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BASIC LINEAR ALGEBRA SUBPROGRAMS 

FOR FORTRAN USAGE 

C. L. Lawson, Jet Propulsion Laboratory 
R. J. Hanson, Sandia Laboratories, Albuquerque 

D. R. Kincaid, University of Texas, Austin 
F. T. Krogh, Jet Propulsion Laboratory 

1. Introduction 

This paper describes a package, called the BLAS, of thirty-eight 

FORTRAN-callable subprograms for basic operations of numerical linear 

algebra. This paper and the associated package of subprograms and testing 

programs are the result of a collaborative voluntary project of the ACM-

SIGNUM committee on basic linear algebra subprograms. This project was 

carried out during the period 1973-1977. 

The initial version of the subprogram specifications appeared in Ref. 

[1]. Following distribution of Ref. [1] to persons active in the develop-

ment of numerical linear algebra software, open meetings of the project 

were held at the Purdue Mathematical Software II Conference, May, 1974, 

Ref.· [2], and at the National Computer Conference, Anaheim, May, 1975. 

Extensive modifications of the specifications were made following the Purdue 

meeting which was attended by thirty people. A few additional changes 

resulted from the Anaheim meeting. Most of the further Fortran code changes 

resulted from an effort to improve the design and to make them more 

robust. 
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2. Reasons for Developing the Package 

Designers of computer programs involving linear algebraic operations 

have frequently chosen to implement certain low-level operations such as the 

dot product as separate subprograms. This may be observed both in many 

published codes and in codes written for specific applications at many computer 

installations. Following are some of the reasons for taking this approach: 

(1) It can serve as a conceptual aid in both the design and coding 

~L~eB uf a programming effort to regard' an operation such as the 

dot product as a basic building hlnck.. This is consistent with· 

the ideas of structured programming which encourage modularizing 

common code sequencec. 

(2) It improves the self-documenting quality of code to identify an 

operation such as the dot product by a unique mnemonic name. 

(3) Since a significant .amount of the execution time in complicated 

linear algebraic programs may be spent in a few low-level 

operations, a reduction of execution time spent in these operations 

may be reflected in cost savings in the running of programs. 

Assembly language coded subprograms for these· operations provide 

such savings on some computers. 

(4) The programming of some of these low-level operations involves 

algorithmic and implementation subtleties that are likely to be 

ignored in the typical &pplications programming environmP.nt. 

For example the subprograms provided for the modified Givens 

transformation incorporate control of the scaling terms which 

otherwise can drift monotonically toward underflow. 

If there could be general agreement on standard nA.mP.I'l A.nn paramet."'r 

lists for some of these ·basic operations it would add the additional benefit 

of portability with efficiency on the assumption that the assembly language 

subprograms were generally available. Such standard subprograms would provide 

building blocks with which designers of portable subprograms for higher 

level linear algebraic operations such as solving linear algebraic equations, 



.. 

eigenvalue problems, etc., could achieve additional efficiency. The 

package of subprograms described in this paper is proposed to serve this 

purpose. 

3. Scope of the Package 

Specifications will be given for thirty-eight FORTRAN-callable subprograms 

covering the operations of dot product, vector plus a scalar times a vector, 

·Givens transformation, modified Givens transformation, copy, swap, Euclidean 

norm, sum of magnitudes, multiplying a scalar times a vector, and locating 

an element of largest.magnitude. Since we are thinking of these subprograms 

as being used in an ANS FORTRAN context we provide for the cases of single 

precision, double precision, and (single precision) complex data. 

In Table l a concise summary of the operations provided and the 

conventions adopted for naming the subprograms is given. Each type of 

operation is identified by a root name. The root name is prefixed by one 

or more of the letters I, S, D, C, or G. to denote operations on integer, 

single precision, double precision, (single precision) complex, or extended 

precision data types, respectively. For subprograms involving a mixture of 

data types the type of the output quantity is indicated by the left-most 

prefix letter. Suffix letters are used on four of the dot product 

subprograms to distinguish variants of the basic operation. 

If one were to extend this package to include double precision complex 

type data (COMPLEX*l6 in IBM FORTRAN) we suggest that the prefix z be used 

in the names of' the new subprograms. For example, subprograms CZDOTC and 

CZDOTU for the dot product of (~ingle precision) complex vectors, with 

double precision accumulation, have been written for the CDC 6600. These 

ma.y be obtained d:i.rP.r.t.ly from Kincaid. 
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Table 1 

Summary of Functions and Names 
Of the Basic Linear Algebra Subprograms 

Root of 
Function Prefix and Suffix of Name Name 

Dot Product SDS- DS- DQ-I DQ-A c-u c-c D- s- -DOT-

'Constant Times a Vector Plus a Vector C- D- s- -AXPY 

Set-up Givens Rotation D- s- -ROTG 

Apply Rotation D- s- -ROT 
! --

Set-up Modified Givens Rotation D- s- -ROTMG 

Apply Modified Rotation D- s- .-ROTM 

Copy X into y . c- D- s- -COPY 

Swap X andy c- D- s- -SWAP 

2-Norm (Euclidean Length) sc- D- s- -NRM2 

Sum of Absolute Values* sc- D- s- -ASUM 

Constant Times a Vector cs- c- D- s- -SCAL 

Index of Element Having Max Absolute IC- ID- IS- -AMAX 
Value* 

*For complex components zj = xj + iyj these subprograms compute 

lxjl + IYjl instead of (x~ + y~)l/2. 

• 



Section 5 lists all of the subprogram names and their parameter lists, 

and defines the operations performed by each subprogram. 

The criterion for including an operation in the package was that it 

should involve just one level of looping and occur in the usual algorithms 

of numerical linear 8.lgebra such as Gaussian elimination or the various 

elimination methods using orthogonal transformations. 

This orientation affected the specifications of SCASUM and ICAMAX 

particularly. Although SASUM and DASUM compute t
1 

norms we assumed 

that the usage of either of these subprograms in numerical linear algebra 

software would be for the purpose of computing a vector norm that was less 

expensive to compute than the t
2 

norm. Thus for the complex version, 

SCASUM, instead of specifying the .f.1 norm which would be 

we specified the less expensive norm, 

w = ~liRe(xi) I + lrm(xi) I~ . 
1. 

Similarly, whereas ISAMAX and IDAMAX may be regarded as determining 

the .f, norm of a vector, we do not regard this as the essential property to 
CCI 

be carried over to the complex case. Thus ICAMAX is specified to find an 

index j such that 

rather than finding an index j such that 

[Re(x.)] + [Im(x.)] =max. [Re(x.)] + [Im(x.)J 2 2 .l 2 2! 
J J 1. 1. 1. 

In 'both the computation of the t
2 

norm and the Givens transformation 
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a naive computation of the squares of the given data would restrir.t thP. 

exponent range of acceptable data. This package avoids this restriction 

by making use of ideas described by Cody, Ref. [11 ], and Blue, Ref. [12 ]. 

Additionally, in the case of the Givens transformations, an idea of Stewart, 

Ref. rl3], permits the storage of all the transformations of· a matrix 

decomposition in the memory space occupied by the elements zeroed "by the 

transformation. 

The modified Givens transformation is a relat.ivPly new innovation among 

numerical linear algebra algorithms, Refs. [3], [4], and r5J. The significant 

features are the reduction of the number of multiplications, the elimination 

of square root operations, and the capability of removing rows of data in 

least squares problems. The details of this algorithm as implemented in 

this package are given in the Appendix. 

4 • Programming Conventions 

Vector arguments are pemitted to have a storage spacing between 

elements. This spacing is specified by an increment parameter, For example, 

suppose a vector x having components x., i = l, ... ,N is stored in a DOUBLE 
~ 

PRECISION array DX( ) with increment parameter INCX. If INCX ~ 0 then x. is 
~ 

stored in DX(l+(i-l)*INCX). If INCX < 0 then x. is stored in DX(l+(N-i)*IINCXI). 
~ 

This method of indexing when INCX < 0 avoids negative indices in the array 

DX( ) and thus permits the subprograms to be written in FORTRAN. Only 

positive values of INCX are allowed for operations 26-38 that each have a 

single vector argument. 

It is intended that the loops in all subprograms process the elements 

of vector arguments in order of increasing vector component indices, i.e., in 

th 0 der x i 1 N This implies processing in reverse storage order e r i' = , ••• , • 

when INCX < o. If these subprograms are implemented on a computer having 



parallel processing capability, it is recommended that this order of 

processing be adhered to as nearly as is reasonable. 

5. Specification of the BLA Subprograms 

Type and dimension information for variables occurring in the subprogram 

specifications are as follows: 

mx = max(l,N*IINCXI) 

my= max(l,N*IINCYI) 

INTEGER N,INCX,INCY,IMAX 

REAL SC(mx),SY(my),SA,SB,SC,SS 

REAL SDl,SD2,SBl,SB2,SPARAM(5),SW,QC(lO) 

DOUBLE PRECISION DX(mx),DY(my),DA,DB,DC,DS 

DOUBLE PRECISION DDl,DD2,DBl,DB2,DPARAM(5),DW 

COMPLEX CX(mx),CY(my),CA,CW 

Type declarations for function names are as follows: 

INTEGER ISAMAX,IDAMAX,ICAMAX 

REAL SDOT,SDSDOT,SNRM2,SCNRM2,SASUM,SCASUM 

DOUBLE PRECISION DSDOT,DDOT,DQDOTI,DQDOTA,DNRM2,DASUM 

COMPLEX CDOTC.CDOTU 

Dot Product Subprograms 

l. SW = SDOT(N,SX,INCX,SY,INCY) 

2. DW DSDOT(N,SX,INCX,SY,INCY) 

N 

vt :=""""' X.Y. ~ ~ ~ 
i=l 

N 

W :=""'"' X.Y. L...J ~ ~ 
i=l 

Double precision accumulation is used within the subprogram DSDOT. 

N 

3. SW = SDSDOT(N,SB,SX,INCX,SY,INCY) w := b +""""' x.y. LJ ~ ~ 
i=l 

Accumulation of the inner product and addition of b is in double 

prec~s~on. Conversion of the final result to single precision is 

done the same as the intrinsic function SNGL( ). 
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N 

4. DW = DDOT(N,DX,INCX,DY,INCY) w := L xiyi 

i=l 

5. 

N 

DW = DQDOTI(N,DB,QC,DX,INCX,DY,INCY) w. c ·- b + ~ x.y. L...J l. l. 

i=l 

The input data, 'b, x, and y, are converted internally to extended 

precision. The result is stored in extended precision form in 

QC( ) and returned in double precision form as the value of the 

function DQDOTI. 

N 

6. DW = DQDOTA(N,DB,Q,C,DX,INCX,DY,INCY) w ·- c ·- b + c + L xiy 1 
i=l 

The input value of c in QC( ) is extended.precision. The value c 

must have resulted from a previous execution of DQDOTI or DQDOTA 

since no other way is provided for defining an extended precision 

number. The computation is done in extended precision arithmetic 

and the result is stored in extended precision form in QC ( ) and 

is returned in double precision form as the function value DQDOTA. 

7. CW = CDOTC(N,CX,INCX,CY,INCY) 

N 

w:=.Lxiyi 
i=l 

The suffix C on CDOTC indicates that the complex conjugates of the 

components x. are used. 
l. 

N 

8. cw CDOTU(N,CX,INCX,CY,INCY) w := """'X.Y. L..J l. l. 

i=l 

The suffix U on CDOTU indicates that the vector components x. are 
l. 

used unconjugated. 
N 

In the preceding eight subprograms the value of ~ will be set to zero if 

N s; 0. i=l 

Elementary Vector Operation y:=ax+y 

9. CALL SAXPY(N,SA,SX,INCX,SY,INCY) 



10. CALL DAXPY(N,DA,DX,INCX,DY,INCY) 
,. . . ~i. ,. . , .... : .. ..-.. : ; 

11. CALL CAXPY(N,CA,CX,INCX,CY,INCY) 

If a = 0 or if N ~ 0 thes~ s,~[):ro"~tt~11es .. return immediately. 

Construct Givens Plane Rotation 

12. CALL SROTG(SA,SB,SC,SS) : ~-: . 

13. CALL DROTG(DA,DB,DC~DS) · 

Given a and ·b each of these subroutines .. computes 
'·.·.. . 

and 

The numbers .c, 

cr = {sgn(a) 

sgn(b) 

if 

if 

lal > lb.l 

lbl ~ lal 

' .. · .. ·:. ( . ::. , ... .-:· .f!.:-: · .. ··. f' . 

2 2 i/2 . 
( +b ) 

.. _... ., . r = cr a .... '· .: . .. , · ... : · .i .• .. ·• 
: • .. \I'•.. ~.- .. 
' .• ~ t • ~ • 

{ 

a/r. j,:f'·· xr·. f.,-0 
c = 

1 if r = 0 

; ' 

if r = 0 

,i. 

s, and r th,~n ·t?.a:t;i,sfY:,th.-e _.t;nat:r,ix_, equation :. ~ . . _:.:: :· ·: ..... ·:.~~-.. . ~- .... . . ~ . . . .. -~ - ... 

[ c s]. • [ a>l .. = '·.:[r.]· -~ · . ·-: .. 
-s c '1 ·: · 'O';. '· ·_; · .. :· .o .. ·.;. · ·.~ ... '"·· · · 

The introduction of cr is not essentiB.:I .. to the_ ~omputation of a 
.... 

Givens rotation matrix but its use permits later stable reconstruction 

of c and s from just one · stored munber, an idea due to Stewart, 
·. • l .. 

Ref. [13]. 

11 
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The subroutines return r overwriting a, and z overwriting ·b, as well 

as returning c and s. 
.:, 

If the user later wishes to reconstruct c and s from z it can 

be done as follows 

If z = 1' set c = 0 and s· = .l 

lz I 
2 1/2 

and· s = If < 1 set c = (1-z )· z 

1~ I i/z 2 1/2 
l::f > 1 RP.t ~ = and E - (1-c ) 

Apply a Plane Rotation. 

14. CALL SROT(N,SX,INCX,SY,INCY,SC,SS). 

15. CALL DROT(N,PX,INCX,DY,INCY,'DC·,Ds}. 

Each of these subroutines .c~p11tes .. 

[:~1 := L: :1 [:~1 for i = l, ••• ,N 
1 ·1 

If N ~ 0 or if c = 1 and s = 0 the subroutines return immediately. 

Construct a Modified Givens Transformation 

16. CALL SROTMG(SDl,SD2,SBl,SB2,SPARAM) .. . ' .... 

17. CALL DROTMG(DD~,DD~,DBl,bB2,D~ARAM) . ; : ' 
The input quantities d1 , d.

2
, b1 , and b2 define a 2-vector fa1 ,a

2
]T 

in pa~titioned :form as 

al/2 
1 

0 

.. 0 

dl/2 
2, b 

2 

The subroutine dete~nes the,,modified Givens rotation matrix H, as 



defined in Bqs. (A.6) · (A.7) Of Appendi~ 1 that transforms b
2

, and 

thus a2 , to zero. A represeritatton of this matrix is stored in the 

array SPARAM( ) or DPARAM( ) as follows. Locations in PARAM not 

listed are left unchanged. 

PARAM(l) = 1 
Case of Eq. (A. 7) 
hl2 = 1 h2l = -1 
PARAM(2) = h11 
PARAM(5) = h22 

PARAM(l) = 6 
Case of Eq. (A .6 ) 
hll = h22 = 1 

p ARAM (3) = h.2l 

PARAM(4) = h
12 

In addition PARAM(l) = -2 indicates H = I. 

PARAM(l) = -1 
Case of rescaling 

PARAM(2) = h11 
PARAM(3) = h21 
PARAM(4) = h. 

12 
PARAM(5) = h22 

The values of d1 , d2 , and b1 are changec:t ;to r~present the 

effect of the transformation. The quantity b
2 

which would be 

zeroed 'by the transformation is left unchanged in storage. 

The input· value of d1 should be nonnegative, but d
2 

can be 

negative for the purpose of removing data fr~m a least squares 

problem. Further details can ·be found in Appendix l. 

Apply a Modified Givens Transformation 

18. CALL SROTM(N,SX,INCX,SY,INCY,SPARAM) 

19. CALL DROTM(N ;DX,INCX,DY, INCY ,DPARAM) 

Let H denote the modified Givens transformation defined by 

the parameter array SPARAM( ) or D:PA.RAM( ). The subroutines compute 

for i = l, .•• ,N 

If N ~ 0 or if H is an i~enti~~ ~trix t}:le sU:b;r-outines return 
·r •'·' 

innnediately. See Appendix 1 for further·details. 

13 
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Copy a Vector x to y y :=X 

20. CALL SCOPY(N,SX,INCX,SY,INCY) 

21. CALL DCOPY(N,DX,INCX,DY,INCY) 

22. CALL CCOPY(N,CX,INCX,CY,INCY) 

Return immediately if N ~ 0. 

Interchange Vectors x and y X :=: y 

23. CALL SSWAP(N,SX,INCX,SY,INCY) 

24. CALL DSWAP(N,DX,INCX,DY,INCY) 

25. CALL CSWAP(N,CX,INCX,CY,INCY) 

Return immediately if N ~ 0. · 

Euclidean Length or t 2 Norm of a Vector 
w := [t Jx/) 

l.=1 
26. SW=SNRM2(N,SX,INCX) 

27. DW=DNRM2(N;DX,INCX) 

28. SW=SCNRM2(N,CX,INCX) 

If N ~ 0 the result is set t0 zero. 

Sum of Magnitudes of Vector Components 

29. SW=SASUM(N,SX,INCX) 

30. DWcDAOUM(.N,DX,INCX) 

31. SW=SCASUM(N,CX,INCX) 

The functions SASUM and DASUM compute w 

SCASUM computes 

N 

:= L lxil 
i=1 

w := t ~\Real(x)\+ \Imag(xi)\l 
l.=l . .. . 

1/2 

The function 



These fUnctions return immediately with the result set to zero if 

N ~ 0. 

Vector Scaling x := ax 

32. CALL SSCAL(N,SA,SX,INCX) 

33. CALL DSCAL(N,DA,DX,INCX) 

34. CALL CSCAL(N,CA,CX,INCX) 

35. CALL CSSCAL(N,SA,CX,INCX) 

Return immediately if N ~ o. 

Find Largest Component of a Vector 

36. IMAX=ISAMAX(N,SX,INCX) 

37. IMAX=IDAMAX(N,DX,INCX) 

38. IMAX=ICAMAX(N,CX,INCX) 

The fUnctions ISAMAX and IDAMAX determine the smallest index i 

such that lx1 I = max llx) :j = l, ••• ,Nj. 
The function ICAMAX determines the smallest index i such.that 

lxil = maxjiReal(xj)l + IImag(,.:j)I:J = l, ••• ,Nj. 
These functions set the result to zero and return immediately 

if N ~ 0. 

6. Implementation 

In addition to the FORTRAN versions, all of the subprograms except DQDOTI 

and DQ.DOTA are also supplied in a·ssembler language for the Univac 1108, the 

IBM 300/67, and the CDC 6600 and 7600. The FORTRAN versions of DQDOTI and 

DQDOTA use part of Brent's multiple precision package, Ref. [14]. Assembler 

language modules for these two subprograms are given only for the Univac 1108. 

Only four of the assembly routines for the CDC 6600 and 7600 take 

advantage of the pipeline architecture of these machines. The four routines 

15 
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SDOT( ), SAXPY( ), SROT( ), and SROTM( ) are those typically used in the 

innermost loop of computations. Some timing results are given in section 8. 

The subprograms SMCHCN and DMCHCN provide three machine dependent 

parameters that are used by the five routines SROTG, DROTG, SNRM2, DNRM2 and 

SCNRM2. These parameters are: SMALL = smallest positive floating point 

number, BIG = "biggest positive floating point number, and EPS = relative 

arithmetic precision. They are computed by use of subprograms SMCHAR and 

DMCHAR. These two subprograms were provided by W •• r. Gndy. An individual 

computer installation may wish to remove Cody's routines and simply have the 

subprograms SMCHCN and DMCHCN return the appropriate constants. The test 

driver prints these numbers so that their values will be known by the user 

installation. 

7. Relation to the ANS FORTRAN Standard 

As of this writing (May, 1977) the present American National Standard 

FORTRAN is the 1966 standard, Ref. [6-8J, that we will refer to as 1966 

FORTRAN. A draft proposed revision to thi.s Rt.R,ndard is currently identiflt::ll 

as FOR'l'.AAN 77, Ref. [9], presently ip the final editing phase. 

The calling sequences of the BLA subprograms would require that the 

subprograms contain declarations of the form 

REAL SX(MAXO(l,N*IABS(INCX)) 

to precisely ~pecifY t.he array length~. Neither 1966 FORTRAN nor FORTRAN 77 

permits such a statement. A statement of the form 

REAL SX(l) 

is permitted by major FORTRAN compilers to c0ver cases in which it is 

inconvenient to specify an exact dimension. This latter form is used in the 

BLA subprograms even though it does not conform to 1966 FORTRAN. FORTRAN 77 



allows the form 

REAL SX(*) 

for this situation. Thus the BLAS can be made to conform to FORTRAN 77 by 

changing "l's" to "*'s" in the subprogra.II). array declarations. 

8. Testing 

A Master Test Package has been written in FORTRAN and is included with 

.the submitted code. This package consists of a main program and a set of 

subprograms containing hu:i.lt-in test data and correct answers. It executes 

a fixed set of test cases exercising all thirty-eight subprograms or 

optionally any selected subset of these. 

The test driver also calls subroutines SMCHCN and DMCHCN and prints 

the values of machine dependent values determined by these subroutines. 

We have attempted to design the test cases and the Master Test-Program 

to be usable on a wide variety of non-decimal machines having FORTRAN systems. 

The Master Test Package has successfully executed, testing the FORTRAN 

coded version of the Basic Linear Algebra Subprograms, on Univac 1108, 

IBM 360/67, Burroughs 6700, CDC 6600, and CDC 7600 computers. These tests 

have also been run successfully testing the respective assembler packages 

on the Univac 1108, IBM 360/67, CDC 6600 and CDC 7600 computers. 

The following method of comparing true and computed numbers is used 

-in the Master Test Package. Let z denote a pre-stored true result and let z 

denote the corresponding computed rP-sult to be tested. The numbers 0 and ¢ 

A.rP. prestored constants that will be discussed below. The test program computes 

d = fl(z-z) 

g = fl ( 1 a 1 + 1 fl (¢*d) 1 ) 

h = I al 
,. ·= fl(g-h) 

17 
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where fl denotes machine floating point arithmetic of the current working 

precision, either single precision or double preciEion. It is further 

assumed that g and h are truncated to working precision before being used in 

the computation of T· 

The test is passed if T = 0 and fails if T f 0. Note that T will be zero 

if \d\ is so small that adding \fl(¢*d)\ to lal gives a result that is not 

distinguished from \ol when truncated to working precision . 

. For example, flllppose a - 1. , ¢ • • 5, d - 10-9 ;· LlH:~n the :mathematical 

value of rr + ¢*n is 1.0000000005, but the single JJrecision computed value 

of g on the Univac 1108 will be 1. resulting in T = 0. Thus in this case 

d is small enough to pass the test. 

The number a is prestored along with the correct result z in the testing 

program. In general, a has different values for different test cases. 

The number ¢ is a "tuning" factor which has been determined empirically 

to make the test perform correctly on a variety of machines. Note that the 

stringency of the test is relaxed by decreasing the value of ¢. This has 

been used to desensitize the testing to the effects of differences in the 

treatment of trailing digits in th~ floating 90int arithmetic of different 

machines. 

There are four different values of ¢ :preoto:r•(O?!l in tl'le main program, 

TBLA, of the testing packae;e. These valu'=s are called. SFAC, SDFAC, DFAC, 

and DQFAC. These are used for testing operations which are respectively 

single precision, mixed single and double precision, double precision, and 

mixed double and extended precision. 

It is intended that the test package be useful to anyone who undertakes 

the implementation of an assembly-coded. version of this package. In working 

on a new machine, one may find it necessary to reduce the values of one or 

more of the numbers SFAC, SDFAC, DFAC, or DQFAC to obtain correct test 



performance. The authors would appreciate hearing of any new assembly-

coded versions of the packages and of any need to reduce the values of 

these tuning parameters. 

9. Selected Timing Results for the IBM )60/67, CDC 6600 and Univac 1108 

Timing of Dot Products and Elementary Vector Operations 

The most obvious implementation of the dot product and elementary 

. vector operations for vectors with unit storage increments are in-line 

FORTRAN loops 1 and 2: 

w = o. 
DO 10 I = l,N 

10 W = W + X(I)* Y(I) 

DO 20 I ::::: l,N 

20 Y(I) = A*X(I) + Y(I) 

In-Line 

FORTRAN for 

Dot Products 

Loop 1 

In-Line 
FORTRAN for 
'Elementary 

Vector Operations 

Loop 2 

The BLAS replacements for these in-line FORTRAN loops, using the same 

variable names and appropriate Ly.J:Je statements, are 

I BLAS 
W = DOT(N,X,l,Y,l) Replacement for 

Loop 1 

I 
.J ... BLAS 

CALL AXPY(N,A,X,l,Y,l) Replacement for 
Loop 2 

The 11 11 in front of the BLA subprogram names is due to the fact that both 

single and double precision versions are discussed here. 

These subpro~rams, coded in assembly language, were timed and compared 
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with the time for the in-line loops. As was stated in section 2, one 

reason for development of the package was to make highly efficient code 

possible. This goal has been achieved for the CDC 6600 but not for the 

IBM 360/67. The IBM 360/67 FOR'T'RAN H compiler, operating with 01rl. = 2; 

gener~:~.LI::!~ nearly peri'ect o'bj ect ~nile. 

In Tables 2 and 3 are some sample times for thP. t.hre~ ma.chineo comparing 

Loops l and 2 and their BLAS replacement. Interpretation of Tables 2 and 3, 

supported more fully in Appendix 2, are as follows: 

e Because of linkage .overhead, the BLA subprograms for the IBM 360/67 

are always less efficient than the in-line loops. For vectors of 

large enough length the linkage overhead is relatively negligible. 

e The dot product and elementary vector operation subprograms for the 

CDC 6600 are respectively 3.1 and 1.6 times more efficient than in-line 

code for vectors of large enough length. 

• For the CDC 6600, dot products are conRiriA"~:"ably more efficient 

tl1w1 elementary vector operations on vectors of the same length. 

( 



Vector IBM 360/67 CDC 6600 Univac 1108 
Length, Double Precision Single Precision Single Precision 

N 
In-Line In-Line In-Line 
FORTRAN Assembler FORTRAN Assembler FORTRAN Assembler 

(H.Oot=2) _(FTN, Opt= 2 ) 

10 0.1438 0.1917 0.0360 o.o48o 0.0756 0.0790 

25 0.3436 0.3854 0.0750 0.0625 0.1836 0.1730 

50 0.6719 0.7186 0.1400 o.o8oo 0.3598 0.3182 

100 1.3750 1.3750 0.2800 0.1250 0.6986 0.6162 

Time, in seconds, for 1000 executions of in-line FORTRAN Loop 1 and calls to 

the _DOT( ) function. Times for 5 runs were averaged. · 

Apply factors of 1.1 and 0.75 to IBM 360/67 times to get approximate respective 

times for nonequally spaced increments and single precision. No distinction for 

nonequal increments is necessary for the CDC 6600 and Univac 1108. 

Table 2. _DOT( ) function and in-line Loop 1 timings 

Vector IBM 360/67 CDC 6600 Univac 1108 
Length, Double Precision Single Precision Single Precision 

N 
In-Line In-Line In-Line 
FORTRAN Assembler FORTRAN Assembler FORTRAN Assembler 

(H,Opt=2) (FTN, Opt=2) 

10 0.0590 0.2050 0.0500 0.0650 0.0740 o.oRR6 

25 0.3930 0.4375 0.1125 0.1000 0.1806 0.1890 
50 0.7950 0.8400 0.2100 0.1725 0.3544 0.3574 

100 1.5500 1.6000 0.4200 0.3000 0.7292 0.7170 

Time, in seconds,. for 1000 executions of in-line FORTRAN Loop 2 and calls to the 

_AXPY( ) subprog.ra.m. Times for 5 runs were averaged. 

Apply factor of 0.75 to get single precision IBM 360/67 times. Only vectors 

with unit increments were used in this timing. 

Table 3. _AXPY( ) subprogram and in-line Loop 2 timings 
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Timing of Standard and Modified Givens Methods 

Gentlemen's modification of the Givens transformation is discussed in 

the Appendix. This technique eliminates square roots and two of the four multiply 

:Operations when forming the product of the resulting matrix by a 2-vector. 

The relative efficiency of Gentlemen's.modification to thP. standard 

Givens transformation was compared. Both techniques were llRP.n t.n 

triangularize 2N by N matrices A. = fa .. 1 where 
l J.J. 

a .. 
l.J 

= (i+j-1)-l 

In Table 4 there are some sample times which resulted from the 

triangularizations using hoth methods. 

We are primarily interested in algorithm comparison here, so both 

methods were timed using their assembler versions to apply the matrix 

products. 

A conclusion is that in the context of triangularizing matrices, the 

modified Givens transformation method is ultimately more efficient in 

computer time by factors varying between 1.4 and 1.6. This is fully 

supported in Appendix 2. The comparison is most favorable on the IBM 

360/67 in double precision. 



N IBM 360/67 ' CDC 6600 Univac 1108 
Double Precision Single Precision Single Precision 

Standard Modified Standard Modified Standard Modified 
Givens Givens Givens Givens Givens Givens 

10 0.0800 0.0650 0.0200 0.0190 0.0335 0.0298 

25 0.8789 0.6250 0.1719 0.1445 0.3633 0.3001 

Time, in seconds, for the triangularization of 2N by N matrices using standard 

and modified Givens transformations. Times for 5 runs were averaged. 

Table 4. Standard and modified Givens transformation in matrix 
triangularization 

Acknowledgements 

We are grateful for the contributions that numerous people have made to 

this project. The Master Test Package was programmed by Lawson, with afew 

modifications by Hanson. The FORTRAN versions of the BLA subprograms were 

written 'by Lawson, Krogh, Hanson, and J. Dongarra. The assembly-coded 

versions for the lmivac 1108 were programmed by Krogh and s. Singletary Gold. 

The assembly-coded versions for the IBM 360/67 were programmed by Hanson and 

K. Haskell. The assembly-coded versions for the CDC 6600 were programmed by 

Kincaid, J. Sullivan and E. Williams. Four of these routines were receded by 

Hanson and C. Moler. Test runs were made on a variety of machines by P. Fox 

and E. W. McMahon (Honeywell 6000), P. Knowlton (PDP 10), L. Fosdick (CDC 6600), 

C. Moler. (IBM 360/67), K. Fang (CDC 7600), B. Garbow, J. Dongarra (IBM 370/195 ), 

W. Brainerd (Burroughs 6700), an~ others. Helpful suggestions, based on 

previous similar work of their own, were given by P. s. Jensen and C. Bailey. 
. ' ' 

J. Dongarra supplied versions of several FORTRAN implementations of 

23 



24 

. 
the subprograms. The choice of coding technique used by Dongarra is based 

on a set of tests that was carried out at over 40 different installations 

with various machines in operation. The choice of coding technique was 

made on the basis of superior timing performance at the largest nu.niber of 

these sites, Ref. [10]. 

Not everyone who contributed significantly to this project is mentioned. 

One person who spent a great deal o~ time during the final phase of the 

project was J. Wisniewski. His valuable help and contributions are much 

appreciated. The contributions of W. MacGr~gor and G. Terrell are also 

acknowledged. 

References 

1. R. J. Hanson, F. T. Krogh, and c. L. Lawson, "A Proposal for Standard 
Linear Alge'bra Subprograms," Jet Propulsion Laboratory, 'I'M 33-660, 
November 1973, 14 pp. 

2. C. L. Lawson, "Standardization of FORTRAN Callable Subprograms for Basic 
Linear Algebra," Paper presented at Mathematical Software II, Purdue 
University, May 1974, ·s pp. 

3. Wo M. Gentleman, "Least Squares Computations by Givens Transformations 
without Square Roots," J. Inst. Math. Appl., 12, 1973, pp. 329-336. 

4. Sven Hammarling, "A Note on Modifications of the Givens Plane Rotation," 
J. Inst. Math. Appl., 13, 1974, No. 2, pp. 215-218. 

5. C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, 
Prentice-Hall, 1974. 

6. .American National Standards Institute, ".American National Standard 
FORTHA.N," 1966, New Yo1··k.. 

7. ASA Committee X3 "FORTRAN vs. Basic FORTRAN," Comm. ACM, 7, No. 10, 
1964' 591-625. 

8. ANSI Subcommittee X3J3, "Clarification of FORTRAN Standards - Second 
Report," Comm. ACM, 14, No. 10, 1971, 628-642. 

9. ANS Committee X3J3, Document X3J3/76.7 Fortran 77, March 18, 1977. 

10. Dongarra, J. J., Fortran BLAS Timing. LINPACK Working Note #3. Argonne 
Natl. Lab. (Draft of March, 1977) 



. . 

11. Cody, W; J., Software for the Elementary Functions. Mathematical 
Software, Edited by J. R. Rice. Academic Press, New York (1971). 

12. Blue, J. L., A Portable Fortran Program to Find the Euclidean Norm of a 
Vector. Trans. Math. Software (to appear). 

13. Stewart, G. W., The Economical Storage· of Plane Rotations. Numer. Math., 
Vol. 25, No. 2, p.·l37-139 (1976) • 

14. Brent, R., A Fortran Multiple Precision Arithmetic Package. To appear, 
TOMS. 

Appendix 1 

The Modified Givens Transformation 

The Givens transformation which eliminates z1, if z1 f 0, is 

(A.l) 

where c = w.Jr, s = z.jr, r = ± (wi+zit. This requires -4N noating point 

multiplications, 2N floating point additions and one square root. Gentleman, 

Ref. [3], has reported on a modification to the Givens transformation which 

reduces this operation count. Gentleman's idea is presented here in a 

s~~~htly different form than found in his paper. 

Suppose that W in Eq. (A.l) is available in factored form 

(A.2) 
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(A.4) 

(A.5) 
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Substituting p2x for W and refactoring GD2 as n2H yields 

(A. 3) 

Tbe right-hand side of Eq. (A.3) yields an updated factored form for the 

matrix product GW. The crucial point is that the matrix H is selected so 

' 
tha·t two elements are exactly units. This eliminates 2N floating point 

multiplications when forming the matrix product HX. To preserve numerical 

stability two cases are considered: 

For lsi < lei 

where t = s/c. 

For lei ~ lsi, by similar manipulations, 

1 

~·n 2 H 

where df = dts, and crt = dfs. .This factorization can be done for any plane 

rotation matrix. 
1 

Only the squares of the scale factors d~ are involved in the non-unit 
1 

elements of the matrix H defined in Eq. (A.4) - (A.5), which permits the 

Givens transformation Eq. (A.l) to be computed without square roots. Using 
2 2 -l 

the identity c = (l+t ) and Eq. (A.4) allows the squares of the scale 

• ?"_, 



- 2 -1 
factors to be updated: d. = d.(l+t) , i = 1,2. Letting T = s/c in Eq. 

l. l. 

-1 2 -1 
(A.5) we have 'd1 = d2 (l+T

2
) and d'2 = d1 (l+T) . For lei> lsi or, 

equivalently, ld1x~l > !d2yil 

(A.6) 

(A. 7) 

hll = 1 ' h21 ~ -yl/xl 

hl2 = d2yl/dlxl. ' h22 = 1 

u = 1 - h2lhl2 

dl .- d· /u 1 

d2 .- d2./u 

xl .- x
1
u 

hll = dlxl/d2yl ' h21 = 1 

hl2 = 1 ' h22 = xl/yl 

u = 1 + hllh22 

v = d /u 
1 

dl .- d /u 
2 

When using the modified Givens transformation in the context of 

"row accumulation," d. > 0, i = 1, 2, the values of u in Eq. (A.6) - (A.7) 
l. 

will satisfy 1 ~ u ~ 2. Thus the squares d., i = 1,2, decrease by as much 
l. 

as 1./2 at each updating step. If no rescaling action is taken, these scale 
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factors would ultimately underflow. The details concerning rescaling 

are implemented in the modified Givens subprograms. 

Since only d., the squares of the weights, appear in the formulas of 
l. 

Eq. (A.6) - (A. 7) it is possible to use the same formulas to remove a row 

from a least squares problem simply by setting d
2 

= -1. Remarks about 

this row removal method are found in Ref. [5], Chapter ?7. 

When the modified Givens transformation is used in the context of the 

"row removal method" mentioned above, the values of u in Eq. (A.6) - (A.7) 

satisfy 0 s u s 1. The case u = 0 is eliminated by restricting d1 ~ 0. If 

d1 < 0, we define H as the zero matrix, the updated di = 0; i = 1,2, and x1 0. 

With this restriction, we have 0 < u s 2 in Eq. (A.6) - (A.7). Thus the 

change in the scale factors d., i = 1,2, .is unbounded at each step.· Either 
l. 

underflow or overflow can occur if no rescaling is performed. 

The problem is rescaled by the modified Givens subprograms to keep 

within the conservative limits 

Note that when we rescale d. 
l. 

-1 
j = 1,2, and rescale x1 := x1v 

i = 1,2, v = 4og6 • 

2 
:= d.y , we must rescale h ... -

l. l.,l 

-1 
hijy ' 



Appendix 2 

Extended Timing Results for Some Operations 

In Section 9 selected timing results were presented for the IBM 360/67 

(double precision), the CDC 6600 (single precision), and the Univac 1108 

(single precision). Timing of dot products, elementary vector operations, 

and Givens transformations was presented. This was done mainly for the 

purpose- of illustrating the relative efficiency of in-line FORTRAN vs~ 

assembler, and the standard vso the modified Givens transformation. 

Tables 5-ll, given below, give more of this data than found in 

Section 9. The exception- to this is the Univac 1108 timing data which is 

totally.presented in Section 9, so we did not reproduce it here. 

Vector IBM 360/67 IBM 360/67 
~ength, Single Precision Single Precision 

N Equal Storage Increments Nonequal Storage Increments 

In-Line In-Line 
FORTRAN Assembler FORTRAN Assembler 

(H,Opt=2} (H,Opt=2) 

10 0.1020 0.1470 0.1160 u.166o 

. 25 0.2380 0.2840 0.2740 0.3100 

50 0.4620 0.5110 0.5510 0.5720 

100 0.9490 0.9970 1.1700 1.1000 

Time, in seconds, for 1000 executions of in-line FORTRAN Loop l, 

Section 9, and calls to the SDOT( ) function. Times for 5 runs 

were averaged. 

Table 5. IBM 360/67 SDOT( ) function and single precision 
in-line Loop l timing::; 
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Vector IBM 360/67 IBM 360/67 
Length, Double Precision Double Precision 

N Equal Storage Increments Nonequal Storage Increments 

In-Line In-Line 
FORTRAN Assembler FORTRAN Assembler 

(H,Opt=2) (H,Opt=2) 

10 0.1430 0.1910 0.1590 0.1980 

25 0.3430 0.3840 0.3840 0.4160 

50 0.6770 0.7250 0.7800 0.8180. 

100 0.3900 .l. 3900 1.5400 1.5700 

Time, in seconds, f'or 1000 executions of' in-line FORTRAN Loop l, 

Section 9, and calls to the DDOT( ) function. Times f'or 5 runs were 

averaged. 

Table 6. IBM 360/67 DDOT( ) function and double precision in-line 
Loop l timings 

Vector c:Dc 66oo r.nc 76oo 
Length, Single Precision Equal or Single Precision Equal or 

N Nonequal Storage Increments Nonequal Storage Increments 

In-Line In-Line 
FORTRAN Assembler FORTRAN Assembler 

(FTN,Opt=2) (FTN,Opt=2) 

10 0.0358 o.o48o 0.0042 0.0092 

25 0.0756 0.0638 0.0100 0.0110 

50 0.1420 0.0808 0.0210 0.0162 

100 0.2750 0.1230 0.0414 0.0254 

Time, in seconds, f'or 1000 executions of' in-line FORTRAN Loop 1, 

Section 9, and calls to the SDOT( ) f'unction. Times f'or 5 runs were 

averaged. 

Table 7o CDC 6600 and CDC 7600 SDOT( ) function and single precision 
in-line Loop l timings 



Vector IBM 360/67 IBM 360/67 
Length, Single Precision Double Precision 

N Equal Storage Increments Equal Storage Increments 

In-Line In-Line 
FORTRAN Assembler FORTRAN Assembler 

(H,Opt=2) (H,Opt=2) 

10 0.1190 0.1700 0.1590 0.2040 

25 0.2880 0.3610 0.3930 0.4390 

50 0.5760 0.6300 ·o. 7960 Oo8420 

100 1.1700 1.1900 1. 5500 1.5900 

Time, in seconds, for 1000 executions of in-line FORTRAN Loop 

Section 9, and calls to the SAXPY( ) and DAXPY( ) subprograms. 

Times for 5 runs were averagedo 

Table 8. IBM 360/67 SAXPY( ) and DAXPY( ) subprogram, and 
single and double precision in-line Loop 2 timings 

Vector CDC 6600 CDC 7600 
Length, Single Precision Single Precision 

2, 

N · Equal Storage Increments Equal Storage Increments 

In-Line In-Line 
FORTRAN Assembler FORTRAN Assembler 

(FTN,Opt:::2) (li''t'N,Opt=?) 

10 0.0502 o.o64o 0.0060 0.0114 

25 0.1120 0.1020 0.0150 0.0162 

50 0.2130 0.1710 0.0290 0.0252 

100 o.424o 0.3020 0-0582 0.04?0 

Time, in seconds, for 1000 executions of in-line FORTRAN. Loop 2, 

Section 9, and calls to the SAXPY( ) subprogram. Times for 5 

runs were averaged. 

Table 9. CDC 6600 awl CDC 7600 S.AXPY( ) .subprogram a.nd oingle 
precision in-line Loop 2 timings 
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IBM 360/67 IBM 360/67 
N Single Precision Double Precision 

Standard Modif'ied Standard Modified 
Givens Givens Givens Givens 

10 0.0580 0.0484 0.0800 o.o65o 

25 0.5850 0.4635 0.8789 0.6250 

Time, in seconds, for the triangularizat~on of 2N 
by N matrices using standard and modified Givens 

transformations. Times for 5 runs were averaged . 

. Table 10. IBM 360/67 single and double 
precision standard and modified 
Givens transformation timing for 
matrix triangularization 

CDC 6600 CDC 7600 
N Single Precision Single Precision 

Standard Modified Standard Modified 
Givens Givens Givens Givens 

10 Oo0200 0.0190 0.0036 0.0035 
25 0.1719 o.1'-tt1.5 0.0279 0.0250 

50 o.96oo 0.7550 0.1430 0.1265 
100 5.8500 4.3500 0.0200 0.7100 

T:im~, in seconds, for the tl'iangul.ari:zation of 2N 
'by N matrices using standard and modified Givens 

transformations. Times for 5 runs were averaged. 

Table 11. CDC 6600 and CDC 7600 single precision 
standard and modified Givens trans­
formation timing for matrix 
triangularization 



Appendix 3 

Sample Usage of the BLAS in FORTRAN Programming 

Our'experience indicates that using the BLAS actually enhances the 

readability and reliability of codes in which they are utilized. Efficiency 

does not appreciably degrade with their usage, as indicated in Section 9, and 

for large-scale prOblems certain of the BLAS will markedly OtJ.t-perform in-line 

FORTRAN code. 

These remarks are based on usage of the BLAS in developing new software 

for the Sandia Math. Library, developing new ordinary differential equation 

solving codes, conversations with members of the LINPACK working group 

participating in the project of Ref. [10], and experience with applications 

programmers at Sandia Laboratories and Jet Propulsion Laboratoryo 

Typical usage of the BLAS in FORTRAN programs is now illustrated with 

nine examples using the single precision versions of the operations. 

Some rules, based upon the FORTRAN language, that a programmer may find 

useful to recall are these: 

e SUppose a two-dimensional FORTRAN array A(MDA,NDA) is used to hold an M 

by N matrix A:::; {aiJ}. If A(I,J) ;:::; aiJ' then the Ith row vector of A 

and the Jth column vector of A respectively start at A(I,l) and A(l,J). 

The relations MDA ~ M and NDA ~ N must hold for the matrix to fit into 

this· array. 

e The storage increment between elements of row vectors of A, e.g. A(l,l) 

and A(l,2), is MDA, the first dimensioning parameter of the array A(*,*). 

• The storage increment between el.~ments of column vectors of A, e.g. A(l,l) 

and A(2,1), is 1. This is due to the fact that the FORTRAN language 

stores A(*,*) by columns: 

A(l, 1), A(2, 1), ••. , A(MDA,l), ~(1, 2), •• ~ , A(MDA,2), •. o, A(MDA,NDA) 

The value of NDA is used by the FORTRAN compiler only to allocate MDA*NDA 

wnrnR of memory in the program. 

33 



34 

Example 1 

Given M by K and K by N matrices A and B, compute the M by N product 

matrix C = AB. 

The coding techniqu~ f'or this computation is based on the f'act .that 

each element ciJ of' C is the dot product of' row I of' A and column J of' B. 

c . 

c 

DI~SION A(20,20),B(l5,10),C(20,15) 

MDA=?O 
MDB=-:15 
MDC=20 

M=lO 
K=l5 
N=lO 

C FORM THE DOT PRODUCT OF ROW I OF A WITH COLUMN J OF B. EACH OF THESE 
C VECTORS IS OF LENGTH K. THE VALUE OF MDA IS THE STORAGE INCREMENT 
C BETWEEN ELEMENTS OF ROW VECTORS OF A. 
c 

DO 10 I=l,M 
DO 10 J=l,N 

10 C(I,J)=SDOT(K,A(I,l),MDA,B(l,J),l) 

Example 2 

Solve an N by N upper triangular nonsingular system of' algebraic· 

equations, Ax. = b • The method used is based on the observation that if 

we compute the component ~ = bN/aNN, then we have a new problem in N - 1 

unknowns, still upper triangular, with the new right-side vector 

T 
(b1-a1NXN, ... ,bN_1-aN-l,~) • In this example the solution vector,~' 

overwrites the vector b in the array B(*). 

20 

DO 20 II=l,N 
I=N+l-II 
B(I)=B(I)/A(I,I) 
CALL SAXPY (I-1,-B(I),A(l,I),l,B,l) 



Example 3 

Scale the columns (each assumed to be nonzero) of an M by N matrix C 

so that each column has unit length. 

30 

DO 30 J=l,N 
T=l.EO/SNRM2(M,C(l,J),l) 
CALL SSCAL(M,T,C(l,J),l) 

Example 4 

Row-equilibrate an N by N matrix A. (Divide each non-zero row vector 

of, A by the entry in that row of maximum magnitude). Here MDA is the 

first dimensioning parameter of the array A(*,*). 

40 

DO 40 I=l,N 
JMAX=ISAMAX(N,A(I,l),MDA) 
T=A(I,JMAX) 
IF(T.EQ.O.EO) GO TO 40 
CALL SSCAL(N,l.EO/T,A(I,l),MDA) 
CONTINUE 

When using ISAMAX( ) to choose row pivots in Gaussian elimination, 

for.example, the major loop contains a statement of the form 

IMAX=ISAMAX(N-J+l,A(J,J),l)+J-1 

At that point IMAX corresponds to the row that will be interchanged 

with row J. Thus the offset value J - 1 must be added to the computed 

value of ISAMAX( ) to get the actual row number to interchange. 

Example 5 

Set an N by N matrix A to the N by N identity matrix. Then set B = A. 

Notice that a storage increment value of 0 for the first vector 
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argument o:f SCOPY( ) is used. This "broadcasts" the values o:f O.EO and 

l.EO into the second vector argument. 

50 

60 . 

Here MDA is the :first dimensioning parameter o:f the array A(*,*). 

DO 50 J=l,N 
CALL SCOPY(N,O.EO,O,A(l,J),l) 

CALL SCOPY(N,l.EO,O,A,MDA+l) 

DO 60 J=l,N 
CALL 3COPY(N,A(l,J) ,l,B(l,J) ,.l) 

Example 6 

Interchange or swap the columns o:f an M by N matrix C. The column 

to be interchanged with column J is in a type INTEGER array IP(*), and 

has the value IP(J). 

70 

DO 70 J=l,N 
L=IP(J) 
IF(J.NE.L) CALL SSWAP(M,C(l,J),l,C(l,L),l) 
CONTINUE 

Example 7 

a) Extract the :first number and "pop" a list o:f N single precision 

numbers: x0 := x1 , xi := xi+l' i = l, •.• ,N-1, N := N-1 

b) "Push-down" a list o:f N single precision numbers and insert a 

new number x0 at the top o:f the list: xi+l := x1 , i = N, ••• ,l; 

x
1 

:= x
0

, N := N + 1. 

T For these illustrations the vector x = (x1 , ••• ,~) is in the FORTRAN 

array X(*). 

Notice the usage o:f the negative increments (-1) :for the push-down 

example o:f b). This causes the assignment 

X(N+l)=X(N),X(N)=X(N-l), ••• ,X(2)=X(l) 



to be implemented in this order. 

a) Extract and "pop" 
N=N-1 
XO=X(l) 
CALL SCOPY(N,X(2),l,X(l),l) 

b) "Push-down'i and insert 
CALL SCOPY(N,X(l),-l,X(2),-l) 
N=N+l 
X(l)=XO 

Example 8 

In this example we want to transpose an N by N matrix A in-place, 

(in-~). Here MDA is the first dimensioning parameter of the array 

A(*,*). 

DO 80 J=l,N 
8o CALL SSWAP(N-J,A(J,J+l),MDA,A(J+l,J),l) 

Example 9 

In this more complicated example we swap in-place (in-situ) the 

components of the vector 

so they become 

making repeated use of the "Pop" or "Push-down" operations. 

90 

NMK=N-K 
IF(.NOT.(K.GT.O.AND.NMK.GT.O)) GO TO 120 

IF(.NOT.(K.LT.NMK)) GO ·ro 100 
DO 90 I=l,K· 
T=X(l) 

CALL SCOPY(N-l,X(2),l,X(l),l) 
X(l'I)=T 

GO TO 120 37 



38 

100 CONTINUE 
DO 110 I=1,NMK 
T=X(N) 
CALL SCOPY(N-1,X(1),-1,X(2),-1) 

110 X(1)=T 

120 CONTINUE 
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