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I. INTRODUCTION 
Systems far from equilibrium often ;nvolve Shockwaves—regions only 

a few free paths in width with large gracients in density, velocity, and 
stress. The research described here ;-> not directly concerned with 
Shockwaves, but developed in a roundabout way froit> attempts to describe 

2 3 
dense-fluid Shockwaves with Navier-Stokes continuum mechanics. The 
Navier-Stokes approach to Shockwave structure requires a complete 
knowledge of fluid properties in all of the thermodynamic states through 
which the material is driven by the shock process. In addition to the 
equation of state relating density, pressure, and energy, one must also 
know the state-dependent bulk and shear viscosities and the thermal 
conductivity. Because little was known about the state dependence of 
the bulk viscosity I set out to develop a computational method for 
measuring that viscosity in computer experiments incorporating adiabatic 
deformation. 

The resulting computational scheme for bulk viscosity has led to a 
general Hamiltonian formulation for adiabatic deformations, useful for 
solids as well as fluids. A Hamiitonian formulation is desiratle for 
any dynamical problem. It provides not only microscopic equations of 
motion, but also access to a well-developed time-dependent perturbation 
theory. Here I describe, in turn, the way the new Harailtonian ap^ared, 
the consequences of applying linear-response perturbation theory to the 
Hamiltonian description of adiabatic deformation, and finally, the 
results of numerical calculations based on the corresponding Hamiltonian 
equations of motion. 

The numerical calculations strongly suggest that dense-fluid trans­
port coefficients exhibit frequency dependence large enough to detect in ft 
real laboratory experiments. ; f" , ; rr ' . •. 2 LiW"'&x 
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II. HAMILTONIAN DESCRIPTION OF ADIABATIC DEFORMATION 
Consider a macroscopic continuum undergoing a hcmogenecus deforma­

tion described by a strain-rate tensor vu. If we choose for the origin 
a location where Vu vanishes, then the local velocity q is q«Vu. For 
illustrative purposes we chose a simple shear deformation, with the x 
displacement proportional to the y coordinate: 

x = ey. ' (1) 

If this continuum deformation were suddenly applied, for a short time 
dt, to every particle in an atomistic many-body system, then the energy 
would change in a way dependent upon the initial c^rticle coordinates. 
With a pairwise-additivc potential energy, $ = I Y , the (potential) 
energy change could be written in terras of the pair-force contributions 

A 
to the pressure-tensor component Pv„ : 

xy 
dE = d4> = £(d$/dr) 'dr/dx)Ax = j»<j>' (xy/r)edt = -p* Ve. (2) 

xy 
Thermodynamics suggests, on the other hand, that in a real shear defor­
mation the kinetic part of P would also do work, causing a 
corresponding change in the kinetic energy K: 

dK = - djmv v = - P VE. (31 
' x y xy l J' 

If the Hainiltonian H(q,p) describing the system included a term 
]>yPxE i then the kinetic-energy change (3) would arise naturally. The 
Hamiltonian equations of motion (q = 3H/3p;p = -3II/gq) would provide 
additional accelerations, 

i p y = ̂ p x - (4} 

The resulting kinetic-energy change would agree with (3). 
The need for momentum scaling, not just coordinate scaling, in 

adiabatic deformation, can most easily be appreciated in the ideal-gas 
case. Consider the homogeneous expansion of a monatomic ideal gas, 
with a linear strain rate x/x = y/y = z/z = E = (1/3)V/V. In this case 
the inclusion of a term Jq«Pe in the Harailtonian would not only 
reproduce the macroscopic deformation, but would also provide 
accelerations, p = -ep, leading to adiabatic cooling. The resulting 
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rate of change of the kinetic energy with strain rate, 

E = [p-p/m = -(2/3)E(V/V), (5) 

gives exactly the thermodynamic ideal-gas energy-volume relation for 
adiabatic expansion, leading to a pressure varying as the 5/3 power of 
the number density. 

The two kinds of deformation just described, shear and dilatational, 
as well as longitudinal or mixed ones, can all' be systematically and 
compactly described. Each corresponds to the addition of a perturbation 
to the usual equilibrium Hamiltonian, 

eq i W (6) 
H e q = f(p-p/?m)+ ^ . 

The perturbing term is the double-dot product of Doll's Tensor [qp and 
the strain rate tensor yu. The double-dot notation in (6) indicates 
that all nine terms of the form Vq p 7 u are included in the product. 

i 3 i J 
Adiabatic deformations could be carried out, in computer experi­

ments, by interjecting occasional sudden coordinate and momentum 
scalings such as (1) and (4) into otherwise conventional solutions of 
Newton's equations of motion. It is preferable to incorporate 
deformation smoothly in the equations if motion, as suggested by the 
Hamiltonian (6), Then the equations of motion, 

q - (p/m) + q-Vu ; (?) 
p = F - Vu-p , 

describe a continuous adiabatic process. 
Just as in the equilibrium case, the equations of motion (7) 

derived from the Harailtonian (6) are dynamically reversible, provided 
only that the macroscopic strain rate yu is reversed along with the 
particle velocities. The momenta from (6) have a simple interpre­
tation—they are the product of mass with velocity in a frame moving 
with the local macroscopic velocity: 

p = m(q - q • Vu) . ( 7 a) 



The equations of motion are also in exact agreement with the thermo­
dynamic relation for an adiabatic deformation, 

E = £-F-q + ]>{p/m)'p = -VP:Vu, (8) 

where we use the microscopic global definition of the pressure tensor P: 

PV = iFq + l'[pp/m) . (9) 

This pressure tensor is exactly the average momentum flux within the 
periodic volume V. It is not a surface interaction, measured across a 
system boundary, so that our global adiabatic deformation scheme does 
not apply accurately to deformations with very large pressure gradients, 
such as those found in strong Shockwaves. 5 Hans C. Andersen independently and simultaneously discovered a 
hydrostatic form of the Hamiltonian (6). His aim was to develop a 
formulation for constant-pressure molecular dynamics, fixing the mean 
pressure by allowing volume fluctuations. In our v/ork the strain rate 
is prescribed and produces fluctuations in the pressure tensor. In 
either case the equations of motion can readily be solved numerically. 
The velocity must be adjusted whenever a particle crosses a moving 
periodic boundary. The momentum is unchanged in such a crossing, but 
the momentum is measured relative to a local velocity, and the lc^al 
velocity is generally different on two opposite sides of the periodic 
volume V. 

The Hamiltonian formulation just described for adiabatic mechanical 
work has no known analog describing icochoric heat flow. The micro­
scopic analog of the thermodynamic relation dB = TdS has not been found. 
Despite considerable effort, this challenge remains. 

III. LINEAR RESPONSE THEORY 
For small strain rates the adiabatic deformation described by yu 

can be treated as a small perturbation to the Hamiltonian Hgq. Linear-
response theory can then be used to calculate the resulting (viscous) 
nonequilibrium properties. Zwanzig's review is the classical reference 
to the fundamental work of Green, Kubo, and Mori. A useful detailed 

. . 7 
account appears in HcQuarne's recent text. 
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If we imagine that a shear perturbation £ qp: v u is added to the 

Hamiltonian at time zero, then, at time t, the internal energy has 
changed by AE, and the N-particle distribution function, from linear 
response theory, reflects that change: 

f(q,p,t)/f = exp(AE/kT) * 1 - (l/kT)/JVu:J'Vds . (10) 

The averages of dynamical phase functions, such as the energy and the 
pressure tensor, as well as the few-body distribution functions, can be 
obtained from (10). As an example, consider the kinetic prrt of P V: 

^ x V ^ n o n e , = ̂ (W^loJP^tjyt . (11) 

In the usual Green-Kubo autocorrelation expression for P the integrand 
contains a kinetic term P (0)Pk (t), a potential terra Pvv'°^ piv'^' a n ( 3 

a "cross-term" [$• (0)P* (t) + P$ (0)P k (t)]. Here we find that the 
kinetic part of P contains the kinetic erm and half the cross term, xy 
Thus, just as in the approximate Enskog theory, the cross terai makes 
equal contributions to the kinetic and potential parts of the momentum 
flux. 

The analogous calculation for bulk viscosity is particularly 
interesting for an inverse nth power repulsive potential, $ = e (o/r) n, 
In that case the contributions of the potential-energy and kinetic-
energy fluctuations can be directly related to the corresponding 
fluctuations in the mean pressure: 

6? = -5K; VSP = (n/3)5<!> + (2/3)6K;.". i?^/&Pk = -n/2. (12) 

The exact result, valid at all times, that the potential part of the 
(constant-energy) pressure fluctuation is -n/2 times the kinetic part is 
a useful check of correlation functions. For instance, consider the 
inverse 12th power soft-sphere potential. Equation (12), valid at any 
time, shows that for the fluctuations giving bulk viscosity the ratio 
kinetic:crosspotential is 1:(-12):36, so that the potential 
contribution dominates, even at the lowest density. The extension of 
the sinple soft-sphere relations between the potential and kinetic 
pressure fluctuations to more general force laws remains a challenge. 
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IV. NUMERICAL CALCULATIONS 
a A series of calculations was carried out for the inverse 12th power 

soft-sphere potential. In that work the hysteresis associated with 
cyclic compression and dilation (with V u varying sinusoidally in the 
time) was used to find the density dependence of the soft-sphere bulk 
viscosity. The results from that investigation were surprising. The 
bulk viscosities found were less than the predictions of Enskog's theory 
by as much as a factor of seven. Although the calculations could not be 
pursued at very low densities, the moderate-density results varied 
approximately as the 3/2 power of density. A posteriori, it is possible 
to "understand" the marked disagreement between the numerical 
viscosities and the Enskog predictions, based on the relative size of 
normal-stress and shear-stress fluctuations in inverse nth-power fluids. 
The results point out the need for a replacement theory; hopefully it 
will appear in time for Enskog's 1984 Centennial. 

In the more realistic Lennard-Jones case a series of calculations 
near the triple point produced frequency-dependent bulk viscosities 
reasonably close to those obtained by integrating the appropriate Green-
Kubo integrands, as measured by Levesque and Pollock. There is consid­
erable reproducible number dependence in the small-systeu long-time 
oehavior of the Green-Kubo integrands, so that the actual large-system 
"long-time-tail" behavior of these functions is still in doubt. The 
agreement between the non-equilibrium frequency-dependent bulk 
viscosities and the Green-Kubo integrals could be noticeably improved by 
adding a reasonable long-time tail, varying as t , to the Levesque-
Pollock data. The corresponding low-frequency viscosity exhibits a 

1/2 strong variation with frequency, ~w , large enough to be observed in 
careful laboratory measurements reaching frequencies of order 10 8 or 10 
hertz. Evans has found a similar strong frequency-dependence in the 
Lennard-Jones shear viscosity near the triple point. 

It remains a puzzle that the Shockwave simulations which originally 
motivated this work do not seem to show analogous frequency or wave­
length effects. Comparisons of Shockwave profiles from molecular 
dynamics ' with those from Navier-Stokes continuum mechanics indicate 
that the effective transport coefficients in strong Shockwaves are not 
very different from those of ordinary long-wavelength low-frequency 
hydrodynamics. A theoretical understanding of the profile similarity is 
desirable. 



V. CONCLUSION 

Although Harailtonians of various kinds have previously been used to 
derive Green-Kubo relations for the transport coefficients » the 
particular choice described here is uniquely related to thermodynamics. 
This nonequilibrium Harailtonian formulation of fluid flow provides 
pedagogically simple routes to nonequilibrium fluxes and distribution 
functions, to theoretical understanding of long-time effects, and to new 
numerical methods for simulating systems far from equilibrium. 

The same methods are now being applied to solid-phase problems. At 
the relatively high frequencies used in the viscous fluid calculations 
described here, solids typically behave elastically. Lower frequencies 
lead to the formation of dislocations and other defects, making it 
possible to study plastic flow. 

A property of the nonequilibrium equations of motion which might be 
profitably explored is their effective irreversibility. Because only a 
few particles are necessary to generate irreversible behavior, simula­
tions using adiabatic deformations of the kind described here could 
perhaps elucidate the instability in the equations of motion responsible 
for irreversibility. 
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