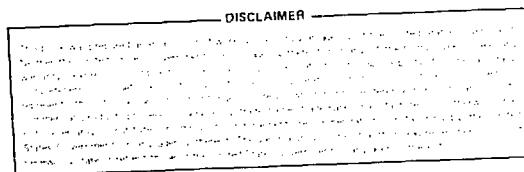


MASTER

BNL 31111


CONF - 820635 - 2

BNL--31111

DE82 012723

Production of the Doubly Strange H Dibaryon*

A. T. Aerts and C. B. Dover
Brookhaven National Laboratory**
Upton, New York 11973

* Contributed paper to the International Conference on Hypernuclear and Kaon Physics, Heidelberg, Germany, June 20-24, 1982

**Supported by the U.S. Department of Energy under Contract No. DE-AC02-76CH00016.

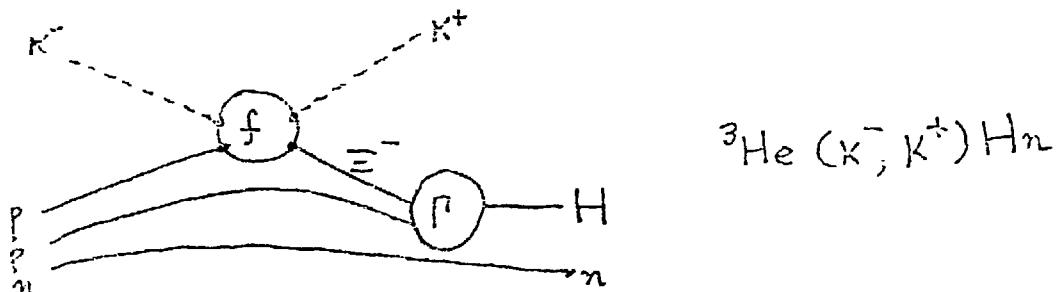
NOTICE

PORTIONS OF THIS DOCUMENT ARE EXCLUSIVE.
It has been reviewed and is hereby certified that a copy to permit the exercise of such exclusive right
will only

DISSEMINATION OF THIS INFORMATION

MET

The submitted manuscript has been authored under contract DE-AC02-76CH00016 with the U.S. Department of Energy. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.


PRODUCTION OF THE DOUBLY STRANGE H DIBARYON

A. M. Aerts and C. B. Dover
Brookhaven National Laboratory
Upton, New York 11973

There is much current interest in the spectroscopy of multiquark states. Predictions abound for the existence of baryonium ($Q^2\bar{Q}^2$) and six-quark dibaryon (Q^6) resonances¹, for instance. In the strangeness $S = -2$ sector of Q^6 , the MIT bag model² predicts a dibaryon H with quantum numbers $J^\pi = 0^+$, isospin $I = 0$, and mass $M_H \approx 2150$ MeV $\approx 2M_\Lambda - 80$ MeV. The H has quark composition uuddss, so all quarks can occupy the 1s state; it is unique in that it possesses no strong decay modes. The fact that the H mass is considerably below the $\Lambda\Lambda$ or $\Xi\Xi$ thresholds precludes its interpretation as a deuteron-like object bound by conventional long-range meson exchange forces.

The H has been searched for in the reaction $p+p \rightarrow K^+K^+H$ by Carroll et al.³, with an upper limit of about 100 nb/sr² for two K^+ 's at $\pm 18^\circ$ in the lab system. Some crude cross section estimates we have made for this process indicate much smaller cross sections than this limit.

A more natural way to produce the H, in our view, is via the (K^-, K^+) reaction on a diproton in a nuclear target, i.e. $K^- + (pp) \rightarrow K^+ + H$. For the simplest case of a ^3He target, the process is shown in the figure.

The differential cross section for the $K^-p \rightarrow K^+\Xi^-$ reaction at 0° has a peak value of about $|f|^2 \approx 35 \text{ } \mu\text{b/sr}$ around $p_{K^-} \approx 1.8 \text{ GeV/c}$. The (pp) pair must be in the 1S_0 state, so no spin flip is required to produce the H (also 1S_0). The vertex function (decay amplitude) Γ is calculated in a non-relativistic quark model, and describes the fusion of two 3 quark systems (p and Ξ^-) into a six quark state (H) of radius R . When we use harmonic oscillator wave functions for the quarks, we find

$$\Gamma_{(\vec{p}_1, \vec{p}_2)} = \Gamma_0 e^{-\frac{R^2}{4} (\vec{p}_1 - \vec{p}_2)^2}$$

depending only on the relative momentum $\vec{p}_1 - \vec{p}_2$ of the p and Ξ^- . Γ_0 includes a geometrical factor and also a color, spin and flavor recoupling coefficient obtained from the approximate wave function $\psi_H = \sqrt{4/5} |8_c \times 8_c\rangle + \sqrt{1/40} |\Lambda\Lambda\rangle + \sqrt{3/40} |\Xi_c^0\rangle + \sqrt{1/20} |\Xi\bar{N}-\bar{N}\Xi\rangle$ for the H . Since the Ξ^- typically has a lab momentum $|\vec{p}_1|$ of about 400 MeV/c , nuclear Fermi motion enables us to reach the region of phase space where $|\vec{p}_1 - \vec{p}_2|$ is fairly small, and $\Gamma \approx \Gamma_0$. This is not the case in the $pp \rightarrow K^+K^+H$ reaction, where the analogous $\Lambda\Lambda$ or $\Xi^-p \rightarrow H$ quark fusion processes correspond to large values of $|\vec{p}_1 - \vec{p}_2|$ and hence tiny cross sections for H production. Using oscillator wave functions for ^3He , we estimate $(d\sigma/d\Omega_{K^+})_{0^\circ} \approx 2 \text{ } \mu\text{b/sr}$ for the $^3\text{He}(K^-, K^+)Hn$ cross section at 1.9 GeV/c in the closure approximation, using plane waves⁴. One could also detect the neutron in coincidence with the K^+ , to more clearly pin down the H . Such cross sections are accessible experimentally. Since the H represents a very important prediction of the Bag Model, we urge that a (K^-, K^+) experiment on a nuclear target be done in order to search for it.

References

1. For a survey of bag model predictions, see for example A. Aerts, Nijmegen University Thesis (Institute for Theoretical Physics, Nijmegen, 1979); for a recent review, see R. L. Jaffe, Rapporteurs Talk presented at the 1981 Lepton-Photon Symposium, Bonn, Germany, 1981, MFT-CTP(81)951.
2. R. L. Jaffe, Phys. Rev. Lett. 38, 195 (1977).
3. A. Carroll et al., Phys. Rev. Lett. 41, 777 (1978).
4. A. T. Aerts and C. B. Dover, in preparation.