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ABSTRACT

Plane strain crack édvance under small scale yielding conditions in
elastic-perfectly plastic and power law hardening materials isiinveéti-
gated numerically via the finite element method. Results indicate that
the stress distribution ahead of a growing crack is eéseptially the same

as that ahead of a stationary crack, and the numerically evaluated steady

state crack tip profiles reflect a vertical tangent at the extending

‘crack tip which corresponds to the theoretically predicted outline. It

is found that the increment ddt in crack tip opening, when loads are
increased at fixed crack length, seéms to be uniquely related to dJ/oo
irrespective pf the amount of previous crack growth, and for increments
d? of crack advance at constant external load, this quantity appears
related to Eg;-dl when evaluated at distance r from the tip, A

discussion of proposed fracture parameters for continued crack growth

(as opposed to growth initiation) is included.

- KEY WORDS: stable crack growth, small scale yielding, non-hardening

and power law hardening materials, fracture criteria for

continued crack advance.



INTRODUCTION

| The stress and strain fields associated with ctationary cracks have
been widely explored, e.g., Rice [1]. Elastic, elastic-plastic, and
viscoelastic ccnstitutive behavior under small strain conditions have
been .examined among other idealizations, and some solutions exist which
account for the finite geometry changes present in the immediate
vicinity of a blunted crack tip [2], [3]. Plane stress, plane strain
and axisymmetric configurations have been analyzed as‘cell as three
dimchsional bodies. All thcee modes of loading (viz. the opening or
tensile mode, in-plane shear, and out-of-plane shear) have been considered;
some mixed mode loading solutions also exist [4]. These extensive
investigations have revealed various correlations between the "state"
at the crack tip and macroscopic parameters such as the J integral and
the crack opening displacement.

' in contrast to the extensive literature pertinent to stationary
cracks, a paucity of solutions fcr the growing crack situation is evident.
One obvious reason for this is the added mathematical complexity -inherent
in a continuum formulation of the growing crack. Also, design procedures
" which equate the failure of a component with the initial crack extension
event may be overly conservative and a complete theory of fracture must
include a region of slow, stable crack extension between the inception of
crack protagation and final, fast or catastrophic failure.
| An analytic inveétigaticn of the extending crack problem under
~ Mode III conditions is presented by McClintock [5] with elaborations and

amplifications provided by McClintock and Irwin [6] and Rice [7], [8]."




These solutions treat the crack advance as quasistatic and consider

elastic-perfectly plastic material behavior. One conclusion of these

studies is that the strain field ahead of an,exténding crack is dominated

by a logarithmic singularity which is weaker than the 1l/r singularity
experienced at the tip of a stationary crack (where r is distance
measured from the crack tip). The weaker strain singularity is due to

the crack extending into material that has deformed plastically so that

complete refocusing of the strain field at the tip of the extended crack

is prevented. This reduced crack tip strain concentration is a primary
cause of stable crack.growth in elastic-plastic materials. .The Mode III
analyses‘coupled with an arbitrarily chosen fracture criterion suggest

that for ductilé materials the initiation of crack propagation and final
instability are separated by a region of stable crack growth in which it

is possible for a component to support additional load. This observation
provides additional motivation for the study of stable crack‘growth: the
added load bearing capacity of components designed with stable crack growth
considerations,

Detailed solutions to crack extension problems in Mode I are more

difficult to obtain. Rice 7] discusses the form of the solution to such

a plane strain problem in an elastic-perfectly plastic material under
steady state conditions, and in [8] Rice presents various aspects of the '
incremental solution to this crack growth problem. In a small scale
yielding, incremental formulation the total strain increment is derived
from the incremental displacements, and the plastic strain increment is
calculated as the difference between the total increment of strain and the

elastic increment of strain, related to the stress fieid through Hooke's law,




This stress field is given by the Prandtl slip line construction and
sihgular strain rates result in the "centered fan" portions above and
below the crack tip; the stress distribution moves relative to the

material. This incompatible elastic strain increment induces plastiq

.strain during an increment of crack advance and it is not derivable from

a displacement field. The additional straining promotes fast crack

growth due to the increased strain concentration accumulated at the crack

"~ tip. Integration of the plastic strain increments results in a term

which is logarithmically singular in r and which obtains contributions
only from the cehtered fan regions above and below the crack tip. bn
average then, the crack advances between these centered fan sgctors..
Another consequence of the elastic incompatibility is that confrar& to
the rigid plastic case in which the crack advances with a finite crack
tip opening angle, the elastic-plastic incremental formulation results in
a crack face profile exhibiting a vertical tangent at the crack tip aﬁd a
corresponding ill-defined crack tip opening angle. Both the rigid-plastic
case and the eléstic-perfectly plastic case predict a zero crack‘opening.
displacement at the tip of an extending crack. In this respect, the
Mode III, asymptotic analysis presented by Chitaley and McClintock [9]
is incorrect in its‘prediction of a nbn-zero crack opening displacement
at ‘the tip of a steadily extending crack, and the difficulty seems to
arise from their approximate numerical evaluation of an integral which
should have given zero for a result [8].

An important omission of the above analyses is the finite geometry
changes and associated large strain.fields surrounding a blunted crack fip.

Also, no account is taken of the Bauschinger effect or possible‘vertéx
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' developments on the yield surface during the non-radial loading
experienced by material points during crack growth. These effects
could lead to a&ditional strain accumulations at the crack tip.and as
such reduce any stable crack growth regimes,

Experimental observations of stable crack growth have been reported
"~ by several authors. Broek [10] reports stable crack growth under plane
stressland plane strain conditions and emphasizes that crack growth
initiation, stable crack extension, and final fast fracture must be con-
sidered as contiguous phases of crack propagation. Green et al. tli]
discuss effects of a dual fracture mode: fracture governed by shear
lips at the sides of a specimen and by plane strain considerations in
the middle region of ‘thicker specimens. This "thumbnail"” characterization
of crack advance is further investigated with regard to thickness effects
by Green and Knott [12]. The picture that emerges from these investi-
gations is that as the thickness of a specimen increases the proportionv
of flat crack front increases with the shear lip extent virtually
unchanged. Green and Knott [12] observe a constant increase in the
nominal crack opening displacement per increment of crack growth and
conclude that fhe crack face profile assodiated dith an extending crack tip
in a ductile metal is constant. They also present a model based on growth
between equally-spaced inclusionslwhich predicts a constant crack tip
opening angle. J integral experimentation due to_Clarke et al. [13]
‘and Griffis and Yoder [14] indicates a constant changg~of J with change
of crack length following the blunting of an initially sharp crack.
The implication‘is that the advancing crack tip experiences constant

surrounding fields. These results are analogous if we imagine that



‘J and‘ 8 rémain linearly related as they are in fhe stationary érack
case, | |
A critical observation made by Green and coworkers is that crack

advance may occur at a constant load level which is below load léVels
ﬁéually asso;iated with the instability of various components. The
presént analyses, however, may not éxpldre fhis point due to the rate
independent plasticity model employed.

| Finite element solutions to extending dracksbinglude the work of
de koning [15] who studies the growth of cracks under blane stress con-
ditions and compéres his nimerical results with experimenfal observations
on geometrically similar specimens. Andersson [16] studies steady'state
results for cracks in anti-plane strain and plane stress loading modes.
Sorensen [17] presenfs resulté for various Mode III analyses of moving
cracks. A key objective of the numerical solutions, aside from the |
illumination of the stress and strain distributioﬁs accompanying growing
cracks, is the investigation of possible macroscopic parameters whiqh may
be correlatéd with the "State" at the growing crack tip. Although the

meaning of the J integral is unclear in the growing crack case, J is

"known to rise monotonically with crack advance, e.g., [13], and its use

‘as a fracture predictor in the extending crack case is a possibilit§.

Other proposed parameters are the crack tip opening angle, [18], which
is taken to be a material property and the Griffith-like separation

energy rate associated with a finite crack advance step, [19].




'NUMERICAL CONSIDERATIONS

Finite Element‘ngations

A fsrm ofvthe virtual work equation, valid for‘incremehtal small
stfain thebry in which‘all integralé are carried out over the reference
volume andbsgrface, is used in the derivation of the governing finite'
element.equationéz

. J o Su. v = J Ti 6ui ds e
S ,

where hi is the displacement vector, Ti is the traction vector, oij
is the Cauchy stress tensbr; and superimposed dots denote rates. Let [N] L
denote the shape functions used to represent variations of displacement within
an element as interpolated from nodal displacement values, {u} , so that
[N]{u} represents the displacement field. The incremental strain-displace-
ment peiatioﬁ is (e} = [BI{u) » where [B] is compqsed of the appropriaté
derivétivés of [N]} The constitutive matrix is denoted‘by'[C] such that
the incremenfal stress is related to the incremental sfrain by
{} = [CIE} . Substituting the above matrix relations into the governing
variational equation and recognizing that arbitrary variations may not
influence the resulting equilibrium equations, one obtains the well known
tangent stiffness equations:

” (817 (c1 (B] av| (u} = J (N1 T (T} as

v s - o

A where'integrals are carried out over all elements and over all externally
l@aded surfaces. In conventional finifé element notation this equation is
written  [K]{G} = {P} with [K] termed the master stiffness matrix and {P}

the forcing function or right hdnd side.
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Constitutive Relations

The material constitutive behavior is modelled as isotropic, elastic-
perfectly plastic and elastic power-law hardening together with the Mises
yield condition and the associated Prandtl-Reuss flow law [20]. The

power law hardening relation is that used by Tracey [21], namely

5/00 =_(5/0° + SGEP/UO)N s where N is the hardening exponent, G is.
the shear modulus, % is the yield stress in tension, g = a-si.sij ,
s,. is the deviatoric Cauchy stress tensor eP = -e?.e?. and

1) yo= s 3 1j71j

egj is' the plastic portion of the deviatoric strain tensor. This power

law hardening expression is obtained from the relation ?/To = ( 7/n))N

for pure shear used by Rice and Rosengren [25] through the conversions
T=a0//3 , YP=/3¢P aﬁd Y=+ . No account is taken of the
Bauschinger effect or possible vertex development of the yield surface during
the non-radial loading experienced by material points during crack growth.
These.omissions must be kept in mind during the interpretation of the

present results. The non-lineaf problem is liﬁearized by specifying small
load increments and iterating within each increment for convergence to the
best representative plastic constitutive matrices. The constitutive matrix

[C] at any point in the loading history may be written as.

[cl = mfc®y + (1-m) [c®1™PL]

with 0 Sm < 1, This partial stiffness approach is due to Marcal and King

_>[23]. [Cel-pl] is determined from the normal to the yiel& surface and m

depends on the amount of elastic response an element undergoes during a
load increment (i.e.,.m = 1 for totally elastic response and m = 0 for

totally plastic response). The normal used in thesé expressions is chosen
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in the manner of Rice and Tracey [24] such that reéultipg‘stress states
precisely satisfy the yield criterion in the elastic-perfectly'plastic case
and apﬁroximatély satisfy the yield criterion in the power law hardenihg
case [21]. Typically 2 to 3 iterations are fequired per loading increment
for. convergence to an appropriate constitutive represenfation. Reassembly
and redecomposition of the master sfiffness matrix is éccomplished in a
cost minimizing manner, using the efficient procedure discussed by Yang
[25] and Sorensen [26] and various in-and-out of core procedures we re-

quired [27].

Crack Growth Simulation

A nodal release technique is implemented to simulate crack advancement
through the finite element mesh. This technique is used by Andersson [18]
and by Kfoupi and Miller [19]. - As applied here, the fecﬁnique proceeds as
follows: upon satisfaction of a chosen fractufe criterion, the crack is
deemed ‘ready to propagéte and the boundary'condition aé thé crack tip passes
from displacement controlled to traction controlled; The reaction fo:ce
corresponding to the zero displacement condition at the crack tip node is
calculated and relaxed to zero in five equal increments. Following this -
procedure, the crack tip has advahcgd by one element length. The present
analysis hoids external loads constant during the nodal.reiaxation p;écé-
dure. It is anticipated that due to the history dependéncg of the strain
distribution the process of nodal force relaxation under increasing external
load might result in a somewhat different strain state ahead of the crack
tip from that pbtained under constant external load. The present results.

- are interpreted as representative of crack advance under constant load or

perhaps under slight increasés of external load.




Element Modelling

The element used in the present analyses is the consfant strain
triangle, Turner et al. [28]. Quadrilaterals are formed.from four of these
elements in the ménner of Nagtegaal et al. [29] to accommodate the
possibility of nearly incompressible straining, and fhe degrees of freedom
associated with the internal node are eliminated from the stiffness equa-
tions, [30]. This configuration in no way accounts for the mathematical .
singularities encountered at the crack tip but useful results are obtained
by sufficient mesh refinement (see discussion of results). Due to the
noda; release technique employed in the analyses, no use of special crack
tip singular elements, e.g., Tracey (31] and Wilson [32],.is made since the
crack advance would require a procedure for refocusing the mesh at the
tip of the extended crack. In this context an Eulerian finite élement
formulatiﬁn holds much promise, for then a mesh remains focused at the
crack tip and singularity elements may be employed; however, such a formu-
latién presents other difficulties such as the convective terms which require
spatial derivatives of field quantities and an economically feasible formu-

lation has not yet been found.

‘Numerical Procedure

Folloying an elastic increment in which the highést stressed element
'is scaled to céuse incipient yielding, various increments of load équal to
10 or 20% of that in the initial solution ére carried out, Tﬁe nodal release
procedure is implemented upon achievement of the static similarity solution
of Tracey [21] and further loading is applied at the new crack length.
Various steps of crack advance and external loading at constant crack length

are performed. Displacement boundary conditions corresponding to the elaétic
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singular strain dominant at the crack tip'are spécifiéd on a radius which

is 224 times the smallest elemeﬁt size and 20 times the maximum extent which
the plastic zone acquires in the course of the computation. These ratios
insure an appropri;te bdundary layer formulation of the small scale yield-
ing situation [7]. The next term beyond the inverse square root singularity
in tﬂe surrounding elastic fieid, namely a tension T parallel to the crack,
is taken as zero, Figufe 1 presents the load historieé relevant to the
-analyses presented here; in this figure, Ko is the stress intensity fac-
tor at the first load increment, 9, is the yield stress in tension, and
2-20 ié}the-difference between the current and initial cfack lengths,
These‘"staircase" load histories represent hypothetical cases which might

be found in service,

Mesh Configuration and Material Properties

The finite element grid used in these analyses is indicated in figure 2

with details of the refined mesh surrounding the crack tip presented in
figure 3. A total of 1660 elements is used together with 865 nodes and 1730
degrees éf freedom, Use of stati§ condensation reduées’the number of active
degrees‘of freedom to 946. The radius of the outer ring in figure 3 divided
by the smallest element length is 28. The radii of the rings in figure 2
‘divided by the inner elemeﬁt length are 28., 34., 42,, 52., 64,, 80., 104,.,
>136., 176. and 224, ' The radial lines are spaced at 10 degree intervals.
Material properties are v = .3 and E/oo = 1600 where ﬁ is Young's
modulus and % the tensile yield strength. The analysis correspohding

to the ideal plasticity case was carried out on the IBM 360/67 available'at
Brown University Computing Laboratory. The two hardening analyses were
performed using the IBM 370/168 available at the Massachusetts Institute of

Technolbgy.
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RESULTS AND DISCUSSION

Crack Face Profiles

- Figure 4 preeents crack face profiles_following the load incrementation
‘procedure for the stationary crack and following the final crack advance
step fer the cases N = 0.0, 0.1 and 0.2, The profiles followxng the

- final crack advance step are considered representatlve of steady state
‘eondltlons_ln the vicinity of the crack tip but not overall as away frem
the eraek fip the crack faces experience continuing deformation. Direct
compafisons of the stationary crack profiles with those of Tracey [21]

indicate maximum deviations of 6%, 5% and 3% for N = 0.0, 0.1 and 0,2

-.respectiveiy. Since the present analyses do not employ special singularity
elemente like those of Tracey [31] and do not include finite geometry changes,
the crack tip opening displacements, 6 , are estimated by extrapolation.

,l! : For the nen-hardening case, a value of 0.66 is obtained for 6 nondlmen31on-

.allzed by J/o , where J is taken equal to (l-vZ)Kz/E corresponding to
the small scale yielding 31tuatlon. Tracey predicts a value of 0.54 for
thls ratlo, but Parks [33] suggests that this number should be 0.65 due to

“the artlflc;al path dependence of J that seems (through comparison with
a corresponding "deformation theory" solution based on Tracey's mesh, lead-

- ing to similar.path-dependence) to be directly traceable to Tracey's non-
hardening singularity element. For non-hardening blunting solutions,

VMcMeeking [3] reports values for the non-dimensionalized crack opening
displacement between 6.55 and 0.67 depending on the ﬁeint of measurement.

‘The larger of‘tﬁese two numbers is representative of larger values of
oo/E s on the order of 1/100 . For oo/E equal to 1/300 ‘and N = 0.1,
McMeeking reports values of 'the non-dimensionalized crack opening.displace-

ment between 0.41 and 0.44, and for N = 0.2 values between 0.27 and 0.30
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are reported, although higher values result when measured at the elastic
plastic boundary. The present hardening analyses predict a value of 0,54
for the non-dimensionalized crack opening displacement when N = 0.1 and
0.44 when the hardening exponent equals 0.2. The good agreement of the
extrapolated values of 6§ with the work of McMeeking and others lends
confidence to the results of the present analyses as regards the .prediction
of the crack face profiles.

Figure 5 presents crack face profiles at key points in the evolution
of the prescribed load history for the non-hardening éase.' This analysis,
- which models crack growth at constant load between equidistant nodal points
in rate independent materials, results in a crack face profile which as
the crack advances becomes less angular with distance from the crack tip
~ (where fhe "angle'" is measured clockwise from a horizontal line behind the
crack tip). This is also true for the hardening casés as indicated by the
‘final crack prdfiieé~shown on figure 4, Rice [7], [8],for quasistatic
crack advance in a non-hardening material, derives a displacement distri-
bution proportional to r #n r (where r is the radiai disfance measured
from the crack tip) which implies é vertical tangent at r = 0 ., Nodal
displacements from the present analyses permit curve fairing which
exhibit the vertical tangent rgquired by the analytic solution., This
infinite slobe is a local phenomenon ana may not overly influence the
éffective definition of a crack tip opening angle, defined here as the
total angle bétweenAthe seﬁarating crack faces behind the extending crack
tip. However, this remains an gpen issue in‘ﬁeed of fprther study. Due
to the linear interpolation functions used in the present analysis, this
angle is evaluated at the node immediately behind the crack tip and resulting

values are presented in Table I, The trend towards a steady state value is
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épticipatéd frOm the prescribed loading, and the nuﬁbers in Table I indicate
the material dependent nature ofAthe crack tip opening angle., As the final
displacement distribuéions on figure 4 suggest, the angles would be léss
if based oﬁ elements further back from the crack tip, and the parameter
seems to be meaningless according to theoretical considerations in the
limit of r approaching zero. To further clarify the role of the crack
tip opening angle and its relation to continuing fracfure, a finite strain
analysis in the spirit oflMcMeeking [3] is desirable for the region in the
vicinity of the crack tip. |

Prior to any crack advance, the crack opening displacement-is'related
to the externai loading according to & = aJ/o° ’ where a is dependent
on material properties and hardening exponent. As previously.remarked,
values of a for the stationary portion of the present analyses are 0.66,1
0.54 and O0.44 which agree well with published values. Following crack
advance, the load ﬁistories prescribe increments of external load at
constant crack length, and a relation between incrementél crack opening

displacement and increments in external loads is

A6 =a =, | (1)

Values of a in this relation are presented in Table II; increments in -
crack dpening displacement'are measured at the node imhediately behind the
current crack.tip-and‘the original crack tip position. The numbers

in Table II indicate that the nominal crack tip opéning displacement
continues to be effectively characterized by increments in J for external
ioading at fixed crack length following crack advance steps. For each of

these analyses, « seems to be constant, namely 0.66, 0.54 and 0.u44 for

N = 0.0, 0.1 and 0.2 respectively.
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. Thé present analyses prescribe crack advance ‘at constant external
load, and here the resulting incremental crack surface displacements are
related to fhe crack advance step. Rice [8] obtains a relation between
incremental displacements resulting from an' increment of crack advance, df ,

and the increment of crack advance, This relation may be written as

g

_ o : R
dui =5 [Ai(e) + Bi(e) &n ;] dl.-’

where Ai(e) and Bi(e) are dimensionless functions and' R is a
characteristic length of the plastic zone. Noting that for small scale

yielding R scales with EJ/oo2 » and specializing the above expression

. to the crack surface (6 = 7) , the following is obtained

[o} - .
ds = =8 o EJ Jap . A (2)
cozr .

Here,‘thé proportionality constanté have been lumped into B and A , and
dé is the crack opening displacement increment. Equation (2) may be
integrated to obtain an expression for the additional crack opening dis-
placement resuléigg at a fixed point X as the crack advances under
constant J from 21 to 22 s two crack lengths such that 22 > 21 2 X .,

The integration results in

g

§(2,5%) = 8(2,,%) = 8 == |(2,-X)n ASEL__ _ (2,-x)en 2L | [ (3
: 0,2(2,-X) 9,202 -X)

For the node immediately behind the advancing crack tip, & = X and the

1
second term on both the left side and right side of (3) is zero. Figure 6
Presents a plot of crack surface displacement values for the node immediately

behind the crack tip taken from the present hardening and non-hardening

analyses. The plot indicates a unique pair (B,A) which satisfies

~—
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equafion (3), namély B=9.5 and A = ,04 .. These values of B and A

| do not~correctly predict the incremental crack opening displacement due to
crack advance at the other nodes behind the advanc1ng tip, 1nd1cat1ng that
(2) may apply only w1th1n a certain distance from the crack tip. This
latter point is currently under further investigation. However, the gpod
correlation provided by (2) for incremental crack 6pening near the advancing
crack tip due to-an increment in crack advance at constant external load
-indicates the possibility of using (2) in conjuncfiqﬁ with (1) to provide

a relationship for the characterization of incremental créck opening dis-
placements with increments of external loads as well. That is,

dad 0o

dd = ¢ — + B_lnﬂ_dl . (l})
g E 2
(o] Uor

This equation appears useful in the study of continuing fracture and its
use in developing a fracture criterion based on near-tip crack opening is

presently under examination.

Stress Distributions Ahead of the Crack Tip.

The stress fields associated with hardening and non-hafdening plane
strain, stationary cracks under small scale y1eld1ng conditions are provided
by Tracey [21] Figure 7 presents curves for the opening stress ahead of
a stationary crack together with corresponding cehtroidal'stréss values éf a
-elements directly ahead of the crack tip takén from the present~ahalyses.
fhe distance from the crack t1p to the centroid is used for the position
on the abcissa of the plot. Max1mum deviations of the present results from
Tracey's curves are 5%, 5% and 7% for N = 0,0, 0,1 and 0.2 respectively,
The good agréément of these values is a consequence of the fine me;h em-

ployed in the solution.
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. As the stress gradients near the crack tip become’ steeper with

increésing hardening exponent, the deviations of the present results

from those of_Tfacey are expected to increase since these analyses make
no‘use of singular elements but rely on fine mesh gpadétion to captufé
the appro@riaté stress distributiéns. This formulation provides little
informafion on the angular stress distribution as r approéches éerd and
does not preéisely obtain the factor of 2,97 in 02é stress elevafibnv
over o . as the Prandtl solution demands in the non-hardening case.

Figure 7 also indicates points corresponding to the apparently steady
~state stress distribution predicted in the present analyses. Following the
final crack ddvance step, there are minor elevatioﬁs of 622 ahead éf the
tip with maximum deviations from Tracey's results for a stationéry crack
of 4%, 3% and 7% for N = 0.0, 0.1 and 0.2 . Similar plots of the 99
stress distribution ahead of the crack tip following intermediate crack
advance steps reveal points between the static and éteady state points
presented in figure 7. The conclusion is that under small scale yielding
.cqnditions for both-hardening and non-hardening materials, the 920 stress
distribution ahead of a growing crack is effectively the same as the

corresponding stress distribution for a stationary crack.

Material Stress Histories

Three material point.sfress-histories are now described., .The points
under scrutiny are the element immediately behind the initial cbéck tip,
an elément ahead of the initial crack tip and on the prospective fracture
plane and an element ahgad of the initial éréck tip but removed from the
fracture plane. These material points are designated element A, B and C

respectively and are indicated on figure 3. The stresses described are



‘centroidal stresses associated with the constant strain triangles uéed in the

analyses. -

Element A:

Following the final.sfatic load incrementation step, values of oll/oo
are 1,14, 1.29 and 1.51, values of 0,,/0, are 1.27, 1.4k and 1.69 and
values of 0,,/0, are -0.57, -0,69 and -0.86 for N = 0.0, 0.1 and 0.2
respectively. Upon subsequent érack advance and load incrementation stepé,
both '°i2 and 990 become small in céntrast with %11 'which dominates
the lateﬁ'stress history. After the last crack advance step,
non-dimensionalized values of g, are 1.07, 1.13 and 1.06 for the three
analyses. The final value of o), Sseems to represent a residual tensile
stress in a plastic wake région. For the non-hardening case there is some
continuing plastic flow in this wake, but not in the hardening cases. This
is due to the isotropic m§del of strain har&ening used in these analyses
and underlines the sensifivity of the results to the constitutive model used.‘
The Prandtl stress distribution suggests that 911 = 1.15 g, on the crack

surfaces immediately behind the crack tip, and the final value of %1 in

the non-hardening case is 7% below this number.

'Element»Bg

This material point lies ahead of the initial crack tip but behind the
‘final crack tip position in these analyses., This material experiences con-
tinued increases in 91 and 9o during the first two nodal release steps.
vValues of 622/°o‘ following the second nodal release step are 2.74, 3.03
and 3,45 for- N = 0.0, O.l and 0.2 respectively. Then, during the remaining

nodal release steps LDP drops to a small value and %, becomes the

dominant stress at the point. It is not surprising that T9p should‘drop o,
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drastically, because the traction free boundary condition imposed on the
open crack face requires that 99 be zero there (aésuming4negligible
deviation of the surface normal from the 'X2 direction); Also, following
thevthird'nodal release step during which this element becomes part of the
material behind the crack tip; values of 012/06 are -0,56, ~0.67 and -0,80
for the three hardening éxponents. For the non-hardening cése, %1 and
9o are nearly equal and this is consistent with the notion that at this
vstagé of its history the element is part of a centered fan above the crack
tip requiring a hydrostatic stress state coupl;d with plastic shearing.
Then as the crack advances further, this element passes from the centered .

fan region to a residually stressed wake region as discussed above,

Element C:

This element is further rgmoved from the plane of fracture than element
B;above. Figure 8A presents a plot of its stress history versus crack
advance step for the.non-hardening case. This plot is also representative
of the hardening results but with an appropriate shift 6f the verfical axis.,
Figure 8A aléo presénfs stresses as predicted from a Prandtl streéss distri-
Bution tbavelling with the crack; the Prandtl slip liﬁe construction is
indicated in figure 8B, ?he{material-point under discussion is imagined
envelépéd:by region 1 in figure 8B following release 1, iﬁ the centered fan
of region 2 following release 2 and 3 and in consfant state regioﬁ 3 follow-
ing the final two steps of crack advance. TFor the stress values plotted
in figure 8A, 6 is taken as the angle between a horizontal line and a
line joining the centroid of element C to the actual érack tip. The
ﬁuméricélly calculated stress distribution reflects a pattern similar to
that predicted by the Prandti field. However, the fuzzy crack tip phenonenon

is also evident. This terminology describes the consequences of a finite
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element discretization which cannot exactly reproduce appropriate strain’

singularities at the crack tip so that elements surrounding the crack tip

respond to>an i1l defined crack tip with a corresponding vagueneés in the
definition of 6 and r . This effect is minimized as the mesh is refined.
These brief descriptions of material stress point histories reinforce
the previously made point that the steady state o,, Stress distribution
is effectively the same as that«prior to any crack gxtenéion. Additional
conclusions are: i) following crack advance steps, points positionally
similar with respect to the crack tip experience similar stress histories
of ioading and unloading which suggests that a steady state prevails near
" the advancing crack tip. Positionally similér stress histories are a tacit
assumption of the ideally plastic theoretical anélysis of plastic strain
singularities for growing cracks [7], [8] discussed earlier. ii) prior to
any given nodal release step the elements surrounding the crack tip
experience‘essentially the same stress field as those'surrqunding a
stationary crack. This stress field, within the limifations of the présent
analyses, resembles the Prandtl slip line solution for thelnon-hardening
situation.' iii) the wake material is dominéted by a residual, tensile 9,

stress which results in continted yielding in the non-hardening case, but not

in the hardening cases due to the isotropic hardening model used.

Plastic Zone Shapes

The shapes of the active plastic zones, corresponding to the final static
load increment and the final step of pragk advance, nondiménsibnalized by the
similarity quantity (Ki/oo)2 are presented in figures 9A, 9B and 9C for
the hardening exponents 0.0, 0.1 and 0.2 respectively. The plastic zone

shapes corresponding to the static crack solutions are in good agreement with
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appropriate cases documented in [21], [24] and_[S%]} The effect of the crack
advance on the shape of the plastic zone is to -constrict its width and to
tilt the inclination of thé zone towards the symmetry axis ~(X2 = 0) .
Between the nodal release steps and depending on the ambunt of load incremen-
tation, the plastic zone attempts to restore the butterfly shape familiar
from static crack analysis. The achievement of a stéady state solution is
particularly'evident from results‘of the non-hardening case which includes
two consecutive nodal release steps; there is negligible-difference between
the plastic zone shapes following these crack advance steps. The small,
actively plastic wake region in the non-hardening case\contrasts sharply
‘with the lack of this region in the hardening cases. As has been remarked,
‘this is attributed to.the'isofropic constitutive theory used in these
analyses. 'Also, the angular tilt and plastic zohe.conétriction are remi-
niscent of similar growth effects encountered in Mode III aralyses,

e.g., [9] and [17].

Material Strain Histories

fhe equivalent plastic strain history of a material point in the slip
line fan above the crack tip before crack advance indicates a high amoﬁnt
of straining prior to crack advance, further straining during the first nodal.
réleése étgp and negligible fufther straining. The strain incurred during
the first crack advance step is. due to the fan region sweeping by the
material point. A material point positionally similar with respect to the
crack tip before the third crack advance step is not plastically straingd
uﬁtil'the crack has advanced sufficiently to engulf this pointvwith its
accompanying plastic zone. This element is then strained irreversibly, but

less than the corresponding element in the stationary crack case. Ratios of



-2]-

the plastic strain atrthe second material point prior to nodal release 3
diQided'by the plastic strain at the positionally similar material point
prior to the first step of crack advance are 0.95, 0.92 and 0.87 for

N = 0.0, 0.1 and 0.2 respectively. These values corroborate the observation
of Rice [8] that the strain field associated with an extending crack sustains
a weaker singularity than that associated with a statibnary crack, r-l
versus 2n r-l for the non-hardening case. The above ratios also imply
that, at least for strain controlled ductile rupture mechanisms, the extent

of stable crack growth is greater for a hardening material than for a non-

hardening material.

Separation Energy Rates

Each of the nodal release steps provides a record of vertical displace-

-ment versus reaction force, Calculating the area under this. curve and

dividing by the finite crack advance step one obtains a separation energy
rate, GA in the notation of Kfouri and Rice [35]. It is the finite value
of the crack advance step that renders this calculation non-trivial, for in
the limit of growth step approaching zero and for materials which exhibit

a finite stress level at the crack tip such a calculation yields zero for

,GA , [361]. GA values taken from the work of Kfouri and Miller [19] and

MclMeeking [3] togéther with values from the present analyses are plotted on
figure 10. The points of Kfouri and Miller résult from the plane strain
analysis of the tensile and equibiaxial loading of a finite plate containing
a'crack. The ratio of crack length to plate width is 0.125 and the ratio of
Young's modulus:to initial yield stress is 667.7. Their analyses model the
material as linear hardening with a tangent modulus edual to 0.023 times

the elastic modulus and Poisson's ratic equal to 0.3. The points of
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McMeeking are taken from separation energy rate calculations for the small
‘scale yieldiﬂg analysis of a blunted notch; material properties are
E/o° = 300 , Poisson's ratio = 0.3 and a power law hardening exponent
N equal to 0.1l. McMeeking's work includes finite strain effects at the
blunted notch and employs crack growth steps on the order of the crack
opening displacement, whereas the growth steps employed by Kfouri and Miller
and the author are much larger. The "steady state” point of McMeeking
.corresponds to the'final growth step calculated and it is presented for
_compléteness although his analysis does not indicafe that steady state
conditions are achieved. |

The éxplanatioﬁ for the separate pattern of poinfé due to Kfouri and
Miller is thought to be the "T effect", which is exploréd by Larsson and
Carlsson [34] and Rice [37]. The origin of the effect is the presence of
non-vanishing, non-singular terms in the eigenvalue expansion of the elastic
stress tensor at the crack tip in plane strain. The points corresponding
to the equibiaxial tensile loading case of Kfouri and Miller provide the best
fit with points from the present analyses, This is because the present
formulation has T = 0 and for an infinite plate under equibiaxial loading,
T = 0 (for a finite plate T = 0 ) . Kfouri and Rice [35] present a reiation
between J and GA for the feﬁsile load case in an efforf to correléte fhe
two quéntities, but a subsequent communication with Kfouri has indicated a
different relation for fhe equibiaxial loading case. - The conclusion is that
the use of J as a correlator of the separation energy during a finite
growth step of the size they explored is sensitive to the non-zero, non-
singular stress terms present at the crack tip in plane strain. Figure 10
also indiqates that the value of GA is sensitive to the degree of strain

hardening. But, these observations are made for points corresponding to
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growth step sizes far in excess of ‘values comparabié to the crack opening
displacement. Since it is in a region of linear extent on the order of
craék opening disblaéement that ducfile fracture mechanisms such as void
coalescence and.localization of shear dominate, it would seem to ye step
sizes of this order that are of greatest interest. By using such small
crack advance steps it may be investigated whether J ,corrélates with G
independently of T , the value of N and the extent of yielding; that is,
do all the curves which are different for larger crack advénce steps merge
into a single curve for step sizes on the order of the crack openings dis-
placement. At present, only the values reported by McMeeking have growth
steps in this range. Of course, in such analyses finite strain considera-
1 tions must bé properly treated, McMeeking and Rice [38].' Due to the‘elastic .
-unloading that. occurs during crack advance, J should bé correlated with
'GA values for the initial nodal release; similar correlations with G
vélues for subsequent nodal releases must be interpreted carefuliy,due to
the ciouded meaning of J ~following crack extension,

Finally,'g discussion of the validity of the GA quantity is warranted.
The nodal reactién force to be relaxed to zero is related to the stress field
surrounding fhe crack tip. As this force is relaxed to zero, the appropriate
nodal‘dispiaéement'is monitoredAso the work expended in the reiaxation"
process may be calculated. The elastic unloading of the body and the '
ac¢umulated strain at the crack tip influence this displacement. Howéver,
no éize scale is inherent in this calculation except that imposed by the
f1n1te element mesh, and as such, the fundamental 31gn1f1cance of GA is
obfuscated unless a direct correlation of the step of crack advance may be-

made to a microstructurally significant dimension such as the crack opening

displacement. Although their model involves failure by‘cleavage, the



necessity of an appropriate size scale in a fracture criterion is emphasized
by Ritchie et al. [39] who correlate the fracture toughness of mild steel
with the achievement of a critical tensile stress over a distance on the

order of the spacing of crack nucleating carbides.
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.CONCLUSIONS
| The following conclusions aré drawn from the present analyses:

(i) The advancing crack profiles are consistent with the thesretical
result of a vertical tangent at the crack tip. Since this is a local effect,
it may yet be possible to sensibly define a crack opening angle.

(ii) Extending cracks in hardening and non-hardening materials are
subject to effectively the same stfess distributions as geometrically similaf
stationary cracks. The strains accumulated ahead of a moving crack tip are
less than those of a corresponding stationary crack in corroboration of the
analytical work of Rice [7]; [sl.

(iii) The active plastic zone ahead of a growing crack constricts and
tilts, paralleling the behaviér predicted from analytic aﬁd numerical inves-
tigations of Mode III cracks.

(iv) For separation energy rates calculated for crack growth steps
much gfeater than the nominal crack opening displacement, the use of J as
a correlator is highly sensitive to strain hardening properties and the
defcail_s of external loading.

- (v) The incremental opening at the crack tip, due to load increase at
Afixed‘crack length, seems to be given by dé§ = a dJ/oo ;3 the value of «a
depends on material properties but is the same regardless of the extent of
crack growth. Increments in crack surface displacement may be correlqted
with increments of crack growth at constant external load through the
expressioﬁ

° AEJ

o .
dG-—E:-BZn "

' g r
o]

a2 .

The parameters B and A are constant in these analyses.
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Considerations which remain to be addressed are the effects of

crack advance under increasing external load, the effects of different

piasticity models on the present small scale yielding solutions and the
effects of large scale, fully plastic specimen behavior. Also, the role of
the finite strain at the root of a blunted crack should be further investi-

’

gated in the extending crack situation.
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Crack Tip Opening Angles (radians)

Table I :
Release 1 Re}ease 2 Release 3 Release Y4 'Reiease 5
=0.0 | "0.015' 0.016 0.017 0.017 0.017
= 0.1 0.016 ‘ 0.017 | 0.018 0.018 -
N = 0.2 0.018 0.0197 0.029 ' 0{0?0 -




N = 0.1

Table II : Values of a in the correlation of dé and dJ/oo

Measured at Original

Measured Immediétely Behind
Current Tip L . Tip Position
‘ After After After After After - " After
‘Initial Value Release 1 Release 2 Release 3 Release 1 Release 2 Release 3
0.66 0.65 0.66 0.66 0.65 '0;60 0.60
&
0.54 0.54 .0.53 0.52 0.54 0.51 0.54 w
0.4y : 0.&3 0.43 0.4l 0.43 0.41 o.u46
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LIST OF FIGURE CAPTIONS

Figure 1. Load histories applied to the present analyses.

Figure 2. Schematic repbesentation of finite element grid and
boundary conditions.

Figure 3. Arrangement of elements in fine mesh region.

Figure 4, Crack surface displaéements, stationary and steady state
advancing crack solutions for N=0,.0, 0.1, and 0.2. '

Figure 5. Evolution of crack surface displacements through the
' loading history of the non-hardening case.

Figure 6. Correlation between increments of crack opening displacement
and J.
Figufe 7. 0.. stress distributions ahead of the crack tip.

22

" Figure 8. (A) Stress history of element C plotted versus crack advance
' for the non-hardening case.

(B) Prandtl slip line field stress distribution.

Figure 9. ~ (A) Stationary and steady state plastic zone shapes for N

= 0.0,
(B) Stationary and steady state plastic zone shaped for N = 0.1l.
(C) Stationary and steady state plastic zone shapes for N = 0.2,

Figure 10. Separation energy rates correlated with J and'plotted versus
growth step.
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