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ABSTRACT: We propose a renormalizable model with no fundamental scalars
which breaks itself in the manner of a “tumbling” gauge theory down to the stan-
dard mode] with a top-quark condensate. Because of anomaly cancellation require-
ments, this model contains two color sextet fermions (quixes), which are vector-like
with respect to the standard model gauge group. The model also has a large num-
ber of pseudo-Nambu-Goldstone bosons, some of which can be light. The top-quark
condensate is responsible for breaking the electroweak gauge symmetry and gives
the top quark a large mass. We discuss the qualitative features and instructive
shortcomings of the model in its present form. We also show that this model can
be naturally embedded into an aesthetically pleasing model in which the standard

model} fermion families appear syrametrically.
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Recently there has been a great deal of interest in the idea[l-4] that the electroweak
symmetry of the standard model is broken by a top-quark condensate. This would give
a natural explanation for the fact that the top quark has a much larger mass than any
of the other quarks and leptons, while simultaneously providing an electrowsak symmetry

breaking mechanism without a fundamental Higgs scalar.

In early versions of this idea, the top-quark condensate was supposed to be induced by

a gauge-invariant but non-renormalizable four-fermion interaction
9% =i\
Lo ~ 73 (@) (1Q14) (1)

introduced at a scale M which must be larger than the electroweak breaking scale. [Here
Q' is the left-handed third generation quark doublet, the i is an SU(2), index, and ¢t is
the right-handed part of the top quark. Color indices are suppressed.] If the coupling g is
large enough at the scale M, then a Nambu-Jona-Lasinio (NJL) mechanism[5] will trigger

the formation of a top-quark vacuum expectation value (“condensate”)
(@) = w6 (2)

which breaks the electroweak symmetry. The Higgs scalar boson is a composite top-anti-
top state bound by the interaction (1). The top-quark has a Yukawa coupling to the

composite Higgs which is of order unity, and thus the top quark obtains a large mass.

The original formulation of the top-quark condensate idea is rather unsatisfying be-
cause it involves the ad hoc and non-renormalizable in‘eraction (1). Now, there is an
obvious precedent for four-fermion interactions in elementary particle physics. The weak
interactions were originally described by an effective four-fermion interaction which was
later found to follow from integrating out massive intermediate vector gauge bosons. Sim-
ilarly, one can imagine that (1) is the result of integrating out some heavy vector gauge
bosons. In this scenario, the top quark is heavy because it couples to a new gauge in-
teraction which is strongly coupled and spontaneously broken at a mass scale larger than
the electroweak symmetry breaking scale. The most obvious way that this can happen is

for the new interaction to be an asymptotically free non-abelian gauge theory. Then the
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running gauge coupling constant will increase as we go to lower mass scales. Eventually,
the gauge coupling becomes large enough to drive the formation of condensates, and the
new gauge symmetry is then spontancously broken (e.g. by a mechanism to be proposed
below) so that it does not confine. Several authors [6-12] have recently enumerated some
possibilities for the form of the renormalizable theory. Other interesting extensions of and

observations on the top-quark condensate idea are found in [13-26].

There are several important constraints on the top-quark condensate scenario which
come from demanding that it arise from a renormalizable Lagrangian featuring a new non-
abelian gauge interaction. These follow from the simple observation that if the top-quark
has a special new gauge interaction, then other fermions must also have that gauge in-
teraction in order for the full theory to be free of all gauge anomalies. Generally, these
fermions will be “exotic”, that is, they have transformation properties under the standard
model gauge group which are different from the known quarks and leptons. Of course, the
prediction of new exotic fermions from the top-quark condensate idea may be interesting
if they are sufficiently heavy to have avoided discovery until now, but not heavy enough
to avoid discovery forever. This can happen if the exotic fermions are in a complex rep-
resentation of the full gauge group including the new strongly coupled interaction, but
transform under the standard model subgroup as a real representation, so that they are
eligible to receive masses. Note that one danger to be avoided in top-quark condensate
model-building is that a priori these fermions might also participate in condensates which

could break the standard model gauge group in unacceptable ways.

The new strongly coupled gauge interaction will have an approximate chiral symmetry
which is spontaneously broken and includes the electroweak symmetry as a subgroup.
Then, as in technicolor models, there will be a number of potentially light pseudo-Nambu-
Goldstone bosons (PNGBs) which are bound states of the fermions which couple to the
strong gauge interaction. These also may provide a means of experimental verification
or falsification of any particular model. The specific properties of the extra fermions and
PNGBs of course depend on the particular model, but models like the one we are going

to consider here are always going to predict some non-standard-model phenomena of this
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kind. Traditionally, the economy of the top-quark condensate idea based on the non-
renormalizable interaction (1) has been used[4] to make predictions involving constraints
on the top-quark and Higgs masses. In contrast, the non-economy implied by demanding
renormalizability could provide a different kind of prediction involving the existence of

non-standard model particles,

To build a renormalizable top-quark condensate model, one may select a gauge group G
which contains as a subgroup the standard model gauge group Gsy = SU(3)c x SU(2), x
U(1l)y. The fermions transform as an anomaly-free, complex representation of G. This
representation contains the usual standard model quarks and leptons transforming in the
usual way under Gsyy, as well as some “extra” fermions which transform as a real rep-
resention of Gsp. A simple subgroup H of G becomes strongly coupled in the infrared,
producing the top-quark condensate and possibly other condensates involving the other
fermions which couple to H. Now, one musﬁ also have the spontaneous symmetry breaking
G — Gsm. Thus we are in a curious position: having explained the cause of electroweak
symmetry breaking Gsy — G = SU(3)c x U(1)gm by means of a top-quark condensate,
we must now explain the origin of the symmetry breaking G — Gsp! The purpose of this
paper is to propose a renormalizable top-quark condensate model in which the sponta-
neous symmetry breaking occurs naturally without any fundamental scalar fields. This is
accomplished by arranging that one of the “other” condensates breaks G — Gsjs while the
top-quark condensate breaks the electroweak symmetry. In other words, the theory with
gauge group G and an appropriate fermion representation automatically will break itself
in the pattern G — Gy — G, exactly in the manner of “tumbling gauge theories”[27].
Indeed, we will find it most convenient to employ the language and dynamical assumptions

of [27] in order to get a qualitative understanding of our model.

We choose as a gauge group G = SU(3); x SU(3)g x SU(2), » U(1)y. The standard
model color SU(3). is the diagonal subgroup of SU(3); x SU(3)9. This is exactly the

I

gauge structure used in Hill’s recent “Topcolor” model[6j.]L However, we choose a. different

This gauge group was also earlier employed in models[28] which have nothing to do with
the top-quark condensate idea.




set of fermion assignments for three reasons. First, the spontaneous symmetry breaking
G — Gy will be an automatic consequence of the condensation pattern given our choice
of fermion representations, whereas [6] requires a fundamental scalar (or some unspecified
dynamical mechanism) in order to provide this breaking. Second, as discussed in [12], the
fermion representations in [6] contain a real representation of the unbrokcn gauge group
G. This means that there are allowed bare mass terms in the case of [6] (one of which
involves the right-handed part of the bottom quark) even before symmetry breaking. In
order for [6] to work, one must make the assumption that those mass terms are prohibi_ted
by an ungauged global symmetry whose raison d’etre remains mysterious. Third, we will
show at the end of this paper that our choice of fermion representations allows a natural
extension to an aesthetically pleasing model which treats the three families of quarks and

leptons in a symmetrical way.

We assign fermions to the following representations of G = SU(3); x SU(8)gx SU(2). x
U( 1 )y .

a ~ (81,1,-1/3) Q@  ~ 2x(1,3,2,1/6)

fi,fa ~ 2x(3,3,1,1/3) ¢ u ~ 2x(1,3,1,-2/3)

Q ~ (3,1,2,1/6) d ~  (1,3,1,1/3) (3)
t  ~  (3,1,1,-2/3) i, L LL ~ 3x(1,1,2,-1/2)

¢ ~ (1,6,1,-1/3) T, 1y € ~ 3x(1,1,1,1)

[The gauge transformation properties of fermions are always given in terms of left-handed
two-component Weyl fields in (3) and throughout the rest of this paper.] It is easy to check

that all of the gauge anomalies cancel with this fermion content.

How do the standard model fermions fit into (3)? After the symmetry breaking
SU(3)1 x SU(3)2 — SU(3)c, a fermion which transformed under SU(3); as Ry and under
SU(3)g as Rg will transform under the diagonal SU(3). as the direct product representa-
tion R; X Rg. So f; and fy each transform under Gsp as (3,1,1/3) +(6,1,1/3). The
two copies of (3,1,1/3) in f and fy are identified as the charge conjugates of two of the
right-handed down-type quarks of the standard model. It is easy to see that (3) contains
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three standard model fermion families transforming under G, as
3x[(3,2,1/6) +(3,1,-2/3) +(3,1,1/3) + (1,2,-1/2) + (1,1,1)) (4)
along with two vector-like quixes

2x[(6,1,1/3) +(6,1,-1/3)] : (5)

y

Note that the quixes are in a real representation of the standard model gauge group and
are thus eligible to receive masses after the symmetry breaking G — Gsy. Also note that

fractional electric charges are confined in this model.

In order to understand the symmetry breaking and generation of masses in this model,
let us now suppose that all of the gauge couplings are weak at some sufficiently high energy
scale and consider what happens as we move to lower energy scales. Note that SU(3);

and SU(3)g are both asymptotically free; their B-functions are given to one loop order by

dg 19
B = ﬂ'd—j = _48—7{2-‘(]? _ (6)
d 15
and By = “:i% = —;1‘87'2‘93’ - (M

Therefore it is quite reasonable to assume that SU(3); becomes strongly coupled first in
the infrared, while the other couplings remain small. Thus SU(3); plays the role of H in
this model.

In order to understand the pattern of fermion condensation in our model, we may turn
to the dynamical assumptions outlined in [27], which we now briefly review. Consider a
model which consists of an asymptotically free gauge theory which couples to some fermions
but no scalars. The fermions may also have weakly coupled gauge interactions whose ef-
fects may be treated perturbatively. When the strong gauge coupling becomes sufficiently
'arge in the infrared, a scalar fermion bilinear condensate will form in an irreducible rep-
resentation of the gauge group. Suppose that the fermions involved in the condensate
‘ransform under the strongly coupled gauge group in the irreducible representations R

aud Ry, and the resulting condensate transforms as Rs. (We treat all the fermions here
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as left-handed two-component Weyl fermions.) Thus R;s occurs in the direct sum decom-
position of the direct product R} x Ry = Rs + ---. We need a way of deciding for which
éhoices {of R;, Ry, and Rs the condensate will occur. According to the single gauge boson
exchange approximation, the condensate appears in the “most attractive scalar channel”
(MASC), Ry X Ry — Rs, for which V = C + C9 — C is largest. Here Cq, C9, and C;
are the quadratic Casimir invariants for the representations R;, Ry, and R, respectively.
[For example, if the strongly coupled interaction were a U(1), and left-handed fermions
had charges ¢1 and ¢9, then V q% + q% - (1 + qg)2 = —2g¢14q9, so that for a collection
of charged fermions, the most attractive channel occurs when the product of charges is
most negative. Thus in a general gauge theory the statement that V should be maximized
is the generalization of the familiar statement in electrodynamics that opposite charges
attract.] The fermions which participate in the condensate obtain masses at this stage,
as do the gauge bosons corresponding to those generators of the gauge symmetry which
are spontaneously broken by the condensate. The remaining gauge bosons and fermions

define the next stage of the tumbling.

In the case of our model, the strongly coupled SU(3); has LH fermions transforming
as a 6, eight 3’s, and one 3. The most attractive channels for this fermion content, and

their relative strengths V, are as follows:

Channel

<

6x3—-3 10
6x6—6 10
_ (8)
3x3-1 8
6x3—8 5
3x3—-3 4

From (8) we see that the most naive version of the tumbling hypothesis is ambiguous, since
there is a tie for the MASC between the channels 6 x 3 — 3 and 6 x 6 — 6. We must

decide which of these condensates actually forms in order to proceed.

Fortunately, other authors[29-30] have already worried about what happens when there
7



is such a tie for the MASC in a tumbling gauge theory. According to their criteria, the
winner in our model is the channel 6x3 — 3. More specifically, according to the arguments

of [30] and [31], the condensate forms according to
(@ frya) = MBSSD (9)

(We use Greek letter o, 8... and Latin letters a,b... for indices in the fundamental repre-
sentations of SU(3); and SU(3)3 respectively.) The composite scalar field % = qgaﬂ) f18a
transforms under G as (3,3,1,0) and obtains a VEV (%) = 2M36%. This condensate
breaks SU(3); x SU(3)y — SU(3), as promised. Equation (9) reflects not only the as-
sumed preference of the strongly coupled theory for the channel 6 x 3 — 3, but also the
solution to a vacuum alignment problem(31], namely which of the eight 3’s of SU(3); will
condense with ¢;. There is a simple heuristic reason why the condensate chooses to leave
SU(3)c unbroken as in (9); this is because the fermions participating in the condensate
(9) transform as a 6 and a 6 of SU(3), and thus feel an additional attractive force which
would not be present if the g; chose to condense in such a way as to break SU(3).. (Of

course, the choice of f instead of fj in (9) is completely arbitrary.)

Of the sixteen gauge bosons associated with SU(3); x SU(3)g, eight remain massless
after the symmetry breaking and are the gluons of QCD. The other eight gauge bosons
obtain a mass of order g, M and also transform as an octet of SU(3)c. If one integrates out
these heavy gauge bosons, one obtains[6] precisely the four-fermion interaction (1) which
was our original motivation (along with some weaker four-fermion interactions). If the
coupling constants of SU(3); and SU(3)s at the scale M are g, and g,, then it is easy to
show that the QCD coupling constant at M is given by g, = glgz/\/m. We assume
that SU(3), is strongly coupled at M and SU(3), is not, so that g, > g, and g  g,.

According to (9), all of the components of q; condense, along with the part of fj
which transforms as a 6 of SU(3).. This quix receives a mass and decouples from the
tumbling. Another quix, consisting of go and the part of fo which transforms as a 6 of
SU(3)c, remains uncondensed and massless at this stage. The uncondensed parts of f; and

fa which transform as 3’s of SU(3), are the charge conjugates of two of the right-handed
8



down-type quarks of the standard model and remain massless at this stage.

The next most attractive scalar channel in (8) (not including the channel 6 x 6 — 6,
because the 6 has already condensed) is the 3 x 3 — 1. Since the strength of the attrac-
tion in this channel is only slightly less than that of the MASC, we make the dynamical
assumption that this condensate is also triggered even though (9) breaks SU(3);. In fact,
this corresponds to the assumption in the NJL language that the four-fermion interaction
(1) is sufficiently attractive to produce a top-quark condensate. Now there is again a vac-
uum alignment problem since the 3 has a choice of 3’s with which to condense. Again, the

condensate will choose to avoid breaking SU(3)c, so that the condensate is of the form
(QhtP) = pPeilel (10)

This is just the top-quark condensate which was our original motivation, with color indices
restored. Heuristically, the theory prefers (10) because Q* and t transform as a 3 and 3
of SU(8)c, and this provides an additional attractive force which would not be present for
any other condensate which breaks SU(3).. Of course, the 6% is just an arbitrary choice
of orientation of weak isospin. The condensate (10) breaks SU(2), x U(1l)y — U(1)gn
with the composité field ¢* = Qi t* playing the role of the standard model Higgs scalar

boson. The top quark condenses and gets a mass, as do the W* and Z9 vector bosons.

As we move further into the infrared, the next interesting thing that happens is that
the remaining light quix condenses, due primarily to the QCD force, and so obtains a large

constituent mass. This condensate has the form
b b
(65 fane) = m3sL6Y) . (11)

This condensate can occur at a much higher energy scale than for the ordinary quarks in
QCD, because the quadratic Casimir invariant of the 6 of SU(3) is 5/2 times that of the
3. The constituent mass of the lighter quix could therefore be as high as a few hundred
GeV. (This fact has been exploited by Marciano[32] who suggested that a quix condensate
driven by QCD could be responsible for electroweak symmetry breaking. The quix in our

model plays a quite different role, since it is an SU(2), singlet and our quix condensates

9
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do not break Gsa.) The lighter quix can also get a mass which is a current mass from
the point of view of the standard model interactions, by integrating out the heavy octet
of gauge bosons, and by mixing with the heavier quix due to some additional interactions

at higher energies.

A quix will be pair-produced at hadron colliders by gluon fusion. In our model, each
quix will decay by emitiéing a heavy color octet vector boson, turning into one of the down-
type quarks which are ;components of f1 and fy. The heavy vector boson will then decay
into a quark-anti-quarli: pair. Thus the experimental signature for the quix should consist
of a six-jet signal abovfe the QCD background. For a quix with mass in the hundred GeV
range, such a s‘ignal 1=> difficult but not impossible to detect at the Tevatron, LHC, or

SSC(33).

|
|

Let us now consider the spectrum of PNGBs which arise from our model. The SU (3
interaction has an approximate chiral symmetry SU(3); x SU(8) x U(1) x U(1). (There
would be three U(1)’s, but one of them has an SU(3); anomaly.) The first condensate
(9) breaks this down to SU(3)e x SU(2), x U(1)y x U(1) x U(l).‘There are therefore 59
PNGBs from this stage, of which 8 é-:e eaten and give mass to the SU(3), octet of heavy
gauge bosons. The second condensate (10) further breaks the chiral symmetry down to
SU@3)e xU(1)gm x U(1) x U(1). There are three would-be Nambu-Goldstone bosons from
this stage which are eaten by the W* and Z0 vector bosons. Finally, the lighter quix
condensate (11) breaks an additional U(1), so that the original chiral symmetry is broken
down to SU(3)c x U(1)gm x U(1)p. The baryon number U(1)p is an exactly conserved,
non-anomalous global symmetry of the SU(3); x SU(3)q interactions (but has the usual
SU(2), anomaly of the standard model). So there are 52 uneaten PNGBs. Of these,
24 transform as eight 3’s and 24 more transform as three 8’s of SU(3),. These colored
PNGBs obtain large masses as in technicolor models. However, the remaining four axion-

like neutral PNGBs may be dangerously light.

The model we have described here clearly cannot be complete as it stands. Perhaps the

most glaring evidence of this is that the leptons remain massless and in fact are decoupled
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from the symmetry breaking sector. One might imagine that the lighter quarks and leptons
can be given realistic masses by adding in higher order interactions analogous to those in
extended technicolor models. Such interactions might have the additional beneficial effect
of contributing to the masses of the neutral PNGBs mentioned in the previous paragraph.
Of course, one may also expect to encounter the same problems that occur in extended
technicolor. For example, the required additional interactions may give rise to flavor
changing neutral current interactions at én unacceptable level. The most obvious way
to try to couple the leptons to the symmetry breaking sectér is to embed SU(3); into
a Pati-Salam SU(4) at some high energy scale. There are several inequivalent ways to
embed the fermion content (3) into the enlarged gauge group; so far we have not found

any particularly satisfying way to do it.

Another potential disaster for our model involves the parameter p = M2 /M 2c05%6y,
which is constrained experimentally to-be very near 1. The usual way of ensuring this in
dynamical electroweak symmetry breaking models, as in the standard model with a funda-
mental Higgs, is to arrange for a “custodial” SU(2) symmetry[34] of both the Lagrangian
and the vacuum, under which the generators of SU(2), transform as a triplet. Our model
has no such custodial SU (2). However, the situation may not be completely hopeless; con-
sider for example the scenario of [4] in which M is taken to be > 246 GeV. The effective
theory far below M looks like the standard model with a heavy top quark and a Higgs
doublet, so that if the top quark is arranged to not be too heavy, the p-parameter could
come out in the allowed range. Now, the renormalization group methods used in [4] rely
for their validity on the assumption that the theory is already fine-tuned, so that the scalc
of new physics is much larger than the electroweak scale. Since the avoidance of fine-tuning
is one of the main motivations for investigating dynamical electroweak symmetry breaking
in the first place, we tend to favor the opposite possibility, namely that the symmetry
breaking G — Ggp occurs at a scale not too far removed from the scale of electroweak
symmetry breaking. In this case, the arguments used in [4] are not reliable and should not
be used to draw quantitative conclusions; in particular the prediction of a very heavy top

might be avoided. If the scale M is sufficiently close to 246 GeV, there will certainly be no
11



range of energy scales at which the interaction (1) alone comes close to accurately reflect-
ing the strong coupling dynamics. Furthermore, the effective theory will contain a much
more complicated spectrum of composite resonances than just a Higgs doublet. These
resonances are also bound states of the fermions which couple to SU(3);. There should
be, for example, composite vector particles exactly analogous to the techni-p and techni-w
- of technicolor models. (This has been emphasized already in [26].) Perhaps some presently
mysterious feature of the strong coupling dynamics prefers p & 1. Or perhaps the value of
M is small enough to invalidate the quantitative conclusions of [4] without invalidating the
qualitative conclusion that the effective theory below M consists of the standard model
with one Higgs doublet and other resonances and interactions which violate the custodial
SU(2) in-a controlled way. To analyze whether these (perhaps optimistic) possibilities can
be realized requires an improved understanding of the rather murky dynamics of strongly
coupled spontaneously broken theories, especially since the condensates (9) and (10) have

close to the same strength in the single gauge boson approximation.

The model we have presented here can be embedded into a very symmetric-looking
model by introducing another gauged SU(3). Thus we now take the unbroken gauge
group to be G’ = SU(3)) x SU(3)g x SU(3)3 x SU(2)L x U(1)y, and we take the fermions
to transform as:

q1,92,93 ~ (6,1,1,1,-1/3)+(1,6,1,1,~1/3) +(1,1,6,1,-1/3)
fi,fo, f3 ~ (3,3,1,1,1/3) +(3,1,3,1,1/3) +(1,3,3,1,1/3)

Q%,Q1. Q) ~ (3,1,1,2,1/6) +(1,3,1,2,1/6) + (1,1,3,2,1/6) X
toe,u ~ (3,1,1,1,-2/3)+(1,3,1,1,-2/3) +(1,1,3,1,—-2/3) )
L LA LY ~ 3x(1,1,1,2,-1/2)

T ~ 3x(1,1,1,1,1)

Note that the fermion content is now invariant under interchange of the three SU(3)’s.
Furthermore, the colored fermions are arranged in irreducible representations which each
occur only once. By analogy with the “Topcolor” of [6] and the “Chiral Color” of [28],
it is tempting to refer to this enlarged model as “Family Color”, since the three SU(3)
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interactions in (' are associated with the three famiilies. In order'vo recover our previous

model, we just assume that SU(3)9 x SU(3)3 breaks down to the diagonal SU(3) subgroup,
which is identified with the SU(3)9 of G. [It is suggestive tha' such a breakdown would be
caused by a condensation of the (1,1,6,1,—1/3) with the (1,3, 3, 1,1/3) exactiy ana];ogous
" to the condensate (9), if SU(3)3 gets strong at a very high scale. However, we thiink it
prudent to refrain from extending our dynamical assumptions too far beyond the re;fhlm of
the st'andard model, since as we have already noted, we are missing (at least) some major
ingredient which is responsible for generating lepton masses.] The remaining unbroken
gauge group is then G, and the fermion content is precisely that of eq. (3) plus & quix
which is vector-like with respect to the gauge group G and therefore presumeably gets a
large mass at this stage. We find it encouraging that the somewhat haphazard-looking
fermion content given in (3) actually can come from the more attractive (12). This is
of course just one of the possible extensions of the basic model with gauge group G and

fermion content (3).

In this paper, we have described a model for dynamical electroweak symmetry breaking
which borrows from the old idea of tumbling gauge theories and the younger top-quark
condensate idea. We have not attempted to draw any precise quantitative conclusions,
being comntent with the qualitative observation that the gauge symmetries are broken in
the correct way and that the top quark obtains a large mass. In any case, we need
additional model-building ideas in order to have a chance for a realistic mass spectrum
for the lighter quarks and leptons, and additional technical ideas in order to calcuiate
reliably without fine-tuning in the strongly coupled theory. The model we have discussed
here is an example of a dynamical electroweak symmetry breaking scheme which is similar
to the technicolor idea, with the top quark playing the role of a techniquark, but differs
in that the strongly coupled gauge theory is broken instead of confining in the infrared.
Note that there are, qualitatively speaking, three possible fates for an asymptotically free
non-abelian gauge theory in the infrared. The first possibility is that the theory can
become spontaneously broken before it has a chance to become strong; this is the fate

of SU(2), in the standard model. The second possibility is that the theory can become
13



strongly coupled and confining without being broken; we understand this because it is
what happens to QCD in the standard model. It is also what is supposed to happen in
technicolor theories. The third possibility is that the theory can become strong enough
to produce condensates, but is then spontaneously broken so that it does not confine.
There 1s no standard model example of this, but there is also no good reason why such a
thing could not happen between the electroweak scale and the Planck scale. Despite its
shortcomings in the present incarnation, we hepe that our model illustrates how this third

possibility could be responsible for breaking the electroweak symmetry.
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