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‘Beqm typing heMUDRE~BRED: W“MGIMWW €§TH: &N’I’ERFACES

by
J. E. Dendy, Jr. and J. M. Hyman*

' In this paper ;é compare vomputatlon times for the multl—grid (MG)

jalgorithm [1], the incomplete Cholesky conjugate gradient (ICCG) algoritim
(4,5] and the modified ICCG (MICCG) algorithm [3] to solve elliptic
partial differentiai equations of th% form |

=V (D(x,¥)VU(x,¥)) + o(x,y)U(x,y) = £(x,y) , (x,y)eQ "

v(x,y)*D(x,yWVU(x,y) + v(x,y)U(x,¥) =0 , (x,y)edq . :
Here Q@ is a bounded region inZR with boundary 31, v is the outward normal
%o 90, D is possitive, and o and 1 are nen-negative. Moreover, the func-
tions D, v, and f are allowed to be discontinuous across internal bound-
aries T of Q. We make the assumption that U and u+(DVU) are continuous
at elnoust every (x,y)el', and u is a smooth vector normal to T,
The application of MG to (1) is discussed in [1]. The main conclu-

K-1 K

sion in that paper was that the interpolation JK frow grid G to G

K-1'
should preserve the flux ue(DVU) across the interfaces I', and that the
- "
coarse grid operator 1¥"L should then be taken to be (J§~l) X Jﬁ-l'

This implenientation of MG is more robust than the proposals in [2].

To solve Ax=D by ICCG, where A is a symmetric positive definite
yparse matr.x, one aporoximates A in factored form as LLT where L igs
lower triangular and sparse. The sparseness structure L+LT is &t least
that of A. Tollowing the notation of [3], we usc ICCG(n) and MINCG(n) to
denote how many additional diagonals, n, I, has than the lower triwngular
part of A. In ICCG, the entries of LPT appearing outside the sparsencss
structure of L+LL are taken to bo zero; in MICCG they arc summed [3] and

added tv the diagonal., Both methods arc accelerated with conjugate

*l,0o5 Alamos Scientific Laboratory, Univerpity of California, M5-233,
loo Alaimos, N.M. B75h%.
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gradient. &For smooth coefficlent problems the work to solve to a given

3/2

level of error is O(N°/“) for ICCG and O(NS/h) for MICCG, where N is the

number of unknowns. For MG the work is O(N).

In general, we have found the MICCG and ICCG alrorithms more robust
than the MG for general positive definite systemns. Also, ICCG and MICCG
can be implemented as reliable black boxes that work for a wide range cf
MG must often

provlems. For MG, unfortunetely, this 1s not yet the case.

be tuned to the structure of the problem at hand. A maJjJor advantage of
the MG algorithm is that the structure of the problem can be exploited to
significantly reduce the sslution time. Problems arising from difference
equations are usually rich in structure and the Brandt MG program struc-
ture is natural not only for the solution of the difference equation but
also for the local mesh refinement. An added bonus of the MG structure
is that it can also be used to solve companion problems (such as the
eigenvalue problem) that often arise in conjunction with Eq. 1. Indeed,
as many as 90% of the multi-group diffusion problems (of which (1) is a
special, cne group, case) eolved are elgenvalue problems.

The first example is the equation

Au-u = f on 2 = (0,1)%X(0,1) , w=g on 30 ,

. -10,2 =10,2
where f and g are chosen ~o that u = log [(x+107 7 )“ + (y+1077)“]., The

fourth >rder nine point bnx is used, and ICCG(0) and MICCG(0) uare com-

pared to MG, using u = 1 as Initiul guess and solving until the discrete

Entries indicate Number s MG ICCG MICCG
CDC 7600 C.P.U. of uslgueogu | w T 1 guens | u il gu?nn
time in mecondu unknowng to 10-0 to 10~ to 107Y
Problem 1 11xdl .0l . 0} .03
23x22 .1k 2] .19
Wit .50 1.50 1.08
93x93 b, 23010 10.0h




L2 norm of the residual 1is 1ess'than~lo_6." A MG work unit (SOR sweep)

took 0.001.3, 0.0045 or 0.016 seconds on an 11lx1l, 23x23 or 47x47 point
grid, respectively. The ICCG and MICCG algorithms took 0.0033, 0.011 or
0.041 seconds per iteration on the same grids.

Examples 2-5 are all simplified versions of the complicated mcsaics
that appear 1. neutron diffusion problems. In these examples we use
either a second order five point difference operator, described in [1], or
e plecewise bilinear nine point finite element method. The ICCG(1l) and
MICCG(1l) algorithms are used for the five point star and the ICCG(0) and

MICCG(0) algorithms are used to solve the nine point operator.

Example 2: @ = (0,24)x(0,24),

du _ {-u/2D ony=2korx=24
av 0, otherwise

D(x )={1, if (x,y)€[0,12)x[0,12)u(12,20]x(1Z,?0]
oY 1000, otherwise

Example 3: Q = (0,16)x(0,16), %\‘} as in Ex. 2

1000 if (x,y)€ (0,5)x[5,1)V(5,7)x[0,T)
1, otherwise

D(x.y)={
Example 4: o = (0,16)x(0,16), %%as in Ex. 2
(1000, if (x,y)= (1,3)x[0,5)V(3,1)x(3,5)
U(5,11)x(5,7)919,15)x(7,9)

D(x,y) = ¢
’ U(13,15)x(9,130(15,16]x(11,13)

1, otherwisc.
.

Example 5: 2 = (0,24)x(0,2k) %% = g; u on all sides

_J1000, 1r (x,y)€ (11,13)x(11,15)
D(x,y) {l. otherwluc,

In all these examples =0 wien D=1, and f'=1 when D=1000. Comparigons arc
presented for two caves, v = 0 and o = 1/3D, on the next page.
The MG algorlthm employed differs from thal Jeseribed in [1] in thnt

tL unes one full MG eyzle [2] to flrut solve to truncatlion error. The



Entries indicate Number MG 1CC6 MICCG 1CCG MICCG
CDC 7600 C.P.U. of MG ICCG| MICCG|| T.E, to| T.E, to| T.E, tol|| M& 0 guess | O guess
time in seconds unknowns | T.E. | T.E. T.E. || 10°6 10-6 10-6 Total | to 10-6| to 10-6
Problem 2 13x13 | .00 | .02 .02 .03 .04 .04 .04 .04 .05
finite difference | 25x25 | .04 | .12 R} Rh .25 .25 .15 .27 .28
0z0 49x49 | 2 | .77 .60 .48 1.75 1.23 .60 1.89 1.61
Problem 2 13x13 | .01 | .02 .02 .04 .04 .04 .05 .05 .05
finite element 25x25 | .04 | 7 .14 a5 .27 .23 19 .29 .30
0=0 49x49 | .14 | .88 T .69 1.95 1.29 .83 2.31 1.87
Problem 2 1313 | .01 | .02 | .02 || .03 .04 .04 .04 .04 .04
finite difference 25x25 | .03 .09 .09 .10 .22 .19 13 .23 .25
o= 335 49x49 | .12 | .54 .58 .38 1.52 1.06 .50 1.55 1.42
Problem 2 13x13 | .01 | .02 .02 .03 .04 .04 .04 .04 .04
finite element 25x25 | .04 | .10 BE .14 .24 .21 .18 .26 .27
o = 5 49x49 | .13 | .60 | .58 [ .65 1.65 1.24 .78 1.74 1.58 |
Problem 3, o = 0 17x17 | .02 | .04 .03 .05 .08 .06 .07 .08 .08
finite difference | 33x33 | .05 | |29 .16 7 .53 .37 .22 .55 .47
Problem 3, o = 0 17x17 | .02 | .05 .03 . 06 .08 .07 .08 .08 .09
finite element 33x33 | .06 | .36 .23 19 .60 .38 .25 .60 .55
Problem 3, o = 1/30 | 17x17 | .02 | .03 .02 .05 .06 .05 .07 .05 .05
finite difference | 33x33 | .06 | .18 2 16 .35 .26 .22 .36 .31
Problem 3, o = 1/30 | 17x17 | .02 | .03 .03 .06 .06 .06 .08 .06 .06
finite element 33x33 | .06 2 a7 .19 .40 .28 .25 .39 .36
Problem 4, o = 0 17x17 | .02 | .06 .03 .06 .08 .09 .8 .09 09|
finite difference 33x33 | .05 .42 .16 .19 .62 .37 .24 .64 .49
Problem 4, o = 0 1x17 | .02 | .22 .21 .06 0 .08 .08 .10 .09
finite element 33x33 | .06 | .18 .18 .21 .63 .44 .28 .64 57
Problem 4, o + 1/30 | 1717 | .22 | .05 .02 .05 .07 .05 .07 .07 .06
finite difference 33x33 | .05 N .13 .14 .46 .28 .19 .47 .34
Froblem 4, o = 1/30 | 17x17 | .02 | .06 | .03 || .05 08 06 07 08 .06
finfte element 33x33 | .06 | .34 A7 1€ .50 %) .22 52 .39
Protlem 5, o = 0 25x25 | .03 | .07 .03 .08 a7 EE RY 16 14
finite difference | 49x49 | .12 | .54 .26 .27 1.10 .61 .39 1.7 .82
Problem 5, 0o : 0 25x25 | .04 .08 .07 .09 .16 10 13 A7 |5 A.lf ]
finite element a9x49 | .14 | 57 | .32 | .28 1.28 64 42 124 | .89
Problem 5, o = 1/30 | 25x25 | .03 | .06 .04 .06 .07 .07 .09 .09 .09
finite difference :g49x49 ;12 79 .22 .19 .60 .36 7?31 ] -‘*(;I)“A—V;G
Problem 5, 0 = 1/30 | 26x25 | .04 | .06 .05 .05 .08 .07 .09 .09 .08
finite element hi;;ﬁ [TI M‘.‘!‘Zuqm_;Z‘T T .67 T U T T T T




fivst oomparison fakes this MG solution at the truncation error level and
uses it as in initial guess to continue solving to a discrete L2 residual
norm of 10-6; this comparison mimics having a good initial guess, as one
would have in each step of a time dependent nroblem. The second uses

u = 0 as an initial guess. Note that MICCG does muich better with a good
initi~l guess.

The clearest conclusion from these examples is that MICCG seems pre-
ferable to ICCG, especially since if one is already using ICCG, then one
can change Jjust one line of code to obtain MICCG. Another conclusion is
that MG is most impressive when solving to truncation error. We emphasize
that MG hag a mechanism for doing this which ICCG and MICCG do not have.
Whan solving to smeller tolerances, the gains for MG are less impressive,
especially in the ¢ = 1/3D case, although for the harder problems 2 and b,
they are almost even for this case.

For problems with little structure and for one shot calculatione we
recommend ICCG over MG and MICCG over ICCG. For problems that wre done
many times, it is worth investing the effort to study method Like MG.
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