loading occurs 
either on the strain hardening branch or towards the furthest 
point attained in the previous cycle. Thus, at any point in time 
the resistance and possible path are given by the current spine, 
represented by the dashed lines in the examples of Figure 2.15. 
For this study, unloading was set to be parallel to the elastic 
stiffness k.

In summary, the three nonlinear models used in this study 
are as shown in Fig. 2.16. The strain hardening stiffness kg 
was taken as 3 percent of k. It is not uncommon to find larger 
strain hardening slopes, however, only a moderate influence of 
this factor was desired here.

2.7 Structural Damping
In addition to the energy dissipated by the structure by 

inelastic behavior, in the structural mechanics sense, there are
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energy losses even in the "elastic" range. The latter are 
customarily taken into account by means of a damping factor. 
Energy dissipation may also take place through feed-back into the 
ground; in a certain sense this effect is of the nature of 
damping, but it should be better taken into account, when 
pertinent, by means of soil-structure interaction techniques.

The degree of damping depends on the type of structure, the 
materials used, the intensity of motion and stress level within 
the material, and the amount of deterioration already experienced 
by the structure. For example, the damping coefficient for a 
cracked concrete beam will be several times larger than that of a 
similar uncracked beam, when both are subjected to the same 
excitation at a below-yielding stress level. The difference is 
explained by the additional energy dissipated by friction between 
the sides of the cracks that can move relative to each other. On 
the other hand, even for a homogeneous material like structural 
steel, the degree of damping increases as the intensity of motion 
does. This may be attributed to the intensification of the 
sources of damping at a microscopic scale, such as internal 
friction and nonlinearities resulting from stress concentrations 
and residual stresses.

As mentioned earlier, data on damping are available from 
reports on forced and free vibration tests of actual structures, 
and also from measurements obtained during real earthquakes. 
Portillo and Ang (96) summarized the data for reinforced concrete 
buildings and presented average damping factors for the various 
levels and types of excitations; the values ranged from 1.2



percent of critical for low amplitude man-excited vibrations to
5.7 percent for blast exposed structures. In each category, the 
coefficient of variation of the data was of the order of 50 
percent.

A wider sample of data, including reinforced concrete, steel 
and composite buildings, has been analyzed by Haviland (43). 
With regard to the intensity of excitation, the information was 
classified in two groups: small and large amplitude. The mean 
damping value and its coefficient of variation for reinforced 
concrete buildings were 4.26 percent and 0.76 respectively for 
small amplitude, and 6.63 percent and 0.64 for large amplitude. 
In the case of steel buildings, a mean of 1.68 percent and a COV 
of 0.65 were computed for small amplitude vibrations, and 5.65 
percent and 0.45 for large amplitude.

Newmark and Hall (72) have also recommended damping values 
as a function of the stress level and the type and condition of 
the structure; for reinforced concrete structures, damping values 
ranging from 0.5 to 1, 2 to 5, and 7 to 10 percent were 
associated, respectively, with stress levels below 1/4 of the 
yield point, about 1/2, and at or just below the yield point. 
For the same stress levels, but for welded steel structures, they 
indicated damping factors of 0.5 to 1, 2, and 5 percent 
respectively; for bolted or riveted steel the corresponding 
values were 0.5 to 1, 5 to 7 and 10 to 15 percent.

A great deal of judgement is involved in interpreting the 
above data. It is not a simple matter to select a value for use 
in a particular application, not only because of the observed
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variability but also because damping varies with time. It is 
probably safer to consider a range of values rather than a 
specific one; for this purpose the foregoing data can be used as 
a general guideline.

There is no evidence available indicating what degree of 
damping should be used when inelastic behavior is explicitly 
considered by means of a nonlinear resistance function. However, 
since in this case damping is meant to represent the energy 
dissipation associated with "elastic" stages of response, it is 
reasonable to consider values corresponding to moderate stress 
levels, say about 1/2 the yield point. With this in mind, and 
considering the variability observed in actual structures, a 
damping range from 2 to 10 percent seems to cover most of the 
cases.

On this basis, 
critical are used 
plastic model. The 
the bilinear and 
that the results can

damping factors of 2, 5 and 10 percent of 
in this study in combination with the elasto- 
intermediate value of 5 percent is used with 
stiffness degrading resistance functions, so 
be compared with the elastoplastic case.



CHAPTER 3

RESPONSE OF INELASTIC SYSTEMS TO EARTHQUAKE MOTIONS

3.1 Introduction
The initial sections of this chapter give a general 

description of the systems and ground motions considered, and the 
procedure used to compute responses. Then the results are 
summarized in the form of response spectra.

Finally, by means of comparisons of spectra for particular 
records, observations are made regarding the effect of damping 
and the type of nonlinearity on inelastic responses. Force 
deformation curves and response time histories for a few cases 
are studied in detail to explain some of the differences and 
similarities found in the spectra. In addition to being useful 
for this purpose, the response time histories provide a great 
deal of insight into the behavior of nonlinear systems. 
Furthermore, the observations and comments made in the discussion 
of results will aid in the interpretation of the general analysis 
of the data presented in the next chapter.

3.2 System considered
A simple one-degree-of-freedom system is considered, as 

shown in Fig. 3.1. The concentrated mass m is connected to the 
ground by a weightless spring and a dashpot; the absolute 
displacement of the mass is denoted by x, the absolute 
displacement of the ground by y, and the spring deformation, or
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relative displacement of the mass with respect to the ground, is 
denoted by u, such that

u = x - y (3.1)

The force in the spring, or resistance function R, depends 
on the relative displacement u, as shown in Fig. 2.16. Hereafter, 
depending on the type of resistance function, the systems will be 
simply referred to as "elastoplastic," "bilinear" or "degrading."

The dashpot represents viscous damping and exerts a 
resisting force proportional to the relative velocity u. The 
damping constant C is seldom specified in absolute terms but as a 
fraction of the critical damping, 2ujm, of the corresponding
system. Such a fraction will be normally referred to as the
damping factor and will be designated as 6, so that

C = 2a)mg (3.2)

where uj is the undamped circular frequency of the system. In
turn, the circular frequency relates to the frequency f and the 
period T as follows

0) = /icTin = 2irf = (3.3)

noting that the frequency of inelastic systems is defined as that 
computed using the initial elastic stiffness.

The equation of motion of the system is

u + 2 3o)U + ^ = -y (3.4)

where the dots denote differentiation with respect to time.



3.3 Ground motion
Ten earthquake records are used as input motion. Informa­

tion regarding the seismic events and site characteristics is 
given in Tables 3.1 and 3.2. No attempt of selecting or grouping 
the records according to similar characteristics was made; this 
would have required a prohibitively large sample of records, 
besides the problem of finding records to fill adequately the 
very many categories that one can conceive. Naturally, the 
interest of considering specific groups in future research must 
not be disregarded.

The ground motions selected cover a variety of situations 
regarding site conditions, intensity, distance to fault, duration 
of motion, etc. The only common factor is that all of them have 
a peak ground acceleration greater than 0.1 g. Most of them were 
recorded in the free field or in relatively small buildings. The 
ground acceleration time histories, as well as integrated ground 
velocities and displacements, are shown in Figures 3.2 to 3.11; 
ground motion maxima are also summarized in Table 3.3.

With the exception of the Managua record, the rest 
correspond to standard corrected accelerograms issued by the 
California Institute of Technology (21) or the U.S. Geological 
Survey (18,102,111). Both institutions use the corrective 
procedure developed at Caltech (109). The Managua record 
corresponds to an uncorrected version that was adjusted for this 
study by fitting a parabolic base line so that the mean square 
error of the ground velocity time history was minimized (10).
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3.4 Response computations
The equation of motion (Eq. 3.4) was integrated numerically 

using Newmark's method (66). The interval of integration was 
given by the spacing of the ground motion data or as T/20, 
whichever was smaller.

The details about calculations for nonlinear response 
spectra are well known. Nevertheless, there are a few points 
that call for further explanation, which will be topics for the 
next sections: (a) Special treatment of earthquake records with 
specified non-zero initial conditions for ground velocity and 
ground displacement, (b) selection of frequencies and duration of 
input motion for nonlinear responses, and (c) procedure for 
obtaining responses associated with desired ductility factors.

3.4.1 Use of records with non-zero initial conditions
As mentioned earlier, the accelerograms used correspond to

records corrected by means of the Caltech procedure. This
procedure leads to initial values for the ground motion that
result from the fact that some portion of the motion is lost
since a certain input level is required to trigger the recording
device.

When records with initial conditions are used to compute 
response spectra a difficulty arises because the initial 
conditions for the oscillator are not known. In fact, denoting 
the time at the beginning of the recorded motion as t0, the 
initial conditions are:



(3.5a)u(to) = x{to) " y(to) 
u(to) = x(t0) - y(t0) (3.5b)

where y(t0) and y(t0) are the specified ground displacement and 
velocity, but and x(t0) are unknown since they depend on 
the response to the lost portion of the ground motion.

The customary procedure of using zero relative velocity and 
displacement, i.e., u(t )=0 and u(t )=0, leads to distortions of 
the response spectrum in the low frequency range. Spurious low 
frequency effects are particularly serious in the case of 
nonlinear responses.

A method for removing such distortions is to prefix a short 
acceleration pulse to the original accelerogram (90). The pulse 
starts from zero acceleration and yields the prescribed initial 
conditions of the ground at the end of the pulse (tQ). The rest 
of the accelerogram, and the corresponding integrated velocity 
and displacement time histories remain unaltered. This procedure 
was used in this study; the records containing a prefixed pulse 
are indicated in Table 3.3. For these records, the first two 
seconds of motion shown in Figures 3.2 to 3.9 correspond to the 
prefixed pulse.

3.4.2 Selection of frequencies and duration of input motion
Important savings in computational time can be made if one 

reduces both the number of frequencies considered and the 
duration of the input motion, provided that the shape of the 
response spectrum is not greatly affected.
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Since there seems to be no universally accepted definition 
of significant duration, it has been a common practice to clip 
the accelerogram at a point close to the end of the strong phase 
of motion. This is in general appropriate when the problem under 
consideration lies in the relatively high frequency region. 
However, response spectra computed using only the strong portion 
of motion are likely to be inaccurate, on the unconservative 
side, for intermediate and low frequencies.

Due to the nature of this study, the main concern aimed at 
savings in nonlinear response calculations. For this reason, 
elastic spectra were computed first for a relatively large number 
of frequencies and a rather long duration of motion. The times 
when maxima occurred were observed, and responses for a few 
inelastic systems computed, to check if the same trends were 
noted. Then, the record durations indicated in Table 3.3 were 
selected. It may be noted that the tabulated durations are not 
rounded numbers; this is because points corresponding to zero 
velocity were chosen so that the ground was at rest at the end of 
the record. Response calculations were continued for one-half 
period of free vibration following the ground motion, since some 
systems experience their maximum response after the ground motion 
ceases.

It can be seen in Table 3.3 that the duration required at 
high frequencies is sometimes about one half or two thirds of 
that needed at low frequencies; indeed, one is interested in 
shorter durations for high frequency systems since they require 
smaller intervals of integration.



One additional remark is necessary with regard to the San 
Juan record. In this case, a very weak portion of motion at the 
beginning of the record was removed; thus, t=0 in Fig. 3.11 
corresponds to t*11.8 seconds in the original record.

The set of frequencies used for each record was selected 
after observing the shape of the elastic spectrum, so that larger 
spacing could be used in smoother areas. In irregular regions, 
frequencies were chosen so as to include the most important 
features of the spectrum -peaks and troughs- and so that the 
spectrum varied smoothly between the selected frequencies. The 
set of frequencies used for each record, for inelastic responses, 
are tabulated in Table 3.4.

3.4.3 Procedure to obtain responses for specified ductilities
Denoting the yield point deformation by uy, and the maximum 

deformation, without regard to sign, by um, the ductility factor 
is defined as

For plotting inelastic spectra one is interested in 
responses associated with predetermined values of the ductility 
factor. In particular, the following values were selected for 
this study: 1 (elastic), 1.5, 2, 3, 5, and 10.

An interpolative procedure is normally involved since the 
responses of systems with arbitrarily selected yield levels will 
seldom correspond to the desired ductility values. Furthermore,
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the results of a single interpolation may err considerably. The 
difficulty arises from the fact that the ductility factor varies 
irregularly as the yield level is progressively reduced, for 
fixed values of the frequency parameter, as in the examples shown 
in Figures 3.12 and 3.13. In these figures, the yield displace­
ment is expressed as a fraction of ue, the maximum response of 
the elastic system with the same natural frequency.

Hence, an iterative procedure is required to obtain the 
specified ductilities. After each interpolation, responses were 
computed to check the accuracy of the interpolated points. The 
results were considered satisfactory if within 1% of the desired 
ductility. The interpolations were performed assuming a linear 
relation between log(Uy) and log(y), which is approximately the 
case for many frequencies, or, at least, it holds over important 
segments of the range of interest when irregularities are 
present, as shown in Figures 3.12 and 3.13.

It should be noted that ductility does not always increase 
monotonically as the yield level decreases, thus, there can be 
more than one yield level corresponding to a given value of y . 
For example, the case f=4 in Fig. 3.13 features three yield 
levels corresponding to a ductility factor of 10. This peculiar 
phenomenon, already brought out by Veletsos and Newmark (115), 
can be explained on physical grounds that are paramount in the 
understanding of the nature of nonlinear response. The ductility 
factor, represented by the solid line in Figs. 3.12 and 3.13, 
results from the larger of u+/u and u_/u , where u+ is the 
maximum relative displacement in the positive direction of motion



and um the absolute value of the maximum displacement in the
negative direction; the dashed lines correspond to whichever was
the smaller of the previous ratios. Indeed, the relative
magnitudes of u^ and um vary as the yield displacement decreases,
so that at some level ul=u”, in which case the system dissipates
energy more efficiently. This often corresponds to a local
minimum of the ductility factor, as it occurs for example for
u /u values of 0.55 and about 0.25 for f*0.15 in Figure 3.12.y ®

Back to the discussion of the interpolative procedure, it 
must be noted that in the case of multiple solutions the method 
leads to whatever solution it hits first. In very special 
situations, for instance for a target ductility of 2 for the case 
f=0.65 in Fig. 3.12, the accuracy criterion may be satisfied by a 
large number of points.

3.5 Presentation of results
A simple means of representing structural response to a 

given motion is through the response spectrum. It consists of 
curves that represent the maximum numerical values of the 
responses as functions of the natural frequency and other 
parameters such as damping or ductility.

The choice of a tripartite logarithmic plot, with frequency 
plotted also logarithmically, is convenient because it permits 
the simultaneous plotting of three related quantities that give 
information on a number of aspects of the maximum response of the 
systems considered. Various quantities can be plotted depending 
on the type of spectrum one is interested in; in general, these
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quantities will be ienoted by S^, Sv, and S^, and will be 
referred to as spectral displacement, spectral velocity and 
spectral acceleration, by virtue of the dimensional nature of the 
quantities they represent. Correspondingly, the axes of the plot 
will be referred to as the velocity axis, which is perpendicular 
to the frequency axis, and the displacement and acceleration axes 
at 45 degree angles. The spectral quantities are interrelated as 
follows:

Sv = a,Sd

Sa = "sv = a)2sd

(3.7a)

(3.7b)

In the case of linearly elastic systems, the Elastic
Spectrum features the maximum relative displacement, ue, in the
displacement axis. The spectral velocity, wu , often referred toe
as pseudovelocity, is nearly the same as the maximum relative 
velocity for intermediate frequencies and low damping, but 
differs substantially for very low frequencies and high damping. 
The pseudovelocity is related to the maximum energy absorbed by 
the elastic system, E, by the equation

E = in (um ) ^ = ikuf (3.8)^ 6 G
2The spectral acceleration, w ue, or pseudoacceleration, is equal 

to the maximum absolute acceleration when there is no damping; 
they differ, especially for low frequencies, when damping is 
present. .However, one is indeed more interested in the 
pseudoacceleration since by multiplying by the mass one obtains, 
precisely, the maximum force in the spring.



Elastic Spectra for the 10 records considered in this study, 
and for damping factors of 2, 5, and 10 percent of critical, are 
shown in Figures 3.14 to 3.23.

The response of nonlinear systems can be best represented
graphically by means of the Inelastic Yield Spectrum (IYS). In
this case, the yield deformation, uy, necessary to limit the
maximum deformation of the system to a specified multiple of the
yield deformation itself, u ^yu , is plotted on the displacement.my, 2 axis. The spectral acceleration, w uy, multiplied by the mass
gives the yield resistance R

Ry = iruo uy = kuy (3.9)

which in the case of elastoplastic systems is also the maximum 
force in the spring. For bilinear and degrading systems with 
strain hardening slope sk, the maximum force in the spring, Rm, 
is obtained from the expression

Rm mu [1 + S (y —1) ] (3.10)

Alternatively, in instances where it is desirable to deal 
directly with maximum forces, it is possible to plot R^m on the 
acceleration axis to obtain Inelastic Acceleration Spectra (IAS) 
for systems with strain hardening. In this case, the quantities 
on the displacement and velocity axes are meaningless. 
Obviously, IYS and IAS are identical for elastoplastic systems.

In a similar fashion, if one is concerned with maximum
deformations. Total Deformation Spectra (TDS) featuring the
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maximum relative displacement u in the displacement axis can bem
drawn, in which case the quantities on the velocity and 
acceleration axes are irrelevant.

It is clear from the foregoing that the information in the 
IAS and the TDS are readily determined from the IYS by 
multiplying by [l+s(y-l)] and y respectively; hence, besides 
being convenient for illustrative purposes, there seems to be no 
particular advantage in deriving IAS or TDS for the purpose of 
this study.

The results of response computations are then presented in 
term of IYS. For each earthquake record, there are five spectra 
corresponding to elastoplastic systems with 2, 5, and 10 percent 
damping, and bilinear and degrading systems with 5 percent 
damping. For illustration, IAS are included for the case of the 
El Centro record, and TDS are presented for the first five 
records listed in Table 3.3. The various spectra are shown in 
Figures 3.24 to 3.80.

3.6 Discussion of results
In this section, observations are made regarding the effect 

of damping and the influence of different types of resistance 
functions on inelastic behavior. The results presented in the 
preceding section are discussed, in qualitative terms, on the 
basis of comparisons of spectra for particular records. Then, 
force deformation curves and response time histories for a few 
systems are examined to explain some of the differences observed 
in the spectra.
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The spectra in Fig. 3.81 for the Pacoima Dam record is 
typical of the effect of damping combined with inelastic 
behavior. It is apparent that:

(a) the effect of damping is quite different in the various 
regions of the spectrum. In particular, in the very low 
frequency range the effect of damping may be considered to be 
negligible, whereas it is still somewhat effective in reducing 
the magnitude of the response of very rigid systems. In turn, 
damping is most efficient in the intermediate frequency range, 
say between 0.2 to 10 cps.

(b) The effect of damping lessens as inelastic deformations 
increase. For instance, in the previously mentioned frequency 
range, the percentage response reduction resulting from 
increasing the damping factor from 2% to 10% for systems with 
ductilities larger than 3 is, on the average, about one half of 
that for elastic systems.

Inelastic Yield Spectra for elastoplastic, bilinear and 
degrading systems subjected to the El Centro, Olympia, and 
Pacoima Dam records are compared in Figures 3.82 to 3.87. These 
plots feature characteristics which are representative o.f the 
spectra for all the records considered in this study. The 
following observations can be made:

(a) The response of very low frequency systems is 
independent of their force deformation law.

(b) Some differences can be noted for high frequency systems 
(f greater than 10 cps), but they are negligible for ductility 
factors less than about 5, and not substantial for larger
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ductilities.
(c) For intermediate frequencies, the responses of bilinear 

systems with ductility less than or equal 2 are practically 
identical to those of elastoplastic systems with the same yield 
level. For larger ductilities, the maximum responses of bilinear 
systems are in general smaller than those of the associated 
elastoplastic systems.

(d) All frequencies considered, the ordinates of the spectra 
for elastoplastic systems seem to be, on the average, larger than 
those of the spectra for stiffness degrading systems.

(e) Spectra for stiffness degrading systems are smoother 
than spectra for elastoplastic systems. Notably, the former have 
a tendency to go below the peaks and above the troughs of the 
latter.

The last observation points to a remarkable difference in 
the behavior of elastoplastic and degrading systems. Before 
attempting to explain why, it is worth emphasizing that the 
observations regarding degrading systems reveal that stiffness 
degradation is not as much a detrimental phenomena as one might 
expect, a priori. It is necessary to recall too that the 
degrading model under consideration does not include strength 
deterioration nor softening of the unloading stiffness, wherefore 
one must restrain from extending the conclusions reached herein 
beyond their scope.

Consider for example the spectra for El Centro shown in 
Fig. 3.83; the largest differences between elastoplastic and 
degrading systems occur for a frequency of 0.15 cps and
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ductilities between 3 to 5. Figure 3.82 also features an 
important difference at the same frequency and for a ductility 
factor of 5. The variation of ductility as the yield level 
decreases, for the three types of resistance functions, is shown 
in Fig. 3.88; notably, the curve for degrading systems is 
smoother than the others. It is of interest to examine the case 
i^/u^O.d, or Uy*5.73 inches, for which the response of the 
elastoplastic system is about 2 times that of the degrading 
system. The relative displacement and spring force time 
histories, as well as the corresponding hysteresis curves, are 
shown in Figures 3.89 and 3.90; the maximum displacements of the 
elastoplastic, bilinear, and degrading systems are 27.44, 23.44, 
and 14.28 inches respectively, which correspond to ductilities of 
4.8, 4.1, and 2.5. It is apparent that:

(a) The stiffness degrading system was the most efficient 
regarding energy dissipation capacity. The maximum displacement 
attained in the first yield excursion was barely exceeded, once, 
at a later time.

(b) The elastoplastic system was driven through successive 
yielding cycles, with plastic deformations occurring predominant­
ly in one direction.

(c) Although the bilinear system behaved in a manner similar 
to that of the elastoplastic system, it was somewhat more 
efficient.

(d) After first yielding, the degrading system was capable 
of recovering, further than the others, in the opposite 
direction. This mechanism prevented the one-sided behavior I
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experienced by the elastoplastic system, and led to the smallest 
permanent plastic deformation after the end of the ground motion. 
The permanent set of the degrading system was about 5 inches, 
against about 17 and 22 inches for the bilinear and elastoplastic 
systems respectively.

It is also instructive to consider systems presenting larger
ductilities, such as the case u /u =0.04, or u =0.764 inches, iny e y
Fig. 3.88. The response time histories and hysteresis curves are 
shown in Figures 3.91 and 3.92. In this case, the three systems 
yield significantly in both the positive and negative directions; 
the maximum relative displacements are, in the positive and 
negative directions respectively, 11.2 and -7.6 inches for the 
elastoplastic system, 12.8 and -7.92 inches for the bilinear 
system, and 10.4 and -8.1 inches for the degrading system. These 
responses correspond to maximum ductilities of 14.6, 16.7, and
13.6 for the elastoplastic, bilinear, and degrading systems 
respectively. Ostensibly, the degrading system yielded, in the 
sense of reaching the bilinear spine, a fewer number of times and 
was competent to dissipate energy through hysteresis loops 
associated with moderate spring forces. The degrading system 
also shows better balance with regard to positive and negative 
deformations. It is reasonable to presume that the behavior of 
the degrading system was mainly dominated by the softening 
resulting from stiffness degradation, rather than by the effect 
of the additional strength provided by its strain hardening 
slope. Indeed, the associated bilinear system presented the 
largest maximum deformation. It may be also noted that the
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degrading system presents the smallest permanent set at the end 
of the ground motion.

Unlike the situation observed in the first example mentioned 
above, it can be seen in Fig. 3.83 that for a frequency of 1.1 
cps, the degrading system attains a ductility of 2 for a yield 
level much larger than that required by the elastbplastic system 
to have the same response ductility. A yield displacement of 
1.28 inches results in maximum negative and positive 
displacements of -2.56 and 1.84 inches for the degrading system, 
-1.98 and 2.02 inches for the elastoplastic, and -2.06 and 2.0 
inches for the bilinear system. Respectively, these responses 
correspond to maximum ductilities of 2.0, 1.58, and 1.61. It is 
apparent that the response of the elastoplastic system was the 
best balanced, thus leading to the lowest ductility. The 
response time histories and force displacement curves for this 
case are shown in Figures 3.93 and 3.94.

Finally, it is worthwhile to study a couple of cases wherein 
the maximum responses of the three models are practically the 
same as a result of a peculiar feature of the ground motion 
itself, rather than as a consequence of the energy dissipation 
mechanism. Consider systems with 5% damping, frequency of 0.75 
cps, and yield displacement of 9.44 inches, subjected to the 
Pacoima Dam record (see Figures 3.86 and 3.87). Besides a 
virtually unnoticeable difference due to the hardening of the 
bilinear and degrading systems, a ductility of 2 is obtained for 
all the models. The relative displacement time histories shown 
in Fig. 3.95 indicate that the three models attained their
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maximum responses at the the same time for the first and only 
important yield excursion; the corresponding hysteresis curves 
are shown in Fig. 3.96.

For the same frequency but a yield displacement of 1.685 
inches, a ductility factor of 10 is obtained for bilinear and 
degrading systems, and slightly larger, 10.33, for the elasto­
plastic system. The maxima ocurred, after considerable yielding, 
in the first drive into the inelastic range (see Figures 3.97 and 
3.98). As in the previous case, the systems were apparently 
impelled by a relatively long acceleration pulse in the Pacoima 
Dam record, starting at t=4.4 seconds in Fig. 3.7. Notably, this 
pulse greatly influences the behavior of systems whose natural 
frequencies are near that of the pulse itself; this is clearly 
perceptible in the spectra shown in Figures 3.86 and 3.87. Nota­
bly too, in this and the previous example, the elastoplastic 
systems feature the largest permanent deformations. The danger 
of incremental collapse due to the accumulation of inelastic 
deformations during a sequence of long acceleration pulses has 
been pointed out by Bertero (12,13).

From the few cases discussed above, it is concluded that the 
characteristics of the response of particular systems can be 
explained, a posteriori, on physical grounds. It is also clear 
that the variety of situations one may encounter is such that one 
cannot precisely predict the response of a particular system to a 
particular ground motion. The discussion in Section 3.4.3 best 
dramatizes the problem that even systems with the same type of 
resistance function, same degree of damping, and subjected to the
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same ground motion, may behave in entirely different manners, 
depending on how energy is dissipated at the various yield 
levels. Furthermore, when the responses of different nonlinear 
models are compared, it is apparent that the conditions for any 
of them to be "better" than the others, strongly depend on an 
intimate interaction between the hysteretic behavior itself and 
the particular characteristics of the ground motion being input.

Although no conclusive statements can be made from the 
observation of particular systems, the comparisons of inelastic 
spectra presented above suggest some general trends. Naturally, 
these trends can only be confirmed by means of average spectra 
for a number of records, as will be discussed in the next 
chapter.
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CHAPTER 4

STATISTICAL ANALYSIS OF THE DATA

4.1 Introduction
The purpose of the statistical analysis is twofold: (a) to 

determine factors for constructing design spectra when estimates 
can be made of the possible peak ground motion parameters for 
future earthquakes affecting a site, and (b) to make observations 
regarding the effect of damping combined with inelastic behavior 
and the effect of different types of nonlinearities, on the basis 
of average spectra.

To summarize, in the elastic case, the statistical procedure 
consists in determining factors <|>e that, applied to the ground 
motion estimates Y, give the spectral ordinates Se, for each of 
the three characteristic regions of the spectrum:

(4.1)

Values of <|>e for various damping factors and probability levels 
have been presented by Newmark et al, (41,65,71,77,98). In a
similar fashion, the inelastic spectrum S can be obtained byu
applying factors 4' to Y:

(4.2)

Alternatively, the inelastic spectrum can be obtained by 
deamplifying the elastic spectrum Se, so that

(4.3)
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Evidently, the foregoing factors are related as follows

¥ (4.4)

where the subscript "e", denoting elastic conditions, corresponds 
to the particular casey*!, so that

(^ ) , » ♦ y/y=l Ye

(s ) . = sM y=l e

^^^l - 1

(4.5.a) 

(4.5.b) 

(4.5.c)

In the next sections, v and its statistics will bey
determined. Then, factors corresponding to a presentation of
the form of Eq. 4.3 are computed using Eqs. 4.4 and 4.5.a. This
type of presentation is convenient because it is consistent with
previous recommendations currently in use (73), and especially,
because <t>^ is found to be practically independent of the
probability level associated with the inelastic spectrum, whereas

is not; thus, the same ^ can be used regardless of the
character of S .e

Finally, the results are discussed with regard to the effect 
of damping and the influence of the type of nonlinearity on 
inelastic response.

4.2 Normalization of the data
Results in the form of Inelastic Yield Spectra are used for 

the analysis. As mentioned earlier, this type of spectrum 
contains all the information necessary to describe the maximum
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inelastic response of any system. It is convenient to recall 
that every spectral point S depends on a number of parameters,

Si = Si(f,g,y,R) (4.6)

where f, 6, y, and R correspond to frequency, damping factor, 
ductility, and resistance function respectively, and i denotes 
the various input motions used.

For simplicity, the parameters 6, y, and R will not be 
carried through the analysis explicitly, on the understanding 
that the same procedure will be carried out separately five 
times, i.e., for the three damping factors associated with 
elastoplastic systems, for bilinear systems, and for degrading 
systems. Similarly, for each of these cases, the ductility 
factor can take any of the six selected values. Hence, Eq. 4.6 
can be rewritten as

Si = S.(f) i=l,2,...10 (4.7)

Since the ground motions for earthquake records differ from 
each other, the computed responses connot be compared on an 
absolute basis. In order to make meaningful comparisons, it is 
customary to scale the spectra to some predetermined parameter. 
In this study, normalizations are made either to maximum ground 
acceleration, maximum ground velocity, or maximum ground 
displacement, over the entire range of frequencies; but primary 
consideration is given to normalization relative to maximum 
acceleration for high frequencies, to maximum velocity for 
intermediate frequencies, and to maximum displacement for low



54

frequencies. This sort of normalization is implicit in the 
general formulation presented in Section 4.1, i.e., when factors 
are applied to estimates of the three peak ground motion 
parameters. On the other hand, the procedure leads to a 
minimization of the dispersion of the data, as will be discussed 
later. The normalized spectral ordinates are defined as:

S.(f)
*Qi(f) = -q:-- i=l,2,... 10 (4.8)

where can be either A^, Vi, or Di, the peak ground 
acceleration, peak ground velocity, and peak ground displacement 
of the ith record respectively; in turn, to indicate the 
parameter used in the normalization, ^ is subscripted with Q 
equal to A, V, or D, as the case may be.

It is worth noting that when a single response spectrum is 
normalized to one of the three ground motion parameters, the 
spectral ordinates at the various frequencies are divided by a 
constant; therefore, the shape of the normalized spectrum is 
identical to that of the original spectrum. At any frequency, 
the ordinates of the response spectra obtained by normalizing to 
each of three parameters are proportional to each other, the 
proportionality factor being the ratio of two of the three ground 
motion peaks; for example:

*Ai(f> Vi (4.9)

Furthermore, the general relationships between the spectral 
quantities (Eqs. 3.7) are obviously valid for the normalized
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spectrum, regardless of the scaling parameter, i.e.,

(4.10.a)
(4.10.b)

where the subscripts a, v, and d refer to the spectral quantities 
being considered.

4.3 Single frequency statistics
Although the final objective is to determine response 

statistics associated with frequency bands, single frequency 
statistics are relevant for a number of reasons. First, the 
appropriateness of the normalization procedure, adopted from 
studies of elastic spectra, is verified for the inelastic case. 
Second, observation of mean spectra is paramount to devise a 
procedure to define the spectral regions for which frequency band 
statistics are computed. Lastly, comparisons of mean spectra for 
the various conditions considered in this study lead to important 
conclusions regarding the characteristics of the response of 
inelastic systems; observations in this regard will be made later 
in a separate section for the sake of continuity of the 
statistical analysis.

Let be the set of frequencies at which responses were 
computed for record i. It is desirable to compute ensemble 
averages for every frequency f belonging to the set F, where

n
F = U F.i=l

(4.11)



includes all the different frequencies in Table 3.4. For each 
frequency, the sample mean, variance, standard deviation, and 
coefficient of variation are, respectively, computed as follows;

*0 <f> " = J1*Oi<f> (4.12)

^rl*Q(f)] = i - n»g(f)) (4.13)

a[ij,Q(f)] =/$ar[i|,Q(f)] (4.14)

U0(f>]&[*Q(f)]« —---- (4.15)Q Vf>
where n is the number of records, and the subscript Q can be 
either A, V, or D depending on the character of the normalized 
data. It should be pointed out that prior to computing the above 
statistics, responses must be defined for each sample spectrum 
for every frequency belonging to F. The necessary additional 
values are obtained by interpolation, which is justified by the 
manner in which the frequencies were selected for each record, as 
explained in Section 3.4.2. It should also be noted that 
Eq. 4.13 gives the so called "biased" estimate of the population 
variance; this bias can be simply removed by dividing by (n-1) 
instead of n in Eq. 4.13 (7); however, for present purposes, as 
stated at the beginning of this section, the distinction is 
immaterial.

Mean and mean plus one standard deviation spectra for 
elastoplastic systems with 5% damping are shown in Figures 4.1 to
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4.3. Mean spectra for elastoplastic systems with 2% and 10% 
damping, and for bilinear and stiffness degrading systems with 5% 
damping are presented in Figures 4.6 to 4.17. There are several 
observations to make from these plots, which will be discussed 
next.

Referring to Figs. 4.1 to 4.3, and noting that the distance 
between the solid and the corresponding dashed lines gives an 
indication of the coefficient of variation of the data, the 
observation can be made that normalization to peak ground 
acceleration gives a COV that is minimum for high frequencies and 
increases towards the low frequency region, whereas the opposite 
occurs for normalization to ground displacement. Normalization 
to ground velocity leads to a more uniform COV over the entire 
frequency range. This is confirmed by directly plotting the COV 
against frequency for the three normalization parameters, as 
shown in Figures 4.4 and 4.5. Furthermore, the same trend is 
observed regardless of the value of the ductility factor, thus 
indicating that the normalization procedure, as used in elastic 
studies (41,77), is adequate for the analysis of nonlinear 
spectra.

Mean spectra for elastic conditions (y=l) feature segments 
that are approximately parallel to the horizontal and 45 degree 
lines of the logarithmic plot. For instance, in spectra 
normalized to ground acceleration (Figs. 4.1, 4.6, and 4.9), the 
spectral acceleration is nearly constant for frequencies ranging 
from about 3 cps to 8 cps. Also, in this range the COV has a 
tendency to stabilize around a constant value. It can be seen in



58

Fig. 4.4 that the COV oscillates around a value of about 0.22 for 
frequencies between 2.5 and 9 cps; the same observation can be 
made for other damping factors, although the COV will in general 
increase for lower damping and vice versa. Above 8 cps the 
spectral acceleration decreases fairly uniformly to intersect the 
ground motion acceleration at a frequency of about 35 cps.

Similarly, elastic spectra normalized to ground velocity 
(Figures 4.2, 4.7, and 4.10) are approximately uniform for the 
intermediate range of frequencies, say between 0.4 and 3 cps, 
although some tendency to increase toward higher frequencies is 
observed; in turn, in this range, the COV remains at a low level 
(Fig. 4.4).

At lower frequencies, mean spectral displacements are 
approximately constant for frequencies ranging from about 0.1 to
0.4 cps (Figs. 4.3, 4.8, and 4.11); below 0.1 cps there is a 
transition region decreasing to the maximum ground displacement 
at a frequency of about 0.03 to 0.04 cps. Unlike in the other 
regions, the COV of elastic spectra normalized to ground 
displacement does not keep a uniform level (Fig. 4.4), although 
it is in general lower than that obtained if the other scaling 
parameters were used. The explanation for the irregular COV in 
the displacement region presumably is based on the fact that 
responses in that region, as well as integrated ground 
displacements, are particularly sensitive to base line 
adjustments of earthquake records, thus constituting less 
reliable quantities.

A conclusion apparent in the preceding considerations is
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that in the case of average elastic spectra it is both possible 
and appropriate to define regions of response amplification by 
simple inspection. Actually, the above mentioned frequency bands 
are in general agreement with those selected in previous studies 
(41,77). However, in the case of inelastic responses the 
corresponding regions are more difficult to visualize, especially 
for large ductilities. For example, observation of spectra for a 
ductility factor of 10 reveals a shift of the velocity region 
towards higher frequencies. Therefore, spectral regions inferred 
from observation of elastic spectra are not suitable for 
computing frequency band averages for inelastic conditions.

To eliminate arbitrariness in the determination of the 
boundaries between the three spectral regions, a procedure 
consisting in fitting trapezoidal lines to the mean spectra is 
developed in the next section.

4.4 Determination of spectral regions
Consider the average spectrum (f) shown in Fig. 4.18, and 

assume it corresponds to any of the spectra computed according to 
Eq. 4.12 presented above. It is desired to fit a trapezoidal 
line to ’J'gff) between lower and upper frequency limits set at 0.1 
and 8 cps respectively. This limits comprise the most important 
portion of the spectrum with regard to response amplification, 
and exclude the transition regions above 8 cps and below 0.1 cps.

The trapezoidal line becomes determinate if its three
spectral ordinates and the knee frequencies f. and f are knownn dv va
(see Fig. 4.18). The frequencies f^ and f are the boundaries
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between the displacement and velocity regions, and the velocity 
and acceleration regions respectively.

It is worth reiterating that for any frequency such as f in 
Pig. 4.18, ipQ(fQ) can be referred to in terms of any of the three 
spectral quantities ^(fo) » ' and ^Qd^o^ f which are» of 
course, related to each other (Eqs. 3.7).

It should be also noted that ^(f) is defined for the set of 
frequencies F as indicated by Eq. 4.11. The frequencies 
belonging to F are not necessarily evenly spaced; although they 
cover the frequency axis in a reasonable manner, a few points of 
clustering can be identified. On the other hand, recalling the 
manner in which the frequencies were selected for each record, 
most of them correspond to points of local spectrum extrema. 
From these considerations one can draw the conclusion that, for 
the purpose of computing frequency band averages, it is 
convenient to treat ^(f) as a piecewise linear function of f. 
Consideration of ijT (f) as a discrete function of f would be 
equivalent to assign the same weight to all data points 
regardless of their actual spacing; on the other hand, it would 
lead to overestimated measures of the dispersion of the data.

Naturally, the distinction between the discrete or continu­
ous character of the mean spectra would be trivial, for all prac­
tical purposes, if data for a substantially larger number of 
frequencies were available, but it seems pertinent herein. The 
assumption of piecewise linearity is compatible with the smooth 
variation between the selected frequencies indicated in Section 
3.4.2, besides being the simplest one can make.
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The fitting of the trapezoidal lines proceeds iteratively as 
described next. Assume values for f^ and fva and compute 
frequency band averages for the spectral regions so determined 
as follows:

«r(j>*Qd

dv
0.1

df

dv 0.1
(4.16.a)

y (j> Qv

(j)
va t

: ( j )dv
V(f) df

-m
va dv

(4.16.b)

y (j) Qa
r(j)
'va
Wf) df

ITT
va8 - f

(4.16.c)

where the superscript j indicates the jth iteration. Noting that 
the subscript Q can be either A, V, or D, depending on the 
character of the normalized data under consideration, three sets 
of equations of the form of Eqs. 4.16 can be written.

Next, compute the new knee frequencies as:

(j+D
"dv 2it

_(j)
"Qv
(j)

^Qd

(j+D
'va 2tt

_(j)
7Qa
(j)
Qv

(4.17.a)

(4.17.b)
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Then, averages are computed for the new regions, and so on,
until

(j+D
fdv
(j+D 

fva

up to a desired number of significant figures. In general the 
procedure converges in about half a dozen iterations.

The resulting knee frequencies and fitted trapezoidal lines 
for the case of elastoplastic systems with 5 percent damping are 
shown in Figs. 4.19, 4.20 and 4.21. It may be observed that the 
knee frequencies vary somewhat depending on the normalization 
parameter used, however, the same trend is observed regarding the 
rightward shift of the velocity region as the ductility 
increases.

The relative ordinates of the fitted lines do not vary 
significantly with the different normalizations. To make a 
meaningful comparison, the band averages for the various 
ductilities in each region are divided by the average for y=l in 
the same region; these ratios, along with the corresponding 
limiting frequencies, are presented in Table 4.1. This result is 
expected since the ratios must reflect an essential attribute of 
the original spectra, and thus be independent of the sets of 
coefficients used to scale the data. Incidentally, these ratios 
actually correspond to deamplification factors consistent with 
the form of Eq. 4.3; later on, they will be presented and 
discussed for the various conditions considered in this study.

(j)
-dv
(j)

-va

(4.18.a) 

(4.18.b)
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4.5 Frequency band statistics
Henceforth, in each spectral region, the attention will be 

focused in the data normalized to the ground motion parameter 
corresponding to that region; for instance, out of the nine 
averages defined by Eqs. 4.16, the concern will be on the terms 
^Dd' *W' an<^ ^Aa* Thus» the subscripts can be dropped for 
simplicity.

On this basis, the frequency band average, variance, 
standard deviation and coefficient of variation are, respective­
ly computed as follows:

? =

Var(4>) =

i n
~ In . ^

u ^(f) df

i=1 (fu - £t>
(4.19)

n
u

- In -ii=l

(^.(f) - V) df

(fu - V
(4.20)

o(<M = /Var (<|0 (4.21)

fi(^) = (4.22)
V

where n is the number of records and f. and f are the lower andl u
upper limit of each frequency band determined by the previosly 
fitted trapezoidal lines. It is worth noting that the averages 
computed with Eq. 4.19 are identical to those obtained by means 
of Equations 4.16; substitution of Eq. 4.12 into the latter only 
reveals a reversed order of summation and integration.

The frequency band averages 7 correspond to the desired y
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factors defined by Eq. 4.2. Similarly, to emphasize their
dependence on the ductility factor, hereafter the standard
deviation and the COV defined by Eqs. 4.21 and 4.22 will be
designated as a and £2 . The calculated statistics, along withy y
f^ and fu, are summarized in Tables 4.2 and 4.6 for the various 
ductility factors, resistance functions, and damping factors 
considered in this study. The Y factors are also shown in Figs.v
4.22 to 4.27; observations regarding the effect of the various 
parameters involved will be made in Section 4.7.

A comparison of the results for elastic systems with those 
obtained in a previous study of elastic spectra (77) is 
instructive. It can be seen in Table 4.7 that the results are in 
general agreement, despite the differences in the ground motions 
used in the studies. In the Newmark-Hall-Mohraz study, 14 
earthquakes were considered, with two components of horizontal 
motion being used for each earthquake, thus giving a total of 28 
records. Only four of the latter are included among the ten 
records used in this study, and even these four records may be 
somewhat different since different versions were used in each 
study; in Ref. 77, the originally uncorrected records were 
adjusted assuming a segmentally parabolic acceleration base line. 
Although the procedures used in the studies involved some 
differences in the arrangement of frequencies, determination of 
frequency bands, and computation of band averages, the formula­
tion of the problem was conceptually the same.

The coefficients of variation in Tables 4.2 to 4.6 give an 
indication of the variability of the normalized responses. It
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can be seen that does not vary significantly for the various 
damping factors, ductilities, and resistance functions; although 
not consistently, seems to decrease as damping and ductility 
increase. It is notably different for the various spectral 
regions: between about 15-20% in the acceleration region, 30-40% 
in the velocity region, and 40-50% in the displacement region.

It must be emphasized that the calculated 0^ does not in­
clude all the uncertainties associated with predicted spectral 
ordinates. In fact, a large degree of uncertainty is involved in 
the estimation of the possible ground motion peaks resulting for 
future earthquakes affecting a site. The uncertainties underlying 
such estimates depend not only on a number of factors but also on 
the amount and quality of the information available for a given 
site, as will be discussed in the next chapter.

4.6 Deamplification factors
As stated before, it is customary to derive inelastic 

spectra by reducing the ordinates of the elastic spectrum (73,
114,116) as symbolically indicated by Eq. 4.3. Deamplification 
factors <j>^ associated with mean level responses can be simply 
obtained as:

¥= uT-^- (4.23) p y=l

which follows from Eqs. 4.4 and 4.5.a. The computed for the 
various resistance functions, ductilities, damping factors, and 
spectral regions are presented in Tables 4.2 to 4.6 and plotted
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in Figures 4.28 to 4.33.
For practical applications, <j>^ values can be read or 

interpolated directly from the figures. For the case of 
ealastoplastic systems, and in order to facilitate calculations 
for intermediate ductility values and damping factors, it is 
useful to have expressions for <|>^ in terms of these parameters. 
General expressions of the form

= (Pv-q)"r (4.24)

for the acceleration and velocity regions, and

for the displacement region were derived by means of multivariate 
nonlinear regression analyses. For this purpose, a modified 
Levenberg-Marquardt algorithm was used (52,60); the sum of the 
squares of the logarithm of the residuals was used as objective 
function rather than the simple sum of the squares since the 
former leads to more uniform relative errors. The resulting 
coefficients are indicated in Figures 4.28 to 4.30. The general 
expressions are accurate within 2% or less, and can be 
conveniently used if a pocket calculator is available.

If a greater degree of conservatism is desired, factors 
associated with smaller probabilities of exceedance can be used. 
In other words, one is interested in determining p-percentile v

r V

factors so that the probability that the response amplification 
will not exceed Vpv is P. Assuming normal distribution, the
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percentile amplification factors are computed as

(4.26)

where the coefficient 6 , indicating the deviation from the mean
r

can be obtained, for the corresponding probability level p, from 
tables of standard normal probability (7) . For instance, is

r

equal to 0, 1, and 2 for p equal to 0.5, 0.841, and 0.977 
respectively; the associated factors correspond to the 50- 
percentile, 84.1-percentile and 97.7-percentile values. It has 
been recommended that amplification factors should in general be 
chosen for the 84.1 probability level, unless a greater or lesser 
degree of conservatism can be justified for the particular case 
under consideration (40).

Deamplification factors ♦ corresponding to a probability 
level p can be obtained as

(4.27)

whence

(4.28)

and (|> is not very significant. In particular, for the recom­
mended 84.1% probability level, i.e., 5 =1, the correction factor

r

(1 + ny)/u + ny=1) (4.29)
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is in general close to 1, as can be seen in Tables 4.2 to 4.6. 
Therefore, as a reasonable approximation, factors can be used 
regardless of the probability level. It should be also noted 
that using <j)^ instead of is conservative when is less than 
1, which is always the case in the acceleration and velocity 
regions of the spectrum.

4.7 Discussion of results
In this section, observations are made from the previously 

presented factors and average spectra with regard to the effect 
of damping combined with inelastic behavior and the influence of 
different types of resistance functions on nonlinear responses.

It can be seen in Figures 4.22 to 4.24 that the effect of 
damping on inelastic response becomes less important as ductility 
increases. In the velocity region for example, the response of 
elastic systems is reduced, on the average, by about 41% when 
damping increases from 2 to 10 percent of critical, while for 
elastoplastic systems with displacement ductility of 10 the mean 
response decreases by only 16% for the same damping range. 
Similarly, in the acceleration region, v ^ decreases by 42% 
while reduces by 22% when damping increases from 2 to 10 
percent of critical.

In the displacement region, the effect of damping is more 
uniform for the various ductility values. Comparing the 'J'y 
factors for 2 and 10 percent damping, a reduction of 27% is 
observed for elastic systems, 22% for systems with ductility of 
1.5, and an aproximately constant reduction of 20% for
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ductilities between 2 and 10. For this reason, a relationship 
corresponding to straight lines with constant slope in the 
logarithmic plot was used for the deamplification factor <|> in 
the displacement region (Eq. 4.25, Fig. 4.28).

The same conclusions can be reached by observing the mean 
spectra for elastoplastic systems with 2, 5, and 10 percent 
damping shown in Figures 4.34 and 4.35. It is also worth noting 
that at the low frequency end of the spectrum, 0.03 cps, the 
effect of damping is negligible regardless of the ductility 
level. The same is in general true at the high frequency end, 35 
cps; however, there is still some reduction for a ductility 
factor of 10 (Fig. 4.35).

With regard to the effect of the type of resistance function 
on inelastic responses, it is instructive to compare mean spectra 
for elastoplastic, bilinear, and degrading systems with the same 
amount of damping, as shown in Figures 4.36 to 4.38.

First, it is apparent that the ordinates of the mean spectra 
do not vary very significantly when various nonlinear models are 
used; differences occur mainly for intermediate frequencies and 
large ductilities, and are practically negligible at the low and 
high frequency ends of the spectrum. And second, use of the 
elastoplastic idealization provides, in almost every case, a 
conservative estimate of the maximum response.
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CHAPTER 5

INELASTIC SPECTRA FOR EARTHQUAKE RESISTANT DESIGN

5.1 Introduction
Currently available methods of structural analysis permit 

calculation of structural responses to deterministic dynamic 
loadings. From the results of such calculations, and from 
application of judgment and experience, the margin of safety or 
adequacy of the corresponding design may be assessed. Unfortu­
nately, because a specific ground motion may not be representa­
tive of the variety of earthquake excitations the structure may 
possibly experience during its useful life, reliable results can 
be achieved only by examining the statistics of the response to 
several ground motion time histories. Since a number of 
nonlinear analyses may be an impractical requirement in the 
design of most structures, there is need to infer a more general 
and simpler loading condition.

One approach to this goal is the development of design 
spectra. Combining estimates of the possible intensities of 
future earthquakes, with information on the characteristics of 
the response of simple systems to a number of previously recorded 
ground motions, design spectra can be derived to prescribe design 
coefficients. Like response spectra, design spectra are not 
constructed to represent a single system but for a range of 
structure related parameters.

The basic steps for deriving design spectra involve: (a)
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Selection of the earthquake hazard in terms of estimates of the 
expected peak ground acceleration, velocity, and displacement at 
the site under consideration; (b) estimation of structure related 
parameters; (c) construction of the Elastic Design Spectrum by 
applying amplification factors to the ground motion maxima; and 
(d) construction of the Inelastic Design Spectrum by deamplifying 
the Elastic Spectrum to take into account the effect of nonlinear 
behavior.

The various factors involved in the selection of the 
earthquake hazard are discussed first. Such a selection can not 
be treated as an isolated entity, but as an integral part of the 
design process. Although some design considerations are made 
along the presentation, a review of earthquake resistant design 
procedures is not intended here; discussions of general design 
concepts and procedures applicable to buildings (69,70), and to 
specialized systems (76) are available.

A formal derivation of the factors necessary for the last 
two steps above was given in Chapter 4. In this chapter, the 
information is summarized with a view towards the mechanics of 
the construction proper. Some additional aspects are discussed 
for the completion of the spectrum in the high and low frequency 
ends. Finally, some comparisons are made of derived design 
spectra with computed response spectra.

5.2 Estimation of ground motions
The earthquake motions for which a design is to be 

accomplished, or even the occurrence of a given size earthquake
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affecting the site, are not amenable to precise determination and 
must be considered as probabilistic matters.

Procedures for a quantitative evaluation of the seismicity 
of a region and assessment of earthquake risk are available 
(28,29,32,34,59,79). Estimation of the earthquake risk at a 
particular site requires first to determine seismic activity 
levels associated with given volumes of the earth crust or with 
geologic features that can be identified as potential earthquake 
sources, such as active faults. This implies determination of 
the parameters of assumed probability distributions modeling 
earthquake magnitudes and rates of occurrence. Then, by means of 
attenuation expressions relating the desired ground motion 
characteristic (peak acceleration, peak velocity, etc) to 
earthquake magnitude and distance to the source, the seismic risk 
at the site is obtained by integration of the contributions of 
all significant sources, and expressed in terms of probabilities 
of exceedance of given intensities during given periods of time. 
When this procedure is repeated for a number of sites, the 
results can be presented in the form of regional seismicity maps 
showing contour levels for peak ground motion parameters that 
correspond to various return periods (1,33).

Earthquake risk analyses have not seldom been object of 
severe criticism. While the validity and limitations of the 
probabilistic models are discussed in most of the aforementioned 
references, the main weaknesses arise from the incomplete 
understanding of the mechanics of the natural process, and, 
undoubtedly, from the lack of adequate data.
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One could even start by mentioning that reported magnitudes, 
for the same earthquake event, may vary by more than one point in 
the Richter scale depending on the reporting seismological 
station; on the other hand, it has been only since the 60's that 
the network of seismographic stations around the world has the 
capacity to locate earthquake epicenters to within a few 
kilometers (50).

A substantially higher degree of uncertainty underlies 
empirically derived attenuation expressions. As a consequence of 
the limited knowledge of the physical process related to 
liberation and propagation of seismic energy, at the present 
time, magnitude and distance are the only parameters used to 
describe the effect of various source and travel path factors on 
ground motion parameters. Furthermore, earthquake magnitude 
definitions have not been used consistently in the literature, 
and even the definition of distance between the site and the 
source is not a straightforward matter. These and several other 
aspects are discussed by Idriss (51) in a comprehensive review of 
recently proposed attenuation formulae. The effect of soil 
conditions will be briefly discussed later on.

The most important limitation, perhaps, arises from the fact 
that the period of documented seismic activity spans an 
insignificant portion of the natural tectonic process. Allen (2) 
has pointed out that, for most parts of the world, neither the
local instrumental data, nor the historical record of felt
earthquakes cover a sufficiently long time to allow val id
extrapolations of future seismicity, except on very broad



regional scales. It is apparent that strong earthquake activity 
is subject to marked temporal fluctuations, so that several 
centuries long quiescent periods may precede or follow highly 
active terms. Moreover, segments of seismic zones that have not 
experienced a large earthquake recently have been identified as 
likely locations for future major shocks (55).

It has been also argued that geological evidence can be used 
to supplement or even supersede the historic record in estimating 
seismicity and associated earthquake hazards (2). Although a 
criterion based on the application of Bayesian statistics has 
been proposed to conciliate hard data with relevant geological, 
geophysical, and other nonstatistical evidence (32,34), it has 
not been extensively used.

Consequently, one must be extremely cautious in interpreting 
the results of seismic risk analyses based on limited data. It 
is believed nevertheless, that the procedure is consistent with 
the present state of knowledge and provides a rational means for 
synthesizing the available information.

In many regions of the world, where the occurrence of 
earthquakes is not associated with superficial geologic features, 
or when recorded ground motions are scarce, estimates of a 
similar nature can be inferred but are much more uncertain. 
Under these conditions, it is necessary to correlate peak ground 
motions to a qualitative measure of earthquake intensity, such as 
the Modified Mercalli scale. On the basis of several 
observations, it has been suggested that the maximum ground 
acceleration and maximum ground velocity are 0.167g and 8 in/sec,
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respectively, for Modified Mercalli Intensity VIII, and change by 
a factor of 2 with each unit drop in MM Intensity; above MM VIII, 
acceleration and velocity increase more slowly, by a factor 
somewhat lower than 2. These relationships represent mean values 
with standard deviations corresponding at least to a factor of 2 
(75) .

It should be noted that MMI is a subjective measure in large 
part, so that intensity rating practices vary from one locality 
to another; hence, general rules may not be directly applicable 
to all seismic areas. Therefore, the few instrumental data that 
may be available become valuable elements in adapting the above 
recommendations to the corresponding local conditions. Likewise, 
it may be convenient to estimate attenuation rates from the 
particular shapes of isoseismal lines for local past earthquakes. 
These lines may reveal directional attenuation patterns resulting 
from local geologic conditions.

It is also worth to remark that assigning MMI is a viable 
way of incorporating noninstrumental historical evidence in a 
quantitative analysis, thus extending the length of the record 
beyond the time covered by instrumental observations.

The regional motions that one obtains from the methods 
described in the above must be modified to take account of the 
soil conditions of the site. Nevertheless, it must be kept in 
mind that the attenuation formula used may already contain soil 
effects or may apply only to the type of soils corresponding to 
the data used in its derivation. On the other hand, the type of 
soil is to some extent implicitly considered in the observation



of damage or in the observational data leading to reported MM 
intensities.

It has been only in the last five or six years that 
statistical studies on the effect of site conditions on ground 
motions have become available. Various relationships for peak 
ground motion parameters, explicitly including local soil 
conditions, have been proposed; these have been summarized by 
Idriss in the previously mentioned reference.

It is generally found that ground velocities and ground 
displacements are more affected than ground accelerations. Peak 
accelerations on rock are essentially equal to those on stiff 
soil deposits, especially for distances of about 30 kilometers. 
However, large accelerations may be attenuated by a soil profile, 
whereas small accelerations may be amplified; thus, rock 
accelerations are generally larger than accelerations in soil 
sites for short distances, and vice versa for large distances. 
These trends intensify in the case of soft and deep cohesionless 
soils. In turn, peak ground velocities and displacements are 
somewhat higher on soil sites than on rock sites at short 
distances, and substantially higher at large distances.

The significance of relationships between the ground motion 
parameters, such as V/A and AD/V2, has been pointed out (41,77, 
79). When only the peak acceleration is given to characterize 
the seismic hazard, as is often the case, these expressions can 
be used to estimate associated ground velocities and displace­
ments. The dispersion of these ratios is about the same as that 
of the individual parameters themselves.
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The V/A ratio depends on the site characteristics and varies 
roughly in about 25% per unit change in magnitude; it increases, 
although not very significantly, with the distance to the source. 
Values of the V/A ratio of 48 in/sec/g for firm ground, and 32 to 
36 in/sec/g for rock are recommended for magnitudes of about 6.5 
and moderate distances. Although an average value for rock of 
about 22 was obtained for the data considered in reference 77, a 
somewhat more conservative value was recommended because of the 
limited rock data available.

It has been established that AD/V2 must approach 1 as the 
distance tends to infinity, and should increase rapidly as the 
distance tends to zero (79) . While several recent studies are in 
agreement with the previous limits, others are not; there are 
also contradictions regarding the variation of AD/V2 with 
magnitude (51) . It varies between 3 to 15 for most earthquakes. 
Average values of about 5.5 were found for a number of records 
used in statistical analyses of elastic spectra, and a value of 6 
was suggested as adequately conservative, regardless of soil 
conditions (41,77) .

2For illustration, the V/A and AD/V ratios for the records 
used in this study are given in Table 5.1.

It has also been pointed out that under certain 
circumstances it may be reasonable to base design spectra on 
"effective" ground acceleration values that are somewhat lower 
than acceleration intensities inferred from actual instrumental 
data as discussed above (68,76). Although very few recordings 
have been obtained in the vicinity of earthquake sources.



observation of damage associated with extremely close, short 
duration earthquakes, does not seem to be consistent with the 
high ground acceleration readings, and appears to be much less 
than that associated with even lower accelerations resulting from 
more distant and/or longer earthquakes.

The observation has also been made that heavy structures on 
large foundations appear to respond to earthquakes in a less 
intense manner than do smaller structures, or, more specifically, 
than free field instrumentation would predict (68,78). This 
becomes apparent when peak acceleration values and response 
spectra computed for records obtained in the basement of the 
Hollywood Storage Building and in the adjacent parking lot are 
compared. The high frequency content of the free field motion 
seems to be filtered, to some extent, by the relatively large 
dimensions of the foundation of the structure, thus explaining 
the lower peak accelerations and lower spectral ordinates in the 
high frequency region corresponding to the record in the 
building. On the other hand, no significant changes in ground 
velocities and displacements, nor in spectral ordinates in the 
low frequency region are observed; furthermore, little reduction 
in the acceleration region results from distant earthquakes, 
which is indicative of unaffected long period waves.

For the previous reasons, it is considered appropriate to 
reduce high intensity motions, especially those arising from near 
sources, to values below those inferred without consideration of 
aspects related to earthquake effects on structures. The 
effective motions for which design spectra are drawn may be as
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little as one half of the expected peak instrumental values for 
near earthquakes, ranging up to the latter values for distant 
earthquakes (70,76).

Naturally, the selected motions and the corresponding return 
periods will also depend on the use and characteristics of the 
structure under consideration as well as on the implications of 
its failure. This involves consideration of socioeconomic 
factors to compromise the level of risk society is willing to 
accept with the related cost of protection. Thus, the earthquake 
hazard for which the design is to be accomplished must be 
specified accordingly; a much lower level of safety, or shorter 
return periods, might be permissible for an apartment building 
than for a school or a hospital building; a higher factor of 
safety may be required for a dam, and even higher margins of 
conservatism might be required for nuclear reactors, where damage 
may involve exposure of a large number of people to excessive 
radiation (75). For example, in the design of exceptionally 
critical facilities, such as nuclear power plants, it is also 
necessary to make some estimate of the maximum intensity of an 
earthquake that could be expected, the so called "maximum 
credible earthquake." This is even more difficult to determine 
since such an earthquake may have never occurred in the past and 
certainly not during the period of recorded history. It is 
generally considered desirable to provide resistance against a 
major earthquake at yield levels or limit conditions (75).

From the foregoing discusion, it is concluded that there are 
a number of parameters and criteria that must be considered to



arrive at design ground motions. Such estimates are subjected to 
wide margins of uncertainty arising from the various sources 
mentioned earlier. Although it is desirable to have an assured 
margin of safety in the combined design conditions, it is not 
proper to make conservative allowances for each of the parameters 
involved in every step of the design process. It is considered 
reasonable to take values close to the mean or expected values of 
the ground motion parameters, or values associated with mean 
recurrence periods; in turn, these values are generally combined 
with factors for deriving design spectra taken at the mean plus 
one standard deviation level.

5.3 Structure related parameters
The system parameters, as defined earlier in this study, are 

the natural period or frequency, the degree of damping, the type 
of resistance function, and the ductility factor.

The natural frequency is not of great concern at this point 
since spectra will be derived for the entire frequency band of 
interest. It should be noted, however, that the period of a 
structure can not be determined as accurately as one may wish; 
furthermore, it is also well known that important changes in the 
fundamental period of a multistory building may occur due to 
earthquake exposures. A number of aspects regarding resistance 
function models and damping factor were discussed in Chapter 2. 
Naturally, one seeks the best possible representation of the 
actual structure under consideration, however, selection of a 
range for the mentioned parameters may be necessary.
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The case of the dactility factor requires further 
discussion. In modifying the elastic design spectrum to obtain 
the inelastic design spectrum in accordance with the procedures 
given in the following sections, one must keep in mind that the 
ductility level is associated with the load deformation 
relationship for the structure as a whole (see Section 2.6), 
rather than with the moment rotation capacity at a particular 
joint or in a particular member or component of the structure. 
The design ductility level is generally lower than local 
ductilities at connections and elements. Such a difference 
depends on the type of structure and the number of members 
contributing to dissipate energy by inelastic action.

A corollary is that the design should be conducted in such a 
way that there is no major disparity in the distribution of 
resistances within the structure, so that energy is dissipated 
uniformly.

On the other hand, in accordance with the concept of design 
spectrum, the ductility is not a response quantity but a measure 
of the ductility requirements corresponding to the associated 
design forces. Thus, one should make sure that the structure 
will be capable of mobilizing the required ductilities at the 
overall and local levels.

Design ductilities of the order of 4 to 6 have been 
suggested for multistory reinforced concrete buildings (17). In 
a moment resisting frame for example, the design ductility 
generally represents an average of the interstory ductilities; to 
develop an overall ductility of 4 to 6, some stories may have to



develop ductilities between 1.5 or 2 times larger, and even 
larger ductilities may have to be developed at joints or 
individual members.

5.4 Construction of Design Spectra
Consider first the construction of the Elastic Design 

Spectrum. Referring to Fig. 5.1, assume that D, V, and A 
correspond to the design ground motions. By multiplying the 
latter by the amplification factors summarized in Table 4.7 one 
determines the lines JK, KL and LM, noting that points J and M 
correspond to frequencies of 0.1 and 8 cps respectively. As 
mentioned earlier, amplification factors corresponding to mean 
plus one standard deviation levels are generally recommended; 
however, lower or higher values may be also taken depending on 
the degree of conservatism that may be justified for the 
particular application under consideration.

The transition lines IJ and MN are determined by the points 
I and N at 0.03 and 33 cps respectively. Below 0.03 cps the 
elastic spectrum coincides with the ground displacement line, and 
above 33 cps it coincides with the ground acceleration line.

As discussed in Section 4.6, deamplification factors <j>^ , 
independent of the probability level associated with the 
amplification factors taken to derive the elastic spectrum, are 
used to determine the segments J'K', K'L', and L'M' of the 
Inelastic Design Spectrum, as shown in Figure 5.2. For the 
corresponding damping factor, ductility factor, and resistance 
function, <t> factors can be read in Tables 4.2 to 4.6, or in
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Figures 4.28 to 4.33, or, in the case of elastoplastic systems, 
the expressions indicated in Figures 4.28 to 4.30 may be used. 
Since the factors for elastoplastic systems are generally 
conservative, they are recommended for general purposes.

Before proceeding with the construction of the inelastic 
spectrum, it is instructive to compare the recommendations given 
herein with previous rules for the same purpose (73). In the 
earlier procedure, the inelastic spectrum was obtained dividing 
the elastic spectrum by y in the displacement and velocity 
regions, and by /2y-l in the acceleration region. These factors, 
which are independent of the amount of damping, are compared with 
the ij>^ factors for elastoplastic systems developed herein in 
Figures 5.3 to 5.5. It is apparent that, with the exception of 
the displacement region, the old factors are on the 
unconservative side for damping larger than 5% and for 
ductilities larger than 3. It may be noted, though, that the old 
rule for the acceleration region is still quite a good 
approximation for the 5% damping case. It is believed, however, 
that the new recommendations are more reliable than the previous 
rules because they are consistent with a larger number of 
observations and take into account parameters not considered 
before.

Following with the construction, point I' is obtained 
dividing the elastic ordinate at I by p; this is based on the 
fact that at very low frequencies the maximum deformation of 
elastic and inelastic systems are the same. Then join points I' 
and J1.



The ordinate of the inelastic spectrum at 33 cps can be 
taken, conservatively, equal to that of the elastic spectrum,
i.e., point N. However, all the response spectra given in the 
previous chapters show some reduction from the ground 
acceleration level represented by point N. Mean and mean plus 
one standard deviation values at the highest frequency considered 
in this study are summarized in Table 5.2 (these values are 
computed as indicated in Section 4.3). Table 5.2 also shows the 
values obtained from approximate relationships of the form v a 
that can be used to determine point N' at 33 cps. For
elastoplastic systems with 2 and 5 percent damping, the parameter 
a takes the values 0.07 and 0.10 for mean plus one standard 
deviation and mean spectra, respectively. For bilinear and
degrading systems with 5% damping, and for elastoplastic systems 
with 10% damping, a =0.10 corresponds to the mean plus one 
standard deviation level, and a =0.13 corresponds to the mean 
level.

Finally, join points M' and N'. When the ordinate of point 
L' results lower than the ground acceleration (point N), it is 
more appropriate to join directly L' and N', as indicated in the 
lowest spectrum in Figure 5.2.

Beyond point N', the inelastic spectrum is tentatively drawn 
as indicated by the dashed lines in Fig. 5.2. No data are 
available at such high frequencies so as to make a definitive 
recommendation; the elastic spectrum represents a conservative 
upper bound, however.
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5.5 Example
Assume that design spectra for firm ground, for systems with

5% damping, and ductility factors of 1 (elastic), 3, and 10 are
desired. For convenience, a peak ground acceleration of Ig is
used; for different design acceleration values, spectra can be
obtained proportionally with no difficulty. Consider also that
no specific estimates for the design ground velocity and
displacement are provided; thus, recommended average values for

2the V/A and AD/V ratios are used. Amplification factors 
corresponding to the 84.1 probability level are used to draw the 
elastic spectrum, and deamplification factors for elastoplastic 
systems are used, as recommended for general purposes. The 
various steps for the solution shown in Figure 5.6 are the 
following:

(1) Draw the ground motion maxima, denoted as A, V, and D,
2using V/A»48 in/sec/g and AD/V =6. For A=lg, V=48 in/sec and 

D=36 inches are obtained.
(2) Draw the elastic spectrum between 0.1 and 8 cps using

amplification factors from Tables 4.3 or 4.7. These tables give 
mean plus one standard deviation values of 2.1, 2.15, and 2.77
for the displacement, velocity, and acceleration regions, 
respectively. Therefore, the ordinates of the elastic spectrum 
are 75 inches, 103 in/sec, and 2.77g. Complete the construction 
with transition regions dropping to the ground motion values at
0.03 and 33 cps.

(3) Draw the inelastic spectra between 0.1 and 8 cps using 
deamplification factors from Table 4.3 or Figures 4.28 to 4.30.



For a ductility factor of 3, use the factors 0.3, 0.33, and 0.45 
for the displacement, velocity, and acceleration regions; and 
0.08, 0.14, and 0.26 for a ductility factor of 10. Hence, the 
ordinates of the inelastic spectrum for a ductility of 3 are 23 
inches, 34 in/sec, and 1.25g; the corresponding values for a 
ductility of 10 are 6 inches, 14 in/sec, and 0.72g. Since the 
latter value is less than the ground acceleration value, use it 
to determine the intercept with the line for the velocity region 
and join the point so determined directly with the ordinate at 33 
cps.

(4) Complete the spectra in the high frequency region using 
the expression y 0*07 to determine the ordinates at 33 Hertz. 
This gives 0.93g and 0.85g for ductilities of 3 and 10, 
respectively. In the very low frequency region, apply the factor 
1/y to the ground displacement value to obtain the ordinates 
below 0.03 cps; this results in values of 12 inches and 3.6 
inches for ductilities of 3 and 10, respectively. Finally join 
the points corresponding to 0.03 and 0.1 cps.

It is illustrative to compare the previous design spectrum 
for firm ground with actual response spectra. In Figures 5.7, 
5.8, and 5.9, computed yield spectra for the El Centro, Olympia, 
and Santiago records, for elastoplastic systems with 5% damping, 
and scaled to a Ig ground acceleration, are compared with the 
design spectrum shown in Figure 5.6.

The spectra for the El Centro record show an extremely good 
fit with the design spectra, the implications of which should not 
be improperly interpreted. It is not expected, nor implied, that
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responses for any single earthquake should match the design 
spectrum. In fact, the spectra for the Olympia record lie below 
the design spectra for all frequencies, while spectra for the 
Santiago record nearly reach or exceed the design spectra at some 
points in the acceleration and displacement regions, but fall 
well below the design spectra in the velocity region.

It should be noted that the design spectrum was drawn for 
the mean plus one standard deviation conditions, thus the 
response to El Centro is about one standard deviation above the 
mean for all records, especially in the velocity and displacement 
regions.

If design spectra using factors corresponding to the mean 
level were constructed, the spectra for the Olympia record would 
show better fit in the acceleration region, but would still lie 
below the mean design spectra in the velocity and displacement 
regions.

In general, spectra for particular records may present
different levels of amplification in the various spectral

2regions, as well as different V/A and AD/V values than those
corresponding to the average conditions used to derive design
spectra. The V/A and AD/V ratios are directly related to the
shape of the spectrum. The V/A ratio determines the position of
the spectrum within the frequency band; a reduction of the V/A

2ratio results in a rightshift of the velocity region. The AD/V
2ratio is a measure of the wideness of the spectrum; large AD/V
2values correspond to flat shaped spectra, whereas small AD/V 

ratios correspond to narrow velocity regions, i.e.. narrow band
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spectra.
In summary then, the design spectrum recommended herein is 

intended to represent, at a given probability level, response 
characteristics associated with a family of earthquakes. It is 
believed that a smoothed design spectrum is a more appropriate 
basis for design than either a spectrum or a time history for a 
single ground motion, since it takes into account the random 
nature of earthquake responses as well as earthquake motions.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 Summary
Inelastic response spectra for ten earthquake records were 

analyzed statistically to review previous recommendations for 
deriving inelastic design spectra and to evaluate the effect of 
damping combined with nonlinear behavior and the influence of the 
type of material nonlinearity on inelastic response.

Three nonlinear models were used. The well known 
elastoplastic and bilinear idealizations, and a stiffness 
degrading model specifically derived for this study. Damping 
factors of 2, 5, and 10 percent of critical were considered in 
combination with the elastoplastic model; a damping factor of 5 
percent of critical was used for bilinear and stiffness degrading 
systems. For each earthquake record, responses were computed for 
about 40 different frequencies, and for 6 preselected ductility 
factors: 1 (elastic), 1.5, 2, 3, 5, and 10; an iterative 
procedure was used to obtain inelastic responses accurate to 
within 1% of the desired ductility values.

Considering the various conditions and ground motions used, 
results for about 12000 different cases were obtained and 
summarized in the form of inelastic response spectra. A 
statistical procedure was developed to analyze the data for the 
purpose of deriving factors for the construction of inelastic 
design spectra. This procedure is a generalization of available



methods that have been previously used in elastic spectra 
studies.

6.2 Conclusions
1. Observation of inelastic response spectra for 

elastoplastic systems indicates that the effect of damping 
combined with nonlinear behavior is different in the various 
regions of the spectrum. In the very low frequency range, say 
below 0.05 cps, the effect of damping may be considered to be 
negligible, whereas it is still somewhat effective in reducing 
the response of very rigid systems, specially for large 
ductilities. Damping is more effective in the intermediate 
frequency range, specifically, in the region between 0.4 and 8 
cps where elastic spectra present larger response amplification. 
On the other hand, the effect of damping lessens as inelastic 
deformations increase.

2. Observation of average inelastic response spectra 
corroborates the previous remarks. In particular, the estimation 
can be made that increasing the damping factor from 2 to 10 
percent of critical results in about 40% reduction of the 
spectral ordinates in the region between 0.4 and 8 cps; for the 
same conditions, however, the response of elastoplastic systems 
with a ductility factor of 10 is reduced, on the average, by only 
about 20 percent.

3. Comparisons of inelastic response spectra for 
elastoplastic, bilinear, and stiffness degrading systems, with 
the same amount of damping, reveals that: (a) At the low



91

frequency end of the spectrum, say below 0.05 or 0.1 cps 
depending on the ground motion record, responses are practically 
independent of the force deformation law; (b) some differences 
exist for frequencies greater than 10 Hertz, but they are 
negligible for ductility factors less than about 5, and not 
substantial for larger ductilities; (c) for intermediate 
frequencies, the responses of bilinear systems with ductilities 
less than or equal to 2 are almost identical to those of 
elastoplastic systems with the same yield level, while for larger 
ductilities, the maximum responses of bilinear systems are 
generally smaller than those of the associated elastoplastic 
systems; (d) for intermediate frequencies, the responses of 
stiffness degrading systems are generally between about 0.5 to
1.5 times the response of the associated elastoplastic systems; 
and (e) notably, spectra for degrading systems have a tendency to 
go below the peaks and above the troughs of spectra for 
elastoplastic systems.

4. The differences or similarities in the responses of 
systems with different types of resistance, for all other 
parameters the same, can be explained by means of the correspond­
ing response histories. The latter reveal that the energy 
dissipation mechanism and the particular characteristics of the 
ground motion itself interrelate in an extremely complex manner, 
thus making it practically impossible to predict, accurately, the 
response of a particular system to a particular earthquake 
motion. Furthermore, even systems with the same type of 
nonlinearity and amount of damping, and excited by the same



ground motion, may present hysteretic behavior of an entirely 
different nature depending on their yield point resistances.

5. From a comparison of average spectra for elastoplastic, 
bilinear, and stiffness degrading systems, more definitive 
conclusions can be reached. First, the ordinates of the average 
spectra do not vary significantly when various nonlinear models 
are used; differences occur mainly for frequencies between 0.1 
and 10 cps and for large ductilities, and are practically 
negligible at the low and high frequency ends of the spectrum. 
And second, use of the elastoplastic idealization provides, in 
almost every case, a conservative estimate of the average 
response to a number of earthquake motions.

6. On the basis of the previous observations, inelastic 
design spectra may be constructed using factors derived for 
elastoplastic systems. It is particularly significant that, on 
the average, the stiffness degradation phenomenon is not as 
critical as one might expect. There is still need, however, to 
consider a somewhat more sophisticated deteriorating model; for 
future research, it is of interest to include strength 
degradation and softening of the unloading stiffness, with both 
effects increasing progressively as inelastic deformations 
increase.

7. A comparison of the factors for constructing inelastic 
design spectra derived in this study, with available rules for 
the same purpose, indicates that, with the exception of the 
displacement region of the spectrum, the old factors are on the 
unconservative side for damping larger than 5 percent and for
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ductilities larger than 3. It is believed that the new 
recommendations are more reliable than the previous ones because 
they are consistent with a larger number of observations and take 
into account parameters not considered before.

8. A critical step in the derivation of design spectra for 
particular applications is the determination of the earthquake 
hazard at the site of interest. Information related to various 
scientific disciplines must be considered to arrive at the ground 
motions upon which the design spectrum is based. Earthquake risk 
procedures promise a viable way of synthesizing the available 
information. At the present time, however, serious limitations 
arise from the irremediable scarcity of data on previous 
earthquake activity, and from the incomplete understanding of the 
physical process governing the release and propagation of seismic 
energy. Furthermore, it is often necessary to adjust the ground 
motion values inferred from instrumental data to effective design 
values compatible with past experience regarding observed 
structural damages, or to account for factors that may have not 
been explicitly considered in the analysis. There is an urgent 
need to evaluate the current knowledge and practices in the 
determination of design ground motions in order to propose topics 
and priorities for future research.
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TABLE 3.1 EARTHQUAKE DATA*

Location Dateand Time EpicenterCoordinates
FocalDepth(km) Surface-WaveMagnitude

Maxi­mumMMI
FeltArea(km2)

Stations andComponents Considered in this Study

Imperial Valley, May 18, 1940 32°44'00" N 16 6.3 X 155000 El Centro, E-WCalifornia 20:37 PST 115°27100" w (22) (22) (110)(21) (21)
Western Washington, Apr. 13, 1949 47°06 100" N ** 7.1 VIII 390000 Olympia, N86EWashington 11:56 PST 122o42,00" w (22) (22) (110)(21) (21)
San Francisco, Mar. 22, 1957 37°40'00” N 9 5.3 VII 31000 Golden Gate Park, S80ECalifornia 11:44 PST 122°29 100” w (22) (22) (110)(21) (21)
Parkfield, June 27, 1966 35°54100" N 5-10 5.6 VII 52000 Cholame, Shandon,California 20:26 PST 120°54'00" W (42) (22) (22) (110) Station 5, N85E(21) (21)
San Fernando, Feb. 9, 1971 34°24'00" N 13 to 6.6 XI 210000 Castaic, N21ECalifornia 6:00 PST 118023'42" w surface (49) (49) (49) Pacoima, S16E(21) (21) (3)
Off Peru Coast May 31, 1970 9 ° 12 10 0 " S 56 7.75 VIII 104000 Lima, Institute Geofisico,15:23 local 00 0 4* 00 o o 3 w (18) (18) (18) (18) N82W(18) (18)
Off Central Chile July 8, 1971 32°30 * 00" s 58 7.5 X ** Santiago, U. of Chile,Coast 23:03 local 71°12'00" w (111) (111) (111) NlOW(111) (111)
Managua, Nicaragua Dec. 23, 1972 12o09'00" N 5 6.2 IX ** Managua, ESSO Refinery12:29 local 86°15,36" w (30) (30) (30) E-W(30) (30)

San Juan, Argentina Nov. 23, 1977 31°18100" s 30 (101) 7.4 IX 1800000 San Juan, INPRES, E-W6:26 local 67o42'00" w 40 (53) (53,101) (53) (53)(53) (53)

*Numbers in parentheses refer to entries in the list of references* *Not available
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*TABLE 3.2 SITE INFORMATION

Station Coordinates Epicentral Distance (km) MMIat Site Geology Instrument Lbcation and Structure Type

El Centro, Imperial 32°47'43" N 10 VII-VIII 30m Stiff clay First floor of 2-story,Valley Irrigation 
District

115°32155" 
(21)

w (44) (110) over 900iri shale (44) heavily reinforced concrete structure (77)
Olympia, Washington 47°02'00" N 48 VIII ** Ground level, instrumentHwy. Test Lab 122<>54,00”(21) W (44) (110) shelter (112)

Golden Gate Park 37°46,12" N 8 VII Siliceous Ground level, small shack122°28'42" (21) w (44) (110) sandstone(77) used to house electrical equipment (77)
Cholame, Shandon 35°42'00" N 5.5 ** Alluvium, 330m Ground level, instrumentStation 5 120°19142" (21) w (44) (25) shelter (112)

Castaic, Old 34°33'18" N 29 VI Sandstone Ground level, instrumentRidge Route 118°39'24" (21) W (49) (49) (49) shelter (112)

Pacoima Dam 34°20'06" N 8 VIII-XI Highly jointed Adjacent to dam abutment,118°23148" (21) w (49) (49) diorite gneiss (49) instrument shelter (49)

Lima, Institute 12°04112" S 372 ** Alluvium, 100- Ground level, 1-storyGeofisico 77°02'24“ (18) W (18) 200 m. (Estima­ted from Ref. 61!
building (18)

Santiago, U. of 33° 28'12" S 120 VI Alluvium, 250 m Basement, 3-story buildingChile 70°40'12" (111)
w (111) (111) (Estimated from Ref. 35) (111)

Managua, ESSO 12o08'42" N 6 VI Alluvium, about Ground level, 1-storyRefinery 86°19,18"(57) w (30) (30) 1000 m (106,113) building (112)

San Juan, INPRES 31 ° 31134 " s 80 VII-VIII Alluvium, 250 m Ground level, isolated from68033,29"(24) w (101) (53) (53) floor, 2-story RC and masonry building (24)

•kNumbers in parentheses refer to entries in the list of references
* itNot available
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TABLE 3.3 RECORD INFORMATION

Station, Component
Ground Motion Maxima

Record Duration
Acceleration

(g)
Time
(sec)

Velocity
(in/sec)

Time
(sec)

Displacement
(in)

Time
(sec)

used* (seconds)t 
frequency 
range (cps).

Prefixed
Pulse
Used

El Centro, E-W .214 13.44 14.54 4.14 7.90 5.00 31.89
15.18

f<0.8 
f > 0.8

yes

Olympia, N86E .280 ' 21.62 6.73 10.46 3.69 9.30 26.67 all yes

Golden Gate, S80E .105 3.44 1.81 3.50 0.46 12.92 15.96
8.94

f <0.3 
f>0.3

yes

Cholame, N85E .434 9.50 10.02 9.60 2.71 8.44 21.31
13.91

f <1.7 
f>l. 7

yes

Castaic, N21E .316 4.60 6.76 3.34 1.99 25.54 28.94
11.86

f <2.4 
f >2.4

yes

Pacoima, S16E 1.171 9.74 44.58 5.04 16.50 9.78 18.2012.48 f < 3.0 
f > 3.0

yes

Lima, N82W .107 10.96 1.85 5.36 1.36 31.16 31.60
20.81

f <3.5 
f>3.5

yes

Santiago, NlOW .159 19.06 9.15 19.70 5.06 23.76 32.22
24.97 f<0.6 f>0.6

yes

Managua, E-W . 383 6.27 15.87 6.21 8.52 3.46 13.81 all no

San Juan, E-W .193 29.52 8.11 37.14 2.50 36.50 4 5.03+ 
32.19 f <2.8 f >2.8

no

* Includes prefixed pulse if any.
Does not include 11.8 seconds of initial weak motion removed.
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TABLE 3.4 SET OF FREQUENCIES USED FOR EACH RECORD

El Qantro Olympia G.G. Park Cholame Castaic Pacoima Lima Santiago Managua San Juan

.020 .030 .05 .050 .030 .030 .050 .03 .030 .050.035 .050 .07 .075 .050 .050 .070 .05 .050 .100.050 .070 .10 .100 .080 .100 .080 .07 .075 .140.070 .080 .12 .130 .100 .120 .090 .08 .100 .170.100 .100 .15 .170 .140 .150 .100 .09 .125 .200.120 .110 .20 .200 .160 .170 .120 .10 .150 .240.150 .130 .30 .260 .180 .200 .140 .12 .180 .280.200 .150 .40 .320 .200 .220 .160 .14 .200 .330.220 .200 .50 .400 .220 .260 .180 .16 .230 .370.330 .240 .65 .500 .300 .300 .200 .20 .270 .440.430 .280 .75 .600 .400 .360 .240 .22 .300 .500.500 .330 1.00 .700 .460 .400 .280 .24 .350 .575.600 .400 1.20 .850 .500 .450 .350 .26 .420 .650.800 .500 1.60 1.000 .600 .500 .400 .30 .500 .8001.000 .550 2.00 1.200 .625 .575 .460 .33 .600 .9001.100 .600 2.40 1.400 .675 .650 .550 .40 .700 1.0001.500 .675 2.80 1.700 .770 .750 .625 .43 .800 1.1001.800 .750 3.00 2.000 .950 .850 .700 .46 .900 1.3002.400 .850 3.60 2.200 1.000 .950 .750 .55 1.000 1.5002.600 1.000 4.30 2.700 1.300 1.100 .825 .60 1.200 1.8003.600 1.200 4.60 3.000 1.600 1.300 .900 .65 1.400 2.0004.000 1.400 5.00 3.300 2.000 1.500 1.000 .75 1.600 2.4005.000 1.600 6.00 4.000 2.400 1.700 1.150 .80 1.800 2.6007.000 1.800 6.50 4.500 3.000 1.900 1.300 .90 2.000 2.8007.500 2.000 7.50 5.000 3.400 2.200 1.400 .95 2.400 3.2008.000 2.200 8.00 6.000 4.000 2.600 1.600 1.10 3.000 3.70013.000 2.400 10.00 7.000 4.333 3.000 1.800 1.20 3.500 4.30015.000 2.800 15.00 8.000 5.555 3.400 2.000 1.30 4.000 5.00016.000 3.200 20.00 10.000 6.000 3.700 2.200 1.40 4.500 5.50020.000 3.800 35.00 13.000 7.000 4.000 2.600 1.80 5.500 6.00025.000 4.400 20.000 8.000 4.670 3.000 2.00 6.200 6.50035.000 5.000 35.000 10.000 5.500 3.500 2.40 7.000 7.0005.500 15.000 7.000 4.000 2.60 8.000 8.0006.000 20.000 8.000 4.500 3.00 10.000 10.0007.000 25.000 10.000 5.000 3.30 14.000 13.0008.000 35.000 15.000 5.500 3.70 20.000 20.00010.000 20.000 6.000 4.30 30.000 35.00014.000 35.000 6.600 5.0020.000 7.400 6.0035.000 8.000 7.009.000 7.5010.000 8.0012.500 9.0015.000 13.0020.000 15.0030.000 20.0035.00

'total=32 40 30 32 36 38 46 47 37 37
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TABLE 4.1 FREQUENCY BANDS AND RELATIVE ORDINATES OF FITTED
TRAPEZOIDAL SPECTRA FOR ELASTOPLASTIC SYSTEMS WITH 
5% DAMPING

MEAN SPECTRA NORMALIZED TO PEAK GROUND DISPLACEMENT

Ductility DISPLACEMENT REGION VELOCITY REGION ACCELERATION REGION
factor

from to ratio from to ratio from to ratio

1. .1 .43 1.000 .43 3.45 1.000 3.45 8. 1.000
1. 5 .1 .44 .604 .44 3.81 .621 3.81 8. . 687
2. . 1 .45 .448 .45 4.24 .461 4.24 8. . 568
3. .1 .47 .299 .47 4.65 . 328 4.65 8. .442
5. .1 .57 .171 .57 5.03 .227 5.03 8. .331

10. .1 .78 .080 .78 5.66 .144 5.66 8. .236

MEAN SPECTRA NORMALIZED TO PEAK GROUND VELOCITY

Ductility DISPLACEMENT REGION VELOCITY REGION ACCELERATION REGION
factor

from to ratio from to ratio from to ratio

1. .1 .39 1.000 .39 3.22 1.000 3.22 8. 1.000
1.5 .1 .40 .608 .40 3.54 .622 3.54 8. .684
2. .1 .40 .451 .40 4.00 .460 4.00 8. .572
3. .1 .42 .306 .42 4.42 .328 4.42 8. .449
5. .1 .53 .170 .53 4.68 .229 4.68 8. . 332

10. .1 .71 .079 .71 5.46 .143 5.46 8. .243

MEAN SPECTRA NORMALIZED TO PEAK GROUND ACCELERATION

Ductility DISPLACEMENT REGION VELOCITY REGION ACCELERATION REGION
factor

from to ratio from to ratio from to ratio

1. .1 .32 1.000 .32 2.86 1.000 2.86 8. 1.000
1.5 .1 .32 .627 .32 3.11 .635 3.11 8. .689
2. .1 .32 .473 .32 3.48 . 473 3.48 8. .575
3. .1 .32 .329 .32 3.92 .333 3.92 8. .455
5. .1 .40 .185 .40 4.22 .232 4.22 8. . 342

10. .1 .58 .080 .58 5.05 .145 5.05 8. .256



TABLE 4.2 SUMMARY OF FREQUENCY BAND STATISTICS FOR ELASTOPLASTIC SYSTEMS WITH 2% DAMPING

Spectral Region Ductility
(y)

Frequency Band 
<f* - fu>

Mean
(¥ ) u

Standard
Deviation

(v

COV
<!V

V \ M

1 0.10 0.49 1.691 .825 .49 1.000 1.00
1.5 0.10 - 0.46 1.000 .448 .45 .591 .97

Displacement 2 0.10 - 0.46 .722 .343 .48 .427 .99
3 0.10 - 0.48 .477 .222 .47 .282 .98
5 0.10 - 0.57 .273 .133 .49 .162 1.00

10 0.10 0.76 .129 .064 .50 .076 1.01

1 0.45 _ 3.32 2.032 .845 .42 1.000 1.00
1.5 0.42 - 3.79 1.143 .438 .38 .563 .98

Velocity 2 0.42 - 4.18 .817 .311 .38 .402 .97
3 0.43 - 4.58 .565 .202 .36 .278 .96
5 0.52 - 4.88 .385 .140 .36 .190 .96

10 0.70 — 5.63 .239 .079 .33 .118 .94

1 2.96 8.00 3.075 .743 .24 1.000 1.00
1.5 3.29 - 8.00 1.974 .421 .21 .642 .98

Acceleration 2 3.68 — 8.00 1.572 . 311 .20 .511 .96
3 4.02 - 8.00 1.195 .232 .19 .389 .96
5 4.39 - 8.00 .881 .164 .19 .287 .95

10 5.21 — 8.00 .647 .119 .18 .210 .95
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TABLE 4.3 SUMMARY OF FREQUENCY BAND STATISTICS FOR ELASTOPLASTIC SYSTEMS WITH 5% DAMPING

Spectral Region Ductility
(y)

Frequency Band
(f„ " f )v £ U

Mean
<v

Standard
Deviation

(v

COV
<v

<t> y X y

1 0.10 0.43 1.465 . 635 .43 1.000 1.00
1.5 0.10 - 0.44 .885 .363 .41 .604 . 98

Displacement 2 0.10 - 0.45 .656 .291 .44 .448 1.01
3 0.10 - 0.47 .439 .194 .44 .299 1.01
5 0.10 - 0.57 .250 .122 . 49 .171 1.04

10 0.10 — 0.78 .117 .061 . 52 . 080 1.06

1 0.39 3.22 1.552 . 597 . 39 1.000 1.00
1.5 0.40 - 3.54 .966 .346 .36 .623 .98

Velocity 2 0.40 - 4.00 . 714 .253 .35 .460 .98
3 0.42 - 4.42 . 508 .176 .35 .328 .97
5 0.53 - 4.68 . 355 .129 . 36 .229 .98

10 0.71 ““ 5.46 .222 .075 . 34 .143 .96

1 2.86 _ 8.00 2.281 . 494 .22 1.000 1.00
1.5 3.11 - 8.00 1.572 . 290 .18 . 689 .97

Acceleration 2 3.48 - 8.00 1.311 . 234 .18 . 575 .97
3 3.92 - 8.00 1.038 .174 .17 . 455 .96
5 4.22 - 8.00 .781 .134 .17 . 342 . 96

10 5.05 — 8.00 . 584 .097 .17 . 256 . 96
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TABLE 4.4 SUMMARY OF FREQUENCY BAND STATISTICS FOR ELASTOPLASTIC SYSTEMS WITH 10% DAMPING

Spectral Region Ductility
(y)

Frequency Band
<fi - £u>

Mean
(Y ) y

Standard
Deviation

<%>

COV
(0 ) y

y \ M

1 0.10 0.40 1.234 .478 .39 1.000 1.00
1.5 0.10 - 0.41 .781 .292 .37 .633 .99

Displacement 2 0.10 - 0.43 .577 .238 .41 .467 1.02
3 0.10 - 0.47 .384 .166 .43 .311 1.03
5 0.10 - 0.58 .218 .107 . .49 .177 1.07

10 0.10 “ 0.79 .103 .055 .54 .084 1.11

1 0.36 3.25 1.201 .436 .36 1.000 1.00
1.5 0.37 - 3.58 .778 .273 .35 .648 .99

Velocity 2 0.39 - 3.84 .612 .221 .36 .509 1.00
3 0.42 - 4.25 .438 .152 .35 .365 .99
5 0.54 - 4.56 .313 .113 .36 .260 1.00

10 0.72 5.28 .200 .069 .35 .166 .99

1 2.87 8.00 1.784 .321 .18 1.000 1.00
1.5 3.15 - 8.00 1.277 .212 .17 .716 .99

Acceleration 2 3.43 - 8.00 1.087 .168 .15 ’ .610 .98
3 3.81 - 8.00 .871 .135 .15 .488 . 98
5 4.19 - 8.00 .681 .119 .17 .382 .99

10 4.88 “ 8.00 .505 . 081 .16 .283 .98
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TABLE 4.5 SUMMARY OF FREQUENCY BAND STATISTICS FOR BILINEAR SYSTEMS WITH 5% DAMPING

Spectral Region Ductility
(m)

Frequency Band
(f* - V Mean

<v
Standard
Deviation

(%)
COV
(fi ) y

A y

1 0.10 0.43 1.465 .635 .43 1.000 1.00
1.5 0.10 - 0.44 . 882 . 361 .41 . 602 . 98

Displacement 2 0.10 - 0.44 . 648 . 286 .44 . 442 1.01
3 0.10 - 0.46 .423 .183 .43 .289 1.00
5 0.10 - 0.55 . 233 .109 .47 .159 1.02

10 0.10 0.68 .108 . 053 . 49 . 074 1.04

1 0.39 3.22 1.552 . 597 . 39 1.000 1.00
1.5 0.40 - 3.55 .960 . 344 . 36 . 619 . 98

Velocity 2 0.40 - 3.99 .701 .255 . 36 .452 . 98
3 0.41 - 4.35 .475 .162 . 34 . 306 . 97
5 0.49 - 4.84 . 308 . 107 . 35 .199 . 97

10 0.61 5.84 .177 . 055 . 31 .114 . 95

1 2.86 __ 8.00 2.281 .494 . 22 1.000 1.00
1.5 3.12 - 8.00 1.567 .287 .18 . 687 . 97

Acceleration 2 3.50 - 8.00 1.285 .223 .17 . 563 . 96
3 3.86 - 8.00 . 963 .156 .16 .422 . 95
5 4.37 - 8.00 . 704 .109 . 15 .309 . 95

10 5.26 8.00 . 493 . 088 . 18 . 216 .97
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TABLE 4.6 SUMMARY OF FREQUENCY BAND STATISTICS FOR DEGRADING SYSTEMS WITH 5% DAMPING

Spectral Region Ductility
(y)

Frequency Band
<fi - V

Mean
<v

Standard
Deviation{V

COV(V % X y

1 0.10 0.43 1.465 .•63 5 .43 1.000 1.00
1.5 0.10 - 0.44 .870 .348 .40 . 594 . 98

Displacement 2 0.10 - 0.45 . 617 .226 .37 .421 . 95
3 0.10 - 0.47 .392 .131 .34 .268 .93
5 0.10 - 0.57 .221 . 081 .37 .151 .95

10 0.10 “ 0.74 .103 .039 . 38 . 070 .96

1 0.39 3.22 1.552 .597 .39 1.000 1.00
1.5 0.40 - 3.54 . 939 . 359 . 38 .605 1.00

Velocity 2 0.40 - 3.96 .670 .240 .36 . 432 .98
3 0.43 - 4.75 .452 .149 .33 .291 .96
5 0.51 - 5. 53 .306 .100 .33 .197 .96

10 0.67 6.96 .186 .059 .32 .120 .95

1 2.86 8.00 2.281 .494 . 22 1.000 1.00
1.5 3.15 - 8.00 1.532 . 289 .19 . 672 . 98

Acceleration 2 3.54 - 8.00 1.235 .207 .17 . 542 . 96
3 4.21 - 8.00 . 998 .147 .15 . 438 .94
5 4.99 - 8.00 . 799 .110 .14 .350 .93

10 6.24 8.00 . 609 .101 .17 .267 . 96
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TABLE 4.7 COMPARISON OF RESULTS FOR ELASTIC SYSTEMS WITH NEWMARK'S ET AL. STUDY

This Study Reference 77

Damping Spectral Region M = 1 a COV Mean a COV

Displacement 1.69 . 83 .49 1.68 .83 .49
2% Velocity 2.03 .85 .42 2.06 . 92 .45

Accetleration 3.08 . 74 .24 2.76 .89 .32

Displacement 1.47 . 64 .43 1.40 . 64 .46
5% Velocity 1.55 . 60 .39 1.66 . 66 .40

Acceleration 2.28 .49 . 22 2.11 .49 . 23

Displacement 1.23 .48 .39 1.15 .47 .41
10% Velocity 1.20 .44 .36 1.34 .47 . 35

Acceleration 1.78 .32 .18 1.65 .36 . 22
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TABLE 5.1 RELATIONSHIPS BETWEEN GROUND MOTION
PEAKS FOR THE RECORDS USED IN THIS STUDY

Station, Component V/A
in/sec/g

AD
V-7

El Centro, E-W 68 3.1
Olympia, N86E 24 8.8
Golden Gate, S80E 17 5.6
Cholame, N85E 23 4.5
Castaic, N21E 21 5.3
Pacoima, S16E 38 3.8
Lima, N82W 17 16.4
Santiago, NlOW 58 3.7
Managua, E-W 41 5.0
San Juan, E-W 42 2.8

Average 35 5.9



TABLE 5.2 SPECTRAL ORDINATES AT 35 HERTZ FOR SPECTRA NORMALIZED TO GROUND ACCELERATION

MEAN - MEAN PLUS ONE STANDARD DEVIATION

y=l. 5 y=2 y=3 U=5 t il O

Elastoplastic, 3 = 2% .941-.963 .920-.948 .895-.931 .862-.906 .810-.864
Elastoplastic, 3 = 5% .935-.959 .913-.943 .884-.921 .846-.891 .784-.838
Elastoplastic, 3=10% .928-.955 .902-.935 .868-.907 .821-.868 .742-.797
Bilinear, 3=5% .932-.957 .906-.936 .871-.907 .820-.863 .731-.782
Degrading, 3=5% .932-.957 .907-.937 .874-.909 .829-.870 .748-.794

-0.07 M1P [1] .972 .953 .926 .893 .851
-0.10 roiU [2] .960 .933 .896 .851 .794
-0.13 r,,M [3] .948 .914 . 867 .811 . 741

[1] Approximate relation for elastoplastic systems with g=2% and 5% at mean + sigma level.
[2] Approximate relation for elastoplastic systems with 3=2% and 5% at mean level; and 

bilinear and degrading systems with 3=5%, and elastoplastic systems with 3=10%, at 
mean + sigma level.

[3] Approximate relation for bilinear and degrading systems with 3=5%, and elastoplastic 
systems with 3=10%, at mean level.
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FIG. 2.1 HYSTERESIS FOR REINFORCED CONCRETE BEAMS
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N =Constant

(a) Reinforced Concrete Member Without Adequate
Transverse Reinforcement. After Wight and Sozen (121).

(b) Reinforced Concrete Member With Anchorage 
Defect. After Higashi and Takeda (46).

FIG. 2.2 EFFECT OF REINFORCEMENT DEFICIENCIES ON HYSTERESIS LOOPS
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P

FIG. 2.3 P-6 EFFECT FOR IDEAL COLUMN SUBJECTED TO
LATERAL LOAD AND CONSTANT AXIAL FORCE
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,P, A

3'

5"x 10" Beam

Vr-r

5"x5" Column

P(kips)

Cycles 5 to 8

Cycle 5

A (in.)
-2-

P (kips)

Cycle J

Cycles I to 4

P (kips)

Cycles 9 to 12

Cycle 9

A (in.)

FIG. 2.4 LOAD-DEFLECTION CURVES FOR R/C FRAME MODEL. AFTER GULKAN AND SOZEN (39)
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Gravity Load 27 lb/ft*

0.357 H

0.214 H

0.171 H

2"x 2" Columns 

0.129 H

Beams 0.086 H

0.043 H

Plan

a) R/C Building Model

0.5- -

0.4--

W = Total Weight
0.2- -

-2 -I
Lateral Deflection at 
Top of Frame (in.)

-- 0.3

- - -0.4

b) Lateral Load-Deflection Curves for Model

FIG. 2.5 REINFORCED CONCRETE BUILDING MODEL. AFTER PARK AND PAULEY (87)
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T40 (.Mtf. *»•

Specimen R2:

- Rectangular section, 4"x75". Height 15’

- Main flexural reinforcement 6#4, D3 ties 

9 4" except in lower 6 ft.

- Confinement reinforcement around flexural 

reinf. in lower 6 ft: Sow hoops 9 1-1/3”

- Horizontal web reinforcement 6nr @ 8" EF

- Vertical web reinforcement 6mm @ 9" EF

- f^ at test 6735 psi

Specimen Bl:

- Barbell section, 4"x75" with 12"xl2" edge
colunrs. Height 15‘ /

- Main flexural reinforcement 8*4, 03 ties 9 8” *

- Horizontal web reinforcement 6imi 9 8" EF

- Vertical reinforcement 6mm @ 9" EF

- at test 7685 psi

29 22

fig. 2.6 LOAD-DEFLECTION CURVES FOR R/C WALLS AFTER OESTERLE ET AL. (81)
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'i iTii«• im
i

Overturning

GrovitvLoads

6" Slob
Na2 At 3“ QC. 4" WallEach Way and 3“ SlabEach Face
Wall 4" Thick

3''Slab
IO"Sq. ColumnSpiral At 0533

Footing

LateralLoad

(a) Dimensions and Details of Wall Specimens (b) Loading Configuration

FIG. 2.7 LOAD-DEFLECTION CURVES FOR R/C WALL SUBASSEMBLAGES. AFTER WANG, BERTERO, 
AND POPOV (120).
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\'A'A\\VT<AV<AVv'

Cycl* No.

5 O 14 15
Dtfloction, in.

a) Wall with Conventionally Reinforced Coupling Beams

CyclM (T

Dtflection, ia

b) Wall with Diagonally Reinforced Coupling Beams

c) Coupled Wall Specimen
FIG. 2.8 LOAD-DEFLECTION CURVES FOR COUPLED R/C WALLS WITH DIFFERENT BEAM DETAILING.AFTER PARK AND PAULAY (87), AND PAULAY AND SANTHAKUMAR (89).
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LOADING PATTERN USED FOR INFILLED FRAMES

L+HUN)
CALCULATED 

(RIGID-PLASTIC) 
BARE FRAME

mwvmmv

+8 (cm)

EXPERIMENTAL

-200
LATERAL LOAD-DEFLECTION RELATIONSHIP FOR FRAME WITH CLAY INFILL

CALCULATED
+8| I +H A+H(kN) (RIGID-PLASTIC)

EXPERIMENTAL

i+H(kN)
+8 i J+H

CALCULATED (RIGID-PLASTIC) 
BARE FRAME

200-

EXPERIMENTAL

-300J
LATERAL LOAD-DEFLECTION RELATIONSHIP FOR FRAME WITH CONCRETE BlOCK r<r!L.

FIG. 2.9 LOAD-DEFLECTION CURVES FOR MASONRY INFILLED AND BARE R/C FRAMES. AFTER KLINGNER AND BERTERO (56).
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t 100

68 KIPS

38.6 KIPS
36 ksi

25.7 KIPS
24 ksi

TIP DEFLECTION - M.

73 KIPS 18 WF 50 
ALL WELDED

(a) Steel beam. After Popov and Stephen (95)

H(kips)

27 /39 /Cycle 49

A (in.)

-20-

(b) Steel frame. After Carpenter and 
Lu (23)

(c) Steel member with 
high axial force

FIG. 2.10 HYSTERESIS FOR STEEL MEMBERS AND UNBRACED STEEL FRAMES
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Unbraced Steel Frames 
and Steel Members 
(Moderate Axial Load)
Eccentrically Braced 
Steel Frames

Type H
Reinforced Concrete 
Members, Frames 
and Walls. (Flexural 
Behavior)

Type m
— Slip at R/C Joints 

or Bolted Steel
— Short R/C Members
— Concentrically Braced 

Steel Frames

FIG. 2.12 SUMMARY OF HYSTERETIC SHAPES FOR STRUCTURES



Deflection Deflection

Deflection Deflection

FIG. 2.13 THE TAKEDA-SOZEN STIFFNESS DEGRADING MODEL
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FIG. 2.14 THE OTANI-SOZEN STIFFNESS DEGRADING MODEL
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FIG. 2.15 STIFFNESS DEGRADING MODEL DERIVED FOR THIS STUDY
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Elastoplastic

FIG. 2.16 NONLINEAR MODELS USED IN THIS STUDY
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u = x-y 
R = R (u)
C s 2cum^

FIG. 3.1 SYSTEM CONSIDERED IN THIS STUDY
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FIG. 3.2 GROUND MOTION FOR THE EL CENTRO RECORD OF MAY 18, 1940. E-W COMPONENT.
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FIG. 3.3 GROUND MOTION FOR THE OLYMPIA RECORD OF APRIL 13, 1949. N86E COMPONENT.
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. 3.4 GROUND MOTION FOR THE GOLDEN GATE PARK RECORD OF MARCH 22, 1957 S80E COMPONENT.
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FIG. 3.5 GROUND MOTION FOR THE CHOLAME-STA. 5 RECORD OF JUNE 27. 1966 N85E COMPONENT
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FIG. 3.7 GROUND MOTION FOR THE PACOIMA RECORD OF FEBRUARY 9, 1971 S16E COMPONENT

140



GR
OU
ND
 D
IS
PL
AC
EH
EN
T 
(I
N)
 GRO

UN
D 
VE
LO
CI
TY
 (
IN
/S
EC
) GR

OU
ND
 A
CC
EL
ER
AT
IO
N (

G) .1

-.15 ..

TIME (SECONDS)

-e. 1
TIME (SECONDS)

-.5

FIG. 3.8 GROUND MOTION FOR THE LIMA RECORD OF MAY 31, 1970. N82W COMPONENT.
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FIG. 3.9 GROUND MOTION FOR THE SANTIAGO RECORD OF JULY 8, 1971. N10W COMPONENT.
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FIG. 3.10 GROUND MOTION FOR THE MANAGUA RECORD OF DECEMBER 23, 1972. E-W COMPONENT.
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FIG. 3.11 GROUND MOTION FOR THE SAN JUAN RECORD OF NOVEMBER 23, 1977. E-W COMPONENT.
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FIG. 3.12 DUCTILITY FACTOR VS. YIELD LEVEL CURVES FOR ELASTOPLASTIC SYSTEMS WITH 5% DAMPING 
SUBJECTED TO THE PACOIMA S16E RECORD. FREQUENCIES BETWEEN 0.03 AND 0.75 CPS.
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Ductility In Opposite 
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f =2.6

4 5 6 7 8 910
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4 5 6 7 8 9KD

Z4
FIG. 3.13 DUCTILITY VS. YIELD LEVEL CURVES FOR ELASTOPLASTIC SYSTEMS WITH 5% DAMPING

SUBJECTED TO THE PACOIMA S16E RECORD. FREQUENCIES BETWEEN 1.1 AND 7 CPS.

Qf
cT



P9
EU

D
0V

EL
0C

IT
Y

 (IN
/S

EQ

200.0

100.0

02 ---^^^^------------
0.01 0.02 0.06 0.1 02 0.5 1.0 2.0 5.0 10.0 20.0 50.0 100.0

FREQUENCY (CPS)
FIG. 3.14 ELASTIC RESPONSE SPECTRA FOR EL CENTRO, MAY 18, 1940. E-W COMPONENT.
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FIG. 3.16 ELASTIC RESPONSE SPECTRA FOR GOLDEN GATE PARK, MARCH 22, 1957. S80E COMPONENT.
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FIG. 3.17 ELASTIC RESPONSE SPECTRA FOR CHOLAME, STA. 5, JUNE 27, 1966. N85E COMPONENT.
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FIG. 3.18 ELASTIC RESPONSE SPECTRA FOR CASTAIC, FEBRUARY 9, 1971. N21E COMPONENT.
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fig. 3.19 ELASTIC RESPONSE SPECTRA FOR PACOIMA, FEBRUARY 9, 1971. S16E COMPONENT.
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FIG. 3.20 ELASTIC RESPONSE SPECTRA FOR LIMA, MAY 31, 1970. N82W COMPONENT.
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FIG. 3.21 ELASTIC RESPONSE SPECTRA FOR SANTIAGO. JULY 8. 1971. NlOW COMPONENT.
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FIG. 3.22 ELASTIC RESPONSE SPECTRA FOR MANAGUA, DECEMBER 23, 1972. E-W COMPONENT.
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FIG. 3.23 ELASTIC RESPONSE SPECTRA FOR SAN JUAN, NOVEMBER 23, 1977. E-W COMPONENT.
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FIG. 3.24 INELASTIC YIELD SPECTRA FOR EL CENTRO, MAY 18, 1940, E-W. ELASTOPLASTIC

SYSTEMS WITH 2% DAMPING.
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FREQUENCY (CPS)3.25 INELASTIC YIELD SPECTRA FOR EL CENTRO, MAY 18, 1940, E-W. ELASTOPLASTIC
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FREQUENCY (CPS)FIG. 3.27 INELASTIC YIELD SPECTRA FOR EL CENTRO, MAY 18, 1940, E-W. BILINEAR
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FREQUENCY (CPS)FIG. 3.28 INELASTIC YIELD SPECTRA FOR EL CENTRO, MAY 18, 1940, E-W. DEGRADING

SYSTEMS WITH 5% DAMPING.
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FREQUENCY (CPS)FIG. 3.34 INELASTIC YIELD SPECTRA FOR OLYMPIA, APRIL 13, 1949, N86E. ELASTOPLASTIC 

SYSTEMS WITH 10% DAMPING.
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FREQUENCY (CPS)FIG. 3.35 INELASTIC YIELD SPECTRA FOR OLYMPIA, APRIL 13, 1949, N86E. BILINEAR
SYSTEMS WITH 5% DAMPING.
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FIG. 3.37 TOTAL DEFORMATION SPECTRA FOR OLYMPIA, APRIL 13, 1949, N86E. ELASTOPLASTIC 

SYSTEMS WITH 5% DAMPING.
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FIG. 3.41 INELASTIC YIELD SPECTRA FOR GOLDEN GATE PARK, MARCH 22, 1957 S80E
BILINEAR SYSTEMS WITH 5% DAMPING.
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FIG. 3.42
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FREQUEMCY (CPS)FIG. 3.82 COMPARISON OF INELASTIC SPECTRA FOR ELASTOPLASTIC AND BILINEAR SYSTEMS
WITH 5% DAMPING, SUBJECTED TO EL CENTRO, MAY 18, 1940, E-W COMPONENT.
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FREQUENCY (CPS)FIG. 3.84 COMPARISON OF INELASTIC SPECTRA FOR ELASTOPLASTIC AND BILINEAR SYSTEMS
WITH 5% DAMPING, SUBJECTED TO OLYMPIA, APRIL 13, 1949, N86E COMPONENT.
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FIG. 3.90.b INTERNAL FORCE VS. DEFORMATION FOR THE BILINEAR SYSTEM OF FIG. 3.89.
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FIG. 3.90.c INTERNAL FORCE VS. DEFORMATION FOR THE DEGRADING SYSTEM OF FIG. 3.89.
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FIG. 3.94.C INTERNAL FORCE VS. DEFORMATION FOR THE DEGRADING SYSTEM OF FIG. 3.93.
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FREQUENCY (CPS)FIG. 4.2.b MEAN AND MEAN + la OF SPECTRA NORMALIZED TO GROUND VELOCITY. ELASTOPLASTIC
SYSTEMS WITH 5% DAMPING. DUCTILITY FACTORS: 1.5, 3, AND 10.
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------- Peak Ground Displacement

O 05

FREQUENCY (CPS)
FIG. 4.5 COV OF SPECTRA FOR ELASTOPLASTIC SYSTEMS WITH 5% DAMPING AND DUCTILITY = 5
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n̂ro

200.0

FREQUENCY (CPS)FIG. 4.6 MEAN OF SPECTRA NORMALIZED TO GROUND ACCELERATION. ELASTOPLASTIC SYSTEMS
WITH 2% DAMPING.
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FREQUENCY (CPS)FIG. 4.7 MEAN OF SPECTRA NORMALIZED TO GROUND VELOCITY. ELASTOPLASTIC SYSTEMS
WITH 2% DAMPING.
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10.0

FREQUENCY (CPS)FIG. 4.8 MEAN OF SPECTRA NORMALIZED TO GROUND DISPLACEMENT. ELASTOPLASTIC SYSTEMS
WITH 2% DAMPING.
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FREQLENCY (CPS)FIG. 4.9 MEAN OF SPECTRA NORMALIZED TO GROUND ACCELERATION. ELASTOPLASTIC SYSTEMS

WITH 10% DAMPING.
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FREQUENCY (CPS)FIG. 4.10 MEAN OF SPECTRA NORMALIZED TO GROUND VELOCITY. 

WITH 10% DAMPING.
ELASTOPLASTIC SYSTEMS
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0.05 0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0 100.0
FREQUENCY (CPS)MEAN OF SPECTRA NORMALIZED TO GROUND DISPLACEMENT. ELASTOPLASTIC SYSTEMS

WITH 10% DAMPING.
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200.0

FREQUENCY (CPS)
FIG. 4.12 MEAN OF YIELD SPECTRA NORMALIZED TO GROUND ACCELERATION. BILINEAR SYSTEMS.
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0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0 100.0
FREQLENCY (CPS)

FIG. 4.13 MEAN OF YIELD SPECTRA NORMALIZED TO GROUND VELOCITY. BILINEAR SYSTEMS.
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FREQUENCY (CPS)

FIG. 4.14 MEAN OF YIELD SPECTRA NORMALIZED TO GROUND DISPLACEMENT. BILINEAR SYSTEMS,.
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FIG. 4.15 MEAN OF YIELD SPECTRA NORMALIZED TO GROUND ACCELERATION. DEGRADING SYSTEMS.
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(03S/NI) 
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5.0

FREQUENCY (CPS)
FIG. 4.16 MEAN OF YIELD SPECTRA NORMALIZED TO GROUND VELOCITY. DEGRADING SYSTEMS.
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FREQUENCY (CPS)
FIG. 4.17 MEAN OF YIELD SPECTRA NORMALIZED TO GROUND DISPLACEMENT. DEGRADING SYSTEMS.
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Fitted Trapezoidal Line

f = frequency

FIG. 4.18 TRAPEZOIDAL LINE FITTED TO AVERAGE SPECTRUM



DUCTILITY =

-----Mean spectra normalized
to ground displacement

-----Trapezoidal lines fitted
to mean spectra 

o Knee frequencies

FREQUENCY (CPS)FIG. 4.19 TRAPEZOIDAL LINES FITTED TO MEAN SPECTRA NORMALIZED TO GROUND DISPLACEMENT
AND KNEE FREQUENCIES. ELASTOPLASTIC SYSTEMS WITH 5 PERCENT DAMPING
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FREQUENCY (CPS)
FIG. 4.20 TRAPEZOIDAL LINES FITTED TO MEAN SPECTRA NORMALIZED TO GROUND VELOCITY

AND KNEE FREQUENCIES. ELASTOPLASTIC SYSTEMS WITH 5 PERCENT DAMPING.
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TRAPEZOIDAL LINES FITTED TO MEAN SPECTRA NORMALIZED TO GROUND ACCELERATION 
AND KNEE FREQUENCIES. ELASTOPLASTIC SYSTEMS WITH 5 PERCENT DAMPING
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Elastoplastic Systems 
Displacement Region

2%

FIG. 4.22 y FOR ELASTOPLASTIC SYSTEMS. DISPLACEMENT REGION, y
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Elastoplastic Systems 
Velocity Region

£ * 2%

H-

FIG. 4.23 ¥ FOR ELASTOPLASTIC SYSTEMS. VELOCITY REGION.P
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Elastoplastic Systems 
Acceleration Region
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FIG. 4.24 Y FOR ELASTOPLASTIC SYSTEMS. ACCELERATION REGION, y
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FIG. 4.25 V FOR ELASTOPLASTIC, DEGRADING, AND BILINEAR SYSTEMS.
DISPLACEMENT REGION.
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FIG. 4.26 y FOR ELASTOPLASTIC, DEGRADING, AND BILINEAR SYSTEMS
VELOCITY REGION.
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FIG. 4.27 Y FOR ELASTOPLASTIC, DEGRADING, AND BILINEAR SYSTEMS.
ACCELERATION REGION.

7678



iVd = ̂

272

1.0
0.9

0.8
0.7

0.6

as

0.4

0.3

— 1 1 1 1 1 < 1 1 ' 1 1 M II 11 11 11111 Mil
Elastoplastic Systems: 

Displacement Region : 

p = 0.87^9 0005 = 
r = 1.07 ;

for 2 < )9 < 10 :
1.5 < ^ ^ 10 ;

-

—

—

—

/— 5 %

iiiiiiiii
11jllllll 111 £ *2

-10% -

JL U 
L

-

! -

. ;

-<

= i i i i -1..1 I l ..1 1 11111,1 1 lllllllll UlLLLUl 1 1 1 1 Mil ILL! JILL mi

0.2

0.15

0.1
0.09

008

0.07

I 1.5 5 6 7 8 9 10

FIG. 4.28 DEAMPLIFICATION FACTOR FOR ELASTOPLASTIC SYSTEMS.
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Elastoplastic Systems 
Velocity Region

p * q +1
q ■ 2.70 /3“0'40 
r « 0.66 iS-0 04 

for 2 S i8 £ 10

13 • 2%
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FIG. 4.29 DEAMPLIFICATION FACTOR FOR ELASTOPLASTIC SYSTEMS.
VELOCITY REGION.
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FIG. 4.30 DEAMPLIFICATION FACTOR FOR ELASTOPLASTIC SYSTEMS.
ACCELERATION REGION.
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FIG. 4.31 DEAMPLIFICATION FACTOR FOR ELASTOPLASTIC, BILINEAR, 
AND DEGRADING SYSTEMS. DISPLACEMENT REGION.
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FIG. 4.32 DEAMPLIFICATION FACTOR FOR ELASTOPLASTIC, BILINEAR,
AND DEGRADING SYSTEMS. VELOCITY REGION.
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Acceleration Region 
5% Damping
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° Degrading 
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FIG. 4.33 DEAMPLIFICATION FACTOR FOR ELASTOPLASTIC, BILINEAR,
AND DEGRADING SYSTEMS. ACCELERATION REGION.
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FREQUENCY (CPS)FIG. 4.34 COMPARISON OF MEAN SPECTRA NORMALIZED TO GROUND VELOCITY FOR ELASTOPLASTIC
SYSTEMS WITH 2, 5, AND 10% DAMPING, AND DUCTILITY FACTORS OF 1, 2, AND 5.

278



ox
iy
 (
IN
/S
EC
)
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FREQUENCY (CPS)FIG. 4.35 COMPARISON OF MEAN SPECTRA NORMALIZED TO GROUND VELOCITY FOR ELASTOPLASTIC
SYSTEMS WITH 2, 5, AND 10% DAMPING, AND DUCTILITIES OF 1.5, 3, AND 10.
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FREQLENCY (CPS)FIG. 4.36 COMPARISON OF MEAN SPECTRA NORMALIZED TO GROUND ACCELERATION FOR BILINEAR
AND ELASTOPLASTIC SYSTEMS WITH 5% DAMPING.
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FREQUENCY (CPS)FIG. 4.37 COMPARISON OF MEAN SPECTRA NORMALIZED TO GROUND ACCELERATION FOR DEGRADINGAND ELASTOPLASTIC SYSTEMS WITH 5% DAMPING.
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FREQUENCY (CPS)FIG. 4.38 COMPARISON OF MEAN SPECTRA NORMALIZED TO GROUND ACCELERATION FOR BILINEAR

AND DEGRADING SYSTEMS WITH 5% DAMPING.
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Elastic Design 
Spectrum^.

Design Ground 
Motion

0.03 cps 0.1 cps 33 cps

FIG. 5.1 CONSTRUCTION OF ELASTIC DESIGN SPECTRUM.
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Elastic K L
Design Spectrum

Inelastic 
Design Spectra

0.03 cps 0.1 cps 33 cps

FIG. 5.2 CONSTRUCTION OF INELASTIC DESIGN SPECTRA.
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FIG. 5.3 COMPARISON OF DEAMPLIFICATION FACTORS DERIVED 
IN THIS STUDY WITH PREVIOUSLY AVAILABLE RULES, DISPLACEMENT REGION.
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Elosloplattic Systems 
Velocity Region

P " q «•! 
q - 2.70 /8~a40 
r « 0.66 /9"a04 

for 2 s £ S 10

i 1 11U

FIG. 5.4 COMPARISON OF DEAMPLIFICATION FACTORS DERIVED 
IN THIS STUDY WITH PREVIOUSLY AVAILABLE RULES, 
VELOCITY REGION.
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Elastoplastic Systems 
Acceleration Region

p - q +
q « 3.00/3
r « 0.48 /3

for 2 £ ^ ^ 10
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Old Rule ! 4>ft,
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FIG. 5.5 COMPARISON OF DEAMPLIFICATION FACTORS DERIVED 
IN THIS STUDY WITH PREVIOUSLY AVAILABLE RULES, 
ACCELERATION REGION.
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FREQUENCY (CPS)FIG. 5.6 EXAMPLE OF DESIGN SPECTRA SCALED TO Ig GROUND ACCELERATION, FOR FIRM GROUND
AND 5% DAMPING, USING FACTORS CORRESPONDING TO THE MEAN + la LEVEL.
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FREQUENCY (CPS)FIG. 5.7 COMPARISON OF DESIGN SPECTRA WITH ACTUAL RESPONSE SPECTRA FOR EL CENTRO,
MAY 18, 1940, E-W COMPONENT, NORMALIZED TO Ig GROUND ACCELERATION.
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FREQUENCY (CPS)FIG. 5.8 COMPARISON OF DESIGN SPECTRA WITH ACTUAL RESPONSE SPECTRA FOR OLYMPIA,

APRIL 13, 1949, N86E COMPONENT, NORMALIZED TO Ig GROUND ACCELERATION.
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FREQUENCY (CPS)FIG. 5.9 COMPARISON OF DESIGN SPECTRA WITH ACTUAL RESPONSE SPECTRA FOR SANTIAGO,JULY 8, 1971, N10W COMPONENT, NORMALIZED TO Ig GROUND ACCELERATION.
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