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ABSTRACT 

A mathemat ica l  t r e a t m e n t  i s  p re sen t ed  f o r  t h e  growth of 

d e n d r i t e s  o r  p r e c i p i t a t e s  w i t h  p a r a b o l i c  i n t e r f a c e s .  Two c a s e s  

a r e  cons ide red  i n  which t h e  i n t e r f a c e s  correspond t o  a  parabo-  

l o i d  o f  r e v o l u t i o n  and a  p a r a b o l i c  c y l i n d e r .  For t h e s e  i n t e r -  

f a c e s ,  r e l a t i o n s h i p s  between growth, r a t e  and supe rcoo l ing  a r e  

o b t a i n e d  f o r  two g e n e r a l  boundary c o n d i t i o n s  under t h e  assump- 

t i o n  t h a t  t h e  t e m p e r a t u r e  o r  c o n c e n t r a t i o n  v a r i a t i o n  a long  t h e  

i n t e r f a c e  i s  f i n i t e  and con t inuous .  



1. Introduction 

Parabolic interfaces are very frequently encountered in 

situations involving crystal growth and solid state phase trans- 

formations. Important examples of these include dendrite growth, 

whisker or filament growth,. and Widmanstatten plate and needle 

growth. The growth of precipitate particles during solid state 

transformation is primarily controlled by the diffusion of atoms, 

whereas the freezing or solidification process is governed by 

the conduction of heat as well as by.the diffusion of atoms. 

' Considerable experimental work has been carried out to study 
- .  . .  -.- ---- - - --  - . 

b b . .  - .  

the growth of dendrites and Widmanstatten precipitates. From 

these results, the following general conclusions can.be made: 

1 These precipitates or crystals grow at a constant rate and 

this rate is constant for a given supercooling (or supersatura- 

tion). 2) The advancing front of these precipitates appears 

to be of parabolic shape, and the radius of curvature at the 

tip of the parabolic interface is smaller than a micron in size. 

3) The parabolic front preferentially grows along a specific 

c,rystallographic direction in .a given system. Many theoretical 

attempts have been made to explain these observations quantita- 

tively. One of the early efforts was by Papapetrov (1) who 

pointed out the possibility of a constant growth rate if the 

interface were isothermal and parabolic in shape. Subsequently, 

Ivantsov (2,3) proved this conclusion quantitafively by obtain- 

ing the solution sf t he  hea t  flow problem, and showed that a 

constant 'powth rate would be obtained for an isothermal inter- 
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face if the interface shape corresponded to a paraboloid of 

revolution or a parabolic cylinder. From these results, the 

relationship between the growth rate and supercooling was de- 

rived. The result.showed that an infinite number of solutions 

are possible depending upon the radius of curvature, p ,  at the 

tip of the parabolic interface. For a given supercooling, growth 

rates will vary from zero to infinity as the values of p change 

from infinity to zero. This did.not resolve the experimental 

observation of constant and fixed growth rate at a given super- 

cooling. 
. - . . . . . . - - 

The inadequacy of the Ivantsov solution was realized by 

many investigators (4-6), and was attributed to the assumption 

.of isothermal interface. Zener (4) pointed out that because of 

the large curvature of the parabolic front, the Gibbs-Thomson 

effect would be significant so that the interface temperature 

would be proportional to the curvature of the interface. Subse- 

quefitly, Temkin (5) and Bolling and~iller (6) pointed out that 

non-isothermal interface .would also result from the non-uniform 

interface undercooling required for atomic attachment process 

at the interface. When n~n~isotherrnal interface i.s consi.d.srad , 
the theoretical analysis becomes quite complex since the steady- 

state interface shape will deviate from a parabola. However, 

as suggested by Temkin (5), a reasonably valid relationship 

between growth rates and supercooling will be obtained if one 

considered a non-isothermal parabolic interface. Temkin (5) 

obtained an approximate solution of the parabolic interface model, 

which was subsequently . . solved rigorously by Trivedi (7-9). Once 



t h e  non-isothermal na tu re  of the  i n t e r f a c e  i s  considered,  t h e  

growth r a t e  a s  a  funct ion  of r ad ius  o f . c u r v a t u r e ,  P ,  goes th rough ,  

a  maximum f o r  any given undercooling. This maximum growth r a t e  

was.proposed by Zener ( 4 )  t o  be t h e  one.observed experimental ly .  

~heoretical.calculations based on t h e  maximum growth r a t e  p r i n -  

c i p l e  agree we l l  wi th  experimental ly  observed r a t e  f o r  many 

systems s t u d i e d  (10).  

A l l  t h e  above mo.dels have considered a  simple case. of the  

growth of an i s o l a t e d ,  p a r a b o l i c a l l y  shaped, p a r t i c . l e  i n  an 
.- -.-. . . .. .. . . . . - . . . -- 

i n f i n i t e  med,ium which i s  i n i t i a l l y  supercooled t o  a  cons tan t  

temperature. Most growth cond i t ions ,  however, a r e  q u i t e  complex 
1 

i n  t h a t  the  melt' i s  no t  supercooled, bu t  has inc reas ing  tempera- 

t u r e  away from the  i n t e r f a c e .  Also, many o t h e r  parameters such 

as  an iso t ropy of i n t e r f a c i a l  energy and of i n t e r f a c e  k i n e t i c  

c o e f f i c i e n t  have been ignored .  The d e n d r i t e s  and p r e c i p i t a t e s  

u s u a l l y  grow i n  a  p a r a l l e l  a r r a y  r a t h e r  than i n  an i s o l a t e d  

manner a s  assumed. Amathematical  s o l u t i o n  of a  r e a l i s t i c  problem 

becomes q u i t e  complex. However, most of these  e f f e c t s  can  be 

e a s i l y  incorporated by appropr ' ia te ly a l t e r i n g  the  boundary con- 

d i t i o n  of t h e  problem. In order  t o  achieve t h i s ,  i t  would be 

d e s i r a b l e  t o  obta in  s o l u t i o n s  of hea t  and mass t r a n s f e r  equat ions 

f o r  a  genera l  boundary condi t ion ,  such as  t h a t  given by a  conver- 

gent Tay lo r ' s  s e r i e s  expansion. , Two genera l  boundary condi t ions  

a r e  considered i n . t h i s  paper ,  and the  s o l u t i o n s  of t h e  growth 

r a t e  as a  func t ion  of supercooling a r e  obtained f o r  a  pa rabo l i c  

cy l inder  and a  paraboloid of revolu t ion  shaped i n t e r f a c e s .  A 

s p e c i f i c  example is  then given t o  show how these  s o l u t i o n s  can 



be used to theoretically predict the dendrite growth behavior 

under more realistic growth conditions encountered in crystal 

growth and in solidification studies of castings. 

2. Mathematical Description 

2.1 Basic Differential Equation 

Figure 1 shows a schematic diagram of the section of a solid 

plate o r  a needle dendrite front growing in a liquid medium. Since 

these dendrites grow at a constant rate, the temperature distribu- 

Fig. 1. A schematic diagram of a.parabolic interface with an 
attached moving coordinate system. 



t i o n s  i n  l i q u i d  and i n  s o l i d  w i l l  be governed by the  s t e a d y - s t a t e  

hea t  flow equat ion i n  a  moving coordina te  system a t t ached  t o  t h e  

i n t e r f a c e  ( 1 1 ) .  We s h a l l  use dimensionless coordina te  system 

(x ,y ,z)  = (X,Y,Z-Vt)lp, where c a p i t a l  X ,  Y ,  Z r e f e r  t o  a  coordin- 

a t e  system f ixed  i n  space,  V i s  the  cons tant  growth r a t e  of the 

d e n d r i t e  t i p ,  and p t h e  r ad ius  of curvature  a t  t h e  growing den- 

d r i t e ' t i p .  The s t e a d y - s t a t e  hea t  flow i s  given by (11,12) 

where s u b s c r i p t s  S  and L r e f e r  t o  s o l i d  and l i q u i d  reg ions ,  respec-  

t i v e l y .  pi i s  the  t h e r m a l p e c l e t  number equal  t o  Vp/2a i , a i  being 

t h e  thermal d i f f u s i v i t y ,  and is  a  u n i t  vec tor  i n  t h e  d i r e c t i o n  

of t h e  dend.ri'te t i p  growth ( z  d i r e c t i o n  i n  Fig.  1 ) .  

Since t h e  shape of d e n d r i t e  f r o n t  i s  p a r a b o l i c ,  i t  w i l l  be 

advantageous t o  s e l e c t  pa rabo l i c  coordina te  systems. We s h a l l  

cons ider  both  the  and t h e  'needle d e n d r i t e s .  For a  needle  

d e n d r i t e ,  represented by a  paraboloid of r evo lu t ion ,  we consider  

a  pa rabo l i c  coordinate  s y s t e m . ( a , ~ )  i n  which a = 1 r e p r e s e n t s  

t h e  d e n d r i t i c  i n t e r f a c e  ( 7 ) .  , I n  t h i s  system, equat ion (1) t r a n s -  

forms - t o  

' 2 a T~ 1 .. aTi a 2 T~ 1 . a ~ ~  
2 

+ ( 2 2 ~ ~ ~ )  - + - 
3a 

+ (7j, - 2pi$) - - - , 0 
af32 aa 36 

2 . 2  Boundary Conditions 

The temperature d i s t r i b u t i o n  i n  l i q u i d  f a r  away from t h e  

i n t e r f a c e  (5 or  a+-) w i l l  approach a  cons tant  va lue ,  T_ .  Along 

the  i n t e r f a c e  t h e  v a r i a t i o n  o f  temperature w i l l  depend upon many 



factors such as interfacial energy, interface mobility, anisotropic 

nature.of interface energy and interface mobility, presence of.any 

solute in the system, etc. However, the temperature profile will 

always be continuous and finite. Thus, we shall assume a general 

boundary condition to be given by the expression 

w 

T: - T  = 
2m 

lnt OD 
Z ,  dmB for a needle dendrite 

m= 0 

03 2m 
Z d m  for a plate dendrite, 

m= 0 

where Tint is the temperature profile along the solid-liquid 

interface. 

Although the above boundary conditions are quite general, the 

boundary conditions in many cases depend upon physical parameters 

which vary as a, function of cose, where 6 is the angle between the 

interface normal and the dendrite tip growth direction (7-9). 

Thus, it is advantageous to obtain a general solution for another 

boundary condition which is given by a power series in cos6. We 

shall therefore consider the following boundary condition 

m - T = d, cos Tint . w m= 0 

- - L rur a neeale ~ ~ ~ L U L . L L G  ' int 2 m/2 m=O (I+@ ) 

a0 d 
C 

m for a plate dendrite 
2 m/2 (7 m=O (1+q ) 



The coefficients dm in boundary conditions (4-7) are such 

that the temperature variation along.the .interface is continuous 

and finite for all $ or n. In the subsequent sections we 'shall 

refer to boundary condition (4) or (5) as Type I and boundary 

condition (6) or (7) as Type I1 conditions. 

2.3 ~rowth Rate Calculations 

The solution of the differential equation (1) with boundary 
. . .  

conditions (4,5,6 or 7) gives the temperature profiles in solid 

" and in liquid. The relationship between the growth rate and the' 

bath undercooling can then be obtained from the thermal flux 

balance at the tip of the. dendrite.  or a needle dendrite the 
relationship is: ', 

where CL is the heat capacity of the liquid, A H  the heat of fusion 

per unit volume, and KS and KL are thermal conductivities of solid 

and liquid, respectively. An analogous equation can be written 

for a ,plate dendrite, and the result will be the same as equation 

(8)' when the coordinate a is replaced by the coordinate 5. The 

temperature gradients in liquid and in solid at the dendrite tip 

can be written in general as 

-, ( aTL/ aa) = z dmFm and (aTs/aa)a=l, = z dmGm, a=l ,=o m= 0, (9 1 
$=O 8'0 

where the functions F, and Gm are evaluated from the solution of 

the differential equation. In term's of. these functions, equation 

(8) can be rewritten 'as follows : . 



Our aim in thefollowing part of the paper is to evaluate func- 

tions Fm and Gm for boundary conditions (4-7). 

3. Needle Dendrite 

3.1 Solution of the Differential Equation 

We first consider the solution of equation (2) in the liquid 

phase by the separation of variables method (7). Assuming a 

product type of solution 

TL f(a) g(B), 

we obtain a pair of differential equations 

f" + [(l/a) + 2pLa]ff - Af = 0, 

and 
g' * [(l/f3) - 2pLalgf +, Ag = 0, 

where X..is the separation constant, and primes on f and g represent 

differentiation with respect to a and 8, respectively. We first 

seek the solution of equation (12) which is finite as @+=. The 

general solution of equation (12) is given by the confluent hyper- 

geometric function (13). 

and this solution is finite as 6- only when A/4pL equals zero or 

a positive integer (14). For these values of A/4pL, the hyper- 

geometric function reduces to Laguerre polynomials of zero order, 

so that the solution of equation (12) is 



for these values of h/4pL, equation (11) has a solution which is 

finite as a- of the form 

The general solution of the differential equation (2) can thus 
.. 

be written as 

The corresponding solution,in the solid phase which is finite for 

' a = 0, is given by 

where functions $I and $ are confluent hypergeometric functions of 

first and second kind, respectively. Along the interface a = 1, 

the two solutions given ,by equations ('15) and (16) must match. 

Thus, coefficient AS(pS) = AL(pL) . We shall now evaluate the value 

of this coefficient for the two types of boundary conditions dis- 

cussed in section 2:2. 

3.2 Boundary Condition of Type I 

Equating equation .(14) for a = 1 with the boundary condition 

(4), we obtain 

2 Substituting x = ~ L B  gives 



;. . ,- 

Expanding xm in Laguerre Polynomials (13), and substituting the 

result in the above expression gives. 

Since the temperature profile along the interface is continuous, 
., 

the value of the coefficient AL can be obtained by interchanging 

the summation orders and comparing the coefficients of L;(x) on 

both sides. The result is 

Note that the terms for n>m are zero. 

The values of temperature gradients at the tip of dendrite 

(a=l, B=O) in liquid and in solid can now be obtained by differ- 

entiating equations (15) and (16) with respect to a. The result 

and 

Substituting the value of the coefficients from equation (16) and 

comparing the results with equation (9), we obtain the values of 
,. .. 

the functions Fm.and G, as . . 



and 

-m+lm ( - 1  1 O (n+1, 2 ,ps) 
Ghl = 2ps !m! C 

n=b (n- 1) ! r (m-n+1) @ (n+l ,l ,pS) 

The specific values of these functions are: 

and Go = 0, where E1(pL) is the exponential integral function. 

These functions then give the result for the isothermal boundary 

condition, and the result is identical to that obtained by 

Ivantsov (2) for this case. 

3.3 Boundary Condition of Type I1 
. . 

We now evaluate. the coefficients AL in equation (15) for the 

boundary condition given by equation - ( 6 ) .  At the interface, a=1, 

we have 

The coefficient AL is then obtained as 

Substituting the integral representation of the Laguerre Polynomials 

(13) , we obtain 



Substituting x/pL = u2 and b = 2 ,  the integral, I, inside the 

large bracket can be written as 

The solution of the above integral is given by Grandshteyn and 

Ryzhik (IS), and substituting this result in equation (22) gives 

where we have substituted 5 = Jt. The solution of theabove 

integral is also given by Gradshteyn and Ryzhik (22), and the 

result can be written in terms of confluent hypergeometric 

function as follows : 

The coefficient AS will also be given by equation (23) when pL is 

replaced by pS. Substituting the above result in equations (18) 

and (19), and comparing the result with equation (9) we obtain the 

values of functions Fm and Gm as 

and 



The above result, when substituted in equation (lo), correlates 

the growth of dendritic needles with supercooling when interface 

temperature varies according to equation (4). 

4. Plate Dendrite 

The mathematical procedure for the solution of a plate den- 

drite growth is quite analogous to that for the needle dendrite 

growth. We shall theref'ore present the results of the plate 

dendrite growth in this section. 

The differential equation (3) is solved by the separation of 

variables technique (8,9) and the solution which i s  finite as 

n+- is as follows: 

and 2 1 1  2 - ' exp(-ps6 )$(~+TYT,P~S H2n(~S-,) 
TS - T_ = E AS 1' 1 (27.1 

n=O ' exp(-ps)$ (n+Z?Z.~S) 

where IZmerfc(x) and HZm(x) are the integral error functions (18) 

and the Hermite Polynomials (13), respectively./ 

Toevaluate the coefficient ALfor boundary condition of 

Type I, given by equation (S), we follow a procedure similar to 

that for the needle case. The result is 

A similar expression is obtained for the 'coefficient AS when pL 

is replaced by pS., 
. . 



Differentiating equations (26) and (27) with respect to 5 ,  

and evaluating the gradients at 5=1, YO, we obtain the values of 

the function Fm and Gm as 

The substitution of equations (29) and (30) in equation (10) 

gives us the relationship between the growth rate of plate dendrite 

and bath undercooling. 

When boundary condition of Type 11, given by equation (7), is 

considered, the coefficient AL is obtained as 

when x - JpL q. Replacing Hermite Polynomials by its integral 

representation gives for the coefficient the expression 

The solution of the integral with var,iable x has been given by 

Lebedev (13), and substituting the result we obtain for m>O, 



2 Substituting t = u, the integral in equation (32) is of the 

standard form whose solution is given by Lebedev (18). The 

coefficient AL is then given by the expression 

The equation (32) is valid only when m # 0. The result for m = 0 

will be the same' as that for the m = 0 case in the Type I boundary 

condition result. 

From the above result, the values of functions F m  and Gm can 

be evaluated as shown before. The results for m>O are 

(m+1)/2 
2 PL - m m m l  '2n-1 erfc (JPL) 

Fm - - 1. r (n+ 9 (n+Z'T+Z,~L) (34) 
/IT r(m/z) n=O IZnerfc (hL) 

and 1 3  . . 

- Gm - - C 0 (n+pZ m m+l pPs) 
JIT r(m/2) n=O 

(35) 
'r(n) b ( m + ~ , ~ , ~ ~ )  

5. Discussion . 

. All theprevious results have been obtained for the growth of 

dendrites in a one-component system. For the growth of dendrites or . . 

precipitates in a binary system, the diffusion of solute must also 

be considered. The differential equation for the diffusion of atoms 

is identical to equation (1) when temperature, T, is replaced by a 

concentration C, and the thermal diffusivity, ai, is replaced by 

the diffusion coefficient, Di. A flux balance at the interface 

would then give the relationship between the growth rate and the 

sppgrsaturation. In general, for dendrite growth i n  a binary 
system, both heat and mass transport must be considered simultaneously. 



The boundary cond i t ions  f o r  t h e  temperature and t h e  composition 

p r o f i l e s  a r e  no t  independent,  bu t  a r e  r e l a t e d  such t h a t  t h e  growth 

r a t e  r e s u l t s  based on thermal a s  we l l  as  on s o l u t e  f l u x  balance 

a t  t h e  i n t e r f a c e  co inc ide .  When such a  coupled problem i s  con- 

s i d e r e d ,  the  boundary condi t ions  f o r  temperature and s o l u t e  pro- 
- .  

f i l e s  can be shown to '  fol low boundary condi t ions  of Type I  

and 11. The g e n e r a l  , s o l u t i o n s ,  der ived  i n  t h i s  paper ,  can 

t h e r e f o r e  be used t o  s tudy such a  complex coupled problem 

under v a r i e t y  of d i f f e r e n t  ' condi t ions  imposed on t h e  system. 

To i l l u s t r a t e  t h e  a p p l i c a t i o n  of t h e  r e s u l t s  obtained i n  

t h i s  paper ,  cons ide r  a  simple case  of the  growth of needle  den- 

d r i t e  i n  a  supercooled melt .  Let t h e  i n t e r f a c e  be isothermal  

w i t h  temperature TM,  t h e  melt ing p o i n t  of t h e  s o l i d .  The coef-  

f i c i e n t s  i n  boundary cond i t ion  ( 4 )  a r e  zero except do whose value 

is TM-T,. Equation (1) gives 

Equation (21) shows t h a t  Go = 0,  and from equat ion (20) Fo = 

PL 
zpL/ [pLe . El  (PL) 1. S u b s t i t u t i n g  these  values i n  equat ion (36) ,  

and rea r rang ing ,  we ob ta in  

The above r e s u l t  i s  i d e n t i c a l  t o  t h a t  obtained by Ivantsov (2) .  

We s h a l l  now conside'r t h e  case where t h e  su r face  energy and 

t h e  i n t e r f a c e  mobi l i ty  a r e  f i n i t e  s o  t h a t  t h e  i n t e r f a c e  temperature 



is no longer isothermal but given by the relationship (7) 

m 

where Y is interfacial energy, AS the entropy of fusion and vo 

the interface kinetic coefficient. The above boundary condition. 

can be .rewritten as 

( 3  8 1 
- This boundary condition is of Type I1 with do = TM - T,, dl - .  

-(L + x) and d2 = -1 . Equation 00) can therefore be written as " ASP A SP 

(39) 

where the functions Fm and Gm are given by equations (24) and (25), 

respectively. Equation (39) can be rearranged as 

In the above results, we have assumed Y and po t o  be constant along 

the interface. However, they are usually anisotropic and one may 

expand them in TaylerVs series around B = 0. In this case, the 

boundary condition of Type I and Type I1 would give the final 

result which will show how these anisotropic effects alter the 



growth characteristics of dendrites. Similarly, one may'profit- 

ably use equation (10) to assess how other variables imposed 

upon the system would alter the growth characteristics of den- 

drites. 
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