
·?-f/ ~
/ ~ /1~ \ / lr-' V--yt''

J;} AN 077-0898

fJJ Unlimited Release

Basic Linear Algebra Subprograms
for FORT,.BAN Usage

Chuck L. Lawson, Richard J. Hanson, David R. Kincaid, Fred T. Krogh

DISTRIBUTION QE It-liS DOCUMEN.I lS UNUMLTED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

Issued by Sandia Laboratories, operated for the United States

Energy Research & Development Administration lJy Sandia

Corporation.

NOTICE

This report was prepared as an account of work sponsored by

the United States Government. Neither the United States nor

the United States Energy Research & Development Adminis·

tration, nor any of their employees, nor any of their con·

tractors, subcontractors, or their employees, makes any

warranty, express or implied, or assumes any legal liability or

responsibility for the accuracy, completeness or usefulness of

any information, apparatus, product or process disclosed, or

represents that its use would not infringe privately owned

rights.

'

SAND77-0898
Unlimited Release

Printed October 1977

BASIC LINEAR ALGEBRA SUBPROGRAMS FOR ~QRT~ USAGE
- ---

C. L. Lawson, Jet Propulsion Laboratory
R. J. Hanson, Sandia Laboratories, Al"buquerque

Do R. Kincaid, University of Texas, Austin
F. T. Krogh, Jet Propulsion Laboratory

Abstract

A package of 38 low-level subprograms for many of the basic operations

9f numerical linear algebra is presented. The package is intended to be

used with FORTRAN. The operations in the package are dot products,

elementary vector operations, Givens transformations, vector copy and swap,

vector norms, vector scaling, and the indices of components of largest magnitud~.

The subprograms and a test driver are available in portable FORTRAN.

Versions of the subprograms are also provided in assembly language for the

IBM 360/67, the CDC 6600 and CDC 7600, and the Univac 1108.

r------NOTICE----~

This report was prepared as an account of work
s~n£ored by the United States Govcuum:nt. Neither lhe

, Uruted States nor the United States Department of
Energy, nor any of their employees, .. nor any of their
contractors, subcontractors, "' I.Jn:U employees, makes
~"Y. ~arranty, express or implied, or assumes any legal
habthty or responsibility for the accurncy, completeness
nr ll.'if.fni~J"u ~;~f my infOillll:ltion, apparatu.s, pnA.Iu"l VI
~r~ss d•~ln~d. or reprecenu that it!l usc would not
mfnnge pnvately owned rights.

Printed in the United States of America

Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22161
PricP.: $4.p1 Microfiche $3.00

DISTRIBUTION 0£ TJ-IIS DOCU.M.EJ:U ~~ UNl..\MlTE.D , 1

2

Table of Contents

l. In:Lrullllt! Gion . • • • •

2. Reasons for Developing the Package

3. Scope of the Package •

4. Programming Conventions

5. Specification of the BLA Subprograms

6. Implementation •

7. Relation to the ANSI FORTRAN Standard

8 .. Testing

9. Selected Timing Results

Acknowledgements • .

References

Page

3

4

5

8

9

l5

l6

l7

l9

23

24

Appendix l The Modified Givens Transformation • • 25

Appendix 2 Extended Timing Results for Some
Operations • . . , • . , . • . . 29

Appendix 3 Sample Usage of the BLAS in FORTRAN
Programming • • • • • • • • • 33

·.

BASIC LINEAR ALGEBRA SUBPROGRAMS

FOR FORTRAN USAGE

C. L. Lawson, Jet Propulsion Laboratory
R. J. Hanson, Sandia Laboratories, Albuquerque

D. R. Kincaid, University of Texas, Austin
F. T. Krogh, Jet Propulsion Laboratory

1. Introduction

This paper describes a package, called the BLAS, of thirty-eight

FORTRAN-callable subprograms for basic operations of numerical linear

algebra. This paper and the associated package of subprograms and testing

programs are the result of a collaborative voluntary project of the ACM-

SIGNUM committee on basic linear algebra subprograms. This project was

carried out during the period 1973-1977.

The initial version of the subprogram specifications appeared in Ref.

[1]. Following distribution of Ref. [1] to persons active in the develop-

ment of numerical linear algebra software, open meetings of the project

were held at the Purdue Mathematical Software II Conference, May, 1974,

Ref.· [2], and at the National Computer Conference, Anaheim, May, 1975.

Extensive modifications of the specifications were made following the Purdue

meeting which was attended by thirty people. A few additional changes

resulted from the Anaheim meeting. Most of the further Fortran code changes

resulted from an effort to improve the design and to make them more

robust.

3

4

2. Reasons for Developing the Package

Designers of computer programs involving linear algebraic operations

have frequently chosen to implement certain low-level operations such as the

dot product as separate subprograms. This may be observed both in many

published codes and in codes written for specific applications at many computer

installations. Following are some of the reasons for taking this approach:

(1) It can serve as a conceptual aid in both the design and coding

~L~eB uf a programming effort to regard' an operation such as the

dot product as a basic building hlnck.. This is consistent with·

the ideas of structured programming which encourage modularizing

common code sequencec.

(2) It improves the self-documenting quality of code to identify an

operation such as the dot product by a unique mnemonic name.

(3) Since a significant .amount of the execution time in complicated

linear algebraic programs may be spent in a few low-level

operations, a reduction of execution time spent in these operations

may be reflected in cost savings in the running of programs.

Assembly language coded subprograms for these· operations provide

such savings on some computers.

(4) The programming of some of these low-level operations involves

algorithmic and implementation subtleties that are likely to be

ignored in the typical &pplications programming environmP.nt.

For example the subprograms provided for the modified Givens

transformation incorporate control of the scaling terms which

otherwise can drift monotonically toward underflow.

If there could be general agreement on standard nA.mP.I'l A.nn paramet."'r

lists for some of these ·basic operations it would add the additional benefit

of portability with efficiency on the assumption that the assembly language

subprograms were generally available. Such standard subprograms would provide

building blocks with which designers of portable subprograms for higher

level linear algebraic operations such as solving linear algebraic equations,

..

eigenvalue problems, etc., could achieve additional efficiency. The

package of subprograms described in this paper is proposed to serve this

purpose.

3. Scope of the Package

Specifications will be given for thirty-eight FORTRAN-callable subprograms

covering the operations of dot product, vector plus a scalar times a vector,

·Givens transformation, modified Givens transformation, copy, swap, Euclidean

norm, sum of magnitudes, multiplying a scalar times a vector, and locating

an element of largest.magnitude. Since we are thinking of these subprograms

as being used in an ANS FORTRAN context we provide for the cases of single

precision, double precision, and (single precision) complex data.

In Table l a concise summary of the operations provided and the

conventions adopted for naming the subprograms is given. Each type of

operation is identified by a root name. The root name is prefixed by one

or more of the letters I, S, D, C, or G. to denote operations on integer,

single precision, double precision, (single precision) complex, or extended

precision data types, respectively. For subprograms involving a mixture of

data types the type of the output quantity is indicated by the left-most

prefix letter. Suffix letters are used on four of the dot product

subprograms to distinguish variants of the basic operation.

If one were to extend this package to include double precision complex

type data (COMPLEX*l6 in IBM FORTRAN) we suggest that the prefix z be used

in the names of' the new subprograms. For example, subprograms CZDOTC and

CZDOTU for the dot product of (~ingle precision) complex vectors, with

double precision accumulation, have been written for the CDC 6600. These

ma.y be obtained d:i.rP.r.t.ly from Kincaid.

5

6

Table 1

Summary of Functions and Names
Of the Basic Linear Algebra Subprograms

Root of
Function Prefix and Suffix of Name Name

Dot Product SDS- DS- DQ-I DQ-A c-u c-c D- s- -DOT-

'Constant Times a Vector Plus a Vector C- D- s- -AXPY

Set-up Givens Rotation D- s- -ROTG

Apply Rotation D- s- -ROT
! --

Set-up Modified Givens Rotation D- s- -ROTMG

Apply Modified Rotation D- s- .-ROTM

Copy X into y . c- D- s- -COPY

Swap X andy c- D- s- -SWAP

2-Norm (Euclidean Length) sc- D- s- -NRM2

Sum of Absolute Values* sc- D- s- -ASUM

Constant Times a Vector cs- c- D- s- -SCAL

Index of Element Having Max Absolute IC- ID- IS- -AMAX
Value*

*For complex components zj = xj + iyj these subprograms compute

lxjl + IYjl instead of (x~ + y~)l/2.

•

Section 5 lists all of the subprogram names and their parameter lists,

and defines the operations performed by each subprogram.

The criterion for including an operation in the package was that it

should involve just one level of looping and occur in the usual algorithms

of numerical linear 8.lgebra such as Gaussian elimination or the various

elimination methods using orthogonal transformations.

This orientation affected the specifications of SCASUM and ICAMAX

particularly. Although SASUM and DASUM compute t
1

norms we assumed

that the usage of either of these subprograms in numerical linear algebra

software would be for the purpose of computing a vector norm that was less

expensive to compute than the t
2

norm. Thus for the complex version,

SCASUM, instead of specifying the .f.1 norm which would be

we specified the less expensive norm,

w = ~liRe(xi) I + lrm(xi) I~ .
1.

Similarly, whereas ISAMAX and IDAMAX may be regarded as determining

the .f, norm of a vector, we do not regard this as the essential property to
CCI

be carried over to the complex case. Thus ICAMAX is specified to find an

index j such that

rather than finding an index j such that

[Re(x.)] + [Im(x.)] =max. [Re(x.)] + [Im(x.)J 2 2 .l 2 2!
J J 1. 1. 1.

In 'both the computation of the t
2

norm and the Givens transformation

7

8

a naive computation of the squares of the given data would restrir.t thP.

exponent range of acceptable data. This package avoids this restriction

by making use of ideas described by Cody, Ref. [11], and Blue, Ref. [12].

Additionally, in the case of the Givens transformations, an idea of Stewart,

Ref. rl3], permits the storage of all the transformations of· a matrix

decomposition in the memory space occupied by the elements zeroed "by the

transformation.

The modified Givens transformation is a relat.ivPly new innovation among

numerical linear algebra algorithms, Refs. [3], [4], and r5J. The significant

features are the reduction of the number of multiplications, the elimination

of square root operations, and the capability of removing rows of data in

least squares problems. The details of this algorithm as implemented in

this package are given in the Appendix.

4 • Programming Conventions

Vector arguments are pemitted to have a storage spacing between

elements. This spacing is specified by an increment parameter, For example,

suppose a vector x having components x., i = l, ... ,N is stored in a DOUBLE
~

PRECISION array DX() with increment parameter INCX. If INCX ~ 0 then x. is
~

stored in DX(l+(i-l)*INCX). If INCX < 0 then x. is stored in DX(l+(N-i)*IINCXI).
~

This method of indexing when INCX < 0 avoids negative indices in the array

DX() and thus permits the subprograms to be written in FORTRAN. Only

positive values of INCX are allowed for operations 26-38 that each have a

single vector argument.

It is intended that the loops in all subprograms process the elements

of vector arguments in order of increasing vector component indices, i.e., in

th 0 der x i 1 N This implies processing in reverse storage order e r i' = , ••• , •

when INCX < o. If these subprograms are implemented on a computer having

parallel processing capability, it is recommended that this order of

processing be adhered to as nearly as is reasonable.

5. Specification of the BLA Subprograms

Type and dimension information for variables occurring in the subprogram

specifications are as follows:

mx = max(l,N*IINCXI)

my= max(l,N*IINCYI)

INTEGER N,INCX,INCY,IMAX

REAL SC(mx),SY(my),SA,SB,SC,SS

REAL SDl,SD2,SBl,SB2,SPARAM(5),SW,QC(lO)

DOUBLE PRECISION DX(mx),DY(my),DA,DB,DC,DS

DOUBLE PRECISION DDl,DD2,DBl,DB2,DPARAM(5),DW

COMPLEX CX(mx),CY(my),CA,CW

Type declarations for function names are as follows:

INTEGER ISAMAX,IDAMAX,ICAMAX

REAL SDOT,SDSDOT,SNRM2,SCNRM2,SASUM,SCASUM

DOUBLE PRECISION DSDOT,DDOT,DQDOTI,DQDOTA,DNRM2,DASUM

COMPLEX CDOTC.CDOTU

Dot Product Subprograms

l. SW = SDOT(N,SX,INCX,SY,INCY)

2. DW DSDOT(N,SX,INCX,SY,INCY)

N

vt :=""""' X.Y. ~ ~ ~
i=l

N

W :=""'"' X.Y. L...J ~ ~
i=l

Double precision accumulation is used within the subprogram DSDOT.

N

3. SW = SDSDOT(N,SB,SX,INCX,SY,INCY) w := b +""""' x.y. LJ ~ ~
i=l

Accumulation of the inner product and addition of b is in double

prec~s~on. Conversion of the final result to single precision is

done the same as the intrinsic function SNGL().

9

10

N

4. DW = DDOT(N,DX,INCX,DY,INCY) w := L xiyi

i=l

5.

N

DW = DQDOTI(N,DB,QC,DX,INCX,DY,INCY) w. c ·- b + ~ x.y. L...J l. l.

i=l

The input data, 'b, x, and y, are converted internally to extended

precision. The result is stored in extended precision form in

QC() and returned in double precision form as the value of the

function DQDOTI.

N

6. DW = DQDOTA(N,DB,Q,C,DX,INCX,DY,INCY) w ·- c ·- b + c + L xiy 1
i=l

The input value of c in QC() is extended.precision. The value c

must have resulted from a previous execution of DQDOTI or DQDOTA

since no other way is provided for defining an extended precision

number. The computation is done in extended precision arithmetic

and the result is stored in extended precision form in QC () and

is returned in double precision form as the function value DQDOTA.

7. CW = CDOTC(N,CX,INCX,CY,INCY)

N

w:=.Lxiyi
i=l

The suffix C on CDOTC indicates that the complex conjugates of the

components x. are used.
l.

N

8. cw CDOTU(N,CX,INCX,CY,INCY) w := """'X.Y. L..J l. l.

i=l

The suffix U on CDOTU indicates that the vector components x. are
l.

used unconjugated.
N

In the preceding eight subprograms the value of ~ will be set to zero if

N s; 0. i=l

Elementary Vector Operation y:=ax+y

9. CALL SAXPY(N,SA,SX,INCX,SY,INCY)

10. CALL DAXPY(N,DA,DX,INCX,DY,INCY)
,. . . ~i. ,. . , :-.. : ;

11. CALL CAXPY(N,CA,CX,INCX,CY,INCY)

If a = 0 or if N ~ 0 thes~ s,~[):ro"~tt~11es .. return immediately.

Construct Givens Plane Rotation

12. CALL SROTG(SA,SB,SC,SS) : ~-: .

13. CALL DROTG(DA,DB,DC~DS) ·

Given a and ·b each of these subroutines .. computes
'·.·.. .

and

The numbers .c,

cr = {sgn(a)

sgn(b)

if

if

lal > lb.l

lbl ~ lal

' .. · .. ·:. (. ::. ,-:· .f!.:-: · .. ··. f' .

2 2 i/2 .
(+b)

.. _... ., . r = cr a '· .: . .. , · ... : · .i .• .. ·•
: • .. \I'•.. ~.- ..
' .• ~ t • ~ •

{

a/r. j,:f'·· xr·. f.,-0
c =

1 if r = 0

; '

if r = 0

,i.

s, and r th,~n ·t?.a:t;i,sfY:,th.-e _.t;nat:r,ix_, equation :. ~ . . _:.:: :· ·: ·:.~~-.. . ~- ~ -~ - ...

[c s]. • [a>l .. = '·.:[r.]· -~ · . ·-: ..
-s c '1 ·: · 'O';. '· ·_; · .. :· .o .. ·.;. · ·.~ ... '"·· · ·

The introduction of cr is not essentiB.:I .. to the_ ~omputation of a
....

Givens rotation matrix but its use permits later stable reconstruction

of c and s from just one · stored munber, an idea due to Stewart,
·. • l ..

Ref. [13].

11

12

The subroutines return r overwriting a, and z overwriting ·b, as well

as returning c and s.
.:,

If the user later wishes to reconstruct c and s from z it can

be done as follows

If z = 1' set c = 0 and s· = .l

lz I
2 1/2

and· s = If < 1 set c = (1-z)· z

1~ I i/z 2 1/2
l::f > 1 RP.t ~ = and E - (1-c)

Apply a Plane Rotation.

14. CALL SROT(N,SX,INCX,SY,INCY,SC,SS).

15. CALL DROT(N,PX,INCX,DY,INCY,'DC·,Ds}.

Each of these subroutines .c~p11tes ..

[:~1 := L: :1 [:~1 for i = l, ••• ,N
1 ·1

If N ~ 0 or if c = 1 and s = 0 the subroutines return immediately.

Construct a Modified Givens Transformation

16. CALL SROTMG(SDl,SD2,SBl,SB2,SPARAM) .. . '

17. CALL DROTMG(DD~,DD~,DBl,bB2,D~ARAM) . ; : '
The input quantities d1 , d.

2
, b1 , and b2 define a 2-vector fa1 ,a

2
]T

in pa~titioned :form as

al/2
1

0

.. 0

dl/2
2, b

2

The subroutine dete~nes the,,modified Givens rotation matrix H, as

defined in Bqs. (A.6) · (A.7) Of Appendi~ 1 that transforms b
2

, and

thus a2 , to zero. A represeritatton of this matrix is stored in the

array SPARAM() or DPARAM() as follows. Locations in PARAM not

listed are left unchanged.

PARAM(l) = 1
Case of Eq. (A. 7)
hl2 = 1 h2l = -1
PARAM(2) = h11
PARAM(5) = h22

PARAM(l) = 6
Case of Eq. (A .6)
hll = h22 = 1

p ARAM (3) = h.2l

PARAM(4) = h
12

In addition PARAM(l) = -2 indicates H = I.

PARAM(l) = -1
Case of rescaling

PARAM(2) = h11
PARAM(3) = h21
PARAM(4) = h.

12
PARAM(5) = h22

The values of d1 , d2 , and b1 are changec:t ;to r~present the

effect of the transformation. The quantity b
2

which would be

zeroed 'by the transformation is left unchanged in storage.

The input· value of d1 should be nonnegative, but d
2

can be

negative for the purpose of removing data fr~m a least squares

problem. Further details can ·be found in Appendix l.

Apply a Modified Givens Transformation

18. CALL SROTM(N,SX,INCX,SY,INCY,SPARAM)

19. CALL DROTM(N ;DX,INCX,DY, INCY ,DPARAM)

Let H denote the modified Givens transformation defined by

the parameter array SPARAM() or D:PA.RAM(). The subroutines compute

for i = l, .•• ,N

If N ~ 0 or if H is an i~enti~~ ~trix t}:le sU:b;r-outines return
·r •'·'

innnediately. See Appendix 1 for further·details.

13

14

Copy a Vector x to y y :=X

20. CALL SCOPY(N,SX,INCX,SY,INCY)

21. CALL DCOPY(N,DX,INCX,DY,INCY)

22. CALL CCOPY(N,CX,INCX,CY,INCY)

Return immediately if N ~ 0.

Interchange Vectors x and y X :=: y

23. CALL SSWAP(N,SX,INCX,SY,INCY)

24. CALL DSWAP(N,DX,INCX,DY,INCY)

25. CALL CSWAP(N,CX,INCX,CY,INCY)

Return immediately if N ~ 0. ·

Euclidean Length or t 2 Norm of a Vector
w := [t Jx/)

l.=1
26. SW=SNRM2(N,SX,INCX)

27. DW=DNRM2(N;DX,INCX)

28. SW=SCNRM2(N,CX,INCX)

If N ~ 0 the result is set t0 zero.

Sum of Magnitudes of Vector Components

29. SW=SASUM(N,SX,INCX)

30. DWcDAOUM(.N,DX,INCX)

31. SW=SCASUM(N,CX,INCX)

The functions SASUM and DASUM compute w

SCASUM computes

N

:= L lxil
i=1

w := t ~\Real(x)\+ \Imag(xi)\l
l.=l

1/2

The function

These fUnctions return immediately with the result set to zero if

N ~ 0.

Vector Scaling x := ax

32. CALL SSCAL(N,SA,SX,INCX)

33. CALL DSCAL(N,DA,DX,INCX)

34. CALL CSCAL(N,CA,CX,INCX)

35. CALL CSSCAL(N,SA,CX,INCX)

Return immediately if N ~ o.

Find Largest Component of a Vector

36. IMAX=ISAMAX(N,SX,INCX)

37. IMAX=IDAMAX(N,DX,INCX)

38. IMAX=ICAMAX(N,CX,INCX)

The fUnctions ISAMAX and IDAMAX determine the smallest index i

such that lx1 I = max llx) :j = l, ••• ,Nj.
The function ICAMAX determines the smallest index i such.that

lxil = maxjiReal(xj)l + IImag(,.:j)I:J = l, ••• ,Nj.
These functions set the result to zero and return immediately

if N ~ 0.

6. Implementation

In addition to the FORTRAN versions, all of the subprograms except DQDOTI

and DQ.DOTA are also supplied in a·ssembler language for the Univac 1108, the

IBM 300/67, and the CDC 6600 and 7600. The FORTRAN versions of DQDOTI and

DQDOTA use part of Brent's multiple precision package, Ref. [14]. Assembler

language modules for these two subprograms are given only for the Univac 1108.

Only four of the assembly routines for the CDC 6600 and 7600 take

advantage of the pipeline architecture of these machines. The four routines

15

16

SDOT(), SAXPY(), SROT(), and SROTM() are those typically used in the

innermost loop of computations. Some timing results are given in section 8.

The subprograms SMCHCN and DMCHCN provide three machine dependent

parameters that are used by the five routines SROTG, DROTG, SNRM2, DNRM2 and

SCNRM2. These parameters are: SMALL = smallest positive floating point

number, BIG = "biggest positive floating point number, and EPS = relative

arithmetic precision. They are computed by use of subprograms SMCHAR and

DMCHAR. These two subprograms were provided by W •• r. Gndy. An individual

computer installation may wish to remove Cody's routines and simply have the

subprograms SMCHCN and DMCHCN return the appropriate constants. The test

driver prints these numbers so that their values will be known by the user

installation.

7. Relation to the ANS FORTRAN Standard

As of this writing (May, 1977) the present American National Standard

FORTRAN is the 1966 standard, Ref. [6-8J, that we will refer to as 1966

FORTRAN. A draft proposed revision to thi.s Rt.R,ndard is currently identiflt::ll

as FOR'l'.AAN 77, Ref. [9], presently ip the final editing phase.

The calling sequences of the BLA subprograms would require that the

subprograms contain declarations of the form

REAL SX(MAXO(l,N*IABS(INCX))

to precisely ~pecifY t.he array length~. Neither 1966 FORTRAN nor FORTRAN 77

permits such a statement. A statement of the form

REAL SX(l)

is permitted by major FORTRAN compilers to c0ver cases in which it is

inconvenient to specify an exact dimension. This latter form is used in the

BLA subprograms even though it does not conform to 1966 FORTRAN. FORTRAN 77

allows the form

REAL SX(*)

for this situation. Thus the BLAS can be made to conform to FORTRAN 77 by

changing "l's" to "*'s" in the subprogra.II). array declarations.

8. Testing

A Master Test Package has been written in FORTRAN and is included with

.the submitted code. This package consists of a main program and a set of

subprograms containing hu:i.lt-in test data and correct answers. It executes

a fixed set of test cases exercising all thirty-eight subprograms or

optionally any selected subset of these.

The test driver also calls subroutines SMCHCN and DMCHCN and prints

the values of machine dependent values determined by these subroutines.

We have attempted to design the test cases and the Master Test-Program

to be usable on a wide variety of non-decimal machines having FORTRAN systems.

The Master Test Package has successfully executed, testing the FORTRAN

coded version of the Basic Linear Algebra Subprograms, on Univac 1108,

IBM 360/67, Burroughs 6700, CDC 6600, and CDC 7600 computers. These tests

have also been run successfully testing the respective assembler packages

on the Univac 1108, IBM 360/67, CDC 6600 and CDC 7600 computers.

The following method of comparing true and computed numbers is used

-in the Master Test Package. Let z denote a pre-stored true result and let z

denote the corresponding computed rP-sult to be tested. The numbers 0 and ¢

A.rP. prestored constants that will be discussed below. The test program computes

d = fl(z-z)

g = fl (1 a 1 + 1 fl (¢*d) 1)

h = I al
,. ·= fl(g-h)

17

18

where fl denotes machine floating point arithmetic of the current working

precision, either single precision or double preciEion. It is further

assumed that g and h are truncated to working precision before being used in

the computation of T·

The test is passed if T = 0 and fails if T f 0. Note that T will be zero

if \d\ is so small that adding \fl(¢*d)\ to lal gives a result that is not

distinguished from \ol when truncated to working precision .

. For example, flllppose a - 1. , ¢ • • 5, d - 10-9 ;· LlH:~n the :mathematical

value of rr + ¢*n is 1.0000000005, but the single JJrecision computed value

of g on the Univac 1108 will be 1. resulting in T = 0. Thus in this case

d is small enough to pass the test.

The number a is prestored along with the correct result z in the testing

program. In general, a has different values for different test cases.

The number ¢ is a "tuning" factor which has been determined empirically

to make the test perform correctly on a variety of machines. Note that the

stringency of the test is relaxed by decreasing the value of ¢. This has

been used to desensitize the testing to the effects of differences in the

treatment of trailing digits in th~ floating 90int arithmetic of different

machines.

There are four different values of ¢ :preoto:r•(O?!l in tl'le main program,

TBLA, of the testing packae;e. These valu'=s are called. SFAC, SDFAC, DFAC,

and DQFAC. These are used for testing operations which are respectively

single precision, mixed single and double precision, double precision, and

mixed double and extended precision.

It is intended that the test package be useful to anyone who undertakes

the implementation of an assembly-coded. version of this package. In working

on a new machine, one may find it necessary to reduce the values of one or

more of the numbers SFAC, SDFAC, DFAC, or DQFAC to obtain correct test

performance. The authors would appreciate hearing of any new assembly-

coded versions of the packages and of any need to reduce the values of

these tuning parameters.

9. Selected Timing Results for the IBM)60/67, CDC 6600 and Univac 1108

Timing of Dot Products and Elementary Vector Operations

The most obvious implementation of the dot product and elementary

. vector operations for vectors with unit storage increments are in-line

FORTRAN loops 1 and 2:

w = o.
DO 10 I = l,N

10 W = W + X(I)* Y(I)

DO 20 I ::::: l,N

20 Y(I) = A*X(I) + Y(I)

In-Line

FORTRAN for

Dot Products

Loop 1

In-Line
FORTRAN for
'Elementary

Vector Operations

Loop 2

The BLAS replacements for these in-line FORTRAN loops, using the same

variable names and appropriate Ly.J:Je statements, are

I BLAS
W = DOT(N,X,l,Y,l) Replacement for

Loop 1

I
.J ... BLAS

CALL AXPY(N,A,X,l,Y,l) Replacement for
Loop 2

The 11 11 in front of the BLA subprogram names is due to the fact that both

single and double precision versions are discussed here.

These subpro~rams, coded in assembly language, were timed and compared

19

20

with the time for the in-line loops. As was stated in section 2, one

reason for development of the package was to make highly efficient code

possible. This goal has been achieved for the CDC 6600 but not for the

IBM 360/67. The IBM 360/67 FOR'T'RAN H compiler, operating with 01rl. = 2;

gener~:~.LI::!~ nearly peri'ect o'bj ect ~nile.

In Tables 2 and 3 are some sample times for thP. t.hre~ ma.chineo comparing

Loops l and 2 and their BLAS replacement. Interpretation of Tables 2 and 3,

supported more fully in Appendix 2, are as follows:

e Because of linkage .overhead, the BLA subprograms for the IBM 360/67

are always less efficient than the in-line loops. For vectors of

large enough length the linkage overhead is relatively negligible.

e The dot product and elementary vector operation subprograms for the

CDC 6600 are respectively 3.1 and 1.6 times more efficient than in-line

code for vectors of large enough length.

• For the CDC 6600, dot products are conRiriA"~:"ably more efficient

tl1w1 elementary vector operations on vectors of the same length.

(

Vector IBM 360/67 CDC 6600 Univac 1108
Length, Double Precision Single Precision Single Precision

N
In-Line In-Line In-Line
FORTRAN Assembler FORTRAN Assembler FORTRAN Assembler

(H.Oot=2) _(FTN, Opt= 2)

10 0.1438 0.1917 0.0360 o.o48o 0.0756 0.0790

25 0.3436 0.3854 0.0750 0.0625 0.1836 0.1730

50 0.6719 0.7186 0.1400 o.o8oo 0.3598 0.3182

100 1.3750 1.3750 0.2800 0.1250 0.6986 0.6162

Time, in seconds, for 1000 executions of in-line FORTRAN Loop 1 and calls to

the _DOT() function. Times for 5 runs were averaged. ·

Apply factors of 1.1 and 0.75 to IBM 360/67 times to get approximate respective

times for nonequally spaced increments and single precision. No distinction for

nonequal increments is necessary for the CDC 6600 and Univac 1108.

Table 2. _DOT() function and in-line Loop 1 timings

Vector IBM 360/67 CDC 6600 Univac 1108
Length, Double Precision Single Precision Single Precision

N
In-Line In-Line In-Line
FORTRAN Assembler FORTRAN Assembler FORTRAN Assembler

(H,Opt=2) (FTN, Opt=2)

10 0.0590 0.2050 0.0500 0.0650 0.0740 o.oRR6

25 0.3930 0.4375 0.1125 0.1000 0.1806 0.1890
50 0.7950 0.8400 0.2100 0.1725 0.3544 0.3574

100 1.5500 1.6000 0.4200 0.3000 0.7292 0.7170

Time, in seconds,. for 1000 executions of in-line FORTRAN Loop 2 and calls to the

_AXPY() subprog.ra.m. Times for 5 runs were averaged.

Apply factor of 0.75 to get single precision IBM 360/67 times. Only vectors

with unit increments were used in this timing.

Table 3. _AXPY() subprogram and in-line Loop 2 timings

21

22

.,

Timing of Standard and Modified Givens Methods

Gentlemen's modification of the Givens transformation is discussed in

the Appendix. This technique eliminates square roots and two of the four multiply

:Operations when forming the product of the resulting matrix by a 2-vector.

The relative efficiency of Gentlemen's.modification to thP. standard

Givens transformation was compared. Both techniques were llRP.n t.n

triangularize 2N by N matrices A. = fa .. 1 where
l J.J.

a ..
l.J

= (i+j-1)-l

In Table 4 there are some sample times which resulted from the

triangularizations using hoth methods.

We are primarily interested in algorithm comparison here, so both

methods were timed using their assembler versions to apply the matrix

products.

A conclusion is that in the context of triangularizing matrices, the

modified Givens transformation method is ultimately more efficient in

computer time by factors varying between 1.4 and 1.6. This is fully

supported in Appendix 2. The comparison is most favorable on the IBM

360/67 in double precision.

N IBM 360/67 ' CDC 6600 Univac 1108
Double Precision Single Precision Single Precision

Standard Modified Standard Modified Standard Modified
Givens Givens Givens Givens Givens Givens

10 0.0800 0.0650 0.0200 0.0190 0.0335 0.0298

25 0.8789 0.6250 0.1719 0.1445 0.3633 0.3001

Time, in seconds, for the triangularization of 2N by N matrices using standard

and modified Givens transformations. Times for 5 runs were averaged.

Table 4. Standard and modified Givens transformation in matrix
triangularization

Acknowledgements

We are grateful for the contributions that numerous people have made to

this project. The Master Test Package was programmed by Lawson, with afew

modifications by Hanson. The FORTRAN versions of the BLA subprograms were

written 'by Lawson, Krogh, Hanson, and J. Dongarra. The assembly-coded

versions for the lmivac 1108 were programmed by Krogh and s. Singletary Gold.

The assembly-coded versions for the IBM 360/67 were programmed by Hanson and

K. Haskell. The assembly-coded versions for the CDC 6600 were programmed by

Kincaid, J. Sullivan and E. Williams. Four of these routines were receded by

Hanson and C. Moler. Test runs were made on a variety of machines by P. Fox

and E. W. McMahon (Honeywell 6000), P. Knowlton (PDP 10), L. Fosdick (CDC 6600),

C. Moler. (IBM 360/67), K. Fang (CDC 7600), B. Garbow, J. Dongarra (IBM 370/195),

W. Brainerd (Burroughs 6700), an~ others. Helpful suggestions, based on

previous similar work of their own, were given by P. s. Jensen and C. Bailey.
. ' '

J. Dongarra supplied versions of several FORTRAN implementations of

23

24

.
the subprograms. The choice of coding technique used by Dongarra is based

on a set of tests that was carried out at over 40 different installations

with various machines in operation. The choice of coding technique was

made on the basis of superior timing performance at the largest nu.niber of

these sites, Ref. [10].

Not everyone who contributed significantly to this project is mentioned.

One person who spent a great deal o~ time during the final phase of the

project was J. Wisniewski. His valuable help and contributions are much

appreciated. The contributions of W. MacGr~gor and G. Terrell are also

acknowledged.

References

1. R. J. Hanson, F. T. Krogh, and c. L. Lawson, "A Proposal for Standard
Linear Alge'bra Subprograms," Jet Propulsion Laboratory, 'I'M 33-660,
November 1973, 14 pp.

2. C. L. Lawson, "Standardization of FORTRAN Callable Subprograms for Basic
Linear Algebra," Paper presented at Mathematical Software II, Purdue
University, May 1974, ·s pp.

3. Wo M. Gentleman, "Least Squares Computations by Givens Transformations
without Square Roots," J. Inst. Math. Appl., 12, 1973, pp. 329-336.

4. Sven Hammarling, "A Note on Modifications of the Givens Plane Rotation,"
J. Inst. Math. Appl., 13, 1974, No. 2, pp. 215-218.

5. C. L. Lawson and R. J. Hanson, Solving Least Squares Problems,
Prentice-Hall, 1974.

6. .American National Standards Institute, ".American National Standard
FORTHA.N," 1966, New Yo1··k..

7. ASA Committee X3 "FORTRAN vs. Basic FORTRAN," Comm. ACM, 7, No. 10,
1964' 591-625.

8. ANSI Subcommittee X3J3, "Clarification of FORTRAN Standards - Second
Report," Comm. ACM, 14, No. 10, 1971, 628-642.

9. ANS Committee X3J3, Document X3J3/76.7 Fortran 77, March 18, 1977.

10. Dongarra, J. J., Fortran BLAS Timing. LINPACK Working Note #3. Argonne
Natl. Lab. (Draft of March, 1977)

. .

11. Cody, W; J., Software for the Elementary Functions. Mathematical
Software, Edited by J. R. Rice. Academic Press, New York (1971).

12. Blue, J. L., A Portable Fortran Program to Find the Euclidean Norm of a
Vector. Trans. Math. Software (to appear).

13. Stewart, G. W., The Economical Storage· of Plane Rotations. Numer. Math.,
Vol. 25, No. 2, p.·l37-139 (1976) •

14. Brent, R., A Fortran Multiple Precision Arithmetic Package. To appear,
TOMS.

Appendix 1

The Modified Givens Transformation

The Givens transformation which eliminates z1, if z1 f 0, is

(A.l)

where c = w.Jr, s = z.jr, r = ± (wi+zit. This requires -4N noating point

multiplications, 2N floating point additions and one square root. Gentleman,

Ref. [3], has reported on a modification to the Givens transformation which

reduces this operation count. Gentleman's idea is presented here in a

s~~~htly different form than found in his paper.

Suppose that W in Eq. (A.l) is available in factored form

(A.2)

25

(A.4)

(A.5)

26

1 1 1

Substituting p2x for W and refactoring GD2 as n2H yields

(A. 3)

Tbe right-hand side of Eq. (A.3) yields an updated factored form for the

matrix product GW. The crucial point is that the matrix H is selected so

'
tha·t two elements are exactly units. This eliminates 2N floating point

multiplications when forming the matrix product HX. To preserve numerical

stability two cases are considered:

For lsi < lei

where t = s/c.

For lei ~ lsi, by similar manipulations,

1

~·n 2 H

where df = dts, and crt = dfs. .This factorization can be done for any plane

rotation matrix.
1

Only the squares of the scale factors d~ are involved in the non-unit
1

elements of the matrix H defined in Eq. (A.4) - (A.5), which permits the

Givens transformation Eq. (A.l) to be computed without square roots. Using
2 2 -l

the identity c = (l+t) and Eq. (A.4) allows the squares of the scale

• ?"_,

- 2 -1
factors to be updated: d. = d.(l+t) , i = 1,2. Letting T = s/c in Eq.

l. l.

-1 2 -1
(A.5) we have 'd1 = d2 (l+T

2
) and d'2 = d1 (l+T) . For lei> lsi or,

equivalently, ld1x~l > !d2yil

(A.6)

(A. 7)

hll = 1 ' h21 ~ -yl/xl

hl2 = d2yl/dlxl. ' h22 = 1

u = 1 - h2lhl2

dl .- d· /u 1

d2 .- d2./u

xl .- x
1
u

hll = dlxl/d2yl ' h21 = 1

hl2 = 1 ' h22 = xl/yl

u = 1 + hllh22

v = d /u
1

dl .- d /u
2

When using the modified Givens transformation in the context of

"row accumulation," d. > 0, i = 1, 2, the values of u in Eq. (A.6) - (A.7)
l.

will satisfy 1 ~ u ~ 2. Thus the squares d., i = 1,2, decrease by as much
l.

as 1./2 at each updating step. If no rescaling action is taken, these scale

27

28

factors would ultimately underflow. The details concerning rescaling

are implemented in the modified Givens subprograms.

Since only d., the squares of the weights, appear in the formulas of
l.

Eq. (A.6) - (A. 7) it is possible to use the same formulas to remove a row

from a least squares problem simply by setting d
2

= -1. Remarks about

this row removal method are found in Ref. [5], Chapter ?7.

When the modified Givens transformation is used in the context of the

"row removal method" mentioned above, the values of u in Eq. (A.6) - (A.7)

satisfy 0 s u s 1. The case u = 0 is eliminated by restricting d1 ~ 0. If

d1 < 0, we define H as the zero matrix, the updated di = 0; i = 1,2, and x1 0.

With this restriction, we have 0 < u s 2 in Eq. (A.6) - (A.7). Thus the

change in the scale factors d., i = 1,2, .is unbounded at each step.· Either
l.

underflow or overflow can occur if no rescaling is performed.

The problem is rescaled by the modified Givens subprograms to keep

within the conservative limits

Note that when we rescale d.
l.

-1
j = 1,2, and rescale x1 := x1v

i = 1,2, v = 4og6 •

2
:= d.y , we must rescale h ... -

l. l.,l

-1
hijy '

Appendix 2

Extended Timing Results for Some Operations

In Section 9 selected timing results were presented for the IBM 360/67

(double precision), the CDC 6600 (single precision), and the Univac 1108

(single precision). Timing of dot products, elementary vector operations,

and Givens transformations was presented. This was done mainly for the

purpose- of illustrating the relative efficiency of in-line FORTRAN vs~

assembler, and the standard vso the modified Givens transformation.

Tables 5-ll, given below, give more of this data than found in

Section 9. The exception- to this is the Univac 1108 timing data which is

totally.presented in Section 9, so we did not reproduce it here.

Vector IBM 360/67 IBM 360/67
~ength, Single Precision Single Precision

N Equal Storage Increments Nonequal Storage Increments

In-Line In-Line
FORTRAN Assembler FORTRAN Assembler

(H,Opt=2} (H,Opt=2)

10 0.1020 0.1470 0.1160 u.166o

. 25 0.2380 0.2840 0.2740 0.3100

50 0.4620 0.5110 0.5510 0.5720

100 0.9490 0.9970 1.1700 1.1000

Time, in seconds, for 1000 executions of in-line FORTRAN Loop l,

Section 9, and calls to the SDOT() function. Times for 5 runs

were averaged.

Table 5. IBM 360/67 SDOT() function and single precision
in-line Loop l timing::;

29.

30

Vector IBM 360/67 IBM 360/67
Length, Double Precision Double Precision

N Equal Storage Increments Nonequal Storage Increments

In-Line In-Line
FORTRAN Assembler FORTRAN Assembler

(H,Opt=2) (H,Opt=2)

10 0.1430 0.1910 0.1590 0.1980

25 0.3430 0.3840 0.3840 0.4160

50 0.6770 0.7250 0.7800 0.8180.

100 0.3900 .l. 3900 1.5400 1.5700

Time, in seconds, f'or 1000 executions of' in-line FORTRAN Loop l,

Section 9, and calls to the DDOT() function. Times f'or 5 runs were

averaged.

Table 6. IBM 360/67 DDOT() function and double precision in-line
Loop l timings

Vector c:Dc 66oo r.nc 76oo
Length, Single Precision Equal or Single Precision Equal or

N Nonequal Storage Increments Nonequal Storage Increments

In-Line In-Line
FORTRAN Assembler FORTRAN Assembler

(FTN,Opt=2) (FTN,Opt=2)

10 0.0358 o.o48o 0.0042 0.0092

25 0.0756 0.0638 0.0100 0.0110

50 0.1420 0.0808 0.0210 0.0162

100 0.2750 0.1230 0.0414 0.0254

Time, in seconds, f'or 1000 executions of' in-line FORTRAN Loop 1,

Section 9, and calls to the SDOT() f'unction. Times f'or 5 runs were

averaged.

Table 7o CDC 6600 and CDC 7600 SDOT() function and single precision
in-line Loop l timings

Vector IBM 360/67 IBM 360/67
Length, Single Precision Double Precision

N Equal Storage Increments Equal Storage Increments

In-Line In-Line
FORTRAN Assembler FORTRAN Assembler

(H,Opt=2) (H,Opt=2)

10 0.1190 0.1700 0.1590 0.2040

25 0.2880 0.3610 0.3930 0.4390

50 0.5760 0.6300 ·o. 7960 Oo8420

100 1.1700 1.1900 1. 5500 1.5900

Time, in seconds, for 1000 executions of in-line FORTRAN Loop

Section 9, and calls to the SAXPY() and DAXPY() subprograms.

Times for 5 runs were averagedo

Table 8. IBM 360/67 SAXPY() and DAXPY() subprogram, and
single and double precision in-line Loop 2 timings

Vector CDC 6600 CDC 7600
Length, Single Precision Single Precision

2,

N · Equal Storage Increments Equal Storage Increments

In-Line In-Line
FORTRAN Assembler FORTRAN Assembler

(FTN,Opt:::2) (li''t'N,Opt=?)

10 0.0502 o.o64o 0.0060 0.0114

25 0.1120 0.1020 0.0150 0.0162

50 0.2130 0.1710 0.0290 0.0252

100 o.424o 0.3020 0-0582 0.04?0

Time, in seconds, for 1000 executions of in-line FORTRAN. Loop 2,

Section 9, and calls to the SAXPY() subprogram. Times for 5

runs were averaged.

Table 9. CDC 6600 awl CDC 7600 S.AXPY() .subprogram a.nd oingle
precision in-line Loop 2 timings

31

32

IBM 360/67 IBM 360/67
N Single Precision Double Precision

Standard Modif'ied Standard Modified
Givens Givens Givens Givens

10 0.0580 0.0484 0.0800 o.o65o

25 0.5850 0.4635 0.8789 0.6250

Time, in seconds, for the triangularizat~on of 2N
by N matrices using standard and modified Givens

transformations. Times for 5 runs were averaged .

. Table 10. IBM 360/67 single and double
precision standard and modified
Givens transformation timing for
matrix triangularization

CDC 6600 CDC 7600
N Single Precision Single Precision

Standard Modified Standard Modified
Givens Givens Givens Givens

10 Oo0200 0.0190 0.0036 0.0035
25 0.1719 o.1'-tt1.5 0.0279 0.0250

50 o.96oo 0.7550 0.1430 0.1265
100 5.8500 4.3500 0.0200 0.7100

T:im~, in seconds, for the tl'iangul.ari:zation of 2N
'by N matrices using standard and modified Givens

transformations. Times for 5 runs were averaged.

Table 11. CDC 6600 and CDC 7600 single precision
standard and modified Givens trans­
formation timing for matrix
triangularization

Appendix 3

Sample Usage of the BLAS in FORTRAN Programming

Our'experience indicates that using the BLAS actually enhances the

readability and reliability of codes in which they are utilized. Efficiency

does not appreciably degrade with their usage, as indicated in Section 9, and

for large-scale prOblems certain of the BLAS will markedly OtJ.t-perform in-line

FORTRAN code.

These remarks are based on usage of the BLAS in developing new software

for the Sandia Math. Library, developing new ordinary differential equation

solving codes, conversations with members of the LINPACK working group

participating in the project of Ref. [10], and experience with applications

programmers at Sandia Laboratories and Jet Propulsion Laboratoryo

Typical usage of the BLAS in FORTRAN programs is now illustrated with

nine examples using the single precision versions of the operations.

Some rules, based upon the FORTRAN language, that a programmer may find

useful to recall are these:

e SUppose a two-dimensional FORTRAN array A(MDA,NDA) is used to hold an M

by N matrix A:::; {aiJ}. If A(I,J) ;:::; aiJ' then the Ith row vector of A

and the Jth column vector of A respectively start at A(I,l) and A(l,J).

The relations MDA ~ M and NDA ~ N must hold for the matrix to fit into

this· array.

e The storage increment between elements of row vectors of A, e.g. A(l,l)

and A(l,2), is MDA, the first dimensioning parameter of the array A(*,*).

• The storage increment between el.~ments of column vectors of A, e.g. A(l,l)

and A(2,1), is 1. This is due to the fact that the FORTRAN language

stores A(*,*) by columns:

A(l, 1), A(2, 1), ••. , A(MDA,l), ~(1, 2), •• ~ , A(MDA,2), •. o, A(MDA,NDA)

The value of NDA is used by the FORTRAN compiler only to allocate MDA*NDA

wnrnR of memory in the program.

33

34

Example 1

Given M by K and K by N matrices A and B, compute the M by N product

matrix C = AB.

The coding techniqu~ f'or this computation is based on the f'act .that

each element ciJ of' C is the dot product of' row I of' A and column J of' B.

c .

c

DI~SION A(20,20),B(l5,10),C(20,15)

MDA=?O
MDB=-:15
MDC=20

M=lO
K=l5
N=lO

C FORM THE DOT PRODUCT OF ROW I OF A WITH COLUMN J OF B. EACH OF THESE
C VECTORS IS OF LENGTH K. THE VALUE OF MDA IS THE STORAGE INCREMENT
C BETWEEN ELEMENTS OF ROW VECTORS OF A.
c

DO 10 I=l,M
DO 10 J=l,N

10 C(I,J)=SDOT(K,A(I,l),MDA,B(l,J),l)

Example 2

Solve an N by N upper triangular nonsingular system of' algebraic·

equations, Ax. = b • The method used is based on the observation that if

we compute the component ~ = bN/aNN, then we have a new problem in N - 1

unknowns, still upper triangular, with the new right-side vector

T
(b1-a1NXN, ... ,bN_1-aN-l,~) • In this example the solution vector,~'

overwrites the vector b in the array B(*).

20

DO 20 II=l,N
I=N+l-II
B(I)=B(I)/A(I,I)
CALL SAXPY (I-1,-B(I),A(l,I),l,B,l)

Example 3

Scale the columns (each assumed to be nonzero) of an M by N matrix C

so that each column has unit length.

30

DO 30 J=l,N
T=l.EO/SNRM2(M,C(l,J),l)
CALL SSCAL(M,T,C(l,J),l)

Example 4

Row-equilibrate an N by N matrix A. (Divide each non-zero row vector

of, A by the entry in that row of maximum magnitude). Here MDA is the

first dimensioning parameter of the array A(*,*).

40

DO 40 I=l,N
JMAX=ISAMAX(N,A(I,l),MDA)
T=A(I,JMAX)
IF(T.EQ.O.EO) GO TO 40
CALL SSCAL(N,l.EO/T,A(I,l),MDA)
CONTINUE

When using ISAMAX() to choose row pivots in Gaussian elimination,

for.example, the major loop contains a statement of the form

IMAX=ISAMAX(N-J+l,A(J,J),l)+J-1

At that point IMAX corresponds to the row that will be interchanged

with row J. Thus the offset value J - 1 must be added to the computed

value of ISAMAX() to get the actual row number to interchange.

Example 5

Set an N by N matrix A to the N by N identity matrix. Then set B = A.

Notice that a storage increment value of 0 for the first vector

35

argument o:f SCOPY() is used. This "broadcasts" the values o:f O.EO and

l.EO into the second vector argument.

50

60 .

Here MDA is the :first dimensioning parameter o:f the array A(*,*).

DO 50 J=l,N
CALL SCOPY(N,O.EO,O,A(l,J),l)

CALL SCOPY(N,l.EO,O,A,MDA+l)

DO 60 J=l,N
CALL 3COPY(N,A(l,J) ,l,B(l,J) ,.l)

Example 6

Interchange or swap the columns o:f an M by N matrix C. The column

to be interchanged with column J is in a type INTEGER array IP(*), and

has the value IP(J).

70

DO 70 J=l,N
L=IP(J)
IF(J.NE.L) CALL SSWAP(M,C(l,J),l,C(l,L),l)
CONTINUE

Example 7

a) Extract the :first number and "pop" a list o:f N single precision

numbers: x0 := x1 , xi := xi+l' i = l, •.• ,N-1, N := N-1

b) "Push-down" a list o:f N single precision numbers and insert a

new number x0 at the top o:f the list: xi+l := x1 , i = N, ••• ,l;

x
1

:= x
0

, N := N + 1.

T For these illustrations the vector x = (x1 , ••• ,~) is in the FORTRAN

array X(*).

Notice the usage o:f the negative increments (-1) :for the push-down

example o:f b). This causes the assignment

X(N+l)=X(N),X(N)=X(N-l), ••• ,X(2)=X(l)

to be implemented in this order.

a) Extract and "pop"
N=N-1
XO=X(l)
CALL SCOPY(N,X(2),l,X(l),l)

b) "Push-down'i and insert
CALL SCOPY(N,X(l),-l,X(2),-l)
N=N+l
X(l)=XO

Example 8

In this example we want to transpose an N by N matrix A in-place,

(in-~). Here MDA is the first dimensioning parameter of the array

A(*,*).

DO 80 J=l,N
8o CALL SSWAP(N-J,A(J,J+l),MDA,A(J+l,J),l)

Example 9

In this more complicated example we swap in-place (in-situ) the

components of the vector

so they become

making repeated use of the "Pop" or "Push-down" operations.

90

NMK=N-K
IF(.NOT.(K.GT.O.AND.NMK.GT.O)) GO TO 120

IF(.NOT.(K.LT.NMK)) GO ·ro 100
DO 90 I=l,K·
T=X(l)

CALL SCOPY(N-l,X(2),l,X(l),l)
X(l'I)=T

GO TO 120 37

38

100 CONTINUE
DO 110 I=1,NMK
T=X(N)
CALL SCOPY(N-1,X(1),-1,X(2),-1)

110 X(1)=T

120 CONTINUE

Distribution:

1141 D. B. Holdridge
2610 R. E. De try
2613 E. A. Aronson
2613 Lo A. Bertram
2613 K. Haskell (20)
2613 R. E. Jones

\1 2613 M. R. Scott
2613 w. Vandevender
2613 H. A. Watts
2640 J 0. Lo Tischhauser
2641 P. A. Lemke
2644 c. B. Bailey
5000 A. Narath

Attn: 5200 E. H. Beckner
5300 0. E. Jones
5400 A. w. Snyder
5700 J. H. Scott
5800 R. s. Claassen

5100 J. K. Galt
Attn: 5110 F. L. Vook

5130 G. Ao Samara
5150 J. E. Schirber
5160 w. Herrmann

5120 G. J. Simmons
5121 P. B. Bailey
5121 H T. Davis
5121 J. A. Davis
5121 c. A. Morgan
5121 P. J. Slater
5121 G. Po Steck
5121 R. J. Thompson
5122 D. E. Amos
5122 R. J. Hanson (50)
5122 K. L. Hie.bert
5122 B. L. Hulme
5122 L. F. Shampine
5122 J. A. Wisniewski
5166 N. Ruiz

• 8266 E • A. Aas
8325 Ro E. Huddleston
8325 T. H. Jefferson
3141 c. Au Pepmueller (Actg.) (5)
3151 W. L. Garner (3)

For DOE/TIC (Unlim. Release)
3172-3 R. Campbell (25)

For DOE/TIC

39

