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AXISYMMETRIC INSTABILITY IN A NONCIRCULAR TOKAMAK

Bruce Lipschultz

Under the supervision of

Professor J.C. Sprott and Assistant Professor S.C. Prager

The stability of dee, inverse-dee and square

crossection plasmas to axisymmetric modes has been

investigated experimentally in Tokapole II, a  tokamak

with a four-null poloidal divertor.  Experimental results

are closely compared with predictions of two numerical

stability codes--the PEST code (ideal MHD, linear

stability) adapted to tokapole geometry and a code which

follows the nonlinear evolution of shapes similar to

tokapole equilibria. Experimentally, the square is

vertically stable and both dee's unstable to a vertical

nonrigid axisymmetric shift. The central magnetic axis

displacement  grows  exponentially with a growth time-103

poloidal Alfven times- plasma L/R time. Proper initial

positioning of the plasma on the midplane allows passive

feedback to nonlinearly restore vertical motion to a

small stable oscillation about the center. Experimental

poloidal flux plots are produced directly from internal

magnetic probe measurements. The PEST code, ignoring
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passive feedback, predicts all equilibria to be

vertically unstable with the square having the slowest

growth.  With passive feedback, all are stable. Thus

experiment and code agree that the square is the most

stable shape, but experiment indicates that passive

feedback is partially defeated   by finite plasma

resistivity. In both code and experiment square-like

equilibria exhibit a relatively harmless horizontal

instability.

Crt' .C-.LIVMQt
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'              CHAPTER I

INTRODUCTION

A-# GENERAL OVERVIEW

The del.eterious effect of impurities in tokamak

plasmas has stimulated investigation of poloidal divertor

configurations. The necessarily noncircular shape of

these equilibria is also advantageous with respect to q 1

and B-limited MHD  instabilities2,3..   Unfortunately  any

deviation of an equilibrium from a circular shape may

permit the plasma to be unstable to axisymmetric

displacements, with toroidal mo de number  n=0.   The

poloidally asymmetric placement of shaping rings and

walls necessary to establish a noncircular plasma shape

in turn creates nonuniform attractions to the plasma

current. The plasma, if perturbed, moves in  the

direction of the minimum in the accompanying poloidal

field. Unlike kink and localized interchange modes, the

axisymmetric instability cannot be controlled   by

increasing the toroidal field or reducing the plasma

current.

L



2

Unfortunately, the conceptual simplicity of the

axisymmetric instability does not translate into

calculational simplicity. The importance of this mo de

h as given rise to a fairly large amount of linear theory

- mostly for idealized displacements and analytic

equilibria Recently nonlinear evolution of the4-12

instability has been followed numerically    13

Axisymmetric displacement of dee and elliptical plasmas

has been deduced in a few experiments from magnetic

probes  external to the plasma14-17.  The plasma shape in

these experiments has been inferred from comparison of

these same external magnetic signals with output from

equilibrium computer codes. The numerical modeling of

the axisymmetric instability, cited above, has apparently

not been specifically applied to any of these

experiments; an unfortunate gap exists between a fairly

well developed theory and experiments performed.

The intent of this thesis is twofold. First, to

report direct eiperimental. observation of the

axisymmetric instability in dee, inverse-dee and square

shaped cross sections. Second, to compare these

experimental observations with a stability code written

for the actual experimental geometry. This experiment

has been performed in the Wisconsin  Tokapole II18,19,  a
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Tokamak with a four-null poloidal divertor. Experimental

magnetic flux plots for the aforementioned  range  of

equilibria are produced, from magnetic probe measurements

in the plasma interior, in detail equivalent to that

provided  by computer calculations. Conclusions, as to

growth rates and passive stabilization, can be drawn from

the time evolution of these experimental flux plots and

compared with two numerical codes which  closely  reflect

the experimental machine. The PEST code , which has20

been adapted to the Tokapole machine geometry, predicts

the linear stability The effects due to external

conductors are included   by appropriate vacuum

21-22modifications A nonlinear time dependent code,

24PATENT13,23, although ap lied to the PDX machine only,

provides qualitative stability predictions and modeling

of the plasma shape as a function of time. Because of

the wide seperation of time scales in this experiment

(e.g. Alfven, plasma and ring L/R times) many

qualitative conclusions about p'assive stabilization can

be drawn which are relatively machine independent.

Qualitative comparison can also be made between

experimental results and related models in the

literature19.

Several parameter variations are possible both
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experimentally and numerically. For  example,  proper

positioning  of the four field shaping rings allows

equilibria to be va,ried from dee through square  to

inverse-dee shaped. The dee and inverse-dee are

vertically unstable when not precisely centered on the

machine midplane. When vertical stability is achieved,

these shapes are still horizontally unstable. The square

is vertically stable even if not precisely positioned.

However, this. shape is also horizontally unstable. Since

the horizontal instability saturates it is less harmful

than the vertical displacements exhibited in the dee and

ihverse-dee. The vertical movement continues

unrestrained towards the x-point (poloidal field null on

the separatrix). Predictions of the PEST code for

- relative stability of these equilibria agree with

experiment. Experimentally, the magnetic axis can be

positioned above, below or exactly on the midplane. In

both the PATENT code and experiment the plasma is seen to

correspondingly move up, down or oscillate about the

midplane. Both experimentally and from the nonlinear

code we find the growth of the instability to be

exponential in time. Ideal MHD predicts the growth time,

in the absence of external conductors, to  be -Ta' the

poloidal Alfv&n time. Experimentally, vertical and

horizontal growth times  .are  -1O3Ta.   Passive  feedback
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apparently increases Tg, the  growth  time,  from  Ta  to

roughly the plasma L/R time. The effect of passive

feedback from rings and walls is studied experimentally

by changing the plasma resistivty and by varying the

initial position of the magnetic axis. The instability

growth time va r i e·s inversely with plasma resistivity.

Stability can be numerically studied with or without

rings or walls to evaluate their effect on passive

stabilization.

In section B of this chapter an attempt is made to

give the reader an intuitive feel for the physical nature

of axisymmetric instabilities. Chapter II includes  a

description of the experimental machine (II.A) and

techniques (II.B), as well as a review of previous (II.C)

and present (II.D-F) experimental results. Chapter III

is devoted to theory. After a review of previous

theoretical work (III.A), the numerical codes used in

this study are described (IIiI.B-D) and their predictions

reviewed (III.E-F).  Experimental and theoretical results

are discussed and compared in Chapter IV with a  summary

in table 1.
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B.  Phvsical Intuition

The  physical nature of the axisymmetric instability

can be illuminated through intuitive means. At first we

Will assume that currents in the plasma and external

conductors are fixed. Also, for  simplicity,  we  will

discuss linear as opposed to toroidal geometry.

Allowance for toroidal curvature introduces a  force

produced  by the inductive interaction of the plasma

current with its self magnetic field. This. force tends

to increase the plasma major radius and is different in

nature from the axisymmetric instabilities discussed

here.

It is illustrative to study a stable equilibrium and

then relate what actions must be taken to create an

unstable one. This simple situation of a linear tokamak

plasma is illustrated in figure la. We see, for this

circular shape with return current at infinity, there is

no preferred direction, i.e. there are no currents or

magnetic fields for the plasma current to interact with.

Thus it is neutrally stable with- respect to a rigid

displacement; given a perturbation it Will keep

travelling at ia constant velocity. This neutral

stability to displacements can be modified to instability



Figure 1: Illustration of the relation
between deformation and stability in a
linear geometry. All three plasma
crossections include 'toroidal' current
into the paper.   a) Neutrally stable
circular plasma extending into paper.  b)
Elliptical plasma .deformed from circle by
currents Il & I2.  The attractive forces,
Fl & F2' between the plasma  current  and
each shaping rod are balanced. c) Same
elliptical plasma displaced vertically.
Fj & F2.are no longer balanced - vertical
displacement grows.
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-            by deforming the plasma to a noncircular shape
'

using

external  currents (fig. lb). Here the plasma current

can interact with the shaping currents, absent in  the

circular case. This attraction is the characteristic

driving force of what is generally called the vertical

'axisymmetric' instability. The word 'axisymmetric' in

this linear situation connotes an axially symmetric

movement of the entire plasma column, with axis into the

paper.  When this ellips'e is positioned precisely between

the  two  shaping currents; the forces Fl and F2' between

the plasma and shaping currents, are balanced. If the

ellipse  is. perturbed vertically away from this point, Fl

and F2 become unbalanced, and instability  growth  ensues

(fig. lc). No great leap of the imagination is needed

to see that increasing the deformation (ell.ipticity) will

increase the instability growth rate. The attraction is

greater because: 1.  The shaping currents are larger and,

2.   The plasma is in closer proximity t6 these currents.

The increase in deformation can best be characterized  by

a decrease in the poloidal field radius of curvature; rc'

near the x-point (see fig. lb).

This same prescription: decreasing rc  -  increasing

deformation  - plasma more unstable to displacements, can

be applied to other shapes. In the presence of an
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octupole field (fig. 2a), a square cross section plasma

will be more stable to displacements in the direction of

an octupole current than either a dee or inverse-dee.

The latter two shapes are equivalentin a linear

geometry. In comparison to the square, the dee of

equivalent current,  is .closer to either pair of

z-symmetric shaping current . conductors. Also these

closer currents must be increased to initially create the

dee. Thus the dee  will experience greater.attractive

forces. The more unstable shape again has the greater

deformation  or  smaller  rc. .  The  dee,  when perturbed

upward (downward) will move towards the upper (lower)

closest octupole current. The attractive force increases

as the dee moves closer. Figure 2b illustrates the

situation. Although this is what is generally denoted a

vertical instability a more apt name· that I will use in

this discussion is x-point instability. The attractive

force that drives this instability is always between two

like currents that generate a field null (x-point).

The role of the .plasma current distribution is

important  to these instabilities. A flat current

distribution is more unstable than a parabolic profile       -

for approximately the same plasma shape and total

current. There is more plasma current in closer
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is closer to shaping rods than square. b) Potential -

energy vs. distance to the attracting rod.
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proximity to the shaping currents. The attractive force

is 0 1/r, where r  is the relative distance between the       -

currents involved.

......

Understanding horizontal (equivalent to vertical

direction in a linear device) displacements is not as

straightforward as the x-point instablity. If a toroidal

current filament were placed centrally in a linear

octupole field, it would be horizontally stable.

Designating the toroidal direction as into the paper,

then examination of the Ifilxppol force at  points  along

the midplane, for this test current and vacuum poloidal

magnetic field, reveal a restoring force that increases

monotonically with minor radius. A  potential energy

curve, illustrating this effect, is drawn as  a  function

of distance  along the midplane in figure 3a.  Note this

curve is shallower than that for the x-point direction'

(fig. 2 b) because the octupole rods are closer to

machine center than the image currents that represent the

wall. A  plasma is not a current filament: we must take

into account the sum of forces over the plasma

cross section. Furthermore, the plasma is a cohesive

entity described  by the MHD equations. Figure 3b

exhibits this force field, experienced by a filament test
-

current, for one quadrant of the octupole field. The
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complete flux plot from which this figure is derived is

shown in  fig. 5. Since, in linear geometry, all

quadrants are equivalent only one is shown in fig. 3 b.

The area that repels horizontal movement is  shaded.

Comparing  the square shape, placed at machine center, to

the inverse-dee, displaced  to , the right, the square

contains less of the horizontally. stabiliz,ing region than

the inverse-dee.  Therefore, the square is  least  stable

to horizontal as opposed to x-point displacements.

UP until now, we have treated the plasma and

external conductors as having fixed currents during

displacements. If the currents involved are allowed to

react to the plasma motion, passive stabilization can

occur. Let US first treat the idealized case of two

parallel currents with the constraint that their total

flux be held constant during movement (fig. 4).

Ignoring reconnection (i.e. for an infinitely conducting

plasma at the x-point), if they  
are allowed to move

towards each other, field lines will be compressed and

the integral of 8.d_1 around each rod will increase.

Antiparallel currents will be correspondingly induced to

keep this integral a constant. Thus the currents are       -

reduced causing the attractive  force,  2Il I2/r12(2,  and

growth rate to decrease. This effect, of induced
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0
PARALLEL CURRENTS

Figure 4: Two parallel linear (into paper) currents with

accompanying quadrupole magnetic field.

&
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currents slowing the movement, is termed passive

stabilization.

There are two complicating factors that can affect

the efficiency of passive stabilization. The first to be

discussed is finite resistivity in the conductors.

Compressed flux can be pushed through the rods on  a

soak-in time scale T proportional to the square rootsoak

of conductivity. The net effect is that induced

stabilizing currents Will decay over time. Thus, if a

movement (instability) could be stabilized  by rods of

infinite  c6nductivity,  then allowing finite resistivity

enables the ihstability to grow,with a 'rate-1/T soak'

The other factor in passive stabilization is  the

presence of plasma. In a vacuum field, lines can

reconnect instantly. In the presence of plasma, line

reconnection occurs at a  rate 0 1/T   . T is theres res

characteristic resistive decay time of the plasma. Thus,

additional flux compression can occur, slowing the

instability growth rate.

If we apply the concept of passive stabilization to

the case of the' x-point unstable dee in an octupole

field, the plasma and nearest rod are the primary
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currents involved. There is also, of course, plasma at

the x-point.  Some passive stabilization will  occur  but

full stabilization is not neccesarily possible. If we

bring into this discussion the effect ,of conducting

elements other than those primarily involved, then

passive stabilization Will be more effective. Flux

decompression, with accompanying induced attractive

currents, will occur in the other conductors (e.g. the

other  three rods and opposite walls). The efficiency of          '

induced effects  ·will not on ly be determined  by  the

characteristic  resistive de8ay time scales involved, but

on the amount and proximity of induced currents as  well.

The dee is in closer proximity to fewer rings and walls

than the square of equivalent total current. Therefore,

passive stabilization Will be more effective for the

square than for the dee. In either case, if  the  plasma

is not completely stabilized, then the growth time will

be slowed to the order of the minimum of the resistive

time scales involved.

Not discussed, heretofore, is the relation of the

'toroidal' field to ,the axisymmetric instability.

Intuitively, it .must play a much smaller role than the

poloidal field. The deformation Will stretch the

poloidal field on the order of a minor radius-scale
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length. On the other hand, the toroidal field is only

slightly deformed while th'e entird -f-ield line is being

pushed out of the way, either up 'or down. There  mav  be

some' horizontal stretching to this·movement but it is on

the order of thd major radius. Thus, the  displacement

divided by the scale length involved is smaller for the

toroidal field. In addition to this small contribution

of  the  stretched toroidal'field, there is the effect of

its gradient introduced by toroidality.  In  equilibrium,

by definition, the /polxKtor force is balanced everywhere

by ktorxapol (for low pressure).  When.the·plasma becomes

unstable, this  condition  may  perhaps' no longer-hold.

Examination of the /polxBtor force near the  principal

x-point involved, shows that the force increases as major

radius R decreases. T h-e introduction therefore, of

toroidal curvature can perhaps differentiate between the

two dee's making,the dee slightly more unstable th·an  the

inverse-dee.

In summary, through the application  6f  basic

physical concepts, we can see that increased deformation

(decreasing rc) iridicates a shape to be relatively more

unstable toward x-po-int displacements.
'

Tki is implies  the

square is more stable t·h  an the dee or inverse-dee.

Passive feedback -stabilization can either completely
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stabilize this movement or at least slow its growth to

the resistive time scales involved. Its effectiveness

should be greater for the square than for the dee's. The

relative stability of these shap·es becomes reversed when

discussing horizontal displac.ements. The effect of

tor.oidal field, though all i.mportant for higher   n

(.toroidal :mode  number)  instabilities, has only a minor

influence on the stability of the axisymmetric modes           1

(n=0).
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CHAPTER II

EXPERIMENT

A.  Machine DescriDtion

The Tokapole II device18, dn which' these experiments

were performed, has a 50 cm. major radius square

cross section (44 x 44 cm.) vacuum chamber. The vacuum

magnetic flux plot is that of an octupole (fig. 5 a),

which provides vertical and horizontal fields to center

the discharge., The octupole vacuum poloidal field is

produced  by inductively driving, through an iron core

linking the toroid, four 5 cm. diameter copper toroidal

rings. These rings can carry up to a total of 700 kA,

and are each supported by three copper-beryllium rods.

While the chamber is under vacuum the rings can be moved

vertically 15mm. by external means. When plasma current

is driven toroidally through the octupole null, a tokamak

-    with a four-null divertor is generated (fig. 5 b).

Electrical characteristics are shown in figure  6.

The  current in an outer ring rises sinusoidally to 45 kA

(fig. 6 a).   A 1 msec. pulse of 10 kW. 8.8 GHz



Figure 5: Numerical poloidal flux plots
(major axis to left).  a) Without plasma.
b) With plasma. Each tic mark indicates
2 cm.
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Figure 6: Electrical characteristics. Time, in ms., is given on

abscissa. a) Current 'in an outer ring vs. time. Also shown is a 10

kW,  8.8  GHz,  1 ms. microwave preionization pulse. b) Plasma current.

c) Loop voltage at machine center with and without plasma.
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microwaves is used for preionization (fig. 6 b). The

plasma current is induced by the same source as the ring

current. The value for the total toroidal plasma curent

is inferred from measurements of the poloidal field

transformer primary current and loop  voltage, at the

wall, employing a simple model treating the ,plasma and

rings  as coupled inductors25,26.  The current inside the

separatrix is also calculated from measured magnetic flux

plots. The peak total plasma current is - 40 kA,with - 4

msec pulse length (fig. 6b). The toroidal field is

effectively constant during the experiment at a value of

3.2 kG at machine center, with capability of .up to  8.5

kG. The vacuum toroidal loop voltage (fig. 6c) at

machine center decays as a cosine to zero in - 3 msec and

is then crowbarred. In the presence of plasma.the loop

voltage is depressed during plasma current rise and

enhanced during current decline due to the back EMF

self-induced  by  the plasma current. Peak electron

temperatures are - 100 eV surmised, with - 25% accuracy,

from modeling of the time evolution of a set of impurity

lines (e.g. OI-OVI) .  - The electron density is -  1013

cm-3 as measured by microwave interferometry and Langmuir

probes. The ion temperature varies from 20-70 eV as

determined  by charge-exchange analysis and from the

doppler broadening of He. II.
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.·

B. ExDerimental Techniaues

The basic information without which this research

would not be possible is the poloidal magnetic flux plot.

The tool used for obtaining a flux plot is the 'B' probe

- so termed because the output is proportional to the

time derivative of magnetic flux at the probe tip.. The

'B' probes used in the·se experiments consist of two  40

turn, 4 x 4 x 5 mm coils of wire, located at the sealed end

of a 1/4 inch tube. The coils are wound on top of each

otherand have normals parallel and perpendicular to the

probe length.  The orientation allows both components of

poloidal magnetic field to be resolved. The frquency

responseof this probe varies between 100 kHz. and  1

mHz. depending on the exact number of turns and areas of

the coils.

After passive integration, each probe signal is

digitized and stored by computer. To correct for probe

misalignments at a given point, a discharge with only the

toroidal field is stored and subtracted from the data

with both magnetic fields and plasma. After this
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correction, the probe signal every 50ps, for 4 msec., is

stored on floppy disk for further analysis.

The expression used to calculate the poloidal

flux,  41 is

0    =      ./dr'      2 Tr (R O+r'  ) B (r,) (2.1)0               perp

where RO, r'  and B are the major radius of theperp

magnetic axis, the minor radius and the poloidal field

comporle.nt perpendicular to.the path of  integration

respectively. Surfaces of constant  9 are generated  from

the magnetic field data measured at 90 spatial points on

a 2 cm by 2 cm grid (fig. 7a). Within any Six point

rectangular grid area, or r.g.a. (same figure), the

vertical and horizontal poloidal magnetic field

components.are fit to a polynomial of the for.m

B(xi,yi) - Aiy .+ Bixiyi + Cixi + Diyi + Ei
(2.2)

i   Bi        Ei                             .thwhere  A
,

are the coefficients for the 1

r.g.a.  B(xi,yi) is either the first or .second component,

ve rt ica 1 or horizontal,. of the magnetic field at the

local coordinates (xi,Yi) within  the i r.g.a.   Fromth
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Figure 7: Experimental techniques. a) Data grid (2 cm. spacing) for magnetic flux plots.

b)    Top   view of exper imental machine.



28

equations  (2.1)  and (2.2), an explicit polynomial in xi

and Yi can be found for *,

4 (r,9)     =     11Ii (x i'Y i ' ]C i o,y i o,A l,2  '8 1,2  '  "  ' 'E l  ,2      +  41 0

(2.3)

where 4  is the value of 9 at the edge of the r.g.a.   of

position (Xi ,Yio  relative: to the magnetic axis

(4(0,9)=0).  The subscriptl,2  on  the  magnetic  field

coefficients refer to the vertical or horizontal

components of the  poloidal  field., Thus, once the

position of the magnetic axis is known, the approximate

value of 9 along a ray out from the axis is- obtained in a

stepping  fashion.  9   is  determined by the final value

obtained in integration through the previous r.g.a. , out

along that ray.

The position of the magnetic axis is found

numerically by first searching for the data point with

2minimum  B .
This  point  and the eight surroundin  it,

define two r.g.a.'s, j-1 and j. Using explicit forms for

t . 4LBEJA . iliMstj.
. Jr '           (2.4)

the  first  order  Taylor  series  expansion  for *  is
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- iterated to find V*=O. Five iterations are usually

sufficient for convergence.

After the magnetic axis is found., the program

generates an array 4sav(k) cont'aining the value of flux

every 4 mm along a horizontal ray from the axis to the

edge of the data grid. Th'en, every 5 degrees around the

axis, the program s-earches for the radius at

which 9(r('k,G))·=9sav(k). These values of r(k,@) define a

flux surface.

Once the locus o'f points defining a flux surface is

determined, various line integrals over the flux contours

are approximated usi*ng  Newton's    3/8 rule. The safety

factor q'('k), toroidal current I(k) and area A(k) within

the k closed fl'ux surface are given byth

1  r 81
q(k)     "    3iif KES    d e

{r(k,0),9}

I(k) = 1. f B-r de
MO   w

{r(k,9),9}

A(k) = fr2 de
(2.5)

{r(k,9),9}

The last step is to c6mpute the toroidal current
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density averaged over the annulus between two flux

surfaces,

J(k)=[I(k+1)-I(k)]/[A(k+1)-A(k)] (2.6)

Another diagnostic that is important.to this study

is the·electric field probe. This consists of a few turn

coil of wire 4 mm wide by 50 cm in length. As in the

case of the B probe, the coil is contained in a T/4 inch

probe tube. The principle  by which it . works   is

illustrated in figure 7b. The output is proportional to

the time derivative of the poloidal· magnetic' flux through

the Coil. ,Assuming the poloidal field to be sinusoidal

in time, then the probe signal is a measure of the flux

between the toroidal circle A, that its tip defines, and

the machine wall. Let us designate this flux 0 probe (see

fig. 7 b). The toroidal electric field at A, though, is

proportional to the amount of flux between it and the

core = (4 -  0    )    The flux linked by the wall,probe wall '

6wall' is opposite in direction. Converting this formula

to measurable voltages we see

Vloop = Vprobe - Vpg (2.7)



31

-            where V is the  poloidal  gap  voltage  (< twall)'  andPg

V .0 In actual use, ca re must be taken toprobe probe'

insert the probe only on the midcylinder so that there is

no component of toroidal electric field along the long

sections of the coil. For the same reason the other end

of the coil must be outside the machine.

2:. Previous Exoerimental Work

Experiments heretofore performed on noncircular

14,16tokamaks have included doublets 27, ellipses and

dee'314,16,17.   Verification  of  the shapes studied has

occurred through external means. For example, in

TOSCA    , external magnetic field signals were compared1416

with a computer model's predictions for those signals.

Another variation, used on doublets and TOSCA, is the use

of measured winding currents combined with  appropriate

plasma parameters to model the plasma. The existence of

certain poloidal modes of the tearing instability has

also proved to be useful in determining q, which thru the

assumption of ellipticity, in turn determines the plasma

shape28

1
-
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Although existence of these equilibria has been

shown in only a few papers, the stability of shapes  to

axisymmetric modes is even less documented. Both
.-

Toyama17 and Bhat'nagar2.9 have verified the instabi.1.ity's

existence in · their respective machines, but that is the

extent of their study. Bhatnagar considered the

instability as a problem to be controlled, not studied.

He found that the discharge length could be doubled  by

proper active feedback stabilization. The only major

experimental study of the axisymmetric instability,

previous to the present, was performed in TOSCA.

The shape of TOSCA's different equilibria is found

by comparing external experimental data with predictions

of an ideal MHD calculation. The experimental input

consists of plasma and winding currents in addition to a

limiting wall. Plasma movement, both radial  and

vertical, is calculated using a model that assumes the

plasma to be a current filament. The difference in

magnetic field, due to plasma current only, on opposite

sides of the plasma gives the relative position of a

current filament between those two machine sides. Cima

predi.cts that the filament m6del only leads io 'errors

of <3'mm in'predicting the magnetic axis position! Using

this technique of lodating the magnetic axis as  a
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-             function of time, growth rates of the instability are

generated. No comment is given.to explain how, and when

during instability growth, the growth rate is derived.

This has the added consequence of shedding no light on

the instability's non-linear or linear nature.

An effort was made to compare their results with

related analytic and numerical studies in the literature,

which were not performed for TOSCA. The plasma

equilibrium is described quantitatively  by  the decay

index n=-R/Bz(dBz/dR) averaged over  the  plasma  volume.

This average is performed using the vacuum poloidal field

of the winding currents. The averaged decay index A is

found to be a monotonic function of ellipticity (e).

Results indicate that there are certain  n,  or   e,

parameter limits beyond which no stable equilibria exist.

When the equilibrium is unstable, they find its growth

rate to be proportional to the shaping currents. In

other words, increasing the amount of noncircular

deformation decreases plasma stability.  Indications are

given that Tg is increased by the presence of the passive

feedback coils.
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D_. Relative Stability of Dee. Inverse-dee and Sauare

Eauilibria

This experiment allows domparison of various plasma

shapes in one machine under similar conditions.  By

varying the placement of the rings, which attract the

plasma, the shape of the tokamak separatrix can be

changed from dee to inverse-dee (figures 8a-c). If the

inner rings are moved.closer together, and·thus nearer

the plasma, the equilibrium is positioned slightly inward

in major radius producing a dee (fig. 8 a). An

inverse-dee (fig. 8 b) is created by positioning the

outer rings closer together. The intermediate case is a

square plasma (fig. 8 c). Previous experiments

concerning noncircular tokamaks have deduced the plasma

shape using external measurements such as winding

currents, plasma current and edge magnetic fields,

combined with computer modeling. All important data in

this paper, such as flux plots, current density and

electric field profiles are deduced from internal probe

measurements. A description of these experimental

techniques is given in the previous section (III.C).
.

The time histories of magnetic flux plots show that

the dee and inverse-dee are unstable to a non-rigid



Figure 8:  Experimental flux plots mappe·d

out with magnetic probes. Only the area
inside the separatrix is shown. Each tic
mark indi.cates 2 c:m. a) Dee.   b.)
Inverse-dee.  c) Square.
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ve·rtical. movement,  along a line of '

sight from the

magnetic axis to a ring (figure 9). The square is stable

to this movement on the time scaIe of this experiment.

For the vertically unstable shapes, a plot of  the

magnetic axis position, shown in figure. 10, indicates

that the vertical. displ.acement increases exponentially

with a growth time Tg-450 usec.  Tg-103Ta, where Ta is  a

poloidal  Alfv&n time calculated with a suitably averaged

poloidal field.  It is aIso interesting to note, and will

be discussed later, that T is much less than theg

resistive decay time of rings and walls (15 msec) and

very close to the plasma L/R time  (- .5-2.0 msec).

Axisymmetry has been. verified at s eve ra 1 machine

azimuths. Also, the effect of plasma outside the

separatrix has be·en e,xamined: That plas·ma was wiped Out

by a movable, li.mi.ter. The resul.ting instability growth

rate and equilibrium shape were identical to the 'normal'

case, within experimental uncertainties.

We find that alI these equilibria can be s,tabilized.

to vertical movement, on the time scale of th is

experiment, by precise pos.itioning of the rings. After

the vertical movement is stabilized there still remains a

horizontal motion that is independent of the rise and

fall. of the plasma current. This horizontal instability



Figure. 9: Time evolution of the
experimental flux plot for a) inverse-dee
& b) square. ·The dee evolves similarly.
to inverse-dee.
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occurs in the square as well as the dee and inverse-dee.

The direction of this motion depends strictly on which

set of rings the inner plasma separatrix encircles. When

the plasma "leans" on the outer (inner) set of rings the

movement is towards increasing (decreasing) major radius.

Growth times for this horizontal instability, like the

vertical, are -103Ta. Thus  a. plot of the magnetic axis

position vs. time for horizontal movement  is  identical

to that shown for the vertical (fig. 10). This

horizontal instability does not saturate on the time

scale of the experiment.

E.  Effect QI Plasma Resistivitv

The role of passive stabilization could be all

important to this instability and perhaps in practice

eclipse distinctions based on plasma shape. Since the

rings are inductively driven, there are no external

circuit connections between them. Thus they are free to

independently respond to the plasma motion. However, the

efficacy of passive feedback, arising from induced image

currents flowing in external conductors and plasma, is

limited  by the finite resistivity of the the elements
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Figure 10: Distance travelled by t.he magnetic axis as a function
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14involved. Wooton et. al. found the plasma growth time

of an axisymmetric instability in TOSCA to be slowed down       '

by the resistive decay of induced stabilizing currents in

the walls and external field shaping Coils. The

equivalent theoretical prediction has been made8,13.

Howe·ver, all these calculations assume an ideal,

infinitely conducting plasma. In the Tokapole experiment

the finite plasma resistivity (L/R time - 1 msec) is the

major contributor to the damping of induced stabilizing

currents. The rings and walls in this experiment have a

much longer resistive decay time (15 msec.) than the

plasma. Indeed, instability growth occurs on the plasma

L/R time scale.

To address this issue we changed the plasma

resistance while keeping the plasma inductance and shape

relatively constant. Resistivity profiles are obtained

from current and electric field profiles disussed in

section III.C.

The resistivity profile was varied in two ways:

First, by lowering the toroidal magnetic field which

lowers the plasma current. Second, by puffing Ar gas, in

addition to the normal H2' to increase Zeff directly.  In

either case the electric field profile stayed  relatively



Figure 11: Spatial profiles at 2.0 msec.
a) Current density for two values of
toroidal field. The electric field
profiles for both values are sidilar;
only one is shown.    b)   Resistivity
calculated from electric field and
current in a). The separatrix is  at  a
minor radius of 6 cm.

.
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Figure 12: Spatial profiles at 2.6 msec.
a) Current density and electric fields
for two values of toroidal field.  b)
Resistivity calculated from profiles in
a).
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two methods of raising the plasma resistivity; lowering the toroidal

f ield   and   pu f f ing   in   Ar   gas   in   add it ion   to the normal H2
Movement   o f

the plasma in an unmodified case is shown in figure 10.
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constant while the current channel width and magnitude

decreased as shown for the first method in figures 11 &

12. In the particular case shown the instability onset

occurred at - 2 msec. Such .1.drge resistance changes were

necessary in order to'exceed the 20% uncertainty in  the

measurements involved. The shape of the equilibrium was

verified to be approximately the same as the unmodified

case, at instability  onset, by examination of the

magnetic flux plots. The  plasma inductance remained

relatively unchahged (<10%) indicating that the decrease

in the L/R time of the plasma was mainly due to the

change in plasma resistance. As seen from figures 10 &

13 Tg decreased by at least a  factor  of  2  for  either

lower toroidal field or Ar puffing. Correspondingly,

figure 12 indicates the plasma resistance increased  by

roughly a factor of two.  This result is consistent with

the general statement that  Tg  is  proportional  to  the

minimum resistive decay time in the passive stabilization

circuit. In our specific case Tg is inversely

proportional to the plasma resistance.
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F. Effect of the Initial Pla.sma Position

It is important to be able to adjust the initial

vertical p o s i t.i on of the pl.asma in order.to investigate

themarginal stabi.lity case, 'assess the difficulty of

passive stabilgiz:ation and c'heck the vert.ical symmetry of

the machine. Through ring movement we can position the

magnetio axis, initially, up to .1 minor r'adii above or

below the midplane. We can also, for dee and inverse-de·e

equilibria, precisely pos.ition the plasma z-symmetrically

such  that it appears verti.c·ally sta,ble.

·When an ..ot:herwi.s.e unstable shape is stabilized

through proper positioning, the magn'et.ic axi-s exhibits an
.

osciliatory motion (f.ig. 1.4 a) a b o u t the midplane with

period app:r.oxi'mat·ely equal to the growth time of the

unstable cases. For s.mall vertical displacements of the

initial magnetic axis position from the midplane, this

same oscillatory motion is superimposed upon a  steady

vertical movement (fig. 14 b). For Still larger

displacements of the initial magnetic axis position, the

oscillatory motion disappears and the movement is

strictly exponential (fig. 10). Thus we see that

increasing the initial displacement leads to faste'r

growth. Machine vertical symmetry is verified   by
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Figure 14: Distance travelled  by  the
magnetic axis as a function of  time  for
different initial positions of the
inverse-dee. a) Initial position on the
midplane.   b)  Initial position slightly
above the midplane (3-5 mm.). When
initially positioned an equivalent amount
below the midplane identical downward
motion is observed. The case of initial
position further still above the midplane
(5-10 mm.) is shown in figure 10.
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positioning  the initial magnetic axis above or below the

midplane and observing upward or downward motion

respectively.
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' CHAPTER'III

TH EO RY

.\

A.  Review of Previous Theoretical Work

To put the present study into perspective, a review
'

of other investigations of the axisymmetric instability

is appropriate. Quantitative comparison of the evolution

of experimental equilibria with published numerical

examples is not precise. Experi,mental equilibria are

poorly mtrrored by analytic models (e.g. Solov'ev30  or

Rebhan5,6).  Also, theoretical studies have, for the most

part, defined the shape parameter limits to instability

onset as opposed to examining the relative stability of

different unstable shapes. The following is a  brief

summary of the majority of the abovementioned relevant

literature.

The first person to deal with the stabil-ity to

horikontal and vertical motions of a plasma is

Yoshikawa31. He examines the· forces on a toroidal plasma

current  of  minor  radius  a, and major radiud R .  This

examination reveals, that for horizontal stAbility, there
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must exist a potential well such that the restoring force

(ItorxBz)R decreases slower, with major radius, than  the

inductive 'expansion force from the plasma. To express

this relation we write

d_(2 WRIBz) 2 d {111LI2} (3.1)
dR dR 2

The same idea is applied to the restoring force in the

vertical direction to give

(d/dz)[BeRxt] <0
(3.2)

These two equations are combined with the relation

(VxBext)0=0 and the assumption that Bzcc(Ro/R)n to give

n>0 (vertical stability) (3.3)

n<3/2 (horizontal stability) (3.4)

'I

The parameter  n=-(R/Bz)(dBz/dR)  is  termed  the  vacuum

field decay index. Note that it is strictly a local

quantity.

A modification of Yoshikawa's result is obtained  by

Seki in references 7 & 8. He derives the forces acting
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-             on the plasma current center and surface. Also taken

into account i s          t h·e interaction of the plasma current

with eddy currents in a resistive shell surrounding the

plasma. The plasma is circular.i·a:nd a constant current

f

density is maintained, duri:'ng,',plasma movement. This

' movement is therefore be'i'ng treated as a rigid shift.

The equations of motion' f.or the plasma are solved about

an equilibrium state using perturbation theory.

Yoshikawa's results for decay index limits are recovered

with some modification in the horizontal direction. The

presence of a wall is predicted to reduce the instability

growth rate to the inverse of a modified shell resistive

decay"time:„w.L

Another study that investigates the role· of decay

15
 

index in stability is Sakurai et al. .. An important

difference over previous work is .that a tokamak with an

octupole vacuum field is studied. This, of course, leads

to noncircular equilibria. Walls are not included in

this paper. Very little information is· gi.ven as to how

this calculation is performed. The criterion for

.,

stability seems to be that if  the plasma:is shifted

rigidly in the v.ertical direction, then ·i t is stable

given the destabilizing JxB force on it is convergent.

Reported results ar* that the square is vertically

4

i
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stable, the dee and inverse-dee vertically unstable. Off

axis equilibria were found for the dee but not for the

inverse-dee.

I  T :) c...g     :.„ I.

In a departu,re· from studies utilizing decay indices

and forces, Okabayashi·&· Sheffield3, using the energy

principle32, investigated plasmas characterized  by

ellipticity. The toroidal plasma current is modeled by a

I
set of current filaments. A rigid vertical displacement

(m=1,     n=0) i s given to the whole plasma column and

stability is evaluated from the change in energy stored

. by the plasma current filaments. The two parameters m  &

n refer to the poloidal and toroidal mode numbers

respectively. It was found that rectangular shapes are

stable for e<3 and ellipses for e<1.3.  These two were
-                                   -

the only plasma cross sections studied. In addition,

their results. indicate that rectangles with flat spatial

current profiles are more stable than parabolic current

profiles.

Rosen also studied the axisymmetric instability10

: in the absence of external conductors. Stability of

rectangular and elliptic cross sections to m=1 and m=3

axisymmetric modes is performed using a reduced form of

, the energy pri·nciple33. He finds the ellipse unstable to
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a rigid s·h if t in the d i.recti.on of elongation w'ith

ellipticity limits similar to those found by

Okabayashill.  ·The square .wa.s found al:ways stable to this

rigid (m =7) shift. Alt-hough the square is attracted

tow·a-r-d the x-:points, -it i.s repele'd by the antiparallel

sh-aping .car:rents (.on th-e midprlane :and midcyli-nder) ·45

.de-gre es 'be t:ween the x-points. Thus the square would be

sta·b-le t:o a sh.if't but becomes unstable w h e n    a-n   m= 3

wr.-i.n,kle :is -a.dde:d t-o the pe'rturbation.

A  study that i'ncludes the enti re en-ergy principle

ap-p:lie'dt-0   rigi-d  ·strifts   :is    that    of'   Rebh:an'I.      Hi:s   goal   i.s

t.o de.fine the a:nalyti.c -sta,bility .1'i-m it:s of noncircular

deformati ons to de:e, -elliptical and i-nverse-dee sh·ape.d

pl,assma-3. The .gen-eral for'm zof ri.gid movement is util.ized

.w-h'i ch i'nclu-d-es   'fli·p'pi'nga,s   well   a-s 1-in·ear motion. Other

-as:sumptions :made 'in th·ips pape'r include -t h e -a b s·e n c e o.f

-.ext-ern.a 1 conductors, i-n'compre·ssible pla.sma smotion, all.d

p"C *) -a.n-d I'(41) being constants. I and pare RB .a n dtor

plasma pressure., re'specti-vely. After writing down a form

of thre,-e·ner:gy principle, :R:e'bhan points Out that the

-pla,s'ma  "t-erm

 f( 11 .I P. )    i. SEE (3.5)
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drives  the vertical instability. i is the perturbation,

p' is the total pressure '(p+82/,2) and S is the surface of        -

the plasma. In other words, a ·gradient of the total

pretsure drives the instability. A stabilizing influence

is due to flux compression in the vacuum through the term

 f(8.6Bv ) I.-ds (3.6)
S

Rebhan's results indicate, for rigid vertical movements,

that the ellipticity limit for total stability  is  lower

for ellipses than for dee or inverse-dee shapes. In

studying his equations, one finds that all toroidal field

terms are absent. This occurs because he is mode·ling a

purely vertical shift, which does not stretch the

toroidal field. He interprets this as the plasma

slipping through the toroidal field.

5Rebhan & Salat extend this work in Rebhan's second

axisymmetric instability paper by including rectangles

among the shapes studied. They drop Solov'ev equilibria

in favor of  a constant pressure, surface current model

that allows for non-rigid as well as rigid shifts. The

shapes studied are described by

 2 = e2(R-1)2+(1+T3)z2-2AT3(R-1)z2-TJIA2(R-1)2z2 (3.7)
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1. - L..  .

-         where e, T3 and T4, are shaRf„parameters describing
.......»., I.

ellipticity, triangularity A*.. and rectangularity

respectively. Also,  A,  R4 and z are the aspect ratio,

major radius and vertical.:distance above the midplane.

The aim of this work is to again define parameter limits,

but in this case, with a different set of parameters and

for nonrigid movements. Qualitatively, what is found is

that squares and ellipses have approximately the same

ellipticity limit for total stability. But, in contrast

to rigid shifts, increasing T3 (deeness) implies a  lower

ellipticity limit. Also, a typical dee or inverse-dee

(1.T31-.3) has a lower ellipticity limit than a typical

square. (T.4-,3) In studying the form of the non-rigid

movement, we see that the perturbation is largest where

t.h e surface poloidal curvature is greatest (near the

x-point). Rebhan & Salat predict that in the presence of

a conducting wall this instability will have a lower

growth rate.

A paper, similar in nature to those mentioned of

Rebhan's,  is  that  by  Chu & Miller34.  Here the energy

principle is minimized numerically with respect to

arbitrary displacements. An improvement, however, is the

allowance of a nonuniform plasma current. They find that

the minimizing displacement, or most unstable eigenmode,
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for rectangles and dee's always contains a nonnegligible

triangular' component (m=3)· Thi·  s result, that  the        -

unstable displacement '.'1·67 8.616'Arri gi d, agrees  well  with

Rebhan5 - and Rosenllfrl.s Wall stabilization was included in

Chu & Miller's 4-ork'--'and found necessary for elliptical

plasmas. Peaked current profiles were found to be less

stable than flat profiles in the presence of a  wall.

Rectangular shapes, overall, were more stable than

ellipses.

12...

Using numerical equilibr'ia, Becker & ' Lackner

computed  the asixymmetric stability of dee's. and squares

-                                         20
using a similar method to that of PEST which is

- described  in section III.C. However, the inverse-dee is

4. not studied nor are external conductors included in this

. -j

model. Squares are found to be more stable to non-rigid

vertical movements than the dee. Additionally peaked

current profiles are predicted to be more stable than

flat. This result is different from the previous paper

for reasons that are undecipherable from these reports.

In the continuing improvement of these studies, and

13        on into thecomputer codes in general, Jardin pushes

nonlinear regime. ' The code he used is described in

detail in section III.D, but it will briefly be'described
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-            Here for completeness.  This code, PATENT13,23, steps the

full 2-D time dependent MHD equations in time using  a

flux coordinate system which gives us a continuous

picture of the plasma shape. Current carrying coils in

the vacuum can be allo'wed'to interact with the plasma and

thems·elves through· 6ibcuit equations. The square is

found  to be more stable than the dee or inverse-dee. In

the p·resence of passive stabilization, the square and

other equilibria of small deeness can be stabilized on

the time scale of his code (200 toroidal Alfv6n times).

In addition, in a statement similar to Rebhan's, Jardin

reports that the portion of plasma nearest the current

carrying coils deforms the most.

Using the linear stability code ERATO35 and analytic

Solov'ev equilibria, Bernard et al.9  study  axisymmetric

stability as a function of parameters used by the first

4Rebhan paper . The difference between these papers is

that here allowance is made for non-rigid displacements.

Qualitatively, agreement is reached with previous work in

that the unstable deformation is found to be greatest

near x-points. Also, walls are stabilizing, thus

increasing the ellipticity limits of a   given

triangularity.  Bernard joins Jardin13 in  comparing  the

relative stability of unstable equilibria: the dee is
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more stable than the inverse-dee. Critical distances to

the wall for stabilization are quoted as a function of

ellipticity and triangularity.

Rebhan & Salat further extend their work   by6

including passive and active feedback due to external

conductors. The new terms added. to the energy..principle

are for active feedback

6  W j    =      f( Al, ' -AB 1 )    I. 311 (3.8)
S

and passive feedback

6  W       =    1. f< Blr ' 682)    I'd a
- (3.9)

     ds

where Bv is the total vacuum field. Vx 6Bl and Ix 22 are--

the currents in the active and passive feedback Coils

respectively.   6W 
is always positive, or stabilizing,

for quasi-static field changes. Therefore, that .term can

be. dropped retaining a sufficient stability condition

6  WO     +      6Wj 20 (3.10)

where OW   is  the perturbed energy without feedback (see

Rebhan5) . Feedback for properly posit.ioned-  z-symmetric
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coils is found possible for dee, inverse-dee, square  and

el.liptical cross sections. If the elongation is too
.f. 6  -f. : j

large, i.e. a belt pinch, feedback stabilization becomes

more difficult. For smaller elongations, feedback coils

in the direction of the x-points are always effective.

Summarv

Although the visualization of the axisymmetric

instability is simple, the modeling of its action and

character is not. As can be seen by reading the above

review, the degree of complexity and accuracy of these

studies has increased over time in search for the most          4

physical model. Starting with a simple current filament,

generalization was made t·o current profiles and the

linearized forces acting upon them.  Noncircular shapes

were then included and the treatment modified to

linearization of the MHD equations, the energy principle.

Finally, allowance has been made for the stabilization

due to external conductors and an investigation using the

full set of nonlinear MHD equations was performed. It is

- easy to see that the latest papers present the most

accurate modeling process but the question arises as to

w.hich is the most physical. The most important

difference between the latter studies is the type of
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equilibria utilized: analytic or numerical. Certainly
:,sb 703 -

numerically generated equilibria are more useful because

of their ability to represent almost any shape and set of

plasma parameters. Inclusion of feedback  is  definitely

important because many shapes of interest are

axisymmetrically unstable.

84 Numerical Eauilibrium Code
0.

The reasons for undertaking a theoretical study to

6.-:

complement this experiment are twofold. First, previous

theoretical work, for the most part, has emphasized

defining limits in parameter space to absolute stability.

For the Tokapole and other noncircular tokamaks, most

realizable and interesting equilibria are unstable to

axisymmetric modes. Therefore, what becomes  of  greater

interest than stability limits, is the relative stability

of these equilibria with an eye toward the use of

1'.

stabilization; either passive or active. Besides the

redirection of theoretical emphasis, the second reason
1

for this study is that published work does not accurately

reflect our experimental machine.
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To perform a stability calculation on an equilibrium

.that closely parallels the physical reality of the

20
Tokapal.e, the Princeton Equilibrium program was

,m o d i f i e d  .b y ..Dr. Alan TAdd to include the Tokapole walls.

In ,this section, I will descr.i.be the equilibrium  program

which was originally written by Dr. S.C. Jardin, and

*he,Grad-Shafranov equation which it utilizes. In

sections III.C and D, the PEST and PATENT stability codes

will .be described. These both utilize the numerical

equilib,rium,       .that       will    be.described    in    this    Bection,     as
.-

,.1.nput.
.

Theoretical predictions by these stability codes

-wi·l.1.be described in section.s  III.E  and F.                            «p
..&

./

'9
Basic ·to this discussionof numerical equilibria is

the .-Grad-Shafranov equation. « The usual cylindrical

coordinates are used.here (R,0,z) with the z axis being

„.the .major or symmetry axis of the toroid  (fig.15a).

Keeping in mind  that  .0, the toroidal angle, is an

ignorable coordinate, we can write down the magnetic

field

8 = _pc(A00) + 800 (3.11)

„Following the lead of other derivations, we now introduce

a stream .functi.on  9
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Figure 15: Description of the numerical equilibrium code. a) Cylin-

drical coordinate system used. Note nested flux surfaces. b) Surface

S over which poloidal  flux, 4, is integrated.
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8    =   Nx (    30)    +    R B Ad

= S*xjld + 800

,  .ki S- -« • 1'tt:  + 86' (3.12)

It can be shown that 4 is·proportional to the poloidal

flux

11'    =      11  0 1/2         =      (  1/2 1 r ) f 11 p o l  ' .sls (3.13)

by evaluating the above integral using 3.12. The surface

S (fig.  15b) is  toroidal  with  one  edge  on  a  fixed

circle, the other intersecting a point whose poloidal

flux is to be measured. Contours of constant  0 form

nested surfaces within the plasma.

The current density J is computed from

Po  = yxE

=       I        -BR (R B O  )       -      R 3       (RB6)].3.E

-1[ R-6 1 *  + -0  8

=     - (   8' 4/ R) 8    +   3  R B 0)     x f0 (3.14)
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where B  is the toroidal field magnitude, and  we  define
.

the operator

r A:,4 * Sit 4 . i  . 5 (3.15)

Using  3.12 we see that B'24=0, indicating that B lies on

a flux surface. From this we can show that the pressure

p  is  a surface quantity  (p=p(11,))  by 8' 12=8'(Lxll)=0.

Solving for p we see

Pop'(111)20 = [-( 8*111)20 + £(RB0)xY0] x

[YWx.yd   +   BdR20]

':1,              .'

-  8.               _     8 0 R.Y(RB 0.)

.

(3.16)
'

R                                                                      R

RB0  must  also  be  a surface quantity because, like all

other terms in this  equation,  f(RB0) must  be  parallel

to  . Thus we define

I( * )    2 R B (3.17)6

I( 0) is proportional to the poloidal current inside a

flux surface characterized by 9.   This can be shown using

the representatihn 'for JQ ) from 3.14
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Ipoi =  ipol'di

I « . .. .. ....

-                                It(B0R) x 8]'dz
POR    ' ·'1.25293. 9

'.; 3.  40   3

I'(9 )2 ARdID    =    I(  111) 21
)6R          Po

..E L  : I

i..e. I.(111) = POI (111 ) (3.18)
2A Pol

Using  3.14' & 3.15 we can rewrite the force balance

equation, 3.16, as

-8.11, = R2pop,(4) + Ii'(111) = FORJtor( 111) (3.19)

-   e:.. . .

which is the Grad-Shafranov equation. Jardin, for use in

his equilibrium code, renormalizes 3.19 and changes units

to obtain

4    -(2Tr/Bo)2R2P,(11'). - (211x0)2gg,(11') (3.20)

where xO is the major radius at which  the  constant  BO,

the toroidal field magnitude, is specified.

To solve equation 3.20, which is an elliptic

equation, two things must be specified.   1)  9 on the

boundary (real space) and, 2) the right-hand side (RHS)
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of the equation, RJtor' everywhere.  However, since RJtor

must be specified as a funct*6n Of (*,R) and we do not

know, a priori, how  * depends  on  real  coordinates,  a

35. ..13 '
double nest of iterations is used. The inner loop solves

for the RHS, given 9 on the boundary and a specified form

for g(*) and p'·(4). Th-e'' 'outer'--loop calculates a new  4 on

the boundary given the RHS. The inner loop is made to

converge before the  outer  loop  is accessed. The

equilibrium is found when both loops converge.

The iterations are performed ' usng"  a   redtangular

finite difference grid, whose spacing, 8 x and Az, is

specified. Other parameters that need  to ''be specified

are the value for the total toroidal plasma current, the

position of, and current in, each extdrnal current, the

toroidal  field  BQ  at a particular major radius x , the

grid size and the functional form for RJ tor C*  ' This

form is generated  by the two functions p( ) and g(*)

where

g (4)      2      1-g p g. (4)
(3.21)

The parameter g 
is used to maintain the total plasma

current constant during iteratid'ns. Explicitly

-I ./ .,
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& (0)    =    C  [4111'im   :-  0  1/.[,111 i m   -    11'minl)      ,1

p (111 )  = · C Ill' li'm  - 1,11 l  '  11'11'm  -  11'min l ) (3.22)

:wh·e.re 11'lim an.d *mi·n are the values of 4 at the limiter

and magnetic axis, respectively. Al.so specified are PO ,

a and B pa.rameters which des.cr.i.be th-e toroidal curre.nt
3,

profile. F o r   a  B o n the order of 1 a flat current

profile is .produced similar to that of the Tokapole.

'F.or       q  B ·o n th e order of 2, a parabolic profile is

,produ.ced similar to mo.st other tokamaks.

C..  .The .PEST ,Stabilitv Code

.Much effort, in plasma theor.y., has been expended to

„determine the axisymmetric stability properties of

dif.fe:re:nt equilibria. There are two main classes of

t.ech.nique.s to tackle 'this problem: The first, and mo.st

-· obvious,, is to perturb the plasma and watch its time

development. Th.is t·e chniquehas been implemented    in       the

form of the PATENT code described in  the following

.sect-ion (.I.II.D.). It has the advantage of providing
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insight into the nonlinear aspects of the instability

growth.  What wiil be discussed in this section is the -.

second technique which can be termed a 'variational'

approach. All versions of this technique have their

basis in the energy principle as stated by Bernstein et

al.32.  If knowledge of stability only,  yes  or  no,  is

desired, not growth rates,'then the perturbed potential

energy

6W = -(1/2)fdV(I'I<i) (3.23)

is studied. F (  E) is the perturbed force whidh is  a

function of the perturbation C . Should any perturbation

cause 6W<0, then the kinetic energy is correspondingly

increased indicating the system is unstable.

If in addition to  knowledge of stability, growth

rates are desired, then inclusion of a kinetic energy

term will supply time derivatives. Equivalence of

Hamilton's principle applied to the system Lagrangian has

been shown36.  In the literature, the application of this

principle is referred to as making the  Lagrangian  L
'.

stationary

6fL dt = 6/dt[K.E. - W(E,E)] = 0 (3.24)
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where L is of the form

L     =        fd V      (     pv 2     -     Y P ·-    -     8- ) .(3.25)
2uo

All the terms above are clear as to their origin and are

writt·en in terms of the perturbation iby linearizing the

MHD equations:

3v
P E = -sp + .flxn

/ =  -Fx B

DB = -Yxi
 5 E

I = lxB

 t              Y.K p      -       Ypy  .v

3         =     -I. vp    - py.v
(3.26)3,

The t erms presented in 3.25 areall that is needed to

evaluate stability with respect to kink and interchange

modes for normal tokamak geometry. However, inthe

presence of external conductors, more terms should be

added. Dewar does this  by including the 'kinetic'21
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energy of the currents involved  through  a  1/2L
I2  term.

Todd has implemented this new term in the modified PEST22

code used here.                          
                          -

In practice, the energy terms must be written, as  a

function. of  some general perturbation E.  In the case of

the PEST code it appears that i is presented as the sum 
of

n
toroidal harmonics u of order n and degree k-1/2:k+1

n  = {coshy - cos 41/2ei(n0+kn)p -1/2(U) (3.27)
Uk+1

These harmonics are centered at various axes in the

plasma, to model the plasma shape and current, and at eac
h

of the external current sources with accompanying image.

The symbols U,n and 4 represent the toroidal coordinates

centered at these axes. Each potential energy term is

minimized with respect to the coefficients of these

toroidal harmonics. When  the most unstable i is found,

the kinetic energy is evaluated. Because this calculation

is linearized, K ( &,i), the kinetic energy can be written

a s    w2 K(   6-, 6).   s o 3.2 4 b e c o m e s

w2    =       W C E  'E
)

.    (3.28)
K (E  ,E  )

and a growth rate can be solved for. The notation ' W(E,E)
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is used in the literature to denote that W is quadratic

in E. The eigenmode in toroidal coordinates is decomposed

into its poloidal components SO that t h,e principal

poloidal.mode numbers can be dscertained.  Typical  output

showing the st.rength of eachi poloidal component and also

the velocity fiel.d are shown in f'igure 16.

D.  PATENT Code Descriotion

Linear codes can quickly, in terms of computer  time,

give relevant results. Time-dependent codes, as mentioned

in section III.B, can possibly provide insight into the

nonlinear interaction of the modes and physical elements

involved. What is meant by nonlinear and time dependent

is that PATENT follows the full set of nonlinear MHD

equations through time.

PATENT takes the numerical equilibrium described in

Section III.B and displaces it some small amount above or

below the midplane (usually .02 minor radii). If an

equilibrium is unstable, then the displacement Will

increase with time. If the configuration is  stable,  the

magnetic axis will oscillate about the midplane.



Figure 16: PEST predictibns for an·

unstable PDX equilibrium.   a)  Magnitude
of poloidal fourier components (ordinate)
VS. Psi (abscissa). Each curve

represents a different poloidal component

ranging from m=-15 to 15. The dominant

components, here, as for all vertical

axisymmetric modes are  m=3,  -3.    b)

Velocity 'field for this perturbation.

-..
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This code, like PEST, can include rings in its

stability calculation. Their resistance can be varied,

but this ability is of little use since the ring L/R time

cannot be allowed to approach the instability growth time

without numerical instability ensuing. Thus, any external

conductors, as in PEST, have essentially infinite

conductivity.

In both codes, these rings can be electrically

arranged in almost any circuit imaginable. In the case of

PATENT, the ring currents Ii are described by

(3.29)I Mikik + niKi + niriIi = nivi

where

Mik = -ninkG(xi,xk) (3.30)

is  the mutual inductance between coils i and k.  G(Ki,Xk)

is the infinite medium Green's function. Ki  is  the

poloidal flux at coil i due to the plasma current. The

plasma and external currents communicate through boundary

conditions at the plasma surface and the Green's function.

The number of turns, voltage and resistance of coil i are

ni'  vi  and  ri respectively.  Application of Kirchhoff's
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law to these circuit eq.uations leads to a set of eq.uations

describing  dIi/dt.  These arestepped forward in time, as

dynamical variables, along with the full set of  MHD
\

equations.

The technique applied in PATENT to solve these

equations is termed the dynamical grid method. This

method,  described in great detail el.sewhere23, is neither

Eulerian (in the moving plasma coordinate sy.stem) nor

Lagrangian  (in the laboratory frame), but is based on the

sstrurture - of. the changing magnetic field.     A

time-dependent nonorthogonal  magnetic  flux  coordinate

transformation is introduced to accomplish this. This

transformation to  the  coordinates 9, proportional to

poloidal flux., and 0, a measure in the direction around  a

flux surface., determines the grid used in the computation.
t

An impor.tant consequence of this technique is that

the plasma shape can be followed through time. This is

because the positions of grid points, which outline each

flux surface, are treated as dynamical variables. The

explanation of how the MHD equation.s are recast in this

coordinate system as well as the two step advancement

scheme is also .given in reference 23.
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The output capabilities of this code include flux and

velocity vector plots at specified time.  intervals,.  the

position of specific grid points, ·and the ·magnitude of

feedback currents as a function of time. Samples of

output are shown in figures 17 & 18.

E_   Results Without Passive Feedback

The PEST code is used to evaluate the axisymmetric

stability of a range of Tokapole and PDX equilibria

(figures 19-21) from inverse dee to square to dee.

Comparison of Tokapole and PDX results can be · used to

determine the generality of the experiment.  Stability may

be calculated with the rings and walls either included or

excluded to assess the role of passive stabilization. The

deeness of the equilibria may be described by fitting the

flux surface just inside the separatrix by equation 3.7,

where ·e is the ellipticity,  T3  is a measureof  the

triangularity or deeness, T is a measure of
4

rectangularity and A is the aspect ratio. This expression       -

is useful because it allows a description of dee,

inverse-dee, elliptical  ds well as square shaped



Figure 1'7:    Predict'ions     by    PATE.NT    for'

vertical p·osition of the magnetic axis as
a  r un ct Lon of 'time. The ordinate is in
u n i t·s of 10 minor radii. Initial-1

perturbat'ion, i-n thi·s ca'se, is .02 minor
radii. The abscissa is in units of

toro-i'dal Al-f ven t'im·es ':(11,80'a,2/282) 1/2.

e
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Figure 18: Theoretically predicted (PATENT) deformation of the plasma shape for PDX.

a) Initial equilibrium. b) t=100 toroidal Alfv&n times. 5



Figure 19: Theoretical vertical growth
rates vs.  T3' as predicted by PEST,  for
the Tokapole. Three cases are shown.
X - Without passive stabilization.
0 - Only rings included.  0 - Only walls
included. Square, dee and inverse-dee
shapes are described  by  T =0, <0 & >03
respectively. Including both rings and
walls completely stabilizes all shapes

other than extreme IT3'.
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Figur 20: Theoretical vertical growth
ra S VS. TR for PDX as predicted by the

ST and PATENT codes without passive
stabilization.
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Figure 21: Theoretical horizontal growth
rates VS. T3  for  the

Tokapole, as '

predicted   by PEST, without passive
stabilization.
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cross sections. The dependence of the instability growth

rate on deeness (T3) may now be observed. Ignoring the

presence of r·ings and walls, figures..19.. and. 20..show that

the square is more stable, vertically, than the dee or

inverse-dee, which have roughly equal growth rates, for

both Tokapole and PDX equilibria. These machines are

quite different in geometry and size. In addition, the

Tokapole has a flatter current profile thanthe parabolic

shape predicted for PDX. It appears that''the relative

stability of different shaped cross sections is fairly

machine independent.

The growth rates for PDX calc.ulated by PATENT (.figure

20) agree well with PEST. Using PATENT, the motion of the

magnetic axis may be observed for different initial

perturbations. It is seen (fig. 17) that if the axis  is

initially .02 minor radii above the midplane the plasma

moves unstably upward. Equivalent positioning of the axis

below the midplane produces downward motion. Initial and

final pictures of an equilibrium. are shown -in figure 18.

The growth is exponential for excursions well into the

nonlinear·regi'me. 'Growt'h· rate's', increasi as the initial

position of the magnetic axis is moved farther from the

midplane (fig. 22). For an initial vertical position of



Figure 22: Theoretical predictions of the
nonlinear code (PATENT) for growth rate
as a function of perturbation.
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th'e magnetic axis an· the midplane, the, axis oscillates

about that starting point.

The effect of th e. toroidal field on instability

growth was found to be· mi.nimal. An order of magnitude

difference in the t.oroidal field produced only a .5%

change in growth ra t e.; stability was enhanced for

inverse:-d'ee's (T3>0), degrade·d for dee's (T3<0)· This

dif'ference is pe·rhaps related to the 1 xB force which
pol -tor

poi.nts outward from the plasma center (see section I.B).

As the unstable dee (T3<0) moves inward in major radius to

higher B the force increases thereby encouraging
tor'

unstable· mo,tion. For' the inverse-dee (T3>O) the motion is-

o u t w a r d     a n d t h e' e f f e c t     o f     t h e     t o r o i d a l     f i e l d i s o p p o s i t e.

Stability to horizontal. axisymmetric displacements of

Tokapole and PDX equilibria was studied using PEST. For

Tokapole equilibria, the square and other shapes of small

IT31,
were found to' be horizontally unstable with the

square havin·g' the highe:st growth rate, (fig. 21). During

horizontal motion the midplane forces due to the vertical

field are stabilizing whereas the vertical extremities

experience the destabiIizing presence of the x-points.

Thus, the dee's, which are more heavily weighted in area

towards the stabilizing midplane, are relatively more
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stable than the square. Examination of figure 21 reveals

the  dee to be relatively more stable-than the,inverse-dee

to horizontal motion. We consider this result to be due

to  the toroidal nature of a tokamak; most likely the self

expansive force of the plasma current. For sufficiently

large  IT31  both Tokapole and PDX equilbria were found to

be horizontally stable.

F.  Results With Passive Feedback

Both codes ·can be used to assess the role of passive

conductors surrounding the plasma. In the case of the

PEST code, any combination of conductors (walls and/or

rings) can be included and their effect on the linear

growth is found by evaluating the inductive contribution

21,22,32
to the energy principle of Bernstein  et al.

Figure 19 shows the effect .of adding either rings or

walls; In the presence of both walls and rings all

Tokapole e4uilibria studied are ·stable except those of

extreme triangularity. As can be seen from this same       :

figure, adding„conductors has a greater effect on the

square than on other plasma cross sections. This may be
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"          due to the square being in closer proximity to all four

rings or walls than shapes«'of larger IT I. The
3

stabilizing effect of the rings exceeds that of the walls

since the rings are closer to the plasma. The PATENT code

yielded similar results when used to evaluate the effect

of pass·ive feedback due to rings.

a
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CHAPTER IV

SUMMARY„AND DISCUSSION
-

14-17
Previous experimental. work on the axisymmetric

instability in noncircular tokamaks has, for the most

part, inferred gross plasma motion from signals external

to the plasma. Experimental results were compared with

related theories in the literature through such parameters

as ellipticity and/or averaged decay index, derived by

modeling the plasma current  as  a filament31. In this

experiment we can accurately observe the motion of the

poloidal magnetic flux surfaces and the time evolution of

internal parameters (J,q,E) through internal measurements.

These experimental data are carefully compared to

theoretical predictions of PEST, applied to this specific

machine. The plasma cross section is characterized  by

ellipticity, triangularity and .rectangularity parameters.

A second code, PATENT, follows the nonlinear time

development. This code is only applied to PDX geometry

with shapes similar to Tokapole equilibria. Similar       -

results, by PEST, for the two different machine geometries

indicates our results are fairly machine independent.
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- Linear theory predicts that, in. the absence of

passive stabilizatton, all experimental equilibria are

vertically unstable on the MHD time scale (Ta) ·  However,

the square is more stable than the dee or inverse-dee.

This is consistent with the dee's being poloidally more

asymmet.ric than the square; that is, the radius of

curvature of the magnetic surface near the x-point is

smallest for the dee's. Furthermore, only square-like

equilibria are horizontally unstable. With the addition

of passive feedback from rings and walls all equilibria 4

are predicted to be stabilized with the greatest influehce

exerted by the rings. An experimental picture emerges in

close agreement with theory, with modifications to account
.f

for the finite plasma resistivity limitation to the

passive feedback. When the experimental plasma is

z-symmetric both inside and outside dee's oscillate on the

plasma resistive time scale. Thus, these equilibria are

linearly unstable, as in theory without conductors, but

are nonlinearly restored by passive feedback to a stable

oscillation. Passive feedback does not linearly stabilize

the equilibria; i.e. the plasma is displaced a finite

amount before nonlinear feedback occurs. The complete

stabilization of this mode by passive feedback, that the

ideal MHD PEST code predicts, is not observed in the dee's

since the finite plasma resistivity causes damping of the



98

induced stabilizing currents in the rings, plasma and

walls. The square appears entirely stable vertically,

implying that passive feedback is more effective for this

shape as is also indicated theoretically in figure 19.

All evidence, both  experimental  and  theordtical,

indicates that the square is more stable than both dee's,

which have similar stability properities. If the initial

vertical position of the magnetic axis of both dee's is

experimentally positioned above (below) the midplane they

are linearly unstable. However, passive feedback is

unable to reverse the vertical motion and the displacemen
t

grows exponentially with a growth time again on the order

of the plasma L/R time (resistive decay time). The square

is vertically stable, experimentally, even when positione
d

away from the midplane. The form of the vertical

displacement of the dee's seen experimentally (fig.  9) or

in the PATENT code (fig. 18) is a non-rigid deformation

in the direction of the separatrix x-point. Also, in both

this code and experiment, growth rate increases as the

magnetic axis is positioned further above the midplane.

In the absence of vertical movement, a  steady

horizontal motion is experimentally evident. As the

plasma travels horizontally it becomes increasingly
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d e e-s h a p e d.          (inc·r'easing          IT3') a n d eventually becomes

vertically unstable. Indeed, PEST predicts this same

horizontal instability for t.he square and other shapes of

small IT3' (fig.  21).

A crucial factor absent in the codes used here, and

in all published calcu.lation.s, is the finite plasma

8            13
resistivity. Seki and Jardin discuss only the finite

conductivity of the external conductors. In our

experiment the plasma resistive:decay time may impose a

bound on the instability growth time. When the plasma

resistance is experimentally doubled, the instability,

growth rate also doubles. The correlation is not precise.

Although the plasma shape remains approximately the same,

a  1.5 cm. shrinkage in the plasma minor radius

accompanies the resistance change. However, modeling of

the effect of this change on the instability growth  by

PEST indicates that the minor radius decrease causes only

a 4% increase in growth rate. The experimental and

theoretical resultsof this paper are summarized in table

1.

Finally, the results presented here are not peculiar

to the Tokapole machine or geometry for three reasons.

Firstly, the Tokapole machine is up-down symmetric since



Table 1: Comparison of experiment and

theory as predicted  by the numerical

stability codes.



- -

101-

TABLE

THEORY EXPERIMENT

Vertical Stability:

Dee and inverse dee linearly Same.

unstable without feedback.

Square linearly unstable without Linear state undetectable--

feedback. square stable.

Square more stable than dee and Same.

inverse dee:

All shapes linearly stabilized by Dee. and inverse dee not linearly

passive feedback. stabilized by passive feedback.

All shapes can be nonlinearly

stabilized by passive feedback.

7 -1 : without feedback.                       T                - L/R  with feed-

-growth Alfv6n' growth iplasma

stable, with feedback. back.

Nonlinear growth is exponential. Same.

Nonlinear motion is nonrigid, toward Same.

separatrix field null.

Effect of plasma resistivity                  T       decreases with increasinggrowth

plasma resistivity which limits
effectiveness of feedback.

If magnetic axis is initially placed Same

above, below or precisely on the

midplane, the plasma correspondingly

moves up, down or oscillates.

- Horizontal Stability:

Squarelike plasmas are more unstable Same.

-     than dee and inverse dee.
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the plasma shows no vertical preference in its motion.

When initially positioned slightly above (below) the

midplane the unstable motion is upward (downward). When

centrally positioned it oscillates. Secondly, qualitative

comparison of PEST predictions for Tokapole and PDX are

very similar despite obvious machine differences.

Thirdly, the .wide seperation of the poloidal Alfven,

growth and ring L/R times (Tg -TL/R(plasma) -.05

TL/R(rings) -1O3Ta)  clearly  indicates  the  determining

factors of the growth rate.

IMPLICATIONS

With the knowledge that this thesis work has provided

me, I'd like to discuss its implications. It seems, at

this point in time, that tokamaks of the future Will

neccesarily have noncircular plasmas. It will be very

important, when designing and running these machines (e.g.

PDX, INTOR), to remember what problems this noncircularity

can cause. The axisymmetric instability will not be the

deciding factor in choosing what shape, dee VS.

inverse-dee vs. square, to use. B-limits probably Will

be. But, this instability will be of prime importance in -

machine design and day to day running in that we must take           i
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' into account the characteristic decay times' of the plasma

and surrounding conductors.                            -
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