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I. INTRODUCTION

Systems far from eguilibrium often ‘nvolve shockwaves~-regions only
a few free paths in width with large gracients in density, velocity, and
stress}' The research described here I not directly concerned with
shockwaves, but developed in a roundabouh: way from attempts to describe
dense~fluid shuckwaves2 with Navier-Stokes continuum mechanics. The
Navier-Stokes approach to shockwave structure requires a complete
knowledge of fluid properties in all of the thermodynamic states through
which the material is driven by the shock process. 1In addition to the
equation of state relating density, pressure, and energy, one must also
know the state-dependent bulk and shear viscosities and the thermal
conductivity. Because little was known about the state dependence of
the bulk viscosity I set out to develop a computational method for
measuring that viscosity in computer experiments incorporating adiabatic
deformation.

The resvlting computational scheme for bulk viscosity has led to =
general Hamiltonian formulation for adiabatic deformations, useful for
solids as well as fluids. A Hamiltonian formulation is desiratle for
any dynamical problem. It provides not only microscopic equations of
motion, but also access to a well~-developed time-~dependent perturbation
theory., Here I describe, in turn, the way the new Hamiltonian app2ared,
the consequences of applying linear-response perturbation theory to the
Hamiltonian description of adiabatic deformation, and finally, the
results of numerical calculations based on the corresponding Hamiltonian
equations of motion,

The numerical calculations strongly suggest that dense-fluid trans-
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port coefficients exhibit frequency dependence large enough to detect 12£?;

real laboratory experiments.
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I7. HAMILTONIAN DESCRIPTION OF ADIABATIC DEFORMATIOHN

Consider a macroscopic continuum tndergoing a hcmogenecus deforma-
tion described by a strain-rate tensor yu. If we choose for the origin
a location where Vu vanishes, then the local velocity é is gq«Vu. For
illustrative purposes we chese a simple shear deformation, with the x
displacement proportional to the y coordinate:

.

x = £y . (1)

1f this continuum deformation were suddenly applied, for a shoru time
dt, to every particle in an atomistic many-body system, then the energy
would change in a way dependent upon the initial particle coordinates.
With a pairwise-additive potential energy, ¢ = E,, the (potential)
energy change could be written in terms of the pair-force contributions
to the pressure-tensor component Piy:

GE = do = ] (d¢/dr) fdr/dx)Ax = J4' (xy/r)édt = -Pﬁy\ls. (2)

Thermodynamics suggests, on the other hand, that in a real shear defor-
mation the kinetic part of ny would also dc work, causing a

corresponding change in the Kinetic eneray K:

dx = - dimv vy = - Pist. (3)

If the Hamiltonian H{4q,p) describing the system included a term
Zygxé ; then the Xkinetic~energy change (3) would arise naturally. The
Hamiltonian equations of motion (g = 3H/3p;p = -all/ 3q) would provide
additional accelerations,

Apy = —pr. (4}
The resulting kinetic-energy change would agree with (3).

The need for momentum scaling, not just coordinate scaling, in
adiabatic deformation, can most easily be appreciated in the ideal-gas
case. Consider the homogeneous expansion of a monatomic ideal gas,
with a linear strain rate %/x = y/y = 2/z2 = ¢ = (1/3)0/v. In this case
the inclusion of a term [q .pe in the Hamiltonian would not only “’
reproduce the macroscopic deformation, but would also provide
accelerations, b = -¢p, leading to adiabatic cocling. The resulting




7

-3-

rate of change of the kinetic energy with strain rate,
E = Jpep/m = -(2/3)E(V/V), (5)

gives exactly the thermodynamic ideal-gas energy-volume relation for
adiabatic expansion, leading to a pressure varying as the 5/3 power of
the number density.

The two kinds of deformation just described, shear and dilatational,
as well as longitudinal or mixed ones, cap all’ be systematically and
compactly described. Each corresponds to the addition of a perturbation
to the usual equilibriun Hamiltonian,

=L 4+ Tu ;
H = g, + Jap:Vu )

Hog = Lipwp/7m) 4 Tg .

The perturbing term is the double~dot product of Doll's Tensor” Jap and
the strain trate tensor gu. The double-dot notation in (6) indicates
that all nine terms of the form Xqip_v,u_ are included in the product.
Adiabatic deformations could be catried out, in computer experi-
ments, by interjecting occasional sudden coordinate and momentum
scalings such as (1)} and (4) into otherwise conventional solutions of
Newton's equations of motion. It is preferable to incorporate
deformation smoothly in the equations oI motion, as suggested by the

Hamiltonian (6). Then the equations of motion,

q = (p/m) + q+Tu ; (7
I;"" F-%up,

describe a continucus adiabatic process.

Just as in the equilibfium case, the eguations of motion (7)
derived from the Haﬁiltonian {(6) are dynamically reversible, provided
only that the macroscopic strain rate yu is reversed alcng with the
particle velocities. The momenta from (6) bave a simple interpre-
tation--they are the product of mass with velocity in a frame moving
with the local macroscopic velocity:

pEmig-q-vyy) . (7a)
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The equations of motion are also in exact agreement with the thermo-

dynamic relation for an adiabatic deformation,
E=J-F-g + J(p/m)+p = -VP:%u, (8)
where we use the microscopic global definition of the pressure tensor P:

PV £ JFq + X}pp/m) . {9)

This pressure tensor is exactly the average momentum flux within the
periodic volume V. It is not a surface interaction, measured across a
system boundary, so that our global adiabatic deformation scheme does
not apply accurately to deformations with very large pressure gradients,
such as those found in strong shockwaves.

Hans C. Andersen5 independently and simultaneously discovered a
hydrostatic form of the Hamiltonian (6). His aim was to develop a
formulation for constant-pressure molecular dynamics, fixing the mean
pressure by allowing volume fiuctuations. In our work the strain rate
is prescribed and produces fluctvations in the pressure tensor. In
either case the equations of motion can readily be solved numerically.
The velocity must be adjusted whenever a particle rrosses a moving
periocdic boundary. The momentum is unchanged in such a crossing, but
the momentum is measured relative tc a local velocity, and the lc.al
velocity is generally different on two opposite sides of the periodic
volume V.

The Hamiltonian forrmulation just described for adiabatic mechanical
work has no known analog describing iscchoric heat flow. The micro-
scopic analog of the thermodynamic relation dE = TdS has not been found.

Despite considerable effort, this challenge remains.

III. LINEAR RESPONSE THEORY

For small strain rates the adiabatic deformation described by yu
can be treated as a small perturbation to the Hamiltonian Bog. DLinear-
response theory can then be used to calculate the resulting (viscous)
nonequilibrium properties. Iwanzig's review6 is the classical reference
to the fundamental work of Green, Kubo, and Mori. A useful detaileg

. . 7
account appears 1in McQuarrie's recent text.
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If we imagine that a shear perturbation quzvu is added to the
Hamiltonian at time zero, then, at time t, the internal energy has
changed by AE, and the N-particle distribution function, from linear

response theory, reflects that change:
E(d,pt)/E, = exp(SE/KT) 2 1 - (1/kT) [{Pusivds (10)

The averages of dynamical phase fun&tions, such as the energy and the
pressure tensor, as well as the few-body distribution functions, can be
obtained from (10).8 As an example, consider the kinetic prrt of nyV:

B2/ nners = -év2(1/kT)j:<pxy(o)Px§(t)>eth : (11)
In the usual Green~Kubo autocorrelatlon expression for P the integrand
contains a kinetic term Pk [O)P (t}, a potential term P$ (0)P¢ [t), and
a "cross~term" [ﬂ‘ {(0)Pd {t) + P¢ {O)Pk (t)). Here we flnd that the
kinetic part of P xy contZ1ns the k1net1c .erm and half the cross term.
Thus, just as in the approximate Enskog theory, the cross term makes
equal contributions to the kinetic and potential parts of the momentum
flux.

The analogous calculation for bulk viscosity 1is particularly
interesting for an inverse nth power repulsive potential, ¢ = ¢ {0/r)R,
In that case the contributions of tue potential~eperyy and Xinetic-
energy fluctuations can be directly related to the corresponding

fluctuations in the mean pressure:

53 = ~5K; VP = (n/3)8¢ + (2/3)6%; - 5p%/8" = -y (12)

The exact result, valid at all times, that the potential part of the
{constant-energy) pressure fluctuation is -n/2 times the kinetic part is
a useful check of correlation functions., For instance, consider the
inverse 12th power soft-sphere potential. Equation (12), valid at any
time, shows that for the fluctuations giving bulk viscosity the ratio
kinetic:cross:potential is 1:(-12):36, so that the potential
contribuiion dominates, even at the lowest density. The extension of
the sirmple soft-sphere relations between the potential and kinetic

pressure fluctuations to more general force laws remains a challenge,



IV, KUMERICAL CALCULATIONS

A series of calculations was carried out9 for the inverse 12th power
soft-sphere potential. In that work the hysteresis associated with
cyclic compression and dilation (with Vu varying sinusoidally in the
timej was used to find the density dependence of the soft-sphere bulk
viscosity. The results from that investigation were surprising., The
bulk viscosities found were less than the predictions of Enskog's theory
by as much as a factor of seven. Although the calculations could not be
pursued at very low densities, the moderate—density results varied
approximaéely as the 3/2 power of density. 15 posteriori, it is possible
to "understand" the marked disagreement between the numerical
viscosities and the Enskog predictions, based on the relative size of
normal-stress and shear-stress fluctuations in inverse nth-power fluids.
The results point out the need for a replacement theory; hopefully it
will appear in time for Enskog's 1984 Centennial.

In the more realistic Lennard-Jones case8 a series of calculations
near the triple point produced frequency~dependent bulk viscosities
reasonably close to those obtained by integrating the appropriate Green-
Kubo integrands, as measured by Levesque and Pollock. There is consid-
erable reproducible number dependence in the small-system long~time
oehavior of the Green-Kubo integrands, so that the actual large-system
"long-time-tail" behavior of these functions is still in doubt, The
agreement between the non-equilibrium frequency-dependent bulk
viscosities and the Green-Kubo integrals could be noticeably improved by
adding a reasonable long-time tail, varying as £ . to the Levesque-
Pollock data. The corresponding low-frequency viscosity exhibits a
strong variation with frequency, ~ml/ . large enough to be observed in
careful laboratory measurements reaching frequencies of order 108 or 107
hertz. Evans has found a similar strong frequency-dependence in the
Lennard-Jones shear viscosity near the triple point.

It remains a puzzle that the shockwave simulations which originally
motivated this work do not seem to show analogous frequency or wave-
length effects. Comparisons of shockwave profiles from molecular
dynamiész’3 with those from Navier-Stokes continuum mechanics indicate
that the effective transport coefficients in strong shockwaves are not
very different from those of ordinary long-wavelength low-frequency
hydrodynamics. A theoretical understanding of the profile similarity is

desirable.
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V. CONCLUSION

Although Hamiltonians of various kinds have previously been used to
derive Green-Kubo relations for the transport coefficientsﬁ, the
particular choice described here is uniguely related to thermodynamics.
This nonequilibrium Hamiltonian formulation of fluid flow provides
pedagogically simple routes to nonequilibrium fluxes and distribution

: functions, to theoretical understanding of long-time effects, and to new
numerical methods for simulating syséems far from equilibrium.

The same metnods are now being applied to solid-phase problems.10 At
the relatively high frequencies used in the viscous fluid calculations
described here, solids typically behave elastically. Lower frequencies
lead to the formation of dislocations and other defects, making it
possible to study plastic flow.

A property of the nonequilibrium eguations of motion which might be
profitably explored is their effective irreversibility. Because only a
few particles are necessary to generate irreversible behavior, simula-
tions using adiabatic deformations of the kind described here could
perhaps elucidate the instability in the equations of motion responsible
for irreversibility.
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