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In this paper we compare computation times for the multi-grid (MG)

algorithm [1], the incomplete Cholesky conjugate gradient (ICCG) algoritlm

[4,5] and the modified TCCG (MICCG) -g~rithm [3] to solve elliptic

partial differential equations of thn form

-V*(D(x,y)VU(x,y)) +U(X,y)u(X,y) = f(X,y) , (X,y)E~

(1)

V(x,y)”D(x,y~VU(x,y) + Y(x,Y)U(X9Y) = O , (x,y)ca~ .

tions D, u,

bounded region inR2 with boundary a~, v is the outward normal

possitive, en~d’ hd ‘T~re;rk?wwe$ative. Moreover, the func-

and f are allowed to be discontinuous across internal bound-

aries r of Q. We make the assumption that U and PC(DVU) are continuous

.+,.- sh.jst every (x,y)cl”,and B is a smooth vector normal to I’,

The application of MC to (1) is discussed in [1]. The main conclu-

sion in that paper was that the interpolation J; ~, frol~lgrid G
K-1

to GK

should preserve the flux u ● (DVU) across the interfaces r, and that tile

K--l
coarse grid operazor L should then be taken to be (.T:-1)* LKJ; 1.

This implementation of MG io more robust than the proposals in [2],

TCIsolve Ax=b by ICCG, where A is a symmetric positive definite

oparse matrix, one approximates A in factored form as LLT where L i:;

lower triangular and spars@. The sp~seness Rtructure J.,+LTi~ b+ least

that of A. ~dlowir.g the notatiotlof [3], we use ICC(l(n)and MICCG(n) to

denote how many additior,aldiagonals, n, 1,hus than the lower triun@lcm

part of A. In ICCG, the entries of 1,1?appeuring outside the sparsencas

T
structure of L+L are taken to bc zc?ro;in MICCG they arc nummd [3] and

added to the diagonal. Both metl~od$~arc accelerated with conjug~tc
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~adient. , Zkarsisoot4cmtfic~nt woQlqmB &he

5/413’2) for ICCG and O(Nlevel of error is O(N

number of unknowns. For MG the work is O(N).

wqrk to solve to

for MICCG, where

8 given

N is the

In general, we have found the MICCG and ICCG al~orithms more robust

than the MG for general positive definite systa~s. Also, ICCG and MICCG

can be implemented as reliable black boxes that work for a wide range cf

problems. For MG, unfortunately, this is not yet the case. MG must often

be tuned to the structure of the problem at hand. A major advantage of

the MG algorithm is that the structure of the problem can be exploited to

signi~icantly reduce the solution the. Rroblems arising from difference

equations are usually rich in atruct=e and the Brandt i4Gprogram struc-

t~re is natur~ not only for the solution of the difference equation but

also for the local mesh refinement. An added bonus of the MC structure

is that it can also be used to solve companion problems (such as the

eigenvalue problem) that often arise in conjunction with Eq. 1. Indeed,

as many as 90% of the multi-group diffusion problems (of which (1) is n

special, one group, case) solved are eigenvdue problems.

The first

Au-u = f

where f and g

example is the equation

on ~ = (O,l)X(O,l) , u = g on ~fl,

are chosen ‘“othat u = kg [(X+10 ‘10)2 + (y+ J()-10)2] . T1,L*

fourth vdcr nine point box i~ u~ed, n.ndICCG(0) and MlCCC(O) we com-

pared to MC, uoing u k 1 as initiul gueso and solving until the di:;cretc

J&oblem 1 I llxll I ,04 I ● 014 I ,(’3



1 a

L2norm of the -6 -tisidua 16 l-s-than 10 . 1A~ work unit (SOR sweep)

took 0.003.3,0.0045 or 0.016 seconds on

grid, respectively. The ICCG and MICCG

0.041 seconds per iteration on the same

an llxll, 23x23 or 47x47 point

algorithms took 0.0033, 0.011 or

grid~.

Examples 2-5 tire all simplified versions of the complicated mosaics

that 8ppear 14 neutron diffusion problems. In these examples we use

either a second order five point difference operator, described in [I], or

a piecewise bilinear nine point iinlke el@nent method. The ICCG(l) and

MICCG(l) algorithms are used for the five point star and the ICCG(0) and

MICCG(0) algorithms =e u~ed to solve the nine point operator.

Example 2: Q = (0,24)x(0,24),

&=
{

-u/2D on y = 24 or x = 24
au O, othezwise

D(x,y) =
{
1, if (x,y)~[0,12)x[0,12)U(12,20]x(12,20]
1000, otherwise

Exsmple 3: Q = (0,16)x(0,16), ~ as in Ex. 2

I.)(x,y)=
{

1000 if (x,y)~(o,5)x[5,’ou(5,7)x[o,7 )
1, otherwise

Example 4: fi = (0,16)X(0,161, & 8G in m. 2

r1000, if (x,y)~(l,3)x[o,b)u(3,’ox(3,5)

I U(5,11)x( 5,’i)U(9,15)x(7,9)
D(x,y) =

{ U(13915)x(9,13)U(l’j,161x(11913)

L)(x,y)=
{

1000, if (x,y)E(ll,13)x(ll,l:i)
1, othcrwluo.



,

f Entries indicate Number MG ICCG MICCG
CDC 7600 C.P.U.

ICCG MICCG
of MG ICCG MICCG T.E. to T.E. tO T.E. to MG O guess O guess

timein seconds Jnknowns T.E. T.E, T.E. 10-6 10-6 10-6 Total to 10-6 to 10-6

Problem 2 13X13 .01 .02 .02 .03 .04 .04- ,04 .04 .05

finite difference 25x25 .04 .12 .11 .11 .25 .25 .15 .27 .2i

0:0 49x49 .12 .77 .60 .48 1.75 1.23 .60 1.89 1.61
— - — . — . ,— — —— ,— —

Problem 2 13X13 .01 .02 .02 .04 .04 .134 .05 .05 .05
—. _-

finite element 25x25 .04 .17 .14 .15 .27 .23 ,19 .29 .30

UFO 49x49 .14 .88 ,71 .69 1.95 1.29 .83 2.31 1.87

Problem 2 13X13 .01 .02 ‘.02 .03 .04 .04 .04 ,04 .04

finite difference 25x25 .03 .09 .09 .10 .22 .i9 .13 .?> ,25
—

~.
& 49x49 .12 .54 .58 , .38 1.52 1.06 .50 1.55 1,42

— — —
Problem 2 13X13 .01 .02 .02

finite element 25x25 .04 ,10 .11 .14 .24 .21 .18 .26
1

.27
—.

u’ & 49x49 .13 .60 .58 .65 1.65 1.24 .78 1,74 1.58

Problem 3, u : 0 17X17 .02 ,04 .03 .05 .08 .06 .07 .08 F

finite difference 33x33 ,05 ,29 .16 .17 .53 ,37 .22 ,55 .47
—

Problem 3, u : 0 17X17 .02 .05 .03 ,06 .08 .07 .08 .08 .09

finite element 33x33 ,Oti .36 .23 .19 .60 ,38 .25 .60 .55
— — — — ,— — . ,

Problem 3, u = 1/30 17X17 .02 .03 ,02 .05 .06 ,05 .05 .05

finite difference 33x33 .06 ,18 .12 .16 .35 ,26 .22 ,35 .31
—— ,

?rOblem 3, u ❑ 1/30 17X17 .02 ,03 .03 ,06 .06 ,06 I .08 .G6 ,06

finite element 33x33 .% .21 .17 .19 ,4U ,2E! .25 ,39 .36

Problem 4, a : 0 17X17 ,02 .06 .03 .06 .08 ,09 .98 ,09 .09

finite difference 33x33 .05 .42 .16 .19 .62 .37 .24 .64 ,49

Problem 4, u ~ O 17X17 .02 ,22 .21 ,06 .10 .08 ,08 -,10 ,09
—

finite element 33x33 .06 .18 .18 .21 .63 ,44 .28 .64 .5?
4 I

Problem 4, 0 F l/3D 17X17 ,32 ,05 .02 ,05 ,07 ,05 .07 .07 ,06

ffnfte difference 33x33 .05 .31 .13 .14 ,46 ,28 .19 ‘,47 ,34
,

Froblem4, c!■ 1/30 17X17 .02 .06 ,03 .05 .08 ,06 ,0: ,08 .06

f{nlte element 33X33 .06 ,34 .17
I

.16 ,50— .31 .22 “,52 ‘—,39

Problem 5, u : 0 25x25 .03 .07 .03 .08 .17 ,11 .11 .16 ,14
.———. .————

finfte difft?rence 49x49 .12 ,54 ,26 .27 1.10 .61 ;9 1.17 .82

Problem 5, 0 0 25x25 ,04
.——. .- —— .—.—. .--.—---—--

flnite element 49x49 .14 .57 .32 ,28

Problem 5, u - l/317 25x25 .03 .06 .04 .06 ,07 .07
.- —.—, ——. .—

finite difference 49x49 ,12 .29 ,22 .19 .60 .36

Problem 5, u ● l/3D 25x25 .04 .06 .05 ,05 .08 .07
.—....—.-.._. -.....____.—-..-

finite element 49X49



k’irstmnpa~ison takes t&is MG solution at the truncation error level and

uses it as in

-6
norm of 10 ;

would have in

initial guess to continue solving to a discrete L* residual

this comparison mimics having a good initial guess, as one

each step of a the dependent Rroblem. The second uses

u s O as an initial guess. Note that MICCG does rich better with a

initi~.1guess.

The clearest conclusion from these examples is that MICCG seems

good

pre-

ferable to ICCG, especially since if one is already using ICCG, then one

can change just one line of code to obtain MICCG. Another conclusion is

that MG is most impressive when solving to truncation error. We emphasize

that MG has a mechanism for doing this which ICCG and MICCG do not have.

when solving to smaller tolerances, the gains for M(;are less impressive,

especially in the u = l/3D case, although for the harder problems 2 and 4,

they are almost even for this case.

For problems with little structure and for onc shot c~lculations.we

recommend ICCG over MG and MICCG ov’.wICCG. For problems that ‘tiedone

many tines, it is worth investing the effort to study method like MG.
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