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ABSTRACT

A mathematical treatment is presented for the growth of
dendrites or precipitates with parabolic interfaces. Two cases
are considefed in which the interfaces correspond to a parabo-
loid of revolution and a parabolic cylinder. For these inter-
faces, relationships between growth rate and supercooling are
obtained for two general boundary conditions under the assump-
tion that the temperature or concentration variation along the

interface is finite and continuous.



1. Introduction

Parabolic interfaces are very frequently encountered in
situations involving crystal growth and solid state phase trans-
formations. Important examples of these include dendrite growth,
whisker or filament growth,. and Widmanstdtten plate and needle
gfowth. The growéh of precipitate particles during solid state
transformation is primarily controlled by the diffusion of atoms,
whereas the‘freezing'or solidification process 1is goyerngd by
the conduction of heat as well as by the diffusion of atoms.

' Considerable experimental work has been carried out to study

the growfh of &éﬂdrités and Widmanstgtten preciéitafés.. From
these results, the following general conclusiohs can.be made:

1) These preciéitates or crystals grow at a constant rate and

~ this rate is constant for a given supercooling (or supersatura-
tion). 2) The advancing front of these precipitates appears
to be of parébolic shape, and the radius of curvature at the

. tip of the parabolic interface is smaller than a micron in size.
3) The parabolic front preferentially grows along a specific
crystallographic direction in a given system. Many theoretical
attempts have been made to explain these observations quantita-
tively. ‘One of the early efforts was by‘PapapetroV (1) who
pointed out the possibility of a constant growth rate if the
interface were isothermal and parabolic 'in shape. - Subsequently,
Ivantsov (2,3) proved this conclusion quantitatively by obtain-
ing the solution pf the heat flow problem, and showed that a

constant growth rafe would be obtained for an isothermal inter-



face if the interface shape éorreSponded to a pafabbloid of
revolution or a parabolic cylinder. From these results, the
relationship between the growth rate and éupercooling was de-
rived. The result showed that an infinite number of solutions
are possible dépending upon the radius of curvature, p, at the
tip of the parabolic interface. For a given supercooling, growth
rates will vary from zero to infinity as the'values of p change
from infinity to zero. This did not resolve the experimental
observation of constant and fixed growth rate at a given super-
cooling. |

o The inadequécy of the Ivantsov solution was‘realized by
many investigators (4-6), and was attributed to the assumption
‘of isothermal interface. Zener (4) pointed out that because of
the large curvature of the parabolic front, the Gibbs-Thomson
effect would be significant so that the interface temperature
woﬁld be proportional to the curvature of the interface. Subse-
quently, Temkin (5) and Bolling and Tiller (6) pointed out that
non-isothermal interface would also result from the non-uniform
interface undercooling required for atomic attachment procesé

at the interface. When non-isothermal interface is considered,
the theoretical analysis becomes quite complex since the steady-
state intcerface shape will deviate from a parabola. However,

as suggested by Temkin (5), a reasonably valid relationship
between growth rates and supercooling will be obtained if one
considered a non-isothermal parabolic interface. Temkin (5)
obtained an approximate solution of the parabolic interface model,

which was subsequently solved rigorously by Trivedi (7-9). Once



the non-isothermal nature of the interface is considered, the
growth rate as a function of radius of curvature, p, goes through
a maximum for any'given undercooling. This maximum growth rate
was proposed by Zener (4) to bé the one observed experimentally.
Theoretical calculations based on the maximum gfbwth rate prin-
. ciple agree well'ﬁith experimentally observed rate for many
systems spudied‘(lo); ‘

| All the above models have considered a simple case of the
growth of an isélated; parabolically shaped, particle in an

infinite medium which is initially supercooled to a const

ant
temperature. Most growth conditions, however, are quite complex
in that the helt'is not supgrcooled, but has increasing tempera-
tﬁre away‘from the interface. Also, many other parameters such
as anisotropy of interfacial energy and of interface kinetic
coefficient have been ignored. The dendrites and precipitates
usually grow in a parallel array rather than in an isolated
manner as assumed. A mathematical solution of a realistic problem
becomes Quite complex. However, most of these effects can be
easily incorporated'by'apprOpriately‘altering the boundary con-
dition of the pfdblem. In order to achieve this, it would be
desirable to obtain solutions of heat andlmass'transfer equations
for a general boundary condition, such as that given by a éonver-
gent Taylor's series expansion. Two general boundary conditions
are conSidéred in~this papér, and the solutions of the growth
rate as a functidn of supercooling are obtained for a parabolic

cylinder and a paraboloid of revolution shaped interfaces. A

specific example is then given to show how these solutions can



be used to theoretically predict the dendrite_growth behavior
under more realistic growth conditions encountered in crystal

growth and in solidification studies of castings.

2. Mathematical Dgscription‘
2.1 Basic Differential Equation

Figure 1 shows a schematic diagram of the section of a solid
plate or a needle dendrite front growing in a liquid medium. Since

these dendrites grow at a constant rate, the temperature distribu-

Fig. 1. A schematic diagram of a parabolic interface with an
attached moving coordinate system,



tions in liquid and in solid will be governed by the steady-state
heat flow equation in a mdving coordinate system attached to the
interface (11). We shall use dimensionless coordinate system
(x,y,2) = (X,Y,Z-Vt)/p;'where capital X, Y, Z fefer to a coordin-
‘até system fixed in'space, V is the constant growth rate of the
dendrite tip, and p the radius of curvature at the growing den-
drite tip. The steady-state heat flow is given by (11,12)

2 > - . ' ,
v Ti + zpiS'VTi =0 (1'391‘) ’ (1)

where subscripts S and L refer to solid and liquid regions, respec-
tively( p; is the thermal peclet number equal to Vp/Zai,-a:.l being
the thermal diffusivity, énd e is a unit vector in the direction

of the dendrite tip growth (z direction in Fig. 1).

Since the shape of déndrite front is parabolic, it will be
advantageous to.select'parabolic coordinate systems. We shall
consider both the plate and the needle dendrites. 'For a needle
dendrite, represented by a paraBoloid of revolution, we consider
a parabolic cqordinate system .(a,B8) in which o = 1 represents

the dendritic interface (7). In this system, equation (1) trans-

forms -to
2 : 2 )
o T. oT. 0 °T. AT,
1. (l-i-zp a) 14 1, (l- 2 -1 - :
: - p;B) 0 (2)
aaz o 1 aa 362 B i 28

2.2 Boundary Conditiohsl
The temperature distribution in liquid far away from the
interface (& or a»») will approach a constant value, T_. Along

the interface the variation of‘temperature will depend upon many



factors such as interfacial energy, interface mobility, aniéotropic
nature of interface energy and interface mobility, presencé of any
solute in the system, etc. However, the temperature profile will
always be continuous and finife. Thus, we shall assume a general

A bbundary condition to be given by the expression

- T = r d_B n for a needle dendrite (4)

T dn " for a plate dendrite, ' (S)

where Tint is the temperature profile along the solid-liquid
interface. |

Although the'above boundary conditions are quite'geﬁeral, the
boundary conditions in many cases depend upon physical parameters
which vary as a.funcfion of cosg, where é is the angle between the
interface narmal and the dendrite tip growth direction (7-9).
Thus, it is advantageous to obtain a general solution for another
boundary condition which is given by a power series in cosf. We

.shall therefore consider the foliowing boundary condition

[++]

T. -T = ¢ d. cos™
int w n=0 m
or v
T T § o £ dle dendri (6)
. - T, = Y —— OT 3 needle dendrite {6
int m=0 (1+62)m/2 .
© dm :
I —a for a plate dendrite (7)

m=0 (1+n2)m/2'



The coéfficiénts.dm in -boundary conditions (4-7) are such
that the temperature variation aiong'thé.interface is continuous
and finite for all 8 or n. In the subseduent sections we shall
refer to(boundary condition (4) or (5) as Type I and boundary
conditibn (6) or (7) as Type II conditions;>
2.3 Growth Rate Calculations

The solution‘of the diffefential equation (1) with boundary
Vcéﬁditions (4,5,6 or 7) gives the temperature profiles in solid
" and in 1iquid. The relationship between the growth rate and the
bath undercooling can then be obtained froﬁ the thermal flux
balance at the tip of fheAdendrite. For a needle dendrite the

relationship is:

Zpy oH _ Ty, ks 8Tg (8)
?
L da | 421 Ky B0 | o1

where CL is the heat capacity of the liquid,,Aﬁ fhe heat of fusion
per unit volume, and KS énd KL are thermal conductivities of solid
and»liduid, respectively. An analogdus equation can be written
for a plate dendrite, and the result will be the same as equation
. (8) when the coordinate a is replaced by the coordinate &. The
temperature gradients in liquid and in solid at the dendrite tip

can be written in general as

oo

d F, and (3Tg/3a) _; = L dnSn (9)
o g=0 M™% |

o8

_i(aTL/aa)a % = I
]

where the functions Fo and G, are evaluated from the solution of
the diffcrential equation. In terms of these functions, cquation

- (8) can be rewritten as follows:-



sz(AH/cL) = I 4(F + K G,) - (10)

Our aim in the following part of the paper is to evaluate func-

tions Fm and Gm for boundary conditions (4-7).

- 3. Needle Dendrite
3.1 Solution of the‘Differential Equation

We first consider the solution of equation (2) in the liquid
phase by the separation of variables method (7). Assuming a
product type of solution

TL ~ f((!) g(B)’

we obtain a pair of differential equations -

£ + [(1/a) + 2ppalf' - Af = 0, (11)

and C
g' + [(1/8) - 2pjalg' + Ag = 0, - (12)

where X" 1s the separation constant, and primes on f and g represent
differentiation with respect to o and B, respectively. We first
seek the solution of equation (12) which is finite as B»x. The
general solution of equation (12) is given by the confluent hyper-
gedmetric function (13).
A

s

8(8) ~ ¥ g 1, p 8%)

and this solution is finite as B+« only when.}\/4pL equals zero or
a positive integer (14). For these values of'x/4pL, the hyper-
geometfic function reduces to Laguerre polynomials of zero order,

so that the solution of equation (12) is

g(8) ~ L2(p;8%) . (13) °



for these values of A/4pL, equation (11) has a solgtion which is -

. finite as a+~ of the form
2 2 ’
f(a) ~ eXP(-pLa )W(n‘*l,l,PLa ) (14)
The general solution of the differential equation (2) can thus

be written as

2
exp(-ppa’)y(n+l,1,p;0”)

L2 (p8%) (15)-

T, - T = E'AL

L ®  n=0 exp(-pL)w(n+1,1,PL)

The dorresponding solution in the solid phase which is finite for
"a = 0, is given by |

' 2
exp (-pgo )¢(n+1,1,psa2)

Tg - T, = I Ag L2 (pg8%), (16)
"~ n=0 exp(-pg)¢ (n+1,1,pg)

Awhere functions ¢ éhd ] are.confluent hypergeometric functions of
first and second kind, reépectively. Along the interface o =1,
the two solutions given_by equations (15) and (16) must match.
Thus, coefficient As(ps) = AL(pL). We shall now evaluate the value
of this coefficient for the fﬁo types of boundary conditions dis-

cussed in section 2.2.

3.2 Boundary Condition of Type I
Equating equation (14) for o = 1 with the boundary condition

(4), we obtain

* oo

2 ;. Zm
I A L2(p;B°) = 1dpB
n=0 L'n™"L - m=0 mn

Substituting x = pLBZ gives

A L9(x) = z4d P X
n=0 L™n n=0 ™ L

m .

™~ 8
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Expanding x™ in Laguerre Polynomials (13), and substituting the
p .

result in the above expression gives.

r(m+1)r(m+1) (-1)"

-8

[} o _ -m [ ]
hEOALLn(X) -‘m OdmpL hﬁo LO(X)
- T'(n+1)F'(m-n+1)

Since the temperature profile along the interface is continuous,
the value of the coefficient A; can be obtained by interchanging

the summation orders and comparing the coefficients of Lg(x) on

both sides. The result is

® n
A = ¢ D mim! -m

L d (17)
'm=0. n! I'(m-n+1)

L ™m

Note that the terms for n>m are zero. -
The values of temperature.gradients at the tip of dendrite
(a=1, B=0) in liquid and in solid can'now be obtained by differ-

entiating equations (15) and (16) with respect to a. The result

is
ATy, o p(n+1,2,p;) .
- — = ZpL z AL : (18)
I n=0 = y(n+l,1,p;)
B:O »
and
aT © ¢(n+1 2,Pc)
2 a] = 2p. I Aqn - 27178 (19)
3@ g=0 “ n=0 ¢(n+1,1,ps)

Substituting the value of the coefficients from equation (16) and
comparing the results with equation (9), we obtain the values of

the functions Fm'and Gm as
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-1 Am‘.- n -Ul(n*'l Zsp )
Fo= 20 tmimi z L2D) 1 > L (20)
n=0 nl! r(m-n+1) w(n+1,1,pL)
and ‘
. ' z m _45D ¢(n+l,2,pc)
Gy = Zpg+1m!m! g 1) 1 > S (21)

n=0 (n-1)! I'(m-n+1) ¢(n+1,1,p )

The specific values of these functions are:

o : P
FO = ZPLU)(laZyPL)/‘p(l_,I’PL) = ZPL/[PLe Elch)]
and Gé = 0, where El(pL) is the exponential integral function.

These functions then give the result for the isothermal boundary

condition, and the result is identical to that obtained by

Ivantsov. (2) for this case.

3.3 Boundary Condition of Type II
We now evaluate the coefficients AL in’equétion (15) for the

boundary condition given by equétion.(6).' At the interface, a=1,

We have
1 A L(p8%) = & 4y
n=o m=0 (1+62)m72
or I ' o d. ‘m/ 2
I AL2(X) = = mPr, "~
n=0 ‘ m=0 (pL+x)m/2
The coefficient AL is then obtained as
o}
o) ) L (x)
2 -X n
A = 1 ap™Z o B dx

Substituting the integral representation of the Laguerre Polynomials

(13), we obtain

ro—& Ly (2/xt)e tar
' o,(pL+x) o nl '
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m/2 o -
= ; »fll"il‘,——; I ety E—/%z dx dt (22)
m=0 nl! o o (pL+x)

Substituting x/pL = u? and b = 2/pt, the integral, I, inside the

large bracket can be written as

© uJ_(bu)
. l1-m/2 Yo
I =2 i) - du
oL o (1+u?)™?

The solution of the above integral is given by Grandshteyn and
Ryzhik (15), and substituting this result in equation (22) gives

(m+2)/4
m PL s ‘e—€2§(4n+m)/2 Kl.m(2/5L€)dE

m=0 n! _I(m/2) o | "7

4d

AL = E

where we have substituted £ = yt. The solution of the above
integrai is also given by Gradshteyn and Ryzhik (22), and the
result can be written in terms of confluent hypergeometric

function as follows::

o d,p‘ :
A= 5 =L D1,z Ty (23)
m=0 T (m/2) “ : :

The coefficient.AS Qill also be given by equation (23) when Py, is
rgplaced by Pg- Substituting the above result in equations (18)
and (19), and comparing the result with equation (9) we obtain the
values of functions Fm and Gm as»

2

) ' 2p . ® . | (n+1s2’ ) :

FE = —L 5 rn+ DBym+1,2 - Bp .)-w hida’ (24)
m , Z 2’°FL

r(m/2). n=0 I ¥(n+1,1,p;)

and |
2 - |

Zp © ¢(n+1,2:p ) .
G, = ,__§__ I nl(n+ %)w(n+1,2- %’PS) : »AS‘ (25)

r(m/2) n=0 ¢(n+1,1,pg)
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The above result, when substituted in equation (10), correlates
the growth of dendritic needles with supercooling when interface

temperature varies according to equation (4).

4, Plate Dendriée

The méthematical procedure for the solution of a plate den-
drite growth is quite analogous to that for the needle déndrite
growth. We shall therefore present the results of the plate
dendrite growth in this section.

The differential equation (3) is solved by the separation 6f
variables techniqﬁe (8,9) and the solution which is- finite as
n*o is as follows: |

~ H,, (/P n) (26)
0 I,,erfc(/p;) n*""L

and 0 (-pgE 2o (n+3,1,pee?
expl-Pg ¢ Z’Z’psg ) HZn(/ﬁsn) (27)

0 exp(-pg)é(n+7,7,Pg)

where IZmerf;(x) and HZm(x) are the integral error functions (18)
and the Hermite Polynomials (13), respectively.-

To. evaluate the coefficient AL.for boundary condition of
- Type I, given by ¢duation (5), we follow a procedure similar to

that for the needle case. The result is

pimdm(Zm)l
0 2°M(2n) IT (m-n+1)

A, = (28)

L

i~ 8

m

A similar expfession is obtained for the'éoeffitient Ag when 12

is replaced by pg..
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Differentiating equations (26) and (27) with respect to &,
and evaluating the gradients at £=1, n=0, we obtain the values of

the function Fm and Gm as

. ZPL(I/Z)'m(Zm)! n  (-D" 1 Izn_lerfc(prj (29)
= — —
m o om n=0 r(n+%) r(m-n+1) I, erfc(sp)
and A : , .
vy W et E,3,p0)
G = gpim2ml (-1) 2°2°°S° | (30)

n=0 r(n)r(m-n+1) ¢(n¥ %,%,ps)

m S -Efﬁ_
The substitution of equations (29) and (30) in equation (10)
gives us thé relationship between the.growth rate of plate dendrite
and bath undercooling.
When boundary condition of Type II, given by equation (7), is
considered, the coefficient AL is obtained as

o d p2 o exp(*xz)H (x)
A mTL 2n
AL = I T / Tz 9%
- om=0 2°7(2n)!v/m - (pp*x”)

when x = /pL n. Replacing Hermite Polynomials by its integral

representation gives for the coefficient the expression

n © © 2 o
. 14 m/2 -t% . 2n cos 2xt
AL (2 E dmpL s e t I > m/ZAdxd'c' (31)
n)l m m=0 o o (pp*x”) .

The solution of the integral with variable x has been given by

Lebedev (13), and substituting the result we obtain for m>0,
A = LD 4, mL S gmtfi2n+(m/2){(1/2)
L ewrvrps1  rm/2) o .

K(n-1)/2(2/p t)dt (32)
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Substituting t2 = u, the integral in equation (32) is of the
standard form whose solution is given by Lebedev (18). The

coefficient AL is then given by the expression

: o m/2
A, = LD 3 :

L , SPL I'(n+ %)F(n+ %)w(n+%,%+%,pL) (33)
'(Zn)l/w m=1 T(m/2) .
The equation (32) is valid only when m # 0. The result for m = 0
will be the same as that for the m =‘0 case in the Type I bdundary
condition result. |
From the above result, the’values of functions Fm-and Gm can

be evaluated as shown before. The results for m>0 are

(m+1)/2 S
p w ‘ , I, .erfc(v/p;)
Fo=2 b 5 orr HymedBegp 271 s (34)
vyn T(m/2) n=0 ‘ Iznerfc(/pL)
and . ’ ;
ipg pg™? = TPrmep emeidp) . o
Gm = - z . A 1 1 U)(n+2—.7+7,PS) (35)
. /m TI(m/2) n=0 r(n) - ¢(m+y,5,pg)

5. Discussion

© All the previous results have been obtained for the growth of
dendrites in a one-component system. For the growth of dendrites or
precipitates in a binary system, fhe diffusion of solute must also
be considered. The &ifferential equétion for the diffusion of atoms
is identical to"equation (1) when temperature, T, is replaced by a
concentration C, and the thermal diffusivity, a;, is replaced by
the diffusion coefficient, Di' A flux bélaQCe at the interfacg
would then give the relationship between.the growth rate and the
supersaturation. In genéral, fof dendrite gfowth in a binary

system, both heat and mass transport must be considered simultaneously.
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The boundary conditions for the temperature and the composition
profiles are not independent, but are related such that the growth
rate results based on thermal as well as on solute flux balance
at the interface coincide. When such a coupled problem is con-

. sidered, the bouhdary conditions for temperature and solute pro-

files can be sﬁowh to follow boundary conditions of Type I
and II. The generél'solutioné, derived in this paper, can
therefore be used to study such a complex coupled problem

under variety of different conditions imposed on the system.

To illustrate the application of the results obtained in
this paper, consider a simple case of the growth of needle den-
‘drite in a supercooled melt. Let the interface be isothermal
with temperature TM’ the melting point of the solid. The coef-
ficients in boundary condition (4) are zero except do whose value
is Ty-T,. Equation (1) gives
K

% G 36

ZpL(AH/CL) = ‘(TM-TOO)(F0 +
Equation (21) shows that Go = 0, and from equation (20) Fo =
ZpL/[pLe‘ El(pL)L Substituting these values in equation (36),

and rearranging, we obtain
, Py
(TyTw) (C /AH) = pye “E,(p) (37)
‘The above result is identical to that obtained by Ivantsov (2).

We shall now consider the case where the surface energy and

the interface mobility are finite so that the interface temperature
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is no longer isothermal but given by the relatiohship (7)

: .2 |
5 ' 248 vV 1
T, . - T_ = (Ty-T) - —- . A
int T s (1+82)3/2 Ho (148 zv

where Y is interfacial energy, AS the entropy of fusion and My

~the interface kinetic coefficient. The above boundary condition

can be .rewritten as

T, . - T, = (TyT,) - Y+ X 1 . A 1

(38)
This boundary condition is of Type II with d, = Ty - To, d, =. '

-(—— + Kx—) and d, = ;—1—-.' EQuation.ﬂO) can therefore be written as
SP ASp : .
Ho

2B (8H/CL) = (TyTIFg - (oo * gf5) (Fy K—icl) - 5 Byt g 6y)
o o ‘ (599
where the functions Fm aﬁd Gm are given by equations (24) and (25),
respectively. Equation (39) can be rearranged as

| K K

- ’ - K _V ' _i —.-'Y ——S-
(Ty Ta)Fo = 2o (AH/C) * Go(Fy* g~ Gp) * ggpl(Fy*Fy)* go(61*6,)]

(40)
In the above reéults, we have assumed Y and Mo té'bg’constant along
the interface. However, they are usually anisotropic and one may
expand them in Tayler's series around 8 = 0. In this case, the 
boundary condition of Type I and Type ITI would give the f1na1

result wh1ch will show how these anisotropic effects alter the
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growth characteristics of dendrites. Similarly, one may profit-
ably use equation (10) to assess how other variables imposed
~ upon the system would alter the growth characteristics of den-

drites.
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