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Summary 
. . 

The Brookhaven Regeneration Process, which comprises reac t ing  t h e  

s u l f a t e d  limestone wi th  t h e  f l y  ash . f rom a FBC i n  a sol id-sol id  contact- 
. ., . -- 

ing  kiln-type r e a c t o r ,  has been f u r t h e r  shown more promising than the  
. . \ .  . , 

other  processes c u r r e n t l y  under development. A quar tz  r o t a r y  k i l n ,  wi th  
. . 

about 10-g limestone capacity,  has been i n  operat ion f o r  gathering 

k i n e t i c  and process development data  on t h i s  process. Typical (not  

t h e  b e s t )  r e s u l t s  a r e :  With a p a r t i a l l y  su l fa ted  limestone and a 
. . . . 

f l y  a ~ h  (12% wnburnt carbon), ba th  from Argoaae's p i l o t  FBC, 5% SO2 
. b .' . :. . . .  

t. . .. , . ,  

. . 

was obtained i n  t h e  k i l n  off  gas f o r  up t o  about 50% lime regenerat ion 
. . . . 

< .  

- ( i n  80 min.) a t  lOOOOC , and . 1 atm. Much improvement can be made by 
. .  : . . . . .  

optimizing t h e  opera t ing condit ions which a r e  gas flow 

r a t e ,  degree of a g i t a t i o n  (rpm), add i t ives  (both s o l i d s  and gases, 

e.g. steam), types of carbon, e t c .  TGA k i n e t i c  s t u d i e s  a l s o  showed 
\ 

promising resul ts . .  Cyclic s t u d i e s ,  involving t h e  k i l n  regenerator  
' .  

and a quartz fluidized-bed s u l f a t o r ,  a r e  being conducted f o r  both 

c y c l i c  r e a c t i v i t y  and a t t r i t i o n  information. 

Various dicalcium s i l i c a t e s  have been s tudied f o r  t h e i r  r e a c t i v i t i e s  
I ' :  

f o r  s u l f a t i o n .  Most of t h e  dicalcium silicates (formed in nllr labnratnry 
... . . . 

a11d obtained f ~ o m  varfous sources) showed equal o r , h i g h e r  sorpt ion 
. - .. 7 . . 

r e a c t i v i t i e s  than l i m e ,  on a weight SO2 per weight sorbent bas i s .  

More reac t ive  calcium s i l i c a t e s . a r e  being sought, a s  w e l l  a s  t h e  

means of forming them. The,highly encouraging r e s u l t s  a r e  on the  

r a g o n c r a b i l i t i c s  of the calcium s i l i c a t e s  fiolu Lllrlr. su l fa ted  s t a t e s .  

For a l l  the  mono- and dicalcium s i l i c a t e s  s tudied,  t h e  regenerat ion 



rates a r e  about  a n  o r d e r . o f  magnitude h igher  than  t h a t  of l ime o r  

l imes tone ,  i n  bo th  s t r a i g h t  thermal decomposition and r egene ra t ion  

w i t h  carbon. 

S tud ie s  on c a t a l y t i c  su l ' f a t i on  cont inued.  A c h l o r i n e  ba lance  

has  been made over a s imulated FBC w i t h  3% NaCl added t o  t h e  lime- 

s t o n e  a t  900°c. S ix ty  pe rcen t  of t h e  C 1  i n  N a C l  was c o l l e c t e d  i n  t h e  o f f  

gas  wi thout  i r o n ,  s t e e l  and r e f r a c t o r y  l i n i n g  materials i n  t h e  

s u l f a t i o n  zone. With these  m a t e r i a l s ,  which i s  t h e  c a s e  i n  a FBC, 

t h e  C 1  c o l l e c t e d  i n  t h e  o f f  gas  was 44%. The 16% C 1  ba lance  w a s  

presumably r eac t ed  wi th  the  m a t e r i a l s  i n  t h e  s imulated FBC. The 44% 

C 1  c o l l e c t e d  i n  t h e  l a t t e r  ca se  contained p r i m a r i l y  Fe ch lo r ides .  

Ca lc ina t ion  of l imes tones  i n  atmospheres con ta in ing  steam o r  

C02 inc reases  t h e  r e a c t i v i t i e s  of t h e  ca l c ined  s tones  s i g n i f i c a n t l y .  

Work on k i n e t i c s  i n  p re s su r i zed  FBC has  been s t a r t e d  w i t h  a 

p re s su r i zed  TGA. Both s u l f a t i o n  and r egene ra t ion  k i n e t i c s  a r e  be ing  

s tud ied .  Inc reas ing  t h e  t o t a l  p re s su re  would i n c r e a s e  t h e  s u l f a t i o n  

r a t e  f o r  most l imes tones ,  as has  been observed elsewhere (Westinghouse). 

However, our  pre l iminary  r e s u l t s  i nd ica t ed  t h a t  t h i s  may n o t  be  

t r u e  f o r  some i n d u s t r i a l l y  important  s tones ,  and it may h e  just t h e  

oppos i t e  f o r  t h e  calcium s i l i c a t e s  so rben t s .  

S i l ica te -based  s y n t h e t i c  so rben t s  a r e  being developed. This  

new c l a s s  of s y n t h e t i c  so rben t s  appears  t o  be more promising than 

t h e  ones developed previous ly  by o t h e r  l a b o r a t o r i e s .  



Regenerat ive Process  f o r  Desu l fu r i za t ion  of High 
Temperature Combustion and Fuel  Gases 

Quar te r ly  Progress  Report No. 6 
J u l y  1 - September 30, 1977 

1. The Brookhaven ~ e ~ e n e r a t i o n  Process  

1.1 In t roduc t ion  

The Brookhaven Process  comprises r e a c t i n g  t h e  CaSO from a FBC 
4 

t o  form CaO and SO This  process  d i f f e r s  w i t h  t h e  one-step r educ t ive  2 

decomposition mainly i n  two ways: . (a)  t h e  mode of o p e r a t i o n  is  b a s i c a l l y  

a so l id - so l id  c o n t a c t  r e a c t i o n  system as opposed t o  f luidized-bed and 

( b ) .  f l y  a sh  is  u t i l i z e d  f o r  i ts  r e s i d u a l  carbon. The d e t a i l e d  chemistry 

has  been descr ibed  i n  our  prev ious  r e p o r t s .  

1 .2 TGA S tud ie s  

F igure  1 shows t h e  r egene ra t ion  r a t e  of CaO of a 27.4% s u l f a t e d  

2203 l imes tone  (from Argonne's FBC) and a c o a l  a sh  con ta in ing  8.55% 

carbon a t  1 0 0 0 ~ ~ .  The c o a l  a s h  was recovered from Argonne's FBC 

us ing  Sewickley c o a l  (Penna., bituminous) and 1337 dolomite  a t  3 a t m .  

0 P re s su re  and 900 C bed temperature.  This  a sh  a l s o  con ta ins  2.89% S 
- - 

8.91% C a  and 1.08% C03 . It can be  seen  from Figure  1 t h a t  more 

than  90% of t h e  s u l f a t e d  ston'e was regenera ted  w i t h l n  10  ~ u i n u t c s .  

1n r e l a t i o n  t o  t h i s  r egene ra t ion  process ,  experiments a r e  be ing  

performed t o  s e e  i f  t h e  r a t e  of t h e  r egene ra t ion  r e a c t i o n  i s  independent 

of t h e  types of r educ tan t  m a t e r i a l s  used, e .g . ,  C ,  COY Hz, CH4, e t c . ,  

t o  s e e  i f  t h e  two-step r egene ra t ion  r e a c t i o n  mechanism is  common t o  

CaSO regene ra t ion .  That is ,  one-fourth of CaS04 is  f i r s t  r a p i d l y  
4 

converted t o  CaS and subsequent ly t h r e e  'moles of CaS04 r e a c t  w i t h  one 

mole of CaS t o  form CaO and SOZ. A s  we mentioned i n  t h e  previous  



r e p o r t  (No. 5) t h e  calcium s i l i c a t e  system (e.g.  CaS04 Si02 ,  (CaS04)2 

SiO e t c . )  a l s o  shows the  . two-s tep . regenera t ion  r e a c t i o n  mechanism. 2 

1 .3 .  K i ln  S tud ie s  

A smal l ,  batch-wise k i l n  has  been used t o  r egene ra t e  t h e  s u l f a t e d  

l imes tone .  The r e a c t i o n  being considered i s  

. , 

Sourcko ' of ' t h e  r e a e f a n t s  a r e '  pat  t i i r l l y  s u l f a t e d  Greer Il.mesr..one 
, ,  . . 

and f l y  a sh ,  b d t h  f r o i  f l u i d i z e d -  bed comhiistnra . ~ a r i a b l e k  a f f e c t i n g  

. . .  -. . . 
t h e '  per.formaice o£ ' t h i s  process  hale ' 'b6en s tud ied  and a r e  descr ibed  

J 
i n  t h e  fol lowing.  

1 .3 .1  Experimental 

Ma te r i a l s :  

Both t h e  su l fa , ted  ~ r e e r '  l imes tone  and t h e  f l y  a sh  were suppl ied  

by Argonne National  Laboratory. The compositions were: 

f l y  a s h  carbon = 12.5%, S'= 5.24%, SQ4 = 14.6% 

(primary cyclone) Mg = 10.3%, C03 = 7.24%, o t h e r s  (balanced) 

Su l f a t ed  Greer Ca = 34.5%, S = 8.7%, CO = 1.24%, Si02 = 7% 
others (balanced)  3 

The s i z e s  were 2001270 Tyler  mesh f o r  t h e  f l y  a s h  and 20124 mesh 

, f o r  t h e  s u l f a t e d  s tone .  

Apparatus 'and Procedure: 
-.- 

The appa ra tus  is  shown schemat ica l ly  i n  F igure  2. The weighed 

sample of t h e  s o l i d  r e a c t a n t s ,  w i t h  t h e  molar r a t i o  of C/S=1/2, w a s  

f e d  t o  t he  r e a c t i o n  zone of a 27 mm OD r o t a t i n g  q u a r t z  k i l n  r e a c t o r ,  

which con ta ins  f o u r  evenly spaced q u a r t z  vances t o  i n c r e a s e  s o l i d  



mixing (F igure  3 ) .  This  r e a c t o r  was hea ted  by a  clam s h e l l  furnace ,  

which heated t h e  r e a c t o r  t o  t h e  d e s i r e d  temperature w i t h i n  2 minutes.  

A thermocouple, l oca t ed  a t  t h e  c e n t e r  of t h e  r e a c t o r  tube,  was used 

t o  measure the  r e a c t i o n  teniperature,  wh i l e  t h e  w a l l  temperature i s  

measu redby ' an  o p t i c a l  pyrometer, In a l l  t h e  experiments,  t h e  speed of 

r o t a t i o n  was kep t  a t  5.rpm. 

I n  t h e s e  experiments,  .Ar was used a s  t h e  c a r r i e r  gas. It passed 

through a tube packed w i t h  copper t u rn ings  he ld  a t  5 5 0 ' ~  f o r  r e s i d u a l  

oxygen removal. The gas ,  be fo re  e n t e r i n g  t h e  r e a c t i o n  zone, was 

preheated by pass ing  through approximately 100 mm l e n g t h  of hea ted  

s i l i c o n  ca rb ide  ch ips .  Samples .of t h e  o f f  gas were withdrawn i n t e r -  

m i t t e n t l y  and w e r e  analyzed mass spec t rome t r i ca l ly :  From t h e ' r a t i o  

of SO t o  A r  t h e  amount of SO evolved a s  a  func t ion  of t ime was 2 2 

c a l c u l a t e d .  Af t e r  f i n i s h i n g  each experiment t h e  weight l o s s  a l s o  gave 

the  e x t e n t  of r egene ra t ion ;  

1.3.2 Resu l t s  and Disc'ussion ' .  

.Four regener .at ion experiments (des igna ted  -run numbers 1-4 , i n  

Table 1 )  a t  temperatures  ranging from 9 5 0 ' ~  t o  1050°C, and wi th  flow 

r a t e s  (Ar) ,  0.37 m; moles/min t o  1.46 m moles/min have been made. 

These r e s u l t s  a r e  summarized i n  Table 1. The of f  gases  were found 

t o  be  predominantly SO .C02 and A r .  The SO concen t r a t ions  i n  t h e  2 ' 2 

o f f  gas [S02/(s0 +Ar+ CO ) ]  a t  v a r i o u s  t imes a r e  given i n  F igure  4, 
2  2 

wh i l e  C02 f r a c t i o n  [(CO /(S02+Ar+C02)] i s  shown i n  F igure  5 .  These 
2 

f i g u r e s  c l e a r l y  i n d i c a t e s  t h a t  r e a c t i o n . ( . l )  is  a two-step r e a c t i o n :  



114 CaS04 + 112 C + . I 1 4  CaS' + 112 C02 
. . ( 3 ) .  

114 CaS + 314 CaS04 + CaO + SO2 ( 4) . . 

and r e a c t i o n  (4)  is  t h e  r a t e  c o n t r o l l i n g  s t e p .  

Thermodynamic equ i l i b r ium p a r t i c a l  p re s su re s  of SO2 f o r  r e a c t i o n  

(4)  are given i n  F i g u r e  6 .  From F igu res  4 and 6 ,  i t  i s  apparent  

t h a t ,  except  f o r  r u n  ( 4 ) ,  t h e  SO, gas  concen t r a t ion  has n o t , r e a c h e d ,  - . . 

thermodynamic , l i m i t ,  This .may' be' because t h a t  r e a c t i o n  2 i s  a n  
, . 

endothermic rate proces'k'.with h e a t  of r e a c t i o n  approximately 58 :kcallmole. 
. , 

The temperature of t h e  r e a c t i n g ' i n t e r f a c e  is lower than  t h e  measured . 
, - . . 

. . :  

temperature. .  It may" a l s o :  be due t o  t h e '  concen t r a t ion  g rad ien t  e x i s t i n g  
. . 

i n s i d e  t h e  s o l i d  p a r t i c l e  r e s u l t i n g  i n  a  lower SO concen t r a t ion  i n  t h e  
2 .  

gas  phase.' 

, Runs (2) a n d , ( 3 )  gave e s s e n t i a l l y  t h e  same SO 2 percentage  a t  

v a r i o u s  flow r a t e s  i n d i c a t i n g  t h a t  t h e  r e a c t i o n  was suppressed by 

t h e  SO i n  t h e  gas phase. Decrease of t h e  SO, concen t r a t ion  w i t h  2 L 

t i m e  i n d i c a t e d  t h a t  a  d i f f u s i o n  r e s i s t a n c e  i n  t h e  product  l a y e r  may 

, . 
a l s o  r e s t r i c t  t h e  r e a c t i o n  r a t e .  This  p o i n t  i s  c l e a r  when one 

coiilpaises the  shapes of ' t h e  f o u r  curves;  zhe h igher  t h e  i n i t i a l  r a t e ,  

t h e  f a s t e r  t h e  r a t e  d e c l i n e s .  

The e x t e n t  of r egene ra t ion  a s  a ' f u n c t i o n  of t ime was p l o t t e d  

j.n Figpxe 7. Eighty FcrccriL 'uf the suleheed l imestoc~e could be  

regenerated.  i s  one hour a t . 1 0 5 0 ° ~  under our  ope ra t ing  condi t ions .  

A t  l O O O O C  s i n c e  bqth  flow r a t e s  ( u s  ' 2 and (3)  ) gave t h e  same SO2 

concen t r a t ion ,  t h e  r a t e  of r egene ra t ion  under t h e  ope ra t ing  cond i t i ons  

i s  c o n t r o l l e d  by t h e  "sweeping r a t e "  of t h e  c a r r i e r  gas .  I n  t h e  



r egene ra t ion  processes ,  t w o ' f a c t o r s  must be  considered:  1 )  r a t e s  of 

t h e  l ime r egene ra t ion ,  2) . SO' concen t r a t ion  i n  t h e  gas  phase. To 2 

conver t  SO i n t o  s u l f u r i c  a c i d ,  a d e s i r a b l e  SO concent ra t ion  
2 2 

would b e  4 2, 5%.  Since  t h e  . r e a c t i v i t y  of t h e  regenerated l ime 

decreases  w i t h  t h e  inc reas ing  temperature,  t h e  temperature range of 

1000-1050°C seems t o  be  a n  optimum temperature under our p re sen t  

experimental  cond i t i ons .  

Fu r the r  work w i l l  be  conducted t o  i n v e s t i g a t e  t h e  e f f e c t s  of 

t h e  gas flow r a t e ,  p a r t i c l e  s i z e s ,  degree of a g i t a i o n ,  e t c .  on 

t h e  r egene ra t ion  r a t e  and t h e  SO2 concent ra t ion .  The r e a c t i v i t y  of 

t h e  regenera ted  l ime w i l l  b e  t e s t e d  i n  TGA, and i n  a smal l  (30 mm 

I D ,  qua r t z )  f l u i d i z e d  bed s u l f a t o r .  The smal l  f l u i d i z e d  bed s u l f a t o r  

i s  under c o n s t r u c t i o n  and w i l l  be  f i n i s h e d  i n  t h e  next  q u a r t e r .  

2. S u l f a t i o n  and Regeneration of Calcium S i l i c a t e s  

2 .1  S u l f a t i o n  of Dicalcium S i l i c a t e s  

A s  we mentioned i n  t h e  previous  q u a r t e r l y  p rog res s  r e p o r t ,  i n  

t h e  r egene ra t ion  process  w i th  c o a l  a s h  con ta in ing  unburnt carbon, CaO 

i s  t h e  predominant product  w i t h  smal l  amounts of calcium s i l i c a t e s .  

However, a t  t h e  s t eady  s t a t e  i n  a cont inuous r ecyc l ing  p toces s ,  t he  

amounts of t h e  s i l i c a t e s  would be much h igher  because f o r  each 

p a r t i c l e ,  as i t  is  being recyc led ,  con ten t s  of s i l i c a t e s  would 

i n c r e a s e  wi th  t h e  number 'of c y c l e s  due t o  t h e  f a c t  t h a t  t h e  s i l i c a t e s  

s t a y  i n  t h e  s t r u c t u r e  once formed. Therefore,  t h e r e  would be  always 

a mixture of C a O  and s i l i c a t e s .  S u l f a t i o n  r a t e s  of t h e  reagent-grade 

C a O  (mal l inckrodt ,  3251400 mesh) were compared w i t h  t h e  mixture  of CaO 



and B-dicalcium s i l i c a t e  (Atomergic r e s e a r c h  grade,  3251400 mesh, 

x-ray d i f f r a c t i o n  i n t e n s i t y  es t imated  about  50%-CaO and 50% 

B-dicalcium s i l i c a t e )  . A s  shown i n  F igure  8,  t h e  rate of t h e  mixture 

of C a O  and B-dicalcium s i l i c a t e  is  h igher  than  t h a t  of t h e  CaO a l o n e  . , 

w i t h  t h e  same s i z e .  It implies '  t h a t  t h e  . s u l f a t i o n  r e a c t i v i t y  of 

6-dicalcium s i l i c a t e  i s  h igher  than  t h a t  of CaO. This can b e  seen  
. . 

i n  F igu re  9. The s u l f a t i o n  r a t e  of d ica lc ium s i l i c a t e  (Por t land  
. . 

Cement Assoc ia t ion ,  90% B form and 8% a '  form es t imated  by x-ray 

d i f f r a c t i o n ,  3251400 mesh) is  h igher  than  t h a t  of t h e  r eagen t  CaO 

(3251400 mesh). The temperature a t  which t h e  d ica lc ium s i l i c a t e s  

were prepared by Por t l and  cement Assoc ia t ion  may be too  high 

(> 1080°c) t o  have h igh  s u l f a t i o n  r e a c t i v i t y .  These 6-dicalcium 

s i l i c a t e s  a r e  s t a b i l i z e d  by t h e  a d d i t i o n  of smal l  amounts of meta l  

ox ides  which are a c t u a l l y  presented  i n  FBC. The r a t e s  a r e  n o t  h igh  

b u t  a r e  i n  t h e  same o r d e r  of magnitude as t h a t  w i t h  l imes tones .  

However, l imes tones  con ta in  Fe 0 Si02,  MgO and A1203 some of 2 3'  

which a r e  thought t o  be c a t a l y s t s  f o r  s u l f a t i o n  r e a c t i o n .  Also, 

t h e  r e a c t i o n  system was f r e e  of water  vapor which has  been shown 

co cacalyze t h e  s u l f a t i o n  o t  l imes tones  d r a s t i c a l l y .  

2.2 Regenerat ion of Calcium S i l i c a t e s  

As we mentioned be fo re ,  t h e  advantage of us ing  ca l c i~ im si.1 ir .ates  

t o  d e s u l f u r i z e  h o t  combustion gases  was p a r t l y  based on t h e i r  h ighe r  

r e g e n e r a b i l i t i e s  than  t h e  p l a i n  calcium oxide.  It has  been r epor t ed  

i n  t h e  previous  q u a r t e r l y  progress  r e p o r t  (No. 5) t h a t  t h e  thermal  

decomposition r a t e  of t h e  s u l f a t e d  monocalcium s i l i c a t e  i s  h ighe r  

than  t h a t  of t h e  CaS04 as shown i n  F igure  10,  i . e . ,  t h e  s u l f a t e d  



monocalcium s i l i c a t e  is more regenerable  than  t h e  s u l f a t e d  l ime.  

I n  F igure  10, i t  i s  shown t h a t  t h e  thermal decomposition rate i s  

h igher  w i t h  s u l f a t e d  d i c a l c i u m . s ? l i c a t e .  It i s  seen  t h a t  more than 

90% of t h e  s u l f a t e d  dicalcium s i l i c a t e  was regenera ted  w i t h i n  20 

minutes . 
Figure  11 shows t h e  r egene ra t ion  w i t h  carbon a s  a s o l i d  r educ tan t  

(Ca/C r a t i o  w a s  c o n t r o l l e d  a t  2) a t  1 0 0 0 ~ ~ .  The r egene ra t ion  r a t e  

of t h e  s u l f a t e d  CaSiO was moderately h ighe r  than  t h a t  of CaS04. 
3 

However, t he  r egene ra t ion  r a t e  of t h e  s u l f a t e d  Ca2SiOq w a s  very  

h igh ,  about  70% was regenera ted  i n . 3 0  minutes.  These evidences of 

h igher  r e g e n e r a b i l i t i e s  w i th  calcium s i l i c a t e s  supported t h e  law of 

n a t u r e  t h a t  t h e  bond t o  an  atom weakens when o t h e r  bonds a r e  formed. 

t o  t h e  same atom. 

The x-ray d i f f r a c t i o n  p a t t e r n  of t h e  regenera ted  B-dicalcium 

s i l i c a t e  d i d  n0.t con ta in  l i n e s  of CaO and CaS, which i n d i c a t e d  t h a t  

s i l i c a  was chemically bonded t o  t h e  calcium s u l f a t e  i n  t h e  s u l f a t e d  

d ica lc ium s i l i c a t e .  

I n  a r e a c t i o n  between p a r t i a l l y  s u l f a t e d  Greer l imes tones  (65% 

CaS04, 16/20 mesh) and complete b u r n t  I l l i n o i s  No. 6 c o a l  a s h  (0% C,  

2001270 mesh) a t  11000C, t h e  x-ray d i f f r a c t i o n  a n a l y s i s  shows t h a t  

8-dicalcium s i l i c a t e  (La rn i t e )  i s  the  major r e a c t i o n  product .  

3 .  Kinetics of S u l f a t i o n , o f  Limestones 

3,.1 C a t a l y t i c  S u l f a t i o n  of Lime 

We have r epor t ed  c a t a l y t i c  s u l f a t i o n  of l ime w i t h  i r o n  compounds 

and c o a l  ash.  Another good h igh  temperature c a t a l y s t  f o r  SO2 ox ida t ion ,  



V205, w a s  a l s o  t e s t e d  f o r  t h e  s u l f a t i o n  r e a c t i o n  w i t h  t h e  purpose 

of f u r t h e r  un rave l ing  t h e  s u l f a t i o n  mechanisni.' A s  shown i n  F igu re  

12 ,  a moderate c a t a l y t i c  e f f e c t  was 'observed.  However, t h e  V205 was 

of r eagen t  grade and was n o t  a commercial c a t a l y s t  which con ta ins  

v a r i o u s  a lka l i -me ta l  promoters.  

A n o t e '  should b e  made h e r e  on t h e  r a t e  dependence' on. the' p a r t i a l  

of So2. ' s u l f a t i o n  of l ime "as thought t o  be a  f i r s t - o r d e r  

r e a c t i o n  w i t h  r e s p e c t  t o  SO2 by v a r i o u s  workers,  e .g . ,  Borgwardt. 
1 - 

However, t h e i r  experiments  were performed i n  the  lower range of t h e  

p a r t i a l  pke$sure of SO2. For example, Borgwardt 's  d a t a  were f o r  
. . - 8 

SO concen t r a t ions  below 6 . 4 ~  10  g-mole/cm3 ( t o t a l  p r e s s u r e = l  atm) , 
2 

which were i n  agreement w i th  our  d a t a  as shown a dashed l i n e  i n  

F igu re  13. The r e a c t i o n  o rde r  f o r  s u l f a t i o n  of C a O  w i t h  4% Fe203 is  

s l i g h t l y  h igher ,  e .g . ,  1.05 a s  shown a dashed l i n e  i n  F igure  1 4 .  I n  

F igu res  13  and 14 ,  a s t r a i g h t  l i n e  does n o t  seem t o  f i t  t h e  d a t a  a t  

h ighe r  p a r t i a l  p re s su re  ( t h e  s l o p e s  of t h e  s o l i d  l i n e s  i n  t h e  f i g u r e s  

were o u t l i n e d  by us ing  t h e  l ea s t - squa re  l i n e a r  r e g r e s s i o n  method). 

The d a t a  tend t o  fo l low a quadra t i c  form. A complicated r a t e  

express ion  i s  l i k e l y  t o  e x i s t  f o r  t h e  s u l f a t i o n  r e a c t i o n  of l ime.  

Thence we measured t h e  a c t i v a t i o n  energy a t  s imulated combustion SO2 

-8 
concen t r a t ion ,  e .g . ,  2 . 7 ~ 1 0  g-mole/cm3 ( t o t a l  p re s su re= l  at;) which 

a r e  shown i n  F igure  1 5  (CaO) and Figure  16  (CaO w i t h  4% Fe 0 ) .  The 
2 3 

a c t i v a t i o n  energy of s u l f a t i o n  of CaO i s  somewhat g r e a t e r  than  t h a t  

of CaO mixed w i t h  4% Pe2U3. 



Figure  17 shows tha  s u l f a t i o n  r a t e  of a  ca l c ined  Tymochee 

dolomite  w i t h  and wi thout  5% steam. Again steam c a t a l y z e s  t h e  

s u l f a t i o n  r e a c t i o n .  The s u l f a t i o n  r a t e  of t h e  ca l c ined  Tymochtee 

dolomite  5s about  m i c e  h igher  thau t h a t  of Grecr l imestone.  

3 .2 F a t e  of N a C l  i n  a Simulated FBC 

I n  the  experiment w i th  Greer l imes tone  and 3% NaCl packed w i t h  
. . 

304 s t a i n l e s s  s t e e l  tubes, and Sau,ereisenNo.  75 ( l i n i n g  m a t e r i a l  of 

furnaces)  i n  a s imulated combustion gas  (See t h e  schematic  diagram 

of c h l o r i n e  t e s t  equipment i n  t h e  previous  q u a r t e r l y  p rog res s  r e p o r t . ) ,  

a t  900°c, about  41% ch lo r ine  was condensed on. t h e  304 s t a i n l e s s  

s t e e l  w a l l s  downstream of t h e ' r e a c t o r ,  and about  3% c h l o r i n e  i n  t h e  

off-gas was c o l l e c t e d  i n  t h e  bubbler  conta in ing  NH OH s o l u t i o n .  
4  

The t o t a l  c h l o r i n e  recovery was about  44%. I n  t h e  b lank  experiment,  

where only  qua r t z  tubes were used, 60% t o t a l  c h l o r i n e  was found. 

The depos i t i on  of c h l o r i n e  i n  t h e  bed m a t e r i a l  must be  t h e  reason  

f o r  a 16% c h l o r i n e  discrepancy i n  t h e  mass ba lance .  The mass ba lance .  

The mass balance was t h e r e f o r e  at tempted and t h e  r e s u l t s  were a s  

fo l lows .  I n  t h e  blank t e s t ,  60.1% C 1  was found i n  t h e  NH40H bubbler  

s o l u t i o n  and 0 .5XCl  remained i n  rhe Grerr lilue. In  thc c~rpcriment  

where Greer l i m e ,  Sauereisen No. 75, 304 s t a i n l e s s  s t e e l  tubes and 

304 s t a i n l e s s  s t e e l  l i n e  going t o  t he  t r a p  were used, t h e  c h l o r i n e  

ba lance  was 2.7% i n  the  NH OH bubbler ,  41.3% condensed i n  t h e  304 
.4 

s t a i n l e s s  s t e e e l  l i n e ,  8.6% remained i n  t h e  Greer l ime,  1 .0% i n  

Sauereiswn No. 75, 0.2% i n  3 0 4 s t a i n l e s s  s t e e l  tubes.  I n  comparison 

t o  t h e . b l a n k  t e s t ,  t h e r e  were about  6.8% i n s o l u b l e  c h l o r i n e  . . 

compounds formed. 



The 41% c h l o r i n e  condensed i n  t h e  coo le r  304 s t a i n l e s s  s t e e l  

l i n e  was a dark  green,  water-soluble  m a t e r i a l  and was analyzed a s :  

Fe,  major c o n s t i t u e n t ;  C r ,  % 0.6 mg/ml; N i ,  0.05-0.6 m g / m l .  The 

corroded 304 ' s t a i n l e s s  s t e e l  tub ing  was analyzed a s :  Fe, major 

cons . t i tuent ;  C r ,  % 3%; N i ,  0.5-0.6. 
1 . :  

3 . 3  ' ~ i f e c t s  of c a l c i n a t i o n  i n  steam 

1; h a s  gene ra l ly  been observedzy3 t h a t  c a l c i n a t i o n  h i s t o r y  

can g r e a t l y  a f f  e c t  t h e  s u l £ a t i o n  performance of t h e  l imes tones .  The 

performance, c o p c c i a l l y  t hc  SO s o r p t i o n  capacity, call c r l ~ l c a l l y  2 

determine t h e  r a t i o  of Ca/S r equ i r ed  f o r  f l u i d i z e d  bed combustion 

process .  i o r  economic concern, i t  i s  important  i n  searching  f o r  t h e  

b e s t  c a l c i n a t i o n  cond i t i on  t o  y i e l d  the  h igh ly  r e a c t i v e  l imes.  This  

w i l l  b e  p a r t i c u l a r l y  u s e f u l  f o r  t he  once-through FBC systems. 

A g r e a t  i n c r e a s e  i n  SO s o r p t i o n  capac i ty  of CO ca l c ined  l imes ,  2 2 

compared w i t h  pure N2-calcined l imes ,  has been found by t h e  Westing- 

2 
house Research Laboratory. 'ro cont inue  r e sea rch  on t h i s  o b j e c t i v e ,  

t h i s  work was conducted t o  i n v e s t i g a t e  t he  s u l f a t i o n  r a t e s  of t h e  

steam-calcined l imes.  

E x p ~ r i  men t a  L : 

T11e r a t e s  of s u l f a r i a n  were measured g rav ime t r i ca l ly .  A 

Cahn-TGA system was used. D e t a i l s  of t h e  experimental  procedure and 

t h e  appara tus  f o r  'the mdasurements have been descr ibed  elsewhere.  

The weighed samples (about 80 mg) of Greer l imes tone  (16120 

mesh) were ca l c ined  i n - s i t u  a t  a hea t ing  r a t e  of 20"~lrnill and were 

s u l f a t e d  subsequent ly.  The c a l c i n a t i o n  temperatures  were kep t  t h e  



same a s  t h e  s u l f a t i o n  temperatures.  T o t a l  gas f lows through t h e  

system were kep t  a t  1000.SCCM which correspond-ed t o  a  l i n e a r  

flow v e l o c i t y  of 10  cm/sec. 

Resu l t s  and Discussion: 

The s u l f a t i o n  r a t e s  of N2-calcined, H O / N  -ca lc ined ,  and 2 2 

C02/N2-calcined l i m e s  a t  1 atm i n  t h e  temperature range of 900°C t o  

1 0 0 0 ~ ~  have been measured and t h e  r e s u l t s  a r e  shown i n  F igures  18 ,  19 

and 20. I n  each experiment,  the  s u l f a t i o n  r a t e s  have been measured 

. . 

f o r  more than  two hours .  

From t h e s e  r e s u l t s ,  i t  i s  c l e a r  t o  show t h a t  bo th  C02 and steam 

t r e a t e d  l imes have h ighe r  SO2 abso rp t ion  capac i ty  than pure N 2  

t r e a t e d  ones.  The h igher  t h e  steam concen t r a t ion ,  t h e  l a r g e r  t h e  

capac i ty  f o r  SO Also, t h e  i n c r e a s e  i n  capac i ty  f o r  C02 and 2 ' 

steam ca l c ined  l imes  seems t o  decrease  w i t h  inc reas ing  temperature.  

The e f f e c t  of CO on t h e  s o r p t i o n  capac i ty  i s  be l ieved  t o  be 2 

due t o  i t s  e f f e c t  on t h e  p o r t  development dur ing  c a l c i n a t i o n .  O'Neil l  

2  
e t  a l .  suggested t h a t  C02 ca l c ined  l imes  gave l a r g e r  pores  than  N2 

ca lc ined  l imes .  Since t h e  capac i ty  of a  l ime i s  determined by c l o s i n g  

of t he  pore mouths a s  t h e  calcium s u l f a t e  (which has a l a r g e r  s p e c i f i c  

volume than  c a l c i a )  i s  formed w i t h i n  t h e  pores .  Thus, p a r t i c l e s  w i th  

l a r g e r  pores  showed h igher  c a p a c i t i e s .  

3 
Senum e t  a 1  have shown t h a t  t h e  r e a c t i v i t y  of t h e  steam 

ca l c ined  l ime is  l a r g e r  than the  non-steam ca l c ined  l i m e ,  b u t  . the  

s u r f a c e  a r e a  i s  e s s e n t i a l l y  t h e  same f o r  bo th  ca l c ined  l imes.  

However, t h e  p o r t  s i z e  d i s t r i b u t i o n  i s  more f avo rab le  toward l a r g e r  



pores for steam calcined limes than for non-steam calcined ones. 

This differnece in the pore sizes, again, may result in the increase 

of sorption capacity. 

Further work may continue to study the sulfation capacities of 
. . 

the limes at various steam concentrations, and the combined effect 

of CO and H 0 in the combustion flue gas on sulfation will also 2 2 
. . 
be investigated. 

.. , . , . . 
4. Pressurized TGA 

High Pressure 'CGA : 
, I 

This study is in support of the development of the pressurized 

Fluidized Bed Combustion (PFBC). Kinetic studies are being performed 

on both sulfation and regeneration reactions. 

The construction of a high pressure, high temperature, vertical 

TGA system has been completed. This system is capable of operating 

0 at temperature up to 1800 C and pressures up to 10 atmospheres. It 
* ' 

is currently used for sulfation rate measurements at 10 and 1 atmo- 

spheres and in the temperature ran$; of 8 0 0 ~ ~  to 1000~~. 
. , 

4.1 Apparatus 

The scheme of the abparatus is essentially the same as 1 arm 

TGA. A Cahn balance (model R-100) is housed in a i'/4" thi& stainless 

steel bell dome. Connected to the balance-is a 1" I.D., 1/4" thick 

alumina (high purity) tube. A platinum wire is used to hang a 3/16" 

diameter alumina sample pan. The reaction zone is heated by a 1 ft 

deep temperacure programmable furnace, and the temperature is 

measured by a Pt-Pt/lO% Rh thermocouple, whose tip is about 114" 



below t h e  sample pan. During t h e  experiments ,  a  cons t an t  flow of N 2  

i s  pured through t h e  ba lance  t o  prevent  cor ros ion .  This  N merges w i t h  
2 

t h e  r e a c t a n t  gases  from t h e  s i d e  w a l l  and e x i t s  from t h e  bottom of t h e  

tube .  

I n  gene ra l ,  114" s t a i n l e s s  s t e e l  tub ing  is  used f o r  gas  t r a n s p o r t .  

The flow r a t e s  of gases  a r e  measured by c a l i b r a t e d  Tylan mass flow 

meters. The experimental  procedure f o r  t h e  s u l f a t i o n  r a t e  measure- 

ment i s  t h e  same a s  i n  t h e  atmospheric  p r e s s u r e  experiments.  

4.2 Resu l t s  and Discuss ions  

0 
S u l f a t i o n  r a t e s  a t  va r ious  p re s su re s  were measured a t  900 C 

us ing  Greer l imes tone .  The s tone  was 16/20 Tyler  mesh i n  s i z e  and 

0 
was ca l c ined  i n  TGA a t  900 C w i th  25'~lmin temperature  r ise.  I n  a l l  

t h e s e  experiments ,  h igh  o v e r a l l  gas  flow r a t e s  (1100 SCCM) and 

smal l  amount of sample weight (about 30 mg l imestone)  were used t o  

e l i m i n a t e  t h e  p o s s i b l e  mass t r a n s f e r  e f f e c t s .  F igu re  21 g ives  t h e  

conversion x ve r sus  t ime d a t a  under t h e  cond i t i ons  of SO 0.5%, 
2 : 

02:  5%, .N2: 94.5%, P = 1 atm (curve  1 ) ;  SO2: 0 .5%, 02: 5%, N2: 94.5%, 

P = 1 0  arm (curve 2 ) ,  and SO2: 52, 02:  5%,  N2: 90%, P = 1 atm 

(curve 3)  r e s p e c ~ l v e l y .  Also,  from t h e  DTG curves, Lhe r e a c t i o n  

dx 
r a t e s  -were  ob ta ined  and t h e s e  r e s u l t s  a r e  p l o t t e d  ve r sus  conversion 

d t  

i n  F igure  22. 

F igure  21 'shows t h a t  i n c r e a s i n g  t h e  system p r e s s u r e  i n c r e a s e s  

t h e  s u l f a t i o n  r a t e s  under t h e  same gas  composi t ions ( c f .  curves  1 

and 2 ) .  This  is  because t h a t  . i nc reas ing  t h e  system p r e s s u r e  i n c r e a s e s  

t h e  p a r t i a l  p r e s su re  of SO r e s u l t i n g  i n  h ighe r  chemical r a t e s .  
2  



Simi l a r  r e s u l t s  f o r  dolomite  s u l f a t i o n  were observed by O 'Nei l l  e t  

a 1  . 2 9 4  However, t h e  i n i t i a l  s u l f a t i o n  r a t e s  a t  , l o  atm were lower 

than  1 atm under t h e  same SO2. P a r t i a l  p r e s ~ u r e s ' ( c f .  curves  2 and 
. . . . 

. . , . 

3 ) .  Some of t h e  d i f f e r e n c e s  i n  r a t e s  dur ing  t h e  i n i t i a l  s t a g e s  can 

b e  q u a l i t a t i v e l y  explained by t h e  g r a i n  and a r e  descr ibed  
. . . . . . 

i n  t h e  fol lowing:  
. - 

Since most of t h e  a c c e s s i b l e  s u r f a c e  a r e a  i n  t h e  ca l c ined  l ime 
. . . . ' ' , .  

' 3  

i 
e x i s t s  i n s i d e  t h e  pores ,  pore d i f f u s i o n  p l ays  a n  important  r o l e  even 

. . . <  . .  . > . . 

i n  t h e  i n i t i a l  conversion s t age .  Using g r a i n  model I s h i d a  and 

6 
Wen have s l i ~ w l l  L l l a L  

' < . . . -. 

peac t ion  r a t e  P 
S02 

(product  l a y e r  d i f f u s i o n  through each g r a l n  is  assumed n e g l i g i b l e  i n  

t h e  i n i t i a l  s t a g e ) ,  where k, i s  s u r f a c e  r e a c t i o n  r a t e  c o n s t a n t ,  De 

i s  pore  d i f f u s i o n  c o e f f i c i e n t  and P is t h e  p a r t i a l  p re s su re  o£ 
so2 

S O 2 .  Since d i f f u s i v i t y  De i s  i n v e r s e l y  p ropor t iona l  t o  t o t a l  

p re s su re ,7  t h e  r e a c t i o n ,  a t  10  atm, based on t h e  g r a i n  model, would 

be  1 0  t i m e s  lower than  t h a t  a t  1 atm under t h e  same compositions.  

The f a c t  t h a t  i t  i s  h igher  is  because of t he  h igher  chemical r a t e .  

According t o . t h e  Wen-Ishida model, the o v e r a l l  r a t e  shn,.lld be. h igher  

by a f a c t o r  of 101 10 o r  10; Thc rates a t  5% SO 1 atm would be  
2' 

1 0  times h igher  than' t h e  0.5% SO 1 atrn r a t eE .  Thc cxperimental  
2 ' 

r e s u l t s  given i n  F igure  2 1  a t  conversions l e s s  than  3% seem t o  

conform wi th  t h e  above a n a l y s i s .  However, t h i s  model can n o t  be  

used t o  exp la in  t h e  d i f fe renc .e  hetween curves 2 and 3 .  Rates i n  



curve 3 could b e  l i m i t e d  by P ( n o t  P . Higher Po w i l l  be  
02 SO2 

- 
2 

used i n  t h e  f u t u r e .  

The e x t e n t  of s u l f a t i o n '  f o r  6 hours f o r  t h e  above r e s u l t s  

i s  g iven  i n  Table 2. It was s u r p r i s i n g  t o  f i n d  t h a t  l ime s u l f a t i o n  

a t  10  atrn had h igher  capac i ty  than  t h a t  a t  1 atrn under. t h e  cond i t i on  

of same SO2 p a r t i a l  p re s su re .  F igure  21 shows t h a t  bo th  1 atrn runs  

reached p l a t e a u  c'onversion v a l u e  lower than  52%, t h e  maximum 

conversion f o r  pore &nclosure f o r  l ime s u l f a t i o n . 8  For 1 0  atm 

s u l f a t i o n ,  whi le  t h e  r e a c t i o n  p r o f i l e  d i d  no t  f l a t t e n  below 52%. 

Fac to r s  f o r  t h i s  i nc rease  i n  capac i ty  i s  s t i l l  unknown. It was 

suspected t h a t  t h e  buoyancy e f f e c t  due t o  p re s su re  might r e s u l t  i n  

t h e  e r r o r  i n  measurements. However, experimental  r e s u l t s  showed 

t h a t  p r e s s u r i z i n g  t h e  system from 1 t o  10  atrn us ing  N and O2 f lows 
2 

caused only  2 mg weight i n c r e a s e ,  and in t roduc ing  SO -N mixture 
2 2 

flow ,100 SCCM) t o  s t a r t  s u l f a t i o n  only  increased  100 mm 4g i n  system 

p res su re .  Thus, t h e  weight i n c r e a s e  due t o  t h e  i n t r o d u c t i o n  of SO2 

would be  l e s s  than 0.03 mg. This  va lue  compared w i t h  the  t o t a l  

weight ga in  i n  6 hours  (12 mg) can be  neglec ted .  Thus, i t  was 

concluded t h a t  t h e  weight i n c r e a s e  dur ing  s u l f a t i o n  was n o t  r e s u l t a n t  

from buoyancy e f f e c t .  

Using pore enc losure  t o  exp la in  t h e  SO abso rp t ion  capac i ty ,  
2  

one would expect  t h a t  t h e  capac i ty  a t  1 0  atrn (curve  2) would be 

lower than  t h a t  a t  1 atrn ( c u r v e ' 3 ) ,  s i n c e  t h e  d i f f u s i o n  b a r r i e r  i s  

increased  by pressure, .  The p e n e t r a t i o n  depth f o r  SO would be 
2 

lower a t  higher  p re s su re s ,  and t h e  a v a i l a b l e  p o r t i o n  of l ime i n  t h e  

p a r t i c l e s  i s  thus  reduced. This  seems t o  be  con t r a ry  t o  t h e  



experimental  f i nd ings .  Fu r the r  work on t h e  cause of t h e  increased  

s u l f a t i o n  c a p a c i t y  due t o  p re s su re  w i l l  c o n t h u e .  

The e f f e c t  of c a l c i n a t i o n  p re s su re  on s u l f a t i o n  has a l s o  

been i n v e s t i g a t e d .  S u l f a t i o n  r a t e s  of n i t r o g e n  ca l c ined  l ime a t  

1 atm and 1 0  a t m  are given i n  F igure  23. No d i f f e r e n c e  i n  r a t e s  ' 

was observed. 

5. S i l i c a t e s  - Based Syn the t i c  Sorbents  

I n  r e c e n t  y e a r s ,  regenerable  s y n t h e t i c  so rben t s  have been sought 

f o r  a p p l i c a t i o n  t o  FBC a t  s e v e r a l  l a b o r a t o r i e s .  They have found 

v e r y  good r egene rab le  so rben t s  b u t  un fo r tuna te ly ,  t h e  so rben t s  a l l  

- tu rned  out  t o  be  too  expensive t o  be  p r a c t i c a l .  Examples a r e :  

barium t i t i n a t e  (Exxon), a l k a l i z e d  alumina (Bu. Mines) and CaO 

depos i ted  on a  A1203 (Argonne and Dow Chemical). 

Concerning t h e  last-mentioned s o r b e n t , s t h e  sample was prepared 

i n  t h e  fol lowing manner: t h e  a-A1203 ( a  h igh  temperature and h igh  

s u r f a c e  a r e a  form) p e l l e t s  were immersed i n  a concent ra ted  aqiieniis . 

s o l u t i o n  of Ca(N0 ) removed and d r i e d  ( a t  an  unspec i f ied  tempera- 
3  2' 

t u r e )  subsequent ly.  The p e l l e t s  were then  h e a t  t r e a t e d  a t  8 0 0 ' ~  o r  

1 1 0 0 ~ ~ .  The calcium loading  ranged from 3.3 t o  14.8% by weight of 

CaU i n  A l  0 X-ray d i f f r a c t i o n  showed t h a t  most of t he  CaO was i n  2  3 '  

t h e  forms of calcium a luminates ,  no t  f r e e  CaO i s l a n d s  o r  c r y s t a l l i t e s .  

Rates  of s u l f a t i o n  and regenerati .on were shown t o  be  much ~ u p e r i o r  

than  t h e  n a t u r a l  l ime.  But,  a s  mentioned, t h e  c o s t  would be  too 

h igh  f o r  product ion of such so rben t s ,  most ly due t o  t h e  high c o s t  

of t h e  a-A1203. 



With t h e  above background, and be ing  aware of t h e  f a c t  t h a t  

on ly  about  30% of t h e  lime,, most ly on t h e  bu te r  s u r f a c e  l a y e r ,  i s  t 

s u l f a t e d  i n  t h e  f l u i d i z e d b e d  combustion. p i l o t  p l a n t s ,  l e t  u s  d i s c u s s  

t h e  s y n t h e t i c  sk rben t s  based on s i l i c a  r a t h e r  thaq alumina. 

We impregnate CaO on the  i n t e r n a l  s u r f a c e  of a porous s i l i c e o u s  

m a t e r i a l .  The impregnated m a t e r i a l  is  then hea t - t r ea t ed  a t  7 0 0 - 1 0 0 0 ~ ~ .  

A h i g h l y . r e a c t i v e  mixture of calcium s i l i c a t e s  i s  formed on t h e  pore 

su r f ace .  This  m a t e r i a l  i s  a l s o  h igh ly  regenerable .  Such so rben t s  

can  be made a t  low c o s t s :  ( a )  The s i l i c e o u s  p e l l e t s  may be  a porous 

s i l i c a  o r  s i l i c a t e ,  o r  i t  could b e  a s i n t e r e d ,  p e l l e t i z e d  c o a l  a s h  

p e l l e t s ;  (b) t h e  CaO can be  impregnated on t h e  s i l i c e o u s  s u r f a c e  i n  

a process  s i m i l a r  t o  t h e  B a t t e l l e  Lime-Treated Coal process .  The 

l ime loading  i n  t h i s  so rben t  would b e  around 5-2d%. Experiments, on 

t h i s  new sorbent  a r e  i n  p rog res s  i n  our  l abo ra to ry ,  and r e s u l t s  w i l l  

b e  r epo r t ed  s h o r t l y .  

6 .  Process  Design and Evalua t ion  

Extensive changes i n  t h e  s u b j e c t  process  flow diagrams (PFD's) 

prompted by newly acqui red  process  d a t a ,  have caused a de l ay  i n  

completing the PFD's pert i~ lrnl :  tcs sorbent r egene ra t ion  and SO 2 

conversion t o  H SO A s  soon a s  t h e  PFD's a r e  completed, we w i l l  
2 4' 

prepare  an  economic comparison between t h e  once through so rben t  

s,ystem (base  case)  and t h e  regenera t ive /H SO system. 
2 4 
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Table 1: Results of Lime Regeneration in the Kiln Reactor 
2CaS04 + C + 2Ca0 + C02.+ 2S02 

Final Extent of regeneration (%) 
Run Temp. Flow (Ar) % SO2 Time period Based on Based on 
No. (OC) (m moles/min) (max) (min) gas phase solid phase - - 

a: from optical pyrometer, b: from thermocouple. Wt: coal ash: 0.4998 g, 
sulfated Greer lime: 3.8508 g, c: assuming complete first step reaction. 

Table 2: Extent of Sulfation at 6 Hours 

Operating Conditions Extent 

1 atm, S02: 0.5% 40% 

10 atm, SO2: 0.5% 73% 

1 atm, SO2: 5% 48% 



Figure 1. Regeneration rate of 100 mg 27.4% sulfated 
limestone 2203 from Argonne FBC (Sample E11032J..with 
18.8 mg Sewickley coal ash from Argonne FBC (8.55% 
carbon, 2.89% S). 

PURIFIER .. , SAMPLING BULBS 

TO SCRUBBER and FLUE , 

Figure 2. Schematic diagram of the rotary kiln regenerator. 
b ' 

Figure 3. Design of the kiln regenerator. 



TIME, min 

Figure 4. SO2 concentration in the off gas from the 
kiln regenerator. Total press. = 1 atm. At the 
following temperatures and gas (Ar) flow rates: 1050°C 
and 1.46 m moles/min (0); 1000"~ and 1.46 m moles/min 
( 8 )  ; 1000°C and 0.37 m moles/min (0) ; 960°C and 1.46 
m moles/min (A). 

TIME, min 

Figure 5. C02 concentration in the kiln.off gas. 
CondlLlv~~s same as the circlco in Figure 11. 



Figure 6. Thermodynamic equilibrium partial pressure 
of SO2 for the reaction: CaS+3CaS04 -+ 4CaW4SO2. 
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Figure 7. Rate of regeneratinn nf l i m e  in the rotary 
kiln. Flow rate of Ar = 1.46 m moles/min. ' 
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Co2Si04 (Atomergic Reseorch Grode.Tyler 325/400 Mesh) 
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Figure 8. Comparison of rate of sulfation at'85O0C 
between 3251400 mesh Ca2SiO4 (Atomergic) and 3251400 
mesh CaO (Mallinckrodt) in 0.25% SO2, 5% and a.balance 
of N2. 

o CopSi04 (PCA 98% TYLER 3 2 5 / 4 0 0  MESH) 
x COO (MALLINCKRODT. TYLER 3251400 MESH) _ 

0; 20 A $0 160 dd 
TIME. min 

Figure 9. Comparison of rate of sulfation at 850°C 
between 325/400.mesh Ca2Si04 (PCA) and 3251400 mesh 
CaO (Mallinckrodt) in 0.25% SO2, 5% 02 and a balance 
of N2. 

TIME. min 

Figure 10. Regeneration (thermal decomposition) rates 
of powdered reagent CaS04 (Baker), 42% sulfated powdered 
CaSiQ3 (ROCIRIC) and 46% sulfated powdered Ca2SiOq (PCA) 
at llOO°C in N2. 
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Figure  11. ~ e g e n e r a t i o n  r a t e s  of powdered reagent  CaS04 
(Baker),  4 2 % . s u l f a t e d  powdered CaSi03 (ROCIRIC) and 46% 

. s u l f a t e d  .powdered Ca2Si04 (PCA) a t  1000°C i n  N.2 wi th  
'coconut, char.coai ' ( ~ ~ . l e r  200/250) a s  a s o l i d  r e d u c t a n t .  

. . 

T I M E ,  min  

F igure  12. S u l f a ~ i u ~ ~  r a t e  of powdered reagent  CaO 
(Mal l inckrodt)  wi th  Fc2O3 (Baker, Tyler' 200/325), 

, V205 (F i she r ,  Tyler  2001325) o r  steam at., 850°C i n  
,0.25% SO2,, 5% O 2  and a balance of N2.. . . 

. :... 3 . ' 
, . .  

SO2 concentration ('9-mole/cm3) xi06 (5% 4 EL 801 N p )  

. .F igure  13; E f f e c t  of SO2 concen t ra t ion  on s u l f a t i o n  
of powdered reagent  CaO' (Mallinckrod't) .a t  850°C. 

, . . . . . 
. . . . )  
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Figure 14. Effect of SO2 concentration on sulfation 
of powdered reagent CaO (Mallinckrodt) and 4% Fez03 
(Baker, Tyler 2001325) at 850°C. 

Figure 15. Effect of temperature on sulfation of 
powdered reagent CaO (Mallinckrodt) w i L 1 1  0.25% SO2 

' and 5% 02 in N2. 



Figure 16. Effect of temperature on sulfation of 
powdered reagent CaO (Mallinckrodt) and 4% Fez03 
(Baker, Tyler 2001325) with 0.25% SO2 and 5% 02 
in ,N2. 
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Figure 17. Sulfation rate of Tymochtee Dolomite 
(Tyler 16/20, calcined at 850°C) with 5% steam and 
without steam at 850°C in 0.25% S02, 5% O2 and a 
balance of N2. 
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Figure 18. ~ffects of the 'calcination environment on 
the sulfation rate. Greer stone calcined at various 
conditions and sulfated at 900°C, with 0.25% SO2, 5% 
O2 and N2 (bal.). Calcination conditions were: 1: N2, 
2: 10% steam in N2, 3: 30% steam in N2 and 4: 60% C02 
in N2. 

TIME. min 

Figure 19. Same as Figure 18, except both calcination 
and sulfation were at 950°C. Calcination conditions 
were: 1: N2, 2: 10% steam in N2 and 3: 60% C02 in N2. 
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Figuse 20. Same a s  Figlire 18, a t  1000°C. Calcination 
.condit ions  were: 1 :  N2 and 2 :  60% C02 i n  N2. 

TIMC, III~II 

Figure 21. Sulfat ion r a t e s  of Greer lime (16120 mesh) 
a t  900°C and various pressures: Curve 1 :  p = 10 atm, 
SO2 = 0 . 5 X ,  02 - 54, N2 = L d . ;  Curve 2 :  p = 10 atin, 
SO2 - 0 .5%,  O2 = 52, N2 = b a l . ;  Curve 3:  p = 1 atm, 
SO2 = 5%, 02 = 5% and N2 = bal .  
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Figure 22. Su l fa t ion  r a t e s  versus  % conversion. 
Legends same a s  i n  Figure 2 1 . '  

0 CALCINED at l a lm N2 
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Figure 23. Su l fa t ion  r a t e s  of Greer lime calc ined a t  
1 atm (0) and 10 atm (0) of N2.  Sulfated with 0 .2% 
SO2, 5% 02 and N2 a t  900°C. 
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