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1 INTRODUCTION

Abstract: In this paper recent results on random graphs are used as a framework for a
theory of mutation based computation. The paradigm for mutation based computation will
be the evolution of molecular structures. The mathematical structure of “folding maps”
into molecular structures is shown to guarantee an effective search by point-mutations.
Detailed mathematical models for these mappings are discussed. We will show that com-
binatorial structures consisting of (i) a.(random) contact graph and (ii) a family of relations
imposed on its adjacent vertices allow for efficient search by point mutations. We will de-
termine the graph structure of the contact-graph and dicuss its relation to the optimization
process. Mappings of sequences into random structures are constructed. Here, the set of
"~ all sequences that map into a particular random structure is modeled as a random graph
in sequence space, the neutral network. We will analyze the graph structure of neutral
networks and show how they are embedded in sequence space. Explicitely we discuss
connectivity and density of neutral networks and prove that any two neutral networks
come close in sequence space. Finally several experiments are shown that illustrate the
prospective of using this molecular computation method.

Key words. random structure, sequence-structure mapping, random graph, connectivity,
giant component, optimization, evolution

1 Introduction

Molecular structures have evolved in time by randomizations on sequence level. The
randomizations were essentially of “local” nature, like, for example point mutations caused
by radiation. It is highly nontrivial that this kind of “local” variation is sufficient to find
a certain target structure. Omne could think of a sort of “local-optimum” in which a
population gets stuck because all fitter structures cannot be reached by point mutations.
The main point of this paper consists in showing that molecular folding landscapes exhibit
a generic “mathematical” structure that allows practically to find any target structure by
point mutations. Therefore point mutations are a powerful search method in all landscapes
that exhibt an analogous mathematical structure. Mutations and molecules are in this
sense strongly correlated objects. Our analysis focusses on two main points. First we
discuss what is meant by “structure”; in fact we will construct a probability space of
structures and determine their main properties. Second we determine the basic properties
of preimages of the above random structures. Again we will work in a probability space of
possible preimages. In particular we determine how the preimages, the so called neutral
networks, are embedded in sequence space. In the course of this analysis we will introduce a
mathematical model for generating an analyzing mappings from sequences into structures.

The term “structure” can reflect different levels of coarse graining. For us “structure” will
consist of a list of pairs of coordinates of the sequence that are paired by means of chemical




bonds. More precisely it will be a contact graph and a multi-set of relations imposed on the
extremities of its edges. The contact graph is a random graph whence we refer to the above
structures as random structures [2]. One important feature of molecular structures is their
robustness with respect to point mutations. Consequently many 1 or 2 mutant neighbors
of a sequence will fold into the same structure and sequences realising this structure form
a neutral network in sequence space. This robustness is a well studied phenomenon in
~molecular biology and has been discussed in the context of neutral evolution [?]. It is
* closely related to the structure of the contact graph of the molecule. Suppose a mutation
~occurs'in a component of the contact graph. Then, according to the relations (rules)
associated with the edges (bonds), a high fraction of all nucleotides of this component has
to be changed in order to stay compatible. The probability of the sequence remaining
compatible with the molecule decreases exponentially with the size of the component in
which the mutation occurred.

The paper is structured as follows: first we introduce the concept of random structures and
compatibility. Second, we construct preimages (neutral networks) of random structures
as random subgraphs of Q7 and third we analyze how neutral networks are embedded in
sequence space. Finally some computer experiments are presented that illustrate how the
set of structures is searched. '

2 Random structures and compatibility

A graph X consists of a tuple (vX,eX) and amapo®t:eX — vX x vX. vX is called
the vertez set and eX the edge sef. An element P € X is called a vertez of X; an element
y € X is called an edge. The vertex o(y) is called the origin of y and the vertex t(y)
is called the terminus of y; o(y), t(y) are called the eztremiiies of some edge y. There is
an obvious notion of Y being a subgraph of X. We call a subgraph Y induced, if for any
P, P’ €Y being extremities of an edge y € X, it follows y € Y. A path in X is a sequence
(Qb:’/hQZayZa'-'ay'an-l-l)’ where Q; € X, y; € X, O(yZ) = (; and t(yi) = Qit1- A
path such that Q)1 = Q,; is called a cycle. X is called connected if any two vertices are
vertices of a path of X. A connected graph without cycles is called a tree. Being connected
is an equivalence relation in X, and the maximal connected subsets of vertices are called
components of X. For Y < X, the closure of Y in X, Y, is the induced subgraph of all
vertices of X that are adjacent to some vertices of Y. A subgraph Y — X is called dense
if and only if Y = X. Finally, a vertex P is called isolated in X if it is not an extremity
to an edge y € X.

A sequence V € QF is a tuple (Py,..., P,) where OF is a generalized n-cube. The Q7-
vertices are sequences of length n over the alphabet A of size o and two sequences are
adjacent in QF if they differ in exactly one coordinate. Let 1 > cj,cz > 0 be positive
constants and suppose m(n) € N fulfills 2m(n)/n * ¢; (m corresponds to the number
of secondary bonds of the molecule). Let now X; be a partial 1-factor graph on 2m




2 RANDOM STRUCTURES AND COMPATIBILITY

Contact graph: Components: Random structure
realised by a sequence:

12 19 3 1
,A 20 2

1 2 4 10 17
Y=Y X=X

Figure 1: A contact graph, consisting of an ordered set of vertices (numbered), between
which there can be either secondary (gray) or tertiary (thin black) edges, together with its
set of components. On the right hand side, the bases of one compatible sequence are shown
on the vertices, indicating that, in the random structure, certain relations associated with
the edges have to be fulfilled (in this case Watson-Crick base-pairing rules).

indices, say, {¢;,,...,%;,,, } C {1,...,n}. X3 is the contact graph formed by all secondary
interactions. Next let X5 be the random graph obtained by selecting all possible edges
between the n nucleotides except the secondary edges with probability c;/n. Clearly,
the graphs X form a finite probability space by assigning to each l-regular graph uniform
probability. Analogously, the graphs X» form a finite probability space where a graph with
k edges has probability p*(1 — p)(g)_m_'C with p = ¢2/n [1]. The graphs X3, X5 induce
the graph X; ® X2 whose vertex set is {1,...,n} and whose edge set e(X; ® X3) is the
(disjoint) union of all X;, X»-edges. X1 ® X3 is called the contact graph. The probability
space formed by the graphs X; ® X will be referred to as I'}, ... A random structure, sn,
on n nucleotides of a finite alphabet A consists of the following pieces of data:
(7) the contact graph X1 ® X, and
(i4) a family of symmetric relations (R, Ry)yex,, where R., Ry C A X A.
Each Ry is supposed to have the property: for all a € A there exists one & € 4 with
the property: aRy,b. The relation R, is motivated by Watson-Crick base-pairing rules
observed in RNA secondary-structures. For y € Xz the relation R, corresponds to a
specific (tertiary) interaction rule that might be context dependent.

A vertex (sequence) V € QF is called compatible to s, if and only if

¢ for all bonds y of the partial 1-factor graph X its nucleotides indexed by the extrem-
ities {o(y), t(y)} have the property Po,yR+ Py, (note that since R, is symmetric we
also have Py, Ry FPoy))
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Figure 2: a) The distribution of vertices in components of size £ in a single contact graph,
for different values of ¢z (the fraction of tertiary bonds). b) The scaling of the largest
component in a single contact graph with sequence length (number of vertices n) for c; =
0.05 and 0.15. Also shown are fitted lines with y = Cln(n)/n, with C = 0.8 and 1.3
respectively. ‘

e its nucleotides fulfill for all tertiary bonds y € Xa: Py Ry Pyy)-

The set of compatible vertices with respect to the random structure s, is called C(sy).
By construction there are n — 2m vertices not incident to an Xj-edge and there are
asymptotically [n — 2m]e™°2 isolated vertices in X; ® Xa.

Theorem 1./2] Suppose that 0 < cz,¢1 <1 and 2—’—"51)- M ci. Further let T be the random
variable (r. v. ) representing the number of vertices of a random graph Iy, .. that are
contained in tree-components. Then the following assertions hold '

() For [c1+c2] < 1 asymptotically almost all vertices of I'y, ., are in tree-components, i.e.

lim [Eff’/n] =1.

n—oo

There egzists a constant C(cy,cp) > O such that a.a.s. all paths in I7, . have length
< C In(n).

(i5) For ca < % and arbitrary c; there exists a constant C(cz) > 0 such that a.a.5. all
iree-components in Iy, .., T, have the property |T| < Cln(n).

Accordingly contact graphs decompose with probability 1 into small tree components. In
this context some bounds for ¢;, ¢; that are observed in RNA and protein structures might
be of interest: 0.4 < ¢; < 0.7 and 0 < ¢y < 0.2. Plugging this in we obtain that most
nucleotides of the contact graph (X; ® X5) are contained in very small components.




3 NEUTRAL NETWORKS

Figure 3: This figure illustrates the decomposition of a sequence with respect to the compo-
nents of the contact graph of the structure. Nucleotides in three types of components (single
nucleotides a, nucleodides in secondary interactions b, and nucleotides in secondary and
tertiary interactions c) are shoum. For each of the three classes we monitor all possible
compatible segments.

3 Neutral Networks

In this section we establish a mapping between sequences and random structures and con-
struct preimages of structures as random graphs in sequence space. Let s, be a random
structure. Its preimage is necessarily contained in C(s,), the set of compatible sequences.
We have shown that the underlying contact graph has almost all vertices in tree compo-
nents of at most logarithmic size. It induces moreover a partition of the indices {1,...,n}
into its components. We can regroup the indices of the nucleotides of a compatible se-
quence into the components of the contact graph. Formally we can now consider each
multi-set (FP;,,...,F;, ), consisting of nucleotides whose indices belong to a component of
the contact graph, to be an element of a new alphabet, 4. Accordingly we can rewrite a
compatible sequence as (4;,,...,4;,) (£ being the number of components of the contact
graph).

To illustrate this let us consider an RNA secondary structure with respect to the bio-
physical alphabet A,U,G,C. The latter has a contact graph whose edges are exactly the
paired positions {(i1,%),...,(¢m,%;)}. These are also all nontrivial components of the
contact graph. The Watson-Crick base pairing rule, AU,UA,GC,CG,GU,UG, corre-
sponds to the induced alphabet. Accordingly, a compatible sequence (Py,...,P,) can be
rewritten as (F,,..., Py, (P, Pjp), - -+, (Pj,, Pj,,,)) where each pair (P;,, Pj,,,) fulfills
the Watson-Crick base pairing rules. Here the set of compatible sequences is the vertex




set of Q7~¢ x Q% where £ is the number of base pairs.
In general the set of compatible sequences is the vertex set of

h

g h . —
HQa; where E i N;="n.

=1

o; = |A;], h is the number of components, and n; the length of the i-th component of
the contact graph. Next we construct the pretmage of the random structure s,. It will
be a random induced graph by selecting the vertices in each factor @7 with independent
probability A;. Note that “vertex” here corresponds to a multi-set (7, ..., F;, ) consisting
of nucleotides whose indices belong to a component of the contact graph of s,. In this
sense “vertex” can be viewed as a certain segment of the sequence. A; (¢ being the index of
a component) can be interpreted as the stability of the random structure with respect to a
mutation that has (i) occurred in the i-th component and that has (ii) led to a compatible
sequence. In this context the structure of randomly induced subgraphs of generalized
n-cubes is of particular interest:

Theorem 2. (4] Let @7, be a generalized n-cube and I'y, an induced subgraph with pn{l'n} =
M=l(1 — )" =ITnl Then

. . 1 for A>1- Va1
A pia{ln is Qg-dense} = { 0 for A<1- "VaT.

Moreover, the number of isolated vertices in random graphs I';, is Poisson with mean
p=a™(1— A2, X* is furthermore the threshold value for connectivity.

Theorem 3. [{] Let O be a generalized n-cube and I', < QF a random induced subgraph
with pun{Tr} = AT=l(1 = X)e"=Tnl, Then

i {Tpis co ted} = L for A>1- Vool
nyao Mt n 18 CORDCCIEAr =9 4 gp N <1 * Va1,

The next theorem shows that random induced subgraphs exhibit giant components for

surprisingly small probabilities, A\, = c_lnn(_”l

Theorem 4. [3] Let Q7 be a generalized n-cube, A\, = #l and pn a measure on G(QR)
such that p,{l'y} = AF “g(l = An)? Pl Then we can choose constants ¢,C > 0 such
that the largest I'p-component, C,(Ll), is the induced subgraph of all T',-vertices that are

contained in [',-components of size > n. Further C’,(,l) has the property

i (1) — —
Ve >0 nh_)x%o#n{rn HCR > [L eilnl} = 1.

The second largest I'p-component, C’,(LZ), is of size < Cn/In(n).




3 NEUTRAL NETWORKS
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Figure 4: The distribution of the sizes of neutral networks for a mapping in random
structures with n = 30, A = 0.8 and fraction of tertiary bonds, cy = 0.05. The curve bases
on the data of 106 sequences being mapped into 5 x 10* random structures. The inserted
curve dispays the frequency distribution of preimage sizes.

The above results imply that above a certain threshold value neutral networks of structures
are denss and connected within the set of compatible sequences. As long as the underlying
contact graphs have almost all components of length 1, 2 and 3. Sequences can easily move
by single digit error probabilities p such that pn =~ 1.

We obtain mappings f : Q2 — {s,} by constructing the corresponding preimages as
‘random graphs iteratively, i.e. we first choose a mapping r : {s,} = N where j < i =
r(s5) > r(s;) and set

7 (s0) =Talso]  £7(si) = Talsi] \ | [Cnlsi] N Tals;]] -
j<i
Figure 4 monitors the distribution of the sizes of neutral networks of random structures.
Analogous to RNA data [?] and also to data on small proteins [?] these curves obey a

are positive constants. b can be interpreted as the number of frequent structures and c
describes the power-law decay for rare structures. Note that structures with low ranks
exhibit neutral networks that have giant components and percolate sequences space.




4 Searching by point mutations

One central question for the search process on molecules is how well the set of structures
is searched by point-mutations. In other words to what extend are point mutations a
sufficient variation mechanism?

A population V, of size N, is a (finite) multi-set of sequences (V;|i¢ € N) where {V;|i €
N1 cC Q% and N > 1. The time evolution of V is obtained by a mapping from (V; |i € N)
to the family (V/|¢ € N) as follows: we select an ordered pair (V;, Vi) where V},V}, €
{Vi|i € N}. The first coordinate V; of the pair is chosen with a probability that is
the fitness of V; relative to the average firness in the population among the elements of
V. The second coordinate is selected with uniform probability on (V; # V| € N),
ie. 1/(N — 1). We select those pairs of sequences at equidistant time steps, and for a
population of size N we refer to a generation as N such time steps. Next we map the
first sequence, V; = (21, ..., Zn), into the sequence V* = (z1, ...,z},). This is performed by
assigning to each coordinate z;a z} # z; with probability p where all z} # z; are equally
distributed and leave the coordinate fixed otherwise. This random mapping ; — v* is
called replication. Finally, we delete the second coordinate of the pair (V}, V%), that is Vj
and have a mapping (V;, Vi) — (V;, V*). Thereby we obtain a new family by substituting
the Vi by the V*.

We will next explain why the graph structure of the union of two contact graphs is of
particular importance for the search in the set of structrues and then analyse its basic
graph structure. ,

Suppose s, is a random structure that has a high fraction of a population of sequences on
its neutral network and that s/, is the target structure. Then, how likely will sequences
that fold into s, be mutated into sequences folding into the target structure? If we take
the union of all bonds of the contact graphs of s, and s/, we obtain a new graph. This
graph will allow to describe how “close” the above two structures come and plays thereby
a central role for the answer to our question. Formally we could view the union graph as
a new type of contact graph. We could then use this to determine sequences that fulfill
the constraints imposed by both the constituent random structures. Now, if on the one
hand the union graph decomposes in small components, the above arguments discussed in
relation to single contact graphs apply; it is highly likely that “bi-compatible” sequences
exist, which are capable of folding into both structures. On the other hand, if the union
graph exhibits a large component of order n it is unlikely that bi-compatible sequences
will exist. The key result for random structures reads:

Theorem 5./2] Suppose 'y, ., and 'y, ., are two random contact-graphs with limp, e 3—:"1— =

c1> 0 and 0 < cy < 1. Then the following assertions hold:
(¢) For ¢; < 1 and c3 = 0 asymptotically almost all vertices of I'};, ., LJY’;,C2 are contained

in components that are line-graphs. There exists a constant C > 0 with the property that

a.a.s. all components in L'y, ., UL, ., have lengths < C In(n).




4 SEARCHING BY POINT MUTATIONS

&

0.7~

—-
oo
witn

0.64

0.54

0.44

0 01 02 03 04 05

0.3

o
o
prs

Progonlon of nodes in the largest component &%
[=3
]
]

0.24

001
0.1

8

Propotion of nodes in the largest component

0 0.05 0.1 0.15 0.2 0.25 500 1000 10000
C2 Vertices In graph 2

Figure 5: Illustration of theorem 4: a) The size of the largest component in the union of
two contact structures for ¢; = 0.6 as a function of ca. Curves are shown for graphs with
102-10°% nodes with 0 > ¢y > 0.25 and, inset, for a graph of 1000 nodes with ca < 0.5. b)
The size of the largest component as a function of sequcnce length n. Curves for various
values of ¢o are displayed.

(i1) Suppose 8c1[2—cilez > 1 and & # 0 solves (1—z) = e312~e1le2z Then T UT fn .
has a.a.s. components C* with the property

€72 (1 - &l — (7.

According to this theorem there is a phase transition in (X; U X]) ® (X2 U X}). Below the
critical value for ¢ (which is for ¢; = 0.6 ¢§® = 0.13), the largest component is < C In(n),
C > 0 and above the critical value a giant component of emerges. Figure 4 illustrates this
dramatic change of the graph structure of the union-graph [?]. Below the critical value
for cp a population can switch between any two structures doing point rrutations.

We finally introduce a class of generic fitness landscapes on random structures in which we
iet a population of NV sequences search for a certain target structure. This target structure
will always be the fittest one. For this purpose let ¢ : QF — {sp} be a fixed sequence to
structure map. Set fr¢: {sp} 2 R, n,€ € Ry: '

G ulfae= ke}——e
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Figure 6: The time evolution of a population of 2000 sequences of length 40 in a Poisson
landscape with n,& = 10. The following three curves are shown: the mean fitness, the frac-
tion of the population realizing the most represented structure (mrs) in the population and
the fitness of the mrs as functions of time. The highest possible filness in this ezperiment
was 250 and the run was terminated after 300 generations, where the population had one
of 3 possible structures with fitness 240 as mrs. In the ezperiment the probability of hitting
the target structure with a random sequence read 1074,

5 Conclusion

Point mutations induce local variations of sequences. Under the basic assumption that
fitness is defined on structural level, molecular structures turn out to be well suited for the
action of point mutations. In fact this a generic property of molecular folding landscapes
which turn out to have a distinct mathematical structure. First, on a certain structural
level, contact graphs of structures have been proven to be robust with respect to point mu-
tations. Structures with large neutral networks, so called frequent structures, have highly
connected, extended, percolating neutral networks in sequence space. The number of fre-
quent structures, however, scales exponentially with sequence length. These results can
be proven rigorously using random graph theory and rely mostly on combinatorial rather
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than biophysical properties of base pairs. The robustness guarantees that fit phenotypes
can be preserved while the underlying genotypes, the sequences continuously perform neu-
tral mutations.

Second, within the parameter range observed for molecular structures, populations can

_realise new phenotypes simply by doing point mutations i.e. they can perform transi-

tions between the associated neutral networks. Thus “innovation” is obtained by point
mutations—all frequent structures are inevitably found.

Molecular folding landscapes serve as a paradigm of landscapes in which point mutations
are fully sufficient for search. It might be speculated that molecules and mutations have
coevolved in time. The natural question to ask here is to what extend also other fitness
landscapes can be searched by mutations and how to determine those landscapes. In this
class of landscapes neutral networks are generic features which make sure that the opti-
mum will be found as long as the latter has a neutral network that is dense and connected.
New inside is needed for the analysis of fitness landscapes and in general to obtain results
on the relation between landscape and variation method.
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