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Abstract

A package of 38 low-level subprograms for many of the basic operations

of numerical linear algebra is presented. The package is intended to be

used with FORTRAN. The operations in the package are dot products,
elementary vector operations, Givens transformations, vector copy and swap,

vector norms, vector scaling, and the indices of components of largest magnitude.

The subprograms and a test driver are available in portable FORTRAN.

Versions of_the subprograms are also. provided in assembly language for the
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BASIC LINEAR ALGEBRA SUBPROGRAMS
FOR FORTRAN USAGE

C. L. Lawson, Jet Propulsion Laboratory
R. J. Hanson, Sandia Laboratories, Albuquerque
D. R. Kincaid, University of Texas, Austin

F. T. Krogh, Jet Propulsion Laboratory

1. Introduction

This paper describes a package, called the BLAS, of thirty-eight
FORTRAN-callable subprograms for basic operations of numerical linear
algebra. This paper and the associated package of subprograms and testing
programs are the result of a collaborative voluntary project of the ACM-
SIGNUM committee on basic linear algebra subprograms. This project was
carried out during the period 1973-1977.

The initial version of the subprogram specifications appeared in Ref.
[1]. Following distribution of Ref. [1] to persons active in the develop-
ment of numerical linear algebra software, open meetings of the project
were held at the Purdue Mathematical Software II Conference, May, 197k,
Ref;'[2], and at the National Computer Conference, Anaheim, May, 1975.
Extensive modifications of the specifications were made following the Purdue
meeting which was attended by thirty people. A few additional changes
fesulted from the Anaheim meeting. Most of the further Fortran code changes
resﬁlted from an effort to improve the design and to make them more

robust.



2. Reasons for Developing the Package

Designers of computer programs involving linear algebraic operations
have frequently chosen to implement certain low-level operations such as the

dot product as separate subprograms. This may be observed both in many

published codes and in codes written for specific applications at mahy computer

installations. Following are some of the reasons for tasking this approach:

(1) It can serve as a conceptual aid in both the design and coding
slages of a programming effort to regard an operation such as the
dot product as a basic building hlock. This is consistent with:
the ideas of structured programming which encourage modularizing

common code sequences.,

(2) It improves the self-documenting quality of code to identify an

operation such as the dot product by a unique mnemonic name.

(3) Since a significant amount of the execution time in complicated
linear algebraic programs may be spent in a few low-level
operations, a reduction of execution time spent in these 6perations
may be reflected in cost savings in the running of programs.
Assembly language coded subprograms for these operations provide

such savings on some computers.

(4) The programming of some of these low-level operations involves

algorithmic and implementation subtleties that are likely to be

ignored in the typical applications programming environment.
For example the subprograms provided for the modified Givens
transformation incorporate control of the scaling terms which

otherwise can drift monotonically toward underflow.

If there could be general agreement on standard names and parametfer
lists for some of these basic operations i£ would add the additional benefit
of portability with efficiency on the assumption that the assembly language
subprograms were generally avallable. Such standard subprograms would provide
building blocks with which designers of portable subprograms for higher

level linear algebraic operations such as solving linear algebraic equations,



eigenvalue problems, etc., could achieve additional efficiency. The
package of subprograms described in this paper is proposed to serve this

purpose.

3. Scope of the Package

Specifications will be given for thirty-eight FORTRAN-callable subprograms

covering the operations of dot product, vector plus a scalar times a vector,

- Givens transformation, modified Givens transformation, copy, swap, Euclidean

norm, sum of magnitudes, multiplying a scalar times a vector, and locating
aﬂ element of largest magnitude. Since we are thinking of these subprograms
as being used in an ANS FORTRAN context we provide for the cases of single
precision, double precision, and (single precision) complex data.

In Table 1 a concise summary of the operations provided and the
conventions adopted for naming the subprograms is given. Each type of
operation is identified by a root name. The root name is prefixed by one
or more of the letters I, S, D, C, or Q to denote operations on integer,
single precision, doﬁble precision, (single precision) complex, or extended
precision data‘types, respectively. For subprograms involving a mixture of
daﬁa types the type of the output quaﬁtity is indicated by the left-most
prefix letter. Suffix letters are used on four of the dot product

subprograms to distinguish variants of the basic operation.
If one were to extend this package to include double precision complex
type data (COMPLEX*16 in IBM FORTRAN) we suggest that the prefix Z be used

in the names of the new sﬁbprograms. For example, subprograms CZDOTC and

CZDOTU for the dot product of (single precision) complex vectors, with
double precision accumulation, have been written for the CDC 6600. These

may be obtained directly from Kincaid.



" Table 1

Summary of Functions and Names
Of the Basic Linear Algebra Subprograms

Value*

) . Rqot of
Function . Prefix and Suffix of Name Name
'Dot Product |SDS- DS- DQ-I DQ-A C-U C-C D-. S- -DOT-
‘Constant Times a Vector Plus a Vector c- D- S- -AXPY
Sét-up Givens Rotation D- S- -ROTG
Apply Rotation D- S- —ROT
Set-up Modified Givens Rotation D~ S~ ~ROTMG
Apply Modified Rotation D- S- .=ROTM
Copy X into y . - C- AD— S- -COPY
Swap x and y C- D- S-. -SWAP
2-Norm (Euclidean Length) sC~- D- S- ~NRM2
Sum of Absolute Values* sC- D- S~ ;ASUM
Constant Times a Vector C$- c- D- S- -SCAL
Index of Element Having Max Absolute IC- ID- IS- -AMAX

*For complex components zj =x. + iyj these subprograms compute

3

lle + lyjl instead of (xi + y§)1/2




Section 5 lists all of the subprogram names and their parameter lists,
and defines the operations performed by each subprogram,

The criterion for including an operation in the package was that it
should involve just one level of looping and occur in the usual algorithms
of numerical linear algebra such as Gaussian elimination or the various
elimination methods using orthogonal transformations.

This orientation affected the specifications of SCASUM and ICAMAX

'particularly. Although SASUM and DASUM computé Ll norms we assumed

that the usage of either of these subprograms in numerical linear algebra
software would be for the purpose of computing a vector norm that was less
expensive to compute than the &2 norm, Thus for the complex version,

SCASUM, instead of specifying the {l norm which would be

1/2
2 2
v o fimeey) ¥+ [ant)] f
i
we specified the less expensive norm,
W = E ilRe(xi)\ + |Im(xi)|$ .
i
Similarly, whereas ISAMAX and IDAMAX may be regarded as determining
the &w norm of a vector, we do not regard this as the essential property to

be carried over to the complex case., Thus ICAMAX is specified to find an

index j such that
|Re(xj)| + ‘Im(xj)| = maxiglRe(xi)] + |Im(xi)|§
rather than finding an index j such that
[Re(xj)]2 + [Im(xj)]2 = maxi%[Re(xi)]2 + [Im(xi)]2§

In both the computation of the L2 norm and the Givens transformsation



a ﬁaive computation of the squares of the given data would restrict the
exponent range of acceptable data. This package avoids this restriction

by making use of ideas described by Cody, Ref.[11],and Blue, Ref. [12].
Additionally, in the case of the Givens transformations, an idea of Stewart,
Ref. [13], permits the s£orage of all the transformations of a matrix
decomposition in the memory space occupied by the elements zeroed by the
transformation.

The modified Givens transformation is a relatively new innovation among
numerical linear algebra algorithms, Refs. [3], [4], and [5]. The significant
featureé are the reduction of the number of multiplications, the elimination
of square root operations, and the capability of removing rows of data in
least squares problems. The details of this algorithm as implemented in

this package are given in the Appendix.

4 . Programming Conventions

Vector arguments are permitted to have a storage sbacing'between
elements. This spacing is specified by an increment parameter, For example,
suppose & vector x having components xi, i=1,...,N is stored in a DOUBLE
PRECISION array DX( ) with increment parameter INCX. If INCX = O then x; is
stored in DX(1+(i-1)*INCX). If INCX < O then x; is stored in DX (1+(N-1i)*|INCX|) .
This method of indexing when INCX <« O avoids negative indices in the array
DX( ) and thus permits the subprograms to be written in FORTRAN. Only

positive values of INCX are allowed for operations 26-38 that each have a
single vector argument.

It is intended that the loops in all subprograms process the elements
of vector arguments in order of increasing vector component indices, i.e., in
the order X, i=1,...,N. This implies processing in reverse storage order

when INCX < O. If these subprograms are implemented on a computer having



parallel processing capability, it is recommended that this order of

processing be adhered to as nearly as is reasonable,

5. Specification of the BLA Subprograms

Type and dimension information for variables occurring in the subprogram

specifications are as follows:

mx = max(1,N*|INCX|)
my = max(1,N%|INCY|)
INTEGER N, INCX,INCY, IMAX

REAL SC(mx),SY(my),SA,SB,SC,SS

REAL SD1,SD2, SB1, SB2, SPARAM(5) ,SW,QC(10)
DOUBLE PRECISION DX(mx),DY(my),DA,DB,DC,DS
DOUBLE PRECISION  DD1,DD2,DBl,DB2,DPARAM(5),DW
COMPLEX CX(mx),CY(my),CA,CW

Type declarations for function names are as follows:

INTEGER  ISAMAX,IDAMAX, ICAMAX
REAL SDOT, SDSDOT, SNRM2 , SCNRM2 , SASUM, SCASUM

DOUBLE PRECISION DSDOT,DDOT,DQDOTI.DQDOTA,DNRM2 , DASUM
COMPLEX CDOTC CDOTU

Dot Product Subprograms

N
1. SW = SDOT(N,SX,INCX,SY,INCY) woi= Z X,V
i=1
N
2. LW = DSDOT(N,sX,INCX,SY,INCY) w o= E XY
i=1

Double precision accumulation is used within the subprogram DSDOT.

N
3. 8w = SDSDOT(N,SB,SX,INCX,SY,INCY) W :=b + E XY
i=1
Accumulation of the inner product and addition of b is in double
precision., Conversion of the final result to single precision is

done the same as the intrinsic function SNGL( ).



=
g

=

I

N
DDOT(N,DX ,INCX,DY,INCY) w o= E X.V.

ivi
i=1

N

9

=
1]

N
DQDOTI(N,DB,QC,DX,INCX,DY,INCY) w := ¢ := b + E X, V.

i“i
i=1

The input data, b, x, and y, are converted internally to extended
precision. The result is stored in extended precision form in
QC( ) and returned in double precision form as the value of the
function DQDOTI. '

N
6. DW = DQDOTA(N,DB,QC,DX,INCX,DY,INCY) wi=c::=Db+c+ E X.y
i=1

The input value of ¢ in QC( ) is extended .precision. The value ¢
must have resulted from a previous execution of DQDOTI or DQDOTA
since no other way is provided for defining an extended precision
number. The computation is done in extended precision arithmetic
and the result is stored in extended precision form in oC( ) and

is returned in double precision form as the function value DQDOTA.

N
7. CW = CDOTC (N,CX,INCX,CY,INCY) W= :}: Xy,
—

1

The suffix C on CDOTC indicates that the complex conjugates of the

components X, are used.

N
8. CW = CDOTU(N,CX,INCX,CY,INCY) W o= E X, ¥y
i=1

The suffix U on CDOTU indicates that the vector components X are

used unconjugated.

N
In the preceding eight subprograms the value of E will be set to zero if

N < O. =1

Elementary Vector Operation yi=ax +y

9. CALL SAXPY(N,SA,SX,INCX,SY,INCY)



10. CALL DAXPY(N,DA,DX, INCX,DY INCY)

11. CALL CAXPY(N,CA,CX, INCX CcY INCY)

If a = 0 or if N < O these §gbgogt%pesvreturn immediately.

Construct Givens Plane Rotation

12. CALL SROTG(SA,SB,SC,SS)

13. CALL DROTG(DA,DB,DC,DS)

s

Given a and b each of these subrout;ﬁes"computes

{sgn(a) if |a| > |b]

O' =
sgn(b) if |b| |a|
r= 0(&2fb%)w’iix;ﬂ
{a/r 1f'1‘?4‘0 S s DU P
C =
1 if r=0
aI]d . ) ) — ; A;.'," ? lz:
{b/r if ri#F0 -
8 =

0 if r=20 . N -

The numbers.c, s, and r tggg;§%§i§§xmthe;matg;xiqugtion

N

The introduction of g is not esSéntia; to the computation of a
Givens rotation matrix but its use permits later stable reconstruction
of c and s from just one- stored number, an idea due to Stewart,

Ref. [13]. For thls purpose the subroutlne also computes
; ;.“l
s |a| lb| or 1f ‘a=b=0
z = l/c ir |af = |p| # 0 and c # 0
£ |a| s-|b)ig 0 and er=0"

11
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The subroutines feturn'r‘oéer&ritihg a, and z overwriting b, as well
as returning c and s.
If the user later wishes to reconstruct c¢c and s from z it can

be done as follows

If z2=1 set ¢=0 and s =1
1/2
2 .
If |z| <1 set ¢ = (1-2°) and s = z
| RV
If |Z|‘> 1 set e =1/z and g - (1-¢7)
Apply a Plane Rotation.

1k, CALL SROT(N,SX,INCX,SY,INCY,SC,SS).
15. CALL DROT(N,DX,INCX,DY,INCY,DC,DS): . .

Each of these subroutines.computes. .

Xi C S ' Xi.
=1 . for 1 =1,...,N
Ly -s ¢ Y. . . .

i

If N<Oor if ¢ = 1 and s = O the subroutines return immediately.

Construct a Modified Givens Transformation -

16. CALL SROTMG(SD1,SD2,SB1,SB2,SPARAM)
'17. CALL DROTMG(DD1,DD2,DEl,DB2,DPARAM)
« b ¢ .

. T
15 Ao define a 2-vector fal,ae]

The input quantities d., 4, bl,'and b,

in partitioned ‘form as o

S .di/z 0 o,
a, 0 d1/2 .

2 2

The subroutine determines the modified Givens rotation matrix H, as



defined in Eqs., (A.6) - (A.7) of Appendix 1 that transforms b,s and

thus a,, to zero. A represeritation of this matrix is stored in the

2’
array SPARAM( ) or DPARAM( ) as follows. Locations in PARAM not

listed are left unchanged.

PARAM(1) = 1 PARAM(1) = O ' PARAM(1) = -1
Case of Eq. (a.7) Case of Eq. (A6) Case of rescaling
hj, =1 hy, =-1 hij; =hy,=1 PARAM(2) = h
PARAM(2) = h g PARAM(3) = h.21 PARAM(3) = hyy
PARAM(5) = h,, PARAM(k4) = ho, | PARAM(M) = hy,

T o PARAM(5) = h,,

In addition PARAM(1) = -2 indicates H = I.
The values of 4., d2, and b. are changed to represent the

1 1

effect of the transformation. The quantity b2 which would be

zeroed by the transformation is left unchanged in storage.

should be nonnegative, but 4 can be

The input‘valué of d o

1

negative for the purpose of removing data‘ffpm a least sqﬁares

problem, Further details can be found in Appendix 1.

Apply a Modified Givens Transformation

18.

19.

CALL SROTM(N,SX,INCX,SY,INCY,SPARAM)

CALL DROTM(N,DX,INCX,DY,INCY,DPARAM)

Let H denote the modified Givens transformation defined by

the parameter array SPARAM( ) or DPARAM( ). The subroutines compute

X, X, : : PO
I =8 Y for i=1,...,N
it i
If N <0 or if H is an identity matrix the subroutines return

immediately. See Appendix 1 for further details.
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Copy a Vector x to y ¥y = x

20. CALL SCOPY(N,SX,INCX,SY,INCY)

21. CALL DCOPY(N,DX,INCX,DY,INCY)

22. CALL CCOPY(N,CX,INCX,CY,INCY)
Return immediately if N < O,

Intercha.nge:Vectoz"s x and y X :=: ¥

23. CALL SSWAP(N,SX,INCX,SY,INCY)

2. CALL DSWAP(N,DX,INCX,DY,INCY)

25. CALL CSWAP(N,CX,INCX,CY,INCY)

Return immediately if N < 0.

Euclidean Length or {_ Norm of a Vector w
26. SW=SNRM2(N,SX,INCX)
27. DW=DNRM2(N;DX,INCX)
28. SW=SCNRM2(N,CX,INCX)

If N < 0 the result is set to zero.

Sum of Magnitudes of Vector Components

. 29.
30.

31.

SW=SASUM(N , SX, INCX)

DW=DAGUM(N, DX, INCX)

SW=SCASUM(N,CX,INCX)

The functions SASUM and DASUM compute w

SCASUM computes

1/2

':= Z |xl|2

i=1

N
1= E |x.| . The funetion
i
i=1

N . . ‘
w :'=Z {lReal(xi)‘|+ IKImag(xi)l} '

i=1



These functions returntimmediately with the result set to zero if

N < 0.

Vector Scaling X 1= ax

32. CALL SSCAL(N,SA,SX,INEX)
33. CALL DSCAL(N,DA,DX,INCX)
'3u. EALL CSCAL(N,CA;CX,INCX)
35. CALL CSSCAL(N,SA,CX,INCX)

Return immediately if N < 0.

Find Largest Component of a Vector

36. IMAX=ISAMAX(N,SX,INCX)
37. IMAX=IDAMAX(N,DX,INCX)
38. IMAX=ICAMAX(N,CX,INCX)
The functions ISAMAX and IDAMAX determine the smallest index i

such that |xi| = max{[xj|§j = l,...,N}.

The function ICAMAX determines the smallest index i such’that
|xi| =.max{|Real(xj)| + |Imag(xj)1:j = l,...,N}}
These functions set the fesult to zero and return immediately

if N < O.

6. Implementation

In addition to the FORTRAN versions, all of the subprograms except ﬁQDOTI
;aﬁd DQDOTA are also supplied in assembler language for the Univac 1108,'the
IBM 300/67, and the CDC 6600 and 7600. The FORTRAN versions of DQDOTI and
DQDOTA uée part of Brent's multiple precision package, Ref. [lh]. Assembler
language modules for these two subprograms are given only for the Uhivaq»llo8.

Only four of the assembly routines for the CDC 6600 and 7600 take
advantage of the pipeline drchitecture of theée machines. The four'routines

1

15
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SDOT( ), SAXPY( ), SROT( ), and SROTM( ) are those typically used in the
innermost loop of computations. Some timing results are given in section 8.
The subprograms SMCHCN and DMCHCN provide three machine dependent
parameters that are used by the five routines SROTG, DROTG, SNRM2, DNRM2 and

SCNRM2. These parameters are: SMALL = sﬁallest positive floating péint
number, BIG = biggest positive floating point number, and EPS = relative
arithmetic precision. They are computed by use of subprograms SMCHAR and
DMCHAR. These two subprograms were provided by W.'J. Cody. An individual
computer.installation may wish to remove Cody's routines and simply have the
subprograms SMCHCN and DMCHCN return the appropriate constants. The test
driver prints these numbers so that their values will be known by the user

installation.

7. Relation to the ANS FORTRAN Standard

As of this writing (May, 1977) the present American National Standard
FORTRAN is the 1966 standard, Ref. [6-8], that we will refer to as 1966
FORTRAN. A draft proposéd revision to this standgrd is currently identified
as FORTRAN 77, Ref..[9], presently in the final editing phase.

The calling sequences of the BLA subprograms would require that the

subprograms contain declarations of the form
REAL SX(MAX0(1,N*IABS(INCX))

-

to precisely specify the array lcngths. Neither 1966 FORTRAN nor FORTRAN 77

permits such a statement. A statement of the form
REAL SX(1)

is permitted by major FORTRAN compilers to cover cases in which it is
inconvenient to specify an exact dimension. This latter form is used in the

BLA subprograms even though it does not conform to 1966 FORTRAN. FORTRAN 77



~allows the form
REAL SX(*)

for this situation. Thus the BLAS can be made to conform to FORTRAN 77 by

changing "1's" to "*'s" in the subprogram array declarations.

8. Testing
A Master Test Package has been written in FORTRAN and is included with

.the submitted code. This package consists of a main program and a set of
subprograﬁs contéining built-in test data and correct answers. It éxécutes
a fixed set of test cases exercising all thirty-eight subprograms or
optionally any selected subset of these. |
The test driver also calls subroutines SMCHCN and DMCHCN and prints
the values of machine dependent values determined by these subroutines.
We have attempted to design the test cases and the Master Test- Program
to be usable on a wide variety of non-decimal machines having FORTRAN systems.
The Master Test Package has successfully executed, testing the FORTRAN
coded version of the'Basic Linear Algebra Subprograms, on Univac 1108,
IBM 360/67, Burfoughs 6700, CDC 6600, and CDC 7600 computers. These tests
have also been run successfully testing the respective assembler packages
on the Univac 1108, IBM 360/67, CDC 6600 and CDC 7600 computers.
The following method of comparing true and computed numbers is used
in the Master Test Package. Let z denote a pre-stored true result and let z

denote the corresponding computed result to be tested. The numbers 4 and ¢

are prestored constants that will be discussed below. The test program computes

d = f1(z-z)

g = £1(|o] + |f1(¢*d)|)
h = o

= f1(g~h)

17
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where fl denotes macﬁine floating point arithmetic of the current working
precision, either single precision or double precision. It is further
assumed that g and h are truncated to working precision before being used in
the computation of r.

The test is passed if t = O and fails if t # O. Note that r will be zero
if |d| is so small that adding |f1(g*d)| to |o| gives a result that is not

distinguished from |g| when truncated to working precision.

. For example, suppose g~ 1., g = .5, d - 10-9; Lhien the mathematical

value of a4 + g*d is 1.0000000005, but the single precision computed value
of g on the Univac 1108 will be 1. resulting in 7 = O. Thus in this case

d is small enough to pass the test.

The number ¢ is prestored along with tﬁe correct result z in the testing
program. In general, g has different values for different test cases.

The number ¢ is a "tuning" factor which has been determined empirically
to make the test perform correctly on a variety of machines. Note that thé
stringency of the test is relaxed by decreasing the value of g. This has
been used to desensitize the testing to the effects of differences in the
treatment of trailing digits in the floating point arithmetic of different
machines.

There are four different values of ¢ prestored in the main program,
TBLA, of the testing package. These values are called SFAC, SDFAC, DFAC,
and DQFAC. These are usedkfor testing bperations which are respectively
gingle precision, mixed single and double precision, double precision, and
mixed double and extended precision.

It is intended that the test package be useful to anyone who undertakes
the implementation of an assembly-coded version of this package;- In working

on a new machine, one may find it necessary to reduce the values of one or

more of the numbers SFAC, SDFAC, DFAC, or DQFAC to obtain correct test



performance. The authors would appreciate hearing of any new assembly-
coded versions of the packages and of any need to reduce the values of

these tuning parameters.

9. Selected Timing Results for the IBM 360/67, CDC 6600 and Univac 1108

Timing of Dot Products and Elementary Vector Operations

The most obvious implémentation of the dot product and elementary
. vector operations for vectors with unit storage increments are in-line

FORTRAN loops 1 and 2:

In-Line
FORTRAN for

DO1OI=1,N Dot Products

10 W=W+ X(I)* Y(I) Loop 1

In—Line'
DO 20 I = 1,N FORTRAN for

. ‘Elementa
20 Y(I) = a¥X(I) + ¥(I) Vector Oper:{ions

Loop 2

" The BLAS replacements for these in-line FORTRAN loops, using the same

variable names and appropriate type statements, are

~ BLAS
W = _DOT(N,X,1,Y,1) Replacement for
Loop 1

-

S BLAS
CALL _AXPY(N,A,X,1,Y,1) Replacement for
Loop 2

The " " in front of the BLA subprogram names is due to the fact that both
single and double precision versions are discussed here.

‘These subprograms, coded in assembly language, were timed and compared
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with the time for the in-line loops. As was stated in section 2, one
reason for development of the package was to make highly efficient code
possible. This goal has been achieved for the CDC 6600 but not for the
IBM 360/67. The IBM 360/67 FORTRAN H compiler, operating with Opl = 2,
generuluy nearly pertect objecf cnde .,

In Tables 2 and 3 are some sample times for the three machineg comparing

Loops 1 and 2 and their BLASVreplacement. Interpretation of Tables 2 and 3,

supported more fully in Appendix 2, are as follows:

® Because of linkage overhead, the BLA subprograms for the IBM 360/67
are always less efficient than the in-line loops. For vectors of

large enough length the linkage overhead is relatively negligible.

® The dot product and elementary vector operation subprograms for the

CDC 6600 are respectively 3.1 and 1.6 times more efficient than in-line

code for vectors of large enough length.

@ For the CDC 6600, dot products are considerably more efficient

- than elementary vector operations on vectors of the same length,



Vector IBM 360/67 CDC 6600 Univac 1108
Length, Double Precision Single Precision Single Precision
N
In-Line In-Line In-Line
FORTRAN Assembler FORTRAN Assembler FORTRAN Assembler
(H,0pt=2) (FTN,Opt=2)
10 0.1438 . 0.1917 0}0360 0.0480 0.0756 0.0790
25 0.3436 0.3854 0.0750 0.0625 0.1836 0.1730
50 0.6719 0.7186 0.1400 0.0800 0.3598 0.3182
100 1.3750 1.3750 0.2800 0.1250 0.6986 0.6162

Time, in seconds, for 1000 executions of in-line FORTRAN Loop 1 and calls to

the _DOT( ) function. Times for 5 runs were averaged. -

Apply factors of 1.1 and 0.75 to IBM 360/67 times to get approximate respective
times for nonequally spaced increments and single precision. No distinction for

nonequal increments is necessary for the CDC 6600 and Univac 1108.

Table 2. _DOT( ) function and in-line Loop 1 timings

Vector IBM 360/67 CDC 6600 Univac 1108
Length, Double Precision Single Precision Single Precision
N
In-Line In-Line In-Line
FORTRAN Assembler FORTRAN Assembler FORTRAN Assembler
(H,Opt=2) (FTN, Opt=2)
10 0,059 0.2050 0.0500 0.0650 0.0740 0.0886
25 © 0.3930 0.4375 0.1125 0.1000 0.1806 © 0.1890
50 0.7950 0.8400 0.2100 0.1725 0.354}4 0.357k
100 1.5500 1.6000 0.4200 0.3000 0.7292 0.7170

with unit increments were used in this timing.

_AXPY( ) subprogram. Times for 5 runs were averaged.

Time, in seconds, for 1000 executions of in-line FORTRAN Loop 2 and calls to the

Apply factor of 0.75 to get single precision IBM 360/67 times. Only vectors

Table 3.

_AXPY( ) subprogram and in-line Loop 2 timings
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Timing of Standard and Modified Givens Methods

Gentlemen's modification of the Givens transformation is discussed in

the Appendix. This technique eliminates square roots and two of the four multiply

-operations when forming the product of the resulting matrix by a 2-vector.

The relative efficiency of Gentlemen's modification to the standard

Givens transformation was compared. Both techniques were used tn

triangularize 2N by N matrices A {ajj} where

]

s s -1
a; 5 (i+3-1)

In Table 4 there are some sample times which resulted from the
triangularizations using both methods.

We are primarily interested in algdrithm comparison here, so both
methods were tiﬁed using their assembler versions to apply ﬁhe matrix
products.

A conclusion is that in the context of triangularizing matrices, the
modified Givens transformation method is ultimately more efficient in
computer time by factors varying between 1.4 and 1.6. This is fully
supported in Appendix 2. The comparison is most favorable on the IBM

360/67 in double precision.



N IEM 360/67 CDC 6600 Univac 1108
Double Precision Single Precision Single Precision
Standard Modified Standard Modified Standard Modified
Givens Givens Givens Givens Givens Givens
10 0.0800 0.0650 0.0200 0.0190 '0.0335 0.0298
25 0.8789 0.6250 0.1719 0.14kh5 0.3633 0.3001

Time, in seconds, for the triangularization of 2N by N matrices using standard

and modified Givens transformations. Times for 5 runs were averaged.

Standard and modified Givens transformation in matrix
triangularization

Table 4.
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Appendix 1

The Modified Givens Transformation

. The Givens transformation which eliminates Z)s if z4 #£ 0, is
i ' c s\|w ...w
‘ N
(A.1) - GW = ( ) 1

wﬁere c = wi/r, s = zl/r, r =z (wi+z§j§. This requires ~4N floating point
multiplications, 2N floating pqint additions and one square root. Gentleman,
Ref. [3], has reported on a modification to the Givens transformetion which
reduces this operation count. Gentlemah's idea is presented here in a

slightly different form than found in his paper.

Suppose that W in Eg. (A.1) is available in factored form

' 1
(A.2) . . W=D =
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Substituting D2X for W and refactoring GD

(A.3)

i L
2 as D°H yields

~%
32 o

HX
3k
d2

(@]

The right-hand side of Eq. (A.3) yields an updated factored form for the

matrix product GW. The crucial point is

that the matrix H is selected so

that two elements are exactly units. This eliminétes 2N floating point

multiplications when forming the matrix product HX.

stability two cases are considered:

For |s| < |e|

To preserve numerical

1
(A.4) @De= = =
3o
-dls dEC
where t = s/c.
For |Cl < lsl, by similar manipulations,
1
,-.’2 l
. d;f 0 d;x,/d,¥, 1
(A.5) GD2 = . - | £D%H
0 az -1 x/yy
~3 1 N
where di = dés, and S = dis. This factorization can be done for any plane

rotation matrix,

1
Only the squares of the scale factors d? are involved in the non-unit

elements of the matrix H defined in Eq. (A.4) - (A.5), which permits the

Givens transformation Eq. (A.1) to be computed without square roots.

Using

-1
the identity c2 = (l+t2) and Eq. (A.4) allows the squares of the scale

26
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-1
~ 2
factors to be updated: di = di(l+t ) , i=1,2. Letting r = s/c in Eq.

~ -1 -1
(A.5) we have d, = d2(l+72) and d, = dl(l+72) . For |c| > |s| or,
equivalently, |4 x2| > |d 2]
R | oY1
hyp =1 By = 'Vl/?l
Bp = dp¥y /8% 5 By, =1
, u=1--h.h
(A.6) 2112
dy := di/u
d, := d2/u
X, 1= xu
For ‘c| < |sl or, equivalently, |4 xz‘ < la yg\
; ‘ > &d > 197 2V’

hyy = 4% /a4y 5 By =1

by, = 1, hop = xl/yl
u=1+ hllh22
(A.T) v=a/u
dl i= d2/u
d2 = v
X, := ylu

When using the modified Givens transformation in the context of
"row accumulation," & >0, i = 1, 2, the values of u in Eq. (A.6) - (A.7)
i
will satisfy 1 < u < 2. Thus the squares di’ i = 1,2, decrease by as much

as 1/2 at each updating step. If no rescaling action is taken, these scale

27
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factors would ultimately underflow. The details concerning rescaling
are implemented in the modified Givens subprograms.

Since only di’ the squares of the weights, appear in the»formuias of
Eq. (A.6) - (A.7) it is possible to use the same formulas to remove a row
from a least squares problem simply'by setting d, = -1. Remarks about

2
this row removal method are found in Ref. [5], Chépter 7.

When the modified Givens transformation is used in the context of the
"row removal method" mentioned above, the values of u in Eq. (A.6) - (A.7)

satisfy O < u < 1. The case u = 0 is eliminated by restricting dl =2 0. If

d., < O, we define H as the zero matrix, the updated d, = 0; i = 1,2, and x
1 ’ i

With this restriction, we have O < u < 2 in Eq. (A.6) - (A.7). Thus the

1

change in the scale factors di’ i = 1,2, is unbounded at each step. Either
underflow or overflow can occur if no rescaling is performed.
The problem is rescaled by the modified Givens subprograms to keep

within the conservative limits
-2 2 , '
y©oslal =y, i=1,2,v=1Lo%.

Note that when we rescale di 1= diyz, we must rescale hii 1= hijy s

J = 1,2, and rescale X, =Xy

0.



Appendix 2
Extended Timing Results for Some Operations

In Section 9 selected timing resulté were presented for the IBM 360/67
(double precision), the CDC 6600 (single precision), and the Univac 1108
(single precision). Timing of dot products, elementary vector operations,

‘and Givens transformations was presented. This was done mainly for the
purpoese- of illustrating the relative efficiency of in-line FORTRAN vs.
assembler, and the standard vs. the modified Givens transformation.

Tables 5-11, given below, give more of this data than found in
Section 9., The exception  to this is the Univac 1108 timing data which ;s

totally .presented in Section 9, so we did not reproduce it here.

Vector IBM 360/67 IBM 360/67
Length, Single Precision Single Precision
N E Equal Storage Increments Nonequal Storage Increments
In-Line In-Line .
FORTRAN Assembler FORTRAN Assembler
(H’ Opt=2 ) (H: Opt=2)
10 0.1020 0.1k70 0.1160 V. 1660
.25 - 0.2380 0.2840 0.2740 0.3100
. 50 0.4620 0.5110 0.5510 0.5720
100 0.9490 0.9970 1.1700 1.1000
Time, in seconds, for 1000 executions of in-line FORTRAN loop 1,
Section 9, and calls to the SDOT( ) function. Times for 5 runs
were averaged.

Table 5. IBM 360/67 SDOT( ) function and single precision
in~line Loop 1 timings
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Vector IBM 360/67 IBM 360/67
Length, Double Precision Double Precision
N Equal Storage Increments Nonequal Storage Increments
In-Line In-Line
FORTRAN Assembler FORTRAN Assembler
(H,Opt=2) (H,0pt=2)
10 0.1430 0.1910 0.1590 0.1980
25 0.3430 0.3840 0.3840 0.4160
50 0.6T70 0.7250 0.7800 ©.8180.
100 0.3900 1.3900 1.5400 1.5700

Time, in seconds, for 1000 executions of in-line FORTRAN Loop 1,

Section 9, and calls to the DDOT( ) function. Times for 5 runs were

averaged.
Table 6. IBM 360/67 DDOT( ) function and double precision in-line
Loop 1 timings
Vector CDC 6600 ene 7600
Length, Single Precision Egqual or Single Precision Equal or
N Nonegqual Storage Increments Nonequal Storage Increments
In-Line In-Line
FORTRAN Assembler FORTRAN Assembler
(FTN, Opt=2) (FTN,Opt=2)
10 0.0358 0.0480 0.0042 0.0092
25 0.0756 0.0638 0.0100 0.0110
50 - 0.1420 0.0808 0.0210 0.0162
100 0.2750 0.1230 0.041L 0.0254
Time, in seconds, for 1000 executions of in-line FORTRAN Loop 1,
Section 9, and calls to the SDOT( ) function. Times for 5 runs were
averaged.
Table 7. CDC 6600 and CDC 7600 SDOT( ) function and single precision

in-line Loop 1 timings




Vector IBM 360/67 IBM 360/67
Length, Single Precision Double Precision
N Equal Storage Increments Equal Storage Increments
In-Line In-Line
FORTRAN Assembler FORTRAN Assembler
(H,Opt=2) (H,0pt=2)
10 0.1190 0.1700 0.1590 0.20k0
25 0.2880 0.3610 0.3930 0.4390
50 0.5760 0.6300 '0.7960 0,8420
100 1.1700 1.1900 1.5500 1.5900

Time, in seconds, for 1000 executions of in-line FORTRAN Loop 2,

Section 9, and calls to the SAXPY( ) and DAXPY( ) subprograms.

Times for 5 runs were averaged.

Table 8. IBM 360/67 SAXPY( ) and DAXPY( ) subprogram, and
single and double precision in-line Loop 2 timings
Vector CDC 6600 CDC 7600
Length, Single Precision Single Precision
N " Equal Storage Increments Equal Storage Increments
In-Line In-Line
FORTRAN Assembler FORTRAN Assembler
(FTN,Opt=2) (FTN,Opt=P)
10 -0.0502 0.06L0 0.0060 0.0114
25 0.1120 0.1020 0.0150 0.0162
50 0.2130 O.l7lQ 0.0290 0.0252
100 0.42ko 0.3020 0.0582 0.0420

Time, in seconds, for 1000 executions of in-line FORTRAN.Loop 2,

Section 9, and calls to the SAXPY( ) subprogram. Times for 5

runs were averaged.

Table Y9,

CDC 6600 and CDC T6OO SAXPY( ) subprogram and oingle
precision in-line Loop 2 timings
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IBM 360/67 IBM 360/67

N Single Precision Double Precision

Standard Modified Standard Modified

Givens Givens Givens Givens
10 0.0580 4 0.0L48L 0.0800 0.0650
25 0.5850 0.4635 0.8789 0.6250

Time, in seconds, for the triangularization of 2N
by N matrices using standard and modified Givens

transformations. Times for 5 runs were averaged.

. Table 10. IBM 360/67 single and double
precision standard and modified
Givens transformation timing for
matrix triangularization

CDC 6600 CDC 7600

N Single Precision Single Precision
Standard Modified Standard Modified

Givens Givens Givens Givens

10 0,0200 0.0190 0.0036 0.0035

25 0.1719 0.1445 0.0279 0.0250

50 0.9600 0.7550 0.1430 0.1265

100 5.8500 4,3500 0.8200 0.7100

Time, in seconds, for the triangularization of 2N
by N matrices using standard and modified Givens

transformations. Times for 5 runs were averaged,

Table 11. CDC 6600 and CDC 7600 single precision
. standard and modified Givens trans-
formation timing for matrix
triangularization



Appendix 3
Sample Usage of the BLAS in FORTRAN Programming

Our’ experience indicates that using the BLAS actually enhances the
readability and reliability of codes in which they are utilized. Efficiency
does not appreciably‘degrade with their usage, as indicated in Section 9, and
for large-scale problems certain of the BLAS will markedly out-perform in-line
FORTRAN code,

These remarks are based on usage of the BLAS in developing new sqftware
for the Sandia Math., Library, developing new ordinary differential equation
solving codes, conversations with members of the LINPACK working group
participating in the project of Ref. [lO], and experience with applications
programmers at Sandia Laboratories and Jet Propulsion Laboratory.

Typical usage of the BLAS in FORTRAN programs is now illustrated with
nine examples using the single precision versions of the operations.

Some rules, based upon the FORTRAN language, that a programmer may find
useful to recall are these:

® Suppose a tﬁo-dimensional FORTRAN array A(MDA,NDA) is used to hold an M
by N matrix A = {aIJ}. If A(I,J) := ar 15 then the Ith row vector of A

and the Jth column vector of A respectively start at A(I,1) and A(1,J).
The relations MDA > M and NDA = N must hold for the matrix to fit into

this'ariay.

® The storage increment between elements of row vectors of A, e.g. A(1,1)

and A(1,2), is MDA, the first dimensioning parameter of the array A(¥,*).

® The storagc increment between elements of column vectors of A, e.g. A(1l,1)
and A(2,1), is 1. This is due to the fact that the FORTRAN language

stores A(*,*) by columns:

A(1,1),A(2,1),...,A(MDA,l),A(l,z),..;,A(MDA,z),..o,A(MDA,NDA)

The value of NDA is used by the FORTRAN compiler only to allocate MDA*NDA

wnrds of memory in the program.
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Examgle 1

Given M by K and K by N matrices A and B, compute the M by N product
matrix C = AB.

The coding technique for this computation is based on the fact .that

each element cIJ of C is the dot product of row I of A and column J of B.

DIMENSION A(20,20),B(15,10),C(20,15)

C
MNA=20
MDB=15
MDC=20
C
M=10
K=15
N=10
C
o) FORM THE DOT PRODUCT OF ROW I OF A WITH COLUMN J OF B. EACH OF THESE
C VECTORS IS OF LENGTH K, THE VALUE OF MDA IS THE STORAGE INCREMENT
C BETWEEN ELEMENTS OF ROW VECTORS OF A,
C
DO 10 I=1,M
DO 10 J=1,N
10 ¢(1,J)=SD0T(X,A(I,1),MDA,B(1,J),1)
Example 2

Solve an N by N upper triangular nonsingular system of algebraic-

equations, Ax = b . The method used is based on the observation that if

-—

we compute the component Xy = bN/a then we have a new problem in N - 1

NN’
unknowns, still upper triangular, with the new right-side vector

. T : X ‘
(bl aleN,...,bN_l aN—l,NxN) . In this example the solution vector, X,

overwrites the vector b in the array B(*).

DO 20 II=1,N
T=N+1-TI
B(I)=B(I)/A(1,I)
20 CALL SAXPY (I1-1,-B(I),A(1,I),1,B,1)



Examgle 3

Scale the columns (each assumed to be nonzero) of an M by N matrix C

so that each column has unit 1ength.

DO 30 J=1,N
T=1,E0/SNRM2(M,C(1,J),1)
30 CALL SSCAL(M,T,C(1,J),1)

Example L

Row-equilibrate an N by N matrix A. (Divide each non-zero row vector
of A by the entry in that row of maximum magnitude). Here MDA is the

first dimensioning parameter of the array A(¥*,*).

DO 40 I=1,N
JMAX=ISAMAX(N,A(I,1),MDA)
T=A(I,JMAX)
IF(T.EQ.0.E0) GO TO L0
CALL SSCAL(N,1.EO/T,A(I,1),MDA)
4o CONTINUE :
When using ISAMAX( ) to choose row pivots in Gaussian elimination,

for .example,. the major loop contains a statement of the form
IMAX=TSAMAX (N=-J+1,A(J,J),1)+J-1

‘At that point IMAX corresponds to the row that will be interchanged
with row J., Thus the offset value J - 1 must be added to the computed

.value of ISAMAX( ) to get the actual row number to interchange.

Example 5
Set an N by N matrix A to the N by N identity matrix. Then set B = A,

Notice that a storage increment value of O for the first vector
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argument of SCOPY( ) is used. This "broadcasts" the values of 0.EO and
1.E0 into the second vector argument.

Here MDA is the first dimensioning parameter of the array A(*,*).

DO 50 J=1,N
50 CALL SCOPY(N,0.E0,0,A(1,J),1)

CALL SCOPY(N,1.E0,0,A,MDA+1)

DO 60 J=1,N
a0 . CALL 3COPY(N,A(1,7),1,B(1,J),L1)

Example 6

Intgrchange or swap the columns of an M by N matrix C. The column
to be interchanged with column J is in a type INTEGER array IP(*), and

has the value IP(J).

DO 70 J=1,N

I=IP(J)

IF(J.NE.L) CALL SSwAP(M,C(1,J),1,C(1,L),1)
70 CONTINUE :

Example 7

a) Extract the first number and "pop" a list of N single precision

numbers: X, := X5 X5 =X i=1,...,N1, N := N-1

0 i+l’

b) "Push-down" a list of N single precision numbers and insert a

new number X, at the top of the list: X;,0 1= Xy 1= Ny.ourls ‘
xl = Xos N :=N+ 1,

v .

For these illustrations the vector x = (xl,...,xN)T is in the FORTRAN
array X(*). -

Notice the usage of the negative increments (-1) for the push-down
example of b). This causes the assignment

X(N+l)=X(N),X(N)=X(N—l),...,X(2)=X(l)
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to be implemented in this order.

a) Extract and "pop"
N=N-1
X0=X(1)
CALL SCOPY(N,Xx(2),1,X(1),1)

b) "Push~-down" and insert
CALL SCOPY(N,X(1),-1,X(2),-1)

N=N+1
X(1)=X0

Example 8

In this example we want to transpose an N by N matrix A in-place,

(ig-situ). Here MDA is the first dimensioning parameter of the array

A(*,%),

DO 80 J=1,N
80 CALL SSWAP(N-J,A(J,J+1),MDA,A(J+1,J),1)
Example 9

In this more complicated example we swap in-place (ig-situ) the

components of the vector

(x x )T

l,.ol’xK’xK+l,-.a, N

so they become
(X IR SHrs SR RRFLS )T
K+1 N1 K

making repeated use of the "Pop" or "Push-down" operations,

NMK=N-K
IF(.NOT. (K.GT.0.AND.NMK.GT.0)) GO TO 120

IF(.NOT. (K.LT.NMK)) GO TO 100
DO 90 I=1,K-
T=X(1)

CALL SCOPY(N-1,X(2),1,X(1),1)
90 X{(N)=1
GO TO 120 37
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100

110

120

CONTINUE
DO 110 I=1,NMK
T=X(N)
CALL SCOPY(N-1,X(1),-1,X(2),-1)
X(1)=T

CONTINUE
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5130 G. A.
5150 J. E
5160 W. Herrmann
5120 G. J. Simmons
5121 P. B. Bailey
5121 H T. Davis
5121 J. A. Davis
5121 C. A. Morgan
5121 P. J. Slater
5121 G. P, Steck
5121 R. J. Thompson
5122 D. E. Amos
5122 R. J. Hanson (50)
5122 K. L. Hiebert
5122 B. L. Hulme
5122 L. F. Shampine
5122 J. A. Wisniewski
5166 N. Ruiz
8266 E. A. Aas
8325 R, E. Huddleston
8325 T. H. Jefferson
31k1 cC.
3151 W. L. Garner (3)
F

or DOE/TIC (Unlim. Release)
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