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Experiments Concerning the Automated Search for Elegant Proofs
Larry Wos

Abstract

The research reported in this technical report was spawned by the request to find an elegant proof (of a theorem
from Boolean algebra) to replace the known proof consisting of 816 deduced steps. The request was met by
finding a proof consisting of 100 deduced steps. The methodology used to obtain the far shorter proof is
presented in detail through a sequence of experiments. Although clearly not an algorithm, the methodology is
sufficiently general to enable its use for seeking elegant proofs regardless of the domain of study. The metho-
dology relies heavily on the assistance of McCune’s automated reasoning program OTTER. Of the aspects of
proof elegance, the main focus here is on proof length, with brief attention paid to the type of term present, the
number of variables required, and the complexity of deduced steps. The methodology is iterative, relying
heavily on the use of three strategies: the resonance strategy, the hot list strategy, and McCune’s ratio strategy.
To provide some insight regarding the value of the methodology, 1 discuss its successful application to other
problems from Boolean algebra and to problems from lattice theory. Research suggestions and challenges are
also offered. ‘

1. Background, Perspective, and Problem Origin

This technical report features a methodology for automating the search for elegant proofs; for pertinent
material, see [Wo0s95a,Wo0s96a,Wo0s96c]. (For the actual proofs, or proofs of a similar flavor, see [McCune96]
or either of the following two Web addresses, hitp://www.mcs.anl.gov/home/mccune/ar/monograph/ or
http://www.mcs.anl.gov/people/wos/index.html.) The program that was wused is McCune’s OTTER
[McCune90,McCune91,McCune94]. The methodology is iterative, (usually) beginning with a ““long’’ proof and,
if the methodology succeeds, culminating with a ‘‘short’” proof. As shown in Section 3, later stages of the
methodology use results obtained in earlier stages; for example, the proof steps of a proof completed in Experi-
ment J are used to guide the search for a shorter proof in Experiment k, where j is less than £.

For me, the most satisfying success reported here concerns the fulfilling of a request from my colleague
McCune to find an elegant proof for a particular theorem from Boolean algebra, a proof to replace the 816-step
proof he had found; the theorem is denoted by DUAL-BA-3 in the monograph [McCune96]. (Appropriate equa-
tions for studying this theorem are given in Section 2.) The methodology succeeded in finding a 100-step proof.

The search for elegant proofs has continuously played a key role in mathematics and in logic. Such a
search can lead to the discovery of new, important relationships, and it can also lead to the formulation of
significant concepts. Outside of mathematics and logic, the discovery of an elegant proof can lead to the design
of an efficient circuit or the synthesis of an effective algorithm. Such can occur, for example, when the proof is
(in effect) constructive, and the researcher extracts from it (perhaps by using an ANSWER literal) the desired
circuit or algorithm.

Although what precisely makes a given proof elegant is subject to debate, five properties merit mention:
proof length, term structure, variable abundance, deduced-step complexity, and compactness. Here 1 focus
mainly on the first property (proof length), giving brief attention to the second through the fourth properties. As
for the fifth property of elegance, compactness, I introduced and studied it in [Wo0s96a,Wo0s96¢]. (Because of its
newness, the concept merits immediate focus. By example, a proof of a theorem of the form P implies the and
of g, r, and s is compact if and only if it is a proof of exactly one of Q, R, or S, implying that the other two
proofs are subproofs.) The likelihood of finding a proof that is elegant with respect to one or more of the cited
five properties can be sharply increased if an automated reasoning program is heavily relied upon, a program
such as OTTER. '

Throughout this technical report, the first of the five properties, proof length, has a rather precise meaning,
namely, the number of deduced steps explicitly present in the proof. The qualifier ‘‘rather’’ is present because
intermediate steps resulting from the use of demodulation (for canonicalization) are not counted in proof length.
Compared with the typical use in mathematics, the treatment of proof length in logic is more likely to be pre-
cise. The explanation rests with the frequent practice in mathematics of omitting many obvious steps (for




example, those arising from applying symmetry of equality). In fact, on many an occasion, I have heard a logi-
cian say that mathematicians only outline proofs. In contrast, in various areas of logic (such as equivalential
calculus [Kalman78,Wos95b]), all deduced steps are explicitly presented. Further, various areas of logic require
the use of a specific inference rule, a rule such as condensed detachment [Kalman83,Wos95b]. Seldom is a
specific inference rule cited in a mathematics paper or book.

The second property of elegance, term structure, refers to the type of term present in a proof. For exam-
ple, does the proof (say, from group theory) contain terms of the form inverse(inverse(t)) for some term ¢, or
does the proof (say, from many-valued sentential calculus) contain terms of the form n(n(z)) where n denotes
negation, or does the proof contain terms in which nested divide instructions occur? Just as a proof may offer
added elegance because of being terse, so also may it offer elegance by avoiding some type of term.

The third property of elegance, variable abundance, refers to the number of distinct variables required by
one or more deduced steps of the proof. For example, the proof might require (for one of its deduced steps) the
use of five distinct variables. All things being equal, requiring a smaller number of distinct variables adds to
elegance.

The fourth property of elegance, deduced-step complexity, is concerned with the length as measured in
symbols of the formulas, equations, or clauses present in the proof. (I sometimes use the term ‘‘clause’’ in a
less strict fashion to refer to equations and the like written in various notations acceptable to OTTER.) Exclusive
of commas or parentheses, a proof may derive some of its elegance from avoiding the use of any deduced steps
that are complex (with respect to length). Indeed, when a proof contains formulas or equations that appear to be
“‘messy’’ in that a lengthy array of symbols is encountered, the scientist often evinces disappointment, and
sometimes comments on the lack of ‘‘elegance’.

Of the four properties of elegance discussed in this technical report, the first (proof length) presents the
most difficulty. The concern for proof length presents the type of challenge that is not directly addressable with
an automated reasoning program and (apparently) is not effectively addressable with an algorithm. On the other
hand, (as will be seen) the concern for the second through the fourth properties of elegance is directly address-
able with a program such as OTTER and, at least in theory, can be attacked algorithmically. (The fifth property
of elegance, compactness, also presents difficulty, not admitting an algorithmic attack that is practical.)

To attack the tough problem of finding ‘‘short” proofs, OTTER offers various means—although far from
producing an algorithm; see Section 2. What becomes clear (in Section 3, where the sequence of experiments
illustrating the basic methodology is presented) is the narrowness of the path that leads to success. For example,
a change from the value 9 to the value 10 in the assignment of but one input parameter results (sometimes) in
the completion of ne proofs, in contrast to the completion of a proof marking significant progress.

2. The Target Theorem and an Arsenal of Weapons

Next in order are two items: a presentation of the specific theorem that serves as the target, and a discus-
sion of the various weapons OTTER offers for attempting to reach the target. The discussion sets the stage for
viewing the sequence of experiments (in Section 3) that culminated in the completion of a 100-step proof to
replace the 816-step proof serving as the starting point. In addition, in contrast to the indirect attack on the first
property of elegance, the discussion shows how OTTER can be used to directly address the second, third, and
fourth cited properties of elegance.

The following equations capture the theorem (DUAL-BA-3) to be proved, where x@ denotes the comple-
ment of x and where the two inequalities arise from, respectively, negating the theorem to be proved and negat-
ing its dual.

X = X.
X*¥{y+)=(x*y)+ X *z).

X+ (y*z2)=(x+y)*{x+z).

X+ x@=1.

X *x@ =0,
E*y@)+(x*x)+(y@ *x)) =x.
X*x@)+((x*z)+ (x@ * z)) =z
x*y@)+(x *y) +(y@ *y)) =x
x+y@)* (X +x)*({y@ +x))=x.




X+x@)*(x+2)*(x@ +2z2)) =1z
x+y@)* (x+y)*@ +y) =x
(A * B) + B != B | $Ans(A2).
(A + B) * B I= B | $Ans(A4).

The theorem under study asserts that, excluding the two equations in which != occurs, the given set of equations
is an axiomatization of Boolean algebra. (Earlier work [McCune96] showed that it is sufficient to derive either
of the two absorption laws, whose respective negations are captured by the two equations in which != occurs.)
The context of the problem was the search for a Boolean algebra axiomatization consisting of two independent
self-dual equations. In fact, the equations lead directly to such an axiomatization by applying a method due to
Padmanabhan and Quackenbush [Padmanabhan73]. Each equation has length 1103, measured in symbol count.

McCune had succeeded in obtaining a proof with OTTER, a proof of length 816, counting five steps
resulting from ‘‘copy’’ followed either by ‘‘flip”” (which interchanges the arguments of an equation) or by
demodulation, and counting one step resulting from back demodulating an input equation with another input
equation. He asked me to find a more elegant proof, adding (in jest) that the goal was a proof of length 100
but, realistically, a 200-step proof would indeed be impressive.

In addition to the incentive of finding a proof that McCune would consider elegant, the theorem offered a
challenge rather different from my earlier studies seeking shorter proofs. Specifically, those earlier studies
[Wo0s95a,Wo0s96a,Wos96¢] focused mainly on areas of logic, areas in which the equality relation was totally
absent; in contrast, the theorem of interest relies exclusively on the equality relation. (Most of the other
theorems used here to test the power of the methodology also rely on the equality relation and on no other.)
Therefore, new obstacles no doubt would be encountered, for problems featuring equality behave (in mathemat-
ics and especially in automated reasoning) sharply differently from those in which equality is not present or
present barely.

Anticipation of new obstacles to overcome naturally suggested I quickly review some of OTTER’s arsenal
of weapons that might be useful in seeking a shorter proof for the given theorem. I began with a study of the
approach McCune had used to find any proof, the approach that culminated in his finding an 816-step proof. He
used three familiar weapons: weighting, the ratio strategy, and a Knuth-Bendix approach. Specifically, McCune
used a max_weight of 28 to limit the complexity (measured in symbol count) of retained clauses, a limit that I
maintained for the first fourteen experiments reported here. Regarding a direct use of strategy, he used his ratio
strategy [McCune94,Wos96a], assigning a value of 4 to the pick given_ratio. With that assignment, OTTER is
instructed to choose (for the focus of attention to drive the program’s reasoning) four clauses by weight (com-
plexity, whether determined by weight templates or by symbol count), one by breadth first (first come, first
serve), then four, then one, and the like. It seemed obvious to me that, for seeking shorter proofs, both
max_weight and the ratio strategy would prove most useful—perhaps even required—no doubt relying on a
variety of assignments for their respective values. McCune also used a Knuth-Bendix approach for drawing con-
clusions and for canonicalization. I adopted this weapon also, although not specifically for proof shortening.

From my earlier studies focusing on finding shorter proofs, I added three weapons to the cited arsenal: the
resonance strategy [Wos95a,Wos962a], the hot list strategy [Wos96a,Wos96b], and McCune’s dynamic hot list
strategy [Wos95b,Wo0s96a,Wo0s96b]. Regarding the resonance strategy, its objective is to enable the researcher
to suggest equations or formulas, called resonators, each of whose symbol pattern (all of whose variables are
considered indistinguishable) is conjectured to merit special attention for directing a program’s reasoning. To
each resonator one assigns a value reflecting its relative significance; the smaller the value, the greater the
significance.

In contrast to directing a program’s reasoning, the objective of the hot list strategy is to rearrange the
order in which conclusions are drawn. The rearranging is caused by immediately visiting and, depending on the
value of the (input) heat parameter, even immediately revisiting a set of input statements chosen by the
researcher and placed in an input list, called list(hot). The chosen statements are used to complete applications
of inference rules rather than to initiate them.

The dynamic hot list strategy has the same objective as does the hot list strategy. However, whereas the
(static) hot list strategy is restricted to using clauses that are present when the run begins, the dynamic hot list
strategy has access to members adjoined to the list(hot) during the run. The input heat parameter governs the
amount of recursion that is permitted for both the hot list strategy and the dynamic hot list strategy. The input
dynamic_heat_weight parameter assignment places an upper bound on the pick given weight of clauses that can




be adjoined to the hot list during the run. (A clause technically has two weights: its pick_given weight, which
is used in the context of choosing clauses as the focus of attention to drive the program’s reasoning, and its
purge gen weight, which is used in the context of clause discarding; often the two weights are the same. If no
member of a weight list matches a clause, where variables are treated as indistinguishable, the clause is given a
pick_given weight equal to its symbol count; the same is true for its purge_gen weight.)

All of these strategies, as well as other weapons offered by OTTER, play a vital role in the context of the
first property (proof length) of elegance. On the other hand, far fewer weapons are needed when the concern is
the second, the third, or the fourth property. Further, whereas a focus on proof length requires the use of a
methodology, each of properties 2 through 4 can be directly addressed with one or more features offered by
OTTER.

Indeed, when the second property, that of term structure, is the concern, one can rely either on OTTER’s
treatment of demodulation or on weighting. Regarding the use of demodulation, consider the case in which one
wishes to avoid terms of the form n(n(s)) for any term ¢, and assume that the only predicate present is P. The
following set of demodulators will suffice; OTTER discards clauses that are demodulated to $T for true. (One
can think of the function n as negation and the function i as implication.)

list{(demodulators).
(n(n(x)) = junk).
(i(junk,x) = junk).
(i(x,junk) = junk).
(n(junk) = junk).
(P(junk) = $T).
end of list.

A careful analysis of the demodulators in the given list shows that iteration will demodulate (rewrite) a deduced
but unwanted conclusion (that takes the form of a unit clause) eventually to $T, standing for true.

Regarding the use of weighting, in addition to placing entire equations or formulas in a weight list (as is
the case for resonators), one can place subexpressions in a weight list. If, for example, the type of elegance that
is desired asks for the absence of all terms of the form inverse(inverse(t)) for terms ¢ (say, in a study of group
theory), one can include an appropriate weight template. In the case under discussion, the following weight
template can be included in weight list(purge gen) or in weight_list(pick_and_purge), with the intention that the
program purge deduced conclusions containing the undesired subexpression.

weight(inverse(inverse($(1))),1000).

Because of the presence of this template, the purge gen weight of any deduced conclusion containing the cited
type of term will be increased by at least 1000, if no other weight template interferes. (The use of $(1) causes
the term in the corresponding position, whether complex or not, to be multiplied by 1.) If the max_ weight is
strictly less than 1000, such a conclusion will be immediately purged, unless its weight is sufficiently reduced
because of the actions of yet another template. One thus has a taste of how OTTER offers a means for directly
addressing the concern for term structure in the context of elegant proofs.

Because of the way weighting is implemented in OTTER, it can be used to serve another purpose, namely,
to purge an entire class of unwanted equations through the use of the resonance-restriction strategy. With this
strategy, conclusions are purged through the use of resonators, and they are chosen for the focus of attention to
direct the reasoning by symbol count. As for the relevance to elegance, one can imagine having identified a
class of equations or formulas that are to be avoided, if elegance is to be increased, a class all of whose
members have the same functional shape, differing only in the presence of the particular variables. For exam-
ple, the class to be avoided might contain the following equations.

(x* ((y+2)* (yru))* ((X*y)+ (x* (z*))@ ) = (x* (y+y)*1.

(¢ ((zy)* (yru)))* (x*y)+ (x* (z*u)@ ) = (x* (y+y))*1.

(x* ((y+2)* (yru))* (Y*x)+ (x* (z*u))@ ) = (x* (y+y)*1L.

(x* ((z+y)* (yru))* (*0+ (x* (z*u)@ ) = (x* (y+y)*1.
If the intent is to avoid these equations and others of their class differing only in the particular variables that
occur, one need only select an equation of the class and use it as a resonator, assigning to it a value greater than
the max_weight. Placing the chosen resonator in weight list(purge gen) or in weight list(pick_and_purge) will,
if nothing else interferes, cause the program to purge any deduced conclusion that is in the undesired class. Any




member of the undesired class will suffice as the chosen resonator—one of the beautiful aspects of the resonance
strategy—for (by definition) all variables in a resonator are treated as indistinguishable. (For more details con-
cerning the resonance-restriction strategy, see Sections 4.2 and 5.2 in [Wos96a).)

Regarding the third cited property of elegance, that focusing on variable abundance, OTTER offers pre-
cisely what is needed with a command of the following type.

assign(max_distinct _vars,5).

With the inclusion of this command, the program will purge any deduced clause that contains more than five
distinct variables. The use of that feature alone can result in the completion of a proof that is far more attrac-
tive than the proof produced without using that feature.

As for the fourth cited property of elegance, deduced-clause complexity, the feature that is relevant can be
easily guessed, namely, the option to assign a chosen value to max_weight. For example, if no weight templates
are included in the input, OTTER will assign as the purge_gen weight to each deduced clause its symbol count,
of course ignoring commas and parentheses. Therefore, if one wishes the program to seek a proof in which no
deduced step has a length exceeding, say, k, one merely assigns to max_weight the value k. No problem exists
if, at the same time, one wishes to include weight templates to guide the program’s search without interfering
with the stated intention. In such an event, one places the guiding templates in weight list(pick given); no tem-
plate in that list is consulted when computing the purge gen weight, the weight used to decide whether to retain
a new conclusion in the context of its complexity.

At this point, the pressing questions with regard to proof length concern which weapons played the key
role, how they were used, and in what order. To answer these questions, I present in some detail in Section 3 a
sequence of experiments. To aid the researcher interested in using OTTER for both similar and totally dissimi-
lar objectives, I include some commentary explaining why certain choices were made.

3. A Tortuous Path to Success

Earlier studies seeking shorter proofs [Wos95a,Wos96a,Wos96c] virtually demanded the use of the reso-
nance strategy here. As for which equations to use as resonators, again virtually no thought was required.
Indeed, experiments in areas other than Boolean algebra had shown that deduced steps from the proof of a
theorem (even if only distantly related to the target theorem) often serve well as resonators, whether the goal is
a sharp reduction in CPU time required to complete any proof or the goal is to find a shorter proof. In fact,
steps from the proof of a target theorem often serve well as resonators for improving one’s results regarding the
target theorem. Therefore, I began (in Experiment 1) by using as resonators the 811 deduced steps of McCune’s
proof, starting with a clause obtained by back demodulation, but not including the earlier clauses produced by
““copy’’.

Almost all the experiments reported in the remainder of this technical report were conducted on a
SPARCstation-10. For brevity, the CPU times are cited without the reminder that they are only approximations.
Also, note that all resonators placed in a weight_list must be unit clauses, free of [’ (the logical or symbol).
Therefore, when discussing positive deduced steps of a proof to be used as resonators, implicit is the require-
ment that each be a unit clause.

3.1. Partial Success: Experiment 1

In Experiment 1, each resonator (each of the 811 deduced steps of McCune’s proof) was assigned the
value 2. All resonators were placed in the pick and purge weight list. This placement instructed OTTER to
assign both a pick given weight and a purge_gen weight of 2 to any deduced clause that matched any of the
811 resonators, where (in the resonator case) two clauses match if they are identical when all variables are
treated as indistinguishable from each other.

The steps of McCune’s proof that are deduced and retained are thus used to guide OTTER’s search for a
proof; indeed, because of being assigned the small pick_given weight of 2, they are given preference (over most
or all clauses) for being chosen to initiate an application of the inference rule or rules in use. Also {of slightly
lesser significance) the deduction of a step of McCune’s proof will almost certainly lead to its retention, at least
in the context of max_weight, for such a step will be assigned a purge gen weight of 2. In Experiment 1, the
max_weight was assigned the same value McCune used, namely, 28.




Since the pick given ratio remained unchanged from that used to obtain the 816-step proof, namely, that
of 4, the presence of clauses matching a resonator would only guide OTTER’s search, for every fifth clause used
to initiate an application of an inference rule would be chosen by first come, first serve. Such guiding rather
than totally controlling the search gives the program the opportunity of finding a proof different from McCune’s
and, more to the point, a chance of finding a shorter proof.

In 1613 CPU-seconds on a SPARCstation-10 with retention of clause (15257), OTTER completed a proof
of length 680 and level 78; the level of McCune’s proof is 89. Five of its steps result from applying copy to an
input clause, followed either by flip to interchange arguments or by demodulation, and one step results from
back demodulating an input clause with another input clause. (This added information is given in the event that
one wishes to measure proof length beginning with the first use of paramodulation. For the remainder of this
technical report, the figures for proof length will be taken from an OTTER run; the program counts steps of the
cited types in its computation.)

Because McCune was equally interested in a “‘short’’ proof of the dual, its negation, captured by the fol-
lowing clause; was also included.

(A+B)*B I=B.

Even more impressive in the context of proof length reduction, the dual was also proved, the proof having
length 628; its level is 67, completing in 1608 CPU-seconds with retention of clanse (15031).

Perhaps startling—and certainly charming—except for the clause corresponding to negating the dual, the
proof of the dual is a subproof of the proof of the primary conclusion. To remove any doubt concerning techni-
calities, of course the proof of the dual, being one of contradiction, relies on the negation of the dual, whereas
the proof of the primary conclusion relies on its negation; clearly, the negation of the dual is not present in the
proof of the primary conclusion, and conversely.

3.2. The Hot List Strategy: Experiment 2

Whether the focus is on the target conclusion or on its dual, this fine start on a path to finding a far
shorter proof does not imply that all always went according to plan—the path was unpredictable, as will be dis-
cussed in this section. However, with this satisfying reduction in proof length from 816 to 680 or 628 (which-
ever choice is made), the stage was nicely set for Experiment 2. The only change made from Experiment 1 was
that of adding the use of the hot list strategy with the heat parameter assigned the value 1. The object was to
gain some insight into the value of using this strategy in the context of seeking a shorter proof for the target
theorem. Therefore, the simplest comparison was preferred: Merely make the cited change.

Of course, the addition of the hot list strategy naturally presented the question of which clauses to place in
list¢hot). Typically, a rule that has served well is to place in the hot list the clauses corresponding to the spe-
cial hypothesis. (The special hypothesis of a theorem of the form if P then Q refers to that part of P, if such
exists, that excludes the underlying axioms and lemmas. For example, in the study of the theory that asserts that
rings in which the cube of x = x are commutative, the special hypothesis consists of the equation xxx = x.) A
less precise rule that often is effective suggests for the members of the hot list those clauses in the initial set of
support that are ‘‘simple’’, where simplicity usually means expressed in a small number of symbols. The
second rule is the one that was used. Therefore, the following two clauses were placed in list(hot).

X+ x@=1.
x*x@ =0.
Neither clause is directly relevant to the conclusion of the theorem, namely,
(x*y)ty =y,
nor to its dual, namely,
(x+y)*y =.

Nevertheless, the presence of the cited two clauses in the (input) hot list, as the following data shows, produced
enough of a reduction in proof length to clearly be of interest, and even piquant (to me).

Indeed, Experiment 2 completed a 606-step proof of the dual in 3701 CPU-seconds with retention of
clause (23434); the proof has level 78. Then a 607-step proof of the conclusion obtained by McCune was com-
pleted in 3702 CPU-seconds with retention of clause (23437); its level is 78. A nearly subproof relation exists.




3.3. Resonance and the Dynamic Hot List Strategy: Experiment 3

The next experiment, Experiment 3, was mainly influenced by a practice reflecting earlier successes (in
other areas) in seeking shorter proofs, successes in which the resonance strategy played a key role
[Wos95a,Wo0s96a,Wos96¢c]. The practice is iterative, using the deduced proof steps from one experiment as
resonators in a later experiment.

The first decision I had to make was to choose between the proof steps of the so-called primary conclu-
sion and those of the dual of the conclusion. Although the two proofs completed in Experiment 2 are of almost
equal length, 607 (for the primary) and 606 (for the dual), later experiments (as with Experiment 1) might not
share this almost-equal-length property. Influencing my decision were two factors. First, aesthetics virtually
demanded staying with the conclusion of McCune’s 816-step proof; to do otherwise would in a sense be cheat-
ing, be loading the dice. Second, science virtually demanded using the primary conclusion, for many situations
to which one might wish to apply the methodology might lack a dual. (As an aside, an interesting area for
research concerns using as resonators proof steps of the dual in an iterative attack on seeking a shorter proof,
either of the primary or of the dual.) Therefore, with few exceptions, the choice of proof steps of the primary
conclusion rather than the dual was the rule for most of the sequence of experiments to be discussed, as was the
omission of the type of clause obtained with copy. Only when I hoped to extract a few extra droplets of proof-
length reduction did I violate this rule.

Therefore, for Experiment 3, 602 resonators were used, each assigned a value of 2. In other words, five of
the 607 possible resonators were not included, those in which copy was applied to an input clause.

One other change was made for Experiment 3, namely, the introduction of the dynamic hot list strategy.
However, rather than simply adding the use of this strategy, the idea was to imitate a combination strategy that
had proved most effective, namely, that of combining the resonance strategy with the dynamic hot list strategy;
see [Wos96c]. The combination strategy is, intuitively, an if-then type of strategy: If a clause is retained that
matches a member of a chosen set of resonators, then adjoin that clause to the hot list during the run. The
notion is that the adjunction to the hot list (during the run) of “‘short’’ clauses might produce an even shorter
proof, for the use of short clauses in the input hot list had resulted in progress. Therefore, the decision was to
choose from among the 602 resonators to be used those expressed in five or fewer symbols (counting spaces,
commas, and parentheses, but not counting the period), assign to each the value 1, and assign to the (input)
dynamic_heat_weight the value 1. The consequences of this decision are that (1) any clause that is deduced and
that matches a resonator with weight 1 will also be assigned a pick given weight of 1—because the resonators
were placed in the pick and purge weight list—and (2), if such a clause is retained, it will be adjoined to the
hot list during the run, because of its weight and because the dynamic heat weight has been assigned the value
1. (The value assigned to the dynamic_heat_weight places an upper bound on the pick given weight of clauses
that can be adjoined to the hot list during a run.)

Of the 602 resonators to be used, 19 were assigned the value 1; they were placed in the pick and purge
weight list before the 602 resonators. Therefore, if one ignores the assigned value, 19 weight templates
appeared twice. The earliest weight template that matches a clause is that which is used to assign the weight to
the clause; so the second copy of a template with assigned value of 2 did not interfere with the assignment of 1
as the weight of a clause matching one of the 19 used in conjunction with the dynamic hot list strategy. Sum-
marizing, if a ‘‘short’’ clause (as just defined) was retained that matched a ‘‘short’’ clause of the proof com-
pleted in Experiment 2, then that clause was adjoined to the hot list during the run.

Experiment 3 was markedly successful. In 321 CPU-seconds with retention of clause (9789), a proof (of
the primary conclusion) of level 53 and length 344 was completed. As for the dual, 317 CPU-seconds was
sufficient to complete a proof, with retention of clause (9709), a proof of level 50 and length 300. (The possible
subproof relation is absent.) Thus the iterative approach was working well, having cut the required number of
steps to prove the primary conclusion more than in half, from 816 to 344.

3.4. Momentary Setback

At this point in the experimentation, the first of many failures to come occurred, a failure that heralded the
difficulty and delicacy of what would be needed to finally complete the promised far shorter proof, namely, a
proof of length 100. The experiment that failed—unnumbered so that progress is captured by a sequence of
experiments that are numbered consecutively—relied on the type of proof step that the first three experiments
do. With respect to Experiment 3, two deliberate changes were made: Rather than focusing on the proof steps




from Experiment 2, the focus was on those from Experiment 3; rather than focusing on steps expressible in five
or fewer symbols, the focus was on those expressible in seven or fewer, 28 of them.

However, in keeping with an accurate account of history, one additional and unintentioned change was
made, one that—as further experimentation verified—was crucial. Unintentionally, two extra resonators were
included, making a total of 341 rather than 339, corresponding to a copy application to an input clause and
corresponding to an input clause. (Such an inclusion is in no way a form of cheating, as in the case where one
already knows the answer, for example; it merely does not rigorously follow the cited rule I planned to use for
choosing resonators. Note that resonators are used to guide a program’s search and have no true or false value
as lemmas do.)

Were it not for this accident, perhaps the 100-step proof would never have been found, for Experiment 4
would have relied on a smaller set of resonators. Sometimes the gods are so kind, even protecting one against
oneself, bringing good fortune despite what was obviously an error. (As another aside, perhaps all would have
gone even better if for resonators all clauses in a proof were used, including those from the input.) Although a
proof was completed in 126 CPU-seconds—certainly not much computer time—the experiment was deemed a
failure, for the proof has length 392, a rather impressive setback when compared with the 344-step proof
obtained with Experiment 3.

3.5. Back on Track: Experiments 4 and 5

Nevertheless, because of a conviction about the value of this type of iteration (based on experimentation in
other areas in which equality plays no role), a fourth experiment was conducted, one very closely related to that
which failed. Specifically, the single change from the failed experiment was that of removing the use of the
dynamic hot list strategy, correctly implying that the two unintended resonators remained in use. Experiment 4
produced more progress, completing a proof of the desired theorem in 111 CPU-seconds with retention of clause
(5871), a proof of length 325 and level 52. The dual was also proved, in 112 CPU-seconds with retention of
clause (5977), a proof also of length 325 and level 52.

Experiment 5 was quite similar to Experiment 4. The only change was in the context of the choice of
resonators, switching the focus from the proof steps (including the cited two extra ones) of Experiment 3 (that
were used in 4) to the deduced steps of Experiment 4 (to be used in Experiment 5). Experiment 5 produced
another significant reduction in proof length, completing a 287-step proof of level 44 with retention of clause
(9400) in 164 CPU-seconds. Then, less than 1 CPU-second later, the dual was proved, with a proof of length
256 and level 43, with retention of clause (9409).

Experiment 5 was followed by numerous failures in the context of finding shorter proofs. For a taste of
how much ground could be lost with ineffective choices of the parameters and the strategies, one of the unsuc-
cessful experiments completed a proof of length 514, virtually proving that an algorithm is not being discussed,
merely a methodology. Also strongly and correctly suggested are the subtlety, intricacy, and complexity of
seeking shorter proofs; indeed, the process is quite delicate in the sense that the slightest change in a parameter
assignment can result either in finding no proofs or in finding a rather shorter proof. Regarding what was tried,
the value of the heat parameter was assigned sometimes 1 and sometimes 2, and sometimes the hot list strategy
was not used. The max_weight was assigned various values, from 12 to 36. Although the usual assignment for
the pick_given_ratio was 4, sometimes 3 was chosen. Diverse moves were made in the context of the choice of
resonators. One learns that the methodology is experimental, often requiring playing with various combinations
of parameter assignments and strategy choices whose effects are indeed unpredictable. In short, not much
worked—until what is called Experiment 6 was conducted.

3.6. A New Tack: Experiments 6 and 7

Experiment 6 differed from Experiment 5 in two ways. First, as expected, the resonators were the
correspondents of the proof steps of the proof (of the primary conclusion) obtained in Experiment 5, in place of
those from Experiment 4. Second, the resonators that correspond to a step obtained with back demodulation
were given a weight of 4 rather than 2, to delay their consideration for initiating applications of an inference
rule. (This added action resulted directly from a remark my colleague McCune made concerning the possible
value of being able to apply all relevant demodulators at once in sequence, rather than by means of a set of
sequences, each producing another step in the proof.)




The ideal case explains the assignment of higher weight to correspondents of proof steps obtained with
back demodulation. Imagine that the proof under consideration (whose steps are to serve as resonators) contains
a chain of clauses, A, B, C, D, E, obtained by applying back demodulation: back demodulation applied to A
yields B, back demodulation applied to B yields C, similarly D from C, and E from D. In the ideal case, when
the program (relying on the resonators from the just-mentioned proof) was seeking a shorter proof, the deduction
of A would find already present and in the needed order the demodulators that had been used to respectively
deduce B through E. In that event, A would be successively demodulated to yield B through E, but—and here is
the point—A, B, C, and D would be intermediate steps, and they would therefore not be explicitly present in the
proof to add to its length.

Thus, by causing the program to delay considering for the focus of attention clauses that (in the proof
whose steps are used as resonators) were obtained by back demodulation, perhaps such clauses would not be
needed to complete a proof, preferably a shorter proof. Nevertheless, because the ideal case seldom occurs
(regardless of the context), assigning such a high weight that the type of clause under discussion is in fact
purged asks for serious trouble. After all, a clause that was obtained with back demodulation might have been a
parent (when paramodulation was used) of a crucial clause indeed, its absence might prevent the program from
completing any proof, much less a shorter one.

Of course, as one might predict from the preceding, Experiment 6 succeeded, completing a 260-step proof
with retention of clause (5977), a proof of level 45, requiring 80 CPU-seconds. Almost immediately, the dual
was proved, with a proof of length 284 and level 45. No subproof relationship holds between the two proofs.

After additional unsuccessful attempts to find a proof of length strictly less than 260, the conditions for a
successful experiment were determined. For this experiment, Experiment 7, two changes were made from
Experiment 6. First, as expected with this iterative methodology that relies on the results of earlier experiments
to be used for later experiments, the resonators used in Experiment 7 were the proof steps of the proof com-
pleted in Experiment 6. The assignment of their values followed the pattern of Experiment 6. Second, because
of some of the data gathered in the unsuccessful runs, the pick given ratio was assigned the value 7, rather than
4. The intention was to use complex clauses retained early in the run less often than was the case in Experi-
ment 6.

Another significant reduction was obtained in that OTTER completed a 236-step proof of level 43, requir-
ing 63 CPU-seconds and the retention of clause (5092). For but one data point that might be of interest, 30
steps of the 236-step proof are not among the 260-step proof obtained in the preceding experiment. The dual
was proved, with a 237-step proof of level 43, in 64 CPU-seconds with retention of clause (5156).

3.7. Small Advances: Experiments 8-13

Regarding the next few experiments in the pursuit of a shorter proof, advances (when they occurred) were
small. (For the discussion of the next few experiments, no comments concerning the dual will be included, nor
will there be commentary in detail concerning failures.) Experiment 8 (closely imitating Experiment 7) yielded a
235-step proof of level 43 in 51 CPU seconds, an experiment that relied for resonators on the proof from Exper-
iment 7 and on an assignment of 10 to the pick_given ratio. Experiment 9 (closely imitating Experiment 8)
yielded a 233-step proof of level 43 in 51 CPU seconds, an experiment that relied for resonators on the proof
from Experiment 8 and on an assignment of 10 to the pick given ratio. Experiment 10 (closely imitating Exper-
iment 9) yielded a 229-step proof of level 42 in 52 CPU seconds, an experiment that relied for resonators on the
proof from Experiment 9 and on an assignment of 7 to the pick given ratio rather than an assignment of 10
(believing that more participation of complex clauses retained early would be beneficial). However, no resona-
tor was assigned the value 4 to delay matching clauses from being chosen as the focus of attention to drive the
program’s reasoning. Just as a reminder, the hot list strategy was still in use, with the (input) heat parameter
still assigned the value 1.

Experiment 11 was identical to Experiment 10, except for assigning the value 10 to the pick_given ratio,
an action taken just to be sure that a good bet was not missed. The safety play succeeded: a 225-step proof of
level 42 was completed in 51 CPU-seconds. The continued small CPU times to find shorter and still shorter
proofs was indeed encouraging. Because the methodology was succeeding, Experiment 12 mirrored Experiment
11, of course except for the replacement of resonators. Rather than the proof steps from Experiment 9, those of
Experiment 11 were used. A 224-step proof of level 41 was completed, again in 51 CPU-seconds.
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Next, Experiment 13 was conducted, using as resonators the proof steps from Experiment 12. One addi-
tional change was made: The set of resonators assigned the value 1 was expanded to include those expressed in
10 or fewer symbols (including spaces, commas, and parentheses, but not including the period). The experiment
completed a 219-step proof of level 39 in 47 CPU-seconds.

By glancing at the experiments discussed so far, one sees how the methodology borrows from earlier
experiments, not just proof steps to be used as resonators, but also combinations of option choices. Of course,
tinkering with the assignments and choices is required, arriving at what works only through more experimenta-
tion. The claim that one learns what to do in later experiments from what occurs in earlier experiments is
clearly an overstatement; rather, one learns about promising combinations of options and possibly effective
parameter assignments.

3.8. The Dynamic Hot List: Experiment 14

For Experiment 14, a feature used earlier (in Experiment 3) in the sequence was added, that of the
dynamic hot list strategy. The motivation was a sequence of unsuccessful attempts to find a proof shorter than
that produced in Experiment 13, a sequence that suggested that an impasse might have been encountered. The
thought was that, if the hot list was proving useful-—which it seemed to be—clauses retained during the run and
that were similar to those included in the input hot list would make profitable additions.

Therefore, from among the resonators that were used (those corresponding to the proof steps from Experi-
ment 13), eight were selected and assigned a weight of 0. The dynamic_heat weight was also assigned the
value 0. When and if OTTER deduced and retained a clause matching any of the chosen eight resonators, it
would be assigned a weight of 0 and, because of the value assigned to the (input) dynamic heat weight, the
matching clause would be adjoined to the hot list during the run. Also, based on the unsuccessful runs, the
pick given ratio was assigned the value 9.

Six clauses were adjoined to the hot list during the run while Experiment 14 was completing a 207-step
proof of level 44 in 50 CPU-seconds; in other words, McCune’s possibly realistic goal was near at hand. For
but one indication of how narrow is the path to progress, an assignment of 10 (rather than 9) to the
pick given ratio had yielded a 213-step proof of the primary target and had yielded a 208-step proof of the
dual.

3.9. Perturbing the Search Space: Experiments 15-17

Experiment 15 reflected some of the difficulty that was being encountered in the context of attempting to
find a proof of length strictly less than 207. For that experiment, use of the dynamic hot list strategy was
dropped, and the max weight was reduced from an assignment of 28 to one of 20; 28 had been the assigned
value until this experiment. The reduction was designed to perturb the search space by avoiding the retention of
numerous complex clauses; recall that the ratio strategy permits a program to focus on complex clauses, espe-
cially those retained early in the run. Of course, as expected, the resonators were the correspondents of the
proof steps of the proof completed in Experiment 14. However, as yet another example of returning to what
worked earlier, those corresponding to a step obtained with back demodulation were assigned a weight of 4
rather than assigned a weight of 2 (as was the usual case in this sequence of experiments).

Finally, for the first time, a direct attack on proof length was initiated, by adding the use of ancestor sub-
sumption and (as almost always then required) also adding the use of back subsumption. With the use of ances-
tor subsumption, when a conclusion is drawn more than once, the lengths of the corresponding derivation path
lengths are compared; the program retains the copy reached by the shorter path.

The experiment succeeded nobly, completing a 185-step proof of level 41 in 28 CPU-seconds. Not only
was the realistic goal reached—a goal that McCune had classed as impressive—but the result provided incentive
to seek the goal he had suggested in jest, namely, a proof of length 100.

In view of the encouraging result, a natural experiment (Experiment 16) was to keep all as in Experiment
15, but reduce the max_weight to a smaller value; 14 was the choice. The move was a good one, leading to a
proof of length 176 and level 47 in 31 CPU-seconds. Even more impressive, the dual was proved, with a proof
of length 159 and level 42, in 30 CPU-seconds.

Immediately, Experiment 17 was in order, similar to Experiment 16 but with the pick given_ratio assigned
the value 10 and the max_weight assigned the value 12. The notion was that such small changes might be what
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was needed to reduce the proof length of the primary conclusion to 159 or less. The motivation was that of
continuing to emphasize for the source of resonators proof steps of the primary conclusion, that which McCune
had chosen as the goal or conclusion to be proved. Where the dual was proved, with a proof of length 158 and
level 48, in 27 CPU-seconds, the primary conclusion required approximately 69 CPU-seconds to prove and,
unfortunately, the proof has length 211 and level 67.

3.10. Focusing on the Dual: Experiments 18-21

At this point, what amounted to an impasse was encountered. Various moves produced no progress.
Therefore, desperation—or the belief that far more was possible—motivated an additional modification to the
methodology.

For Experiment 18, rather than choosing for resonators proof steps of the primary conclusion, the dual was
used, from Experiment 17. A significant change was made regarding the values assigned to the resonators.
Although those with ten or fewer symbols in them were still assigned the value 1, those used as demodulators
and that showed back demod in their history were assigned the value 2, with the remaining assigned the value
4. The notion was that progress might occur if clauses used as demodulators that in addition were obtained with
back demodulation were given preference for being chosen as the focus of attention to drive the program’s rea-
soning. Although based far more on intuition than on analysis, the idea was to have certain clauses used as
demodulators available earlier than they might otherwise be, in turn perhaps reducing the need for the presence
(in a completed proof) of clauses obtained from back demodulation. The pick_given ratio was assigned the
value 9, and the max_weight was assigned the value 14.

Experiment 18 completed a 153-step proof of level 51 of the primary conclusion in 16 CPU-seconds.
Although still not the main goal, the dual was proved, with a 145-step proof of level 46, in 14 CPU-seconds.
Not only was the proof length decreasing, so also was the required CPU time. In case one is tempted to assert
that such is expected, various experiments in diverse fields do not support such an assertion. Nevertheless, when
less and less CPU time is required, the methodology under study at least gives the appearance of power.

Before continuing the account of the results of the sequence of experiments, I give some commentary con-
cerning the role of the resonance strategy. Of the 153 steps of the proof of the primary conclusion obtained in
Experiment 18, 24 of them are not among the resonators that were used in the experiment. Recall that the reso-
nators correspond to the proof steps of the dual proved in Experiment 17. Thus—precisely in the spirit of the
resonance strategy—one has a nice illustration of the value of using as resonators the proof steps of a related
theorem when attacking the main target theorem. Perhaps even more persuasive, 21 steps of the 153 do not
match at the resonator level any of the resonators that were used, where (as a reminder) matching in this context
means treating all variables as indistinguishable from each other. In the given example, the resonance strategy
can be viewed as having supplied a detailed outline of a proof, with OTTER finding the remaining needed steps.

Because focusing on the dual in regard to choosing resonators had enabled the program to cope with the
potential impasse, the decision was to continue the practice for Experiment 19. In 10 CPU-seconds, a 128-step
proof of the dual was completed, a proof of level 46. In 12 CPU-seconds, a 136-step proof of the primary target
was completed, a proof of level 51.

Experiment 20 (like Experiment 19, except for assigning the value 12 to max_weight and using as resona-
tors proof steps from Experiment 19 rather than from Experiment 18) produced a 124-step proof of the dual of
level 45 in 8 CPU-seconds, and it produced a 172-step proof of the primary target of level 64 in approximately
38 CPU-seconds. How intriguing it is to see that the proof length of the dual again is reduced, in contrast to
completing a 172-step proof of the target conclusion—indeed, negative progress!

Still in the spirit of the last few experiments, Experiment 21 was conducted. However, in addition to
using (as expected) resonators from the proof obtained with Experiment 20, the max_weight was assigned the
value 14 rather than 12, and the following clause was added to the input hot list.

x+{y*)=(x+y)*{x+1z)

As a reminder, the only other clauses that were members of the (input) list(hot) for this experiment and its
predecessors are the following two.

X+x@=1,
Xx*x@=0.
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The addition of the cited clause to the hot list was prompted by the perceived need to rely more heavily on the
hot list strategy, not in the context of recursion (where one increases the heat parameter), but in the context of
giving the program access to immediately visiting some powerful law as each new conclusion is retained.

In 9 CPU-seconds, a 119-step proof of the dual was found of level 42, and (as in Experiment 19) a 136-
step proof of the primary target of level 43 was found in approximately 13 CPU-seconds.

3.11. Seesawing to Victory: Experiments 22-26

Because of the progress, Experiment 22 was conducted with just the expected change, the replacement of
resonators to enable the proof steps (of the dual) obtained in Experiment 21 to be used to guide the search for a
shorter proof. In 8 CPU-seconds, a 111-step proof of level 44 of the dual was completed, and in approximately
11 CPU-seconds a 126-step proof of level 45 of the primary conclusion was completed.

For Experiment 23, in addition to using resonators from the proof of the dual completed in Experiment 22,
the dynamic hot list strategy was brought back into the picture, but this time coupled with the resonance strategy
in the following manner. One resonator was included with an assigned value of 0, the following, and the
dynamic_heat weight was assigned 0.

welght(((x*y)+x)* ((x*y)+z)=x* (y+z),0).

The cited resonator was chosen because it appeared to play an important role in the proof completed in Experi-
ment 22. The notion was that if the corresponding clause were retained, then each new clause as it was retained
should be immediately considered with the designated resonator (by applying paramodulation to the pair) before
any other clause was chosen as the focus of attention.

Also, the pick given ratio was assigned the value 12 (rather than 9) to place less emphasis on complex
clauses retained early. Finally, no resonator was assigned the value 1, as was the case in the preceding experi-
ment for those requiring 10 or fewer symbols to express. The cited three changes correctly suggest that some
analysis occurred, some examination of the output file corresponding to Experiment 22. Approximately 8§ CPU-
seconds was all that was needed to prove the dual with a 108-step proof of level 45, and 13 CPU-seconds pro-
duced a 131-step proof of level 49 of the primary target.

For Experiment 24, the dynamic hot list strategy was omitted, the extra clause present in the input hot list
was removed, and those resonators expressed in ten or fewer symbols were again assigned the value 1. A 106-
step proof (of the dual) of level 45 was found in 6 CPU-seconds, and a 122-step proof of level 51 of the main
target was found in 9 CPU-seconds.

Except for changes regarding the use of the hot list strategy, Experiment 25 was indeed similar to Experi-
ment 24, of course using for resonators the proof steps of the completed proof (from the dual still) from Experi-
ment 24. The (input) heat parameter was assigned the value 2 rather than 1 to permit recursion, and the follow-
ing four clauses were placed in the input hot list.

x*Y+=x*y)+(x*z).
X+ *z)=x+y)* X+ z).
X+ x@=1.
X *x@ =0.

When the heat parameter is assigned the value 1, conclusions that result from consulting the hot list (whether
one is using the hot list strategy or the dynamic hot list strategy) have heat level 1. If the program decides to
retain a conclusion of heat level 1 and if the (input) heat parameter is assigned the value 2, then before another
conclusion is chosen as the focus of attention, the heat-level-1 conclusion is used to initiate the search for con-
clusions of heat level 2 (with the hypotheses needed to complete the corresponding application of the inference
rule chosen from the hot list).

Assigning a value of 2 to the heat parameter certainly has great potential for perturbing the search space,
and, at this stage of the search for a ‘‘short’ proof, such perturbation seemed imperative. Placing additional
clauses in the hot list, whether before the run starts or during the run, also sharply increases the likelihood that
the search will be perturbed. Indeed, the hot list strategy was formulated to enable a program to draw conclu-
sions far sooner than it would otherwise; with the use of the strategy, the order in which conclusions are drawn
is usually dramatically rearranged.
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The first proof completed in Experiment 25 was that of the dual, a proof of length 108 and level 46, in 8
CPU-seconds. In other words, in the context of the dual, ground finally was lost. However, in 9 CPU-seconds,
OTTER completed a 102-step proof of level 44 of the target conclusion. Almost as rewarding as finding such a
short proof was the fact that the (primary) target had been proved in fewer steps than had the dual, which was
not the case for so many of the experiments reported here.

The result led to the conjecture that, with a few experiments based on fiddling with the parameters and
option choices, a singular event would occur: OTTER would complete a 100-step proof of the target. (That
numbers such as 100 would have appeal for a mathematician must amuse many.)

For Experiment 26, max_weight was assigned the value 4 rather than 14, heat was assigned the value 3
rather than 2 (or 1, as was the case for so many experiments), and for resonators the choice was the proof steps
of the proof completed in Experiment 25, that of the primary target and not the dual. The assignment of values
to the resonators is that used in so many of the cited experiments, 1, 2, and 4 (as already discussed). The
assignment of the value 4 to max_weight merits a short explanation. The notion was that of preventing the pro-
gram from retaining any clause that does not match (at the resonator level) one of the resonators, match in the
sense that all variables are considered indistinguishable. The return to focusing of proof steps of the primary
conclusion for the source for resonators was in part because of the length of its proof (102) in Experiment 25
and in part because it is the target of the study.

With Experiment 26, the not-so-well hidden and actual goal was reached: OTTER completed a 100-step
proof of level 44 of the target of the study in 6 CPU-seconds. As for the dual, its proof has length 99 and level
44, also requiring 6 CPU-seconds.

The results of each experiment are summarized in Table 1 for the target study.

Table 1: The Road from an 816-Step Proof to a 100-Step Proof

Experiment Length Level Time (sec)

1 680 78 1613
2 606 78 3701
3 344 53 321
4 325 52 111
5 287 44 164
6 260 45 80
7 236 43 63
8 235 43 51
9 233 43 51
10 229 42 52
11 225 42 51
12 224 41 51
13 219 39 47
14 207 44 50
15 185 41 28
16 176 47 31
17 211 67 69
18 153 51 16
19 136 51 12
20 172 64 38
21 136 43 13
22 126 45 11
23 131 49 13
24 122 51 9
25 102 44 9
26 - 100 44 6
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4. Obstacles to Finding Short Proofs

Because one might naturally question the tortuousness of the path that began with a proof of length 816
and ended with a proof of length 100, the following commentary is in order. Its purpose is twofold: first, by
discussing various obstacles, to give some insight into the difficulty of finding such a short proof; and, second,
by touching on the consequences of different choices, to provide some understanding of the complexity of
option choosing in this context. (Chapter 3 of [Wos96a] focuses in detail on the obstacles to finding shorter
proofs and the means to overcome them.)

To begin with, the presence of the equality relation introduces an element often not present, namely, the
need for demodulation (the use of rewrite rules for simplification and canonicalization). Indeed, without demod-
ulation, in the vast majority of cases the program will drown in redundant information (the same fact expressed
in too many tightly coupled ways); see [Wos91b]. For but one example, the program might deduce that
a+b = ¢, that 0+(a+b) = ¢, that a+b = c+0, and the like.

When demodulators are present, the order in which demodulators are applied can be crucial, sometimes
producing the needed equation to complete the assignment, but sometimes preventing its discovery. To compli-
cate matters further, without an arduous analysis, one must simply wait and see which demodulator is applied
before which, for example, when one chooses to use a Knuth-Bendix approach (in which demodulators are
adjoined during the run). The situation is rather like creating a grammar, a set of rules (the analogue of demo-
dulators) that affect sentence structure; when the order of rule application changes, the sentence structure
changes, not always in a manner that best fits the objective.

The discovery and addition of demodulators are of course dependent on the choice of options and the
assignment of values to the parameters. For a simple example, whereas a max_weight of 20 might enable a pro-
gram to deduce and retain a demodulator (rewrite rule) expressed in 20 symbols, a max_weight of 16 might
prevent its deduction, much less its retention. For a more complicated example, assume that the max_weight is
well chosen in the sense that it itself presents no obstacle, and consider two cases: an assignment of the value 6
to the pick given_ratio, and an assignment of the value 7. On the surface, one not familiar with the ratio stra-
tegy might hastily assert that this small difference (6 versus 7) could be of little import. Actually, as shown by
some of the experiments not detailed here, quite the opposite is the case. Indeed, in some experiments a change
of 1 in the value assigned to the pick_given ratio resulted in the program completing no proofs, whereas before
the change a shorter proof was found.

To gain some insight into how such a situation can occur, first recall that an assignment of the value 6 to
the pick_given ratio causes the program to choose (for the focus of attention to drive the reasoning) six clauses
by weight (whether determined by weight templates or by symbol count), then one clause by first come first
serve, then six, then one, and the like. What can occur is that the first clause A chosen as the focus of attention
by first come first serve is used to deduce and retain a key demodulator D. With a value of 7 assigned to the
pick_given ratio, however, the program would delay choosing the cited clause A until one additional clause B
had been chosen (as the focus of attention) by weight. Consideration of B might lead to the deduction and
retention of a demodulator E such that, when demodulation is applied to clauses retained later, E is applied
before D is. Were such to occur, one can imagine that the space of retained clauses could be wildly different
with the value 7 from that with the value 6 (assigned to the pick_given ratio). In one case, the program might
be prevented from finding any proofs, while in the other it might find a charmingly short proof. Without experi-
mentation or brilliant insight, nothing suggests in general whether the smaller or the greater value is a wise
assignment for the pick given ratio.

One thus has at least a glimpse of how the order in which demodulators are retained and the order in
which they are applied can be crucial. In turn, the choice of parameters (such as that limiting the number of
distinct variables in a retained clause or that governing the amount of recursion when the hot list strategy is in
use) that affect the adjunction of demodulators (during the run)—as with the use of Knuth-Bendix, for
example—can have rather startling effects. Clearly, as the discussion shows, the smallest change in parameter
assignments can have significant changes in the results.

Just as the values assigned to parameters can be crucial, so also can the choice of strategy or strategies.
For but one example, the presence or absence of the hot list strategy can produce sharply contrasting results.
Whereas its use in Experiment 26 enabled OTTER to complete the desired 100-step proof, the corresponding
experiment differing only in the omission of the hot list strategy completed no proofs. Such contrasting results
are explained by the rearranging of the order in which conclusions are drawn. Indeed, without the hot list
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strategy, the retention of a new clause does not cause the program to immediately choose that new clause to ini-
tiate an application of the inference rules in use, as is the case when the hot list strategy is in use. This obser-
vation in no way implies that such immediate initiation is necessarily an advantage. In particular, the new
demodulators that might be retained (with the use of the hot list strategy) might get in the way, might rewrite
some clause into a form that blocks finding a shorter proof or, for that matter, finding any proof.

Still in the context of using the hot list strategy, the value assigned to the (input) heat parameter can save
or lose the day. Whereas the value 3 in Experiment 26 worked well, the value 1 yields no proof of either the
target conclusion or of the dual. In the cited case, the smaller value did not permit the program to deduce
clauses of heat level greater than 1, and at least one such clause must have played a significant role.

The content of the (input) hot list can be equally critical. For example, in Experiment 26 if one uses for
the input hot list that used throughout many of the experiments reported here (just two clauses), no proofs are
returned; in contrast, with the four clauses (cited earlier) in the hot list, the already-discussed 100-step proof is
found. Obviously, at least one of the two additional clauses (in the hot list) enables the immediate deduction
and retention of one or more needed clauses. (As a reminder, the clauses in the hot list are used to complete
application of inference rules.) However, as experimentation shows, sometimes a greater value assigned to the
heat parameter harms rather than helps, and sometimes additional members in the hot list impede rather than aid
progress. The answers to the questions of how and when to use the hot list strategy rest with the properties of
the correspondingly perturbed space of retained conclusions; currently, the only means for making the appropri-
ate decisions is through experimentation.

As for the resonance strategy, its use is designed to cope with obstacles such as cul de sacs or dead ends.
Indeed, often experiments lead to a sequence of shorter and shorter proofs that reach a point conjectured to be
far from what is possible—and yet no further progress occurs. To escape such a cul de sac, the resonance stra-
tegy is recommended, using proof steps from the last ‘‘good’’ proof or from some earlier or related proof.
Although only distantly related to coping with dead ends, one sees the value of the resonance strategy by revisit-
ing Experiment 1. That experiment differed from the approach taken by McCune (when he obtained his 816-
step proof) only in the use of resonators, 811 that correspond to proof steps from McCune’s proof. The result
(as cited) was the completion of a 680-step proof. Whereas McCune’s proof was found in 8185 CPU-seconds,
that of Experiment 1 was found in approximately 1613 CPU-seconds. Of the 1613 CPU-seconds, 930 were
spent in weighing clauses, no doubt mainly because of the use of 811 weight templates (corresponding to the
resonators).

Not unexpected, the specific resonators that are used can make all the difference. However, rather than an
algorithm for choosing effective resonators, only guidelines can be given, such as ‘‘use proof steps from the
proofs of related theorems’’, ‘‘use (as resonators) correspondents to members of the initial set of support’’, and
‘‘use proof steps from earlier proofs (if a sequence of experiments is being conducted)’’. Experimentation in
this context is the best teacher and, quite often, the only teacher.

Still in the context of the resonance strategy and in the spirit of option choosing, a review of Experiments
1 through 26 correctly suggests that the values assigned to the resonators can be crucial. Indeed, separating the
resonators into classes by giving some weight 1, some weight 2, and some weight 4 (for example) was the key
to progressing toward the final success, the 100-step proof. One of the obstacles encountered rests with the
interconnection of the choices made for parameter assignments and strategy choices, an obstacle that is most
likely inescapable in view of the nature of reasoning (whether automated or not).

Compared with the preceding items, far more sinister and unintuitive regarding the seeking of shorter
proofs is that which can occur with a direct attack, an attack based on using ancestor subsumption. As a rem-
inder, ancestor subsumption (which, for practical reasons, requires the use of back subsumption) compares the
derivation path lengths when presented with two copies of the same deduced conclusion and retains the copy
reached by the strictly shorter path. On the surface, one might surmise that ancestor subsumption is precisely
what is needed to find shorter proofs and, perhaps further, that its use is guaranteed to find the shortest proof.
Such a surmise is so far from the truth that the term ‘‘sinister’’ is in fact justified. Actually, the truth is cap-
tured by the following aphorism. ‘‘Shorter subproofs do not necessarily a shorter total proof make.”’

For a glimpse of what can go wrong when using ancestor subsumption (with finer detail given in Chapter
3 of [Wos96a)), begin by assuming A is a clause that is present in all proofs of the theorem under study. (The
assumption, though not necessary, permits focusing on a simple example.) Second, assume that A occurs well
before the end of any proof (also not a needed assumption). Next, assume that there exist two subproofs of A of
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respective lengths 5 and 3, where length is measured solely in terms of deduced clauses. Then assume that,
other than A, the two subproofs share no steps in common. If two proofs of the theorem under consideration are
completed respectively based on the two subproofs such that, ignoring A, all of the steps of the first subproof are
present in the second total proof and such that none of the steps of the second subproof are present in the first
total proof, then quite often the first total proof is shorter than the second (despite the presence of a longer sub-
proof of A).

One can extrapolate from the preceding and see how a disaster in fact can occur. The program begins its
search for a proof of the desired theorem and finds a subproof of A of length k. Then, before the proof is com-
pleted, a strictly shorter subproof of A of length j is found; through ancestor subsumption the second copy of a
is retained and, in effect, the shorter subproof is preferred. Experimentation shows that the shorter subproof
sometimes is of less value, perhaps far less, to the total proof than is the longer subproof, for the shorter sub-
proof can rely on steps present only because of deducing A, steps used nowhere else in the total proof. Disaster
can occur—although topologically beautiful in the obvious sense—when the program finds a number of such
short subproofs such that they share few steps in common. Indeed, the program might be on a path to producing
what amounts to a set of disjoint subproofs whose union is the total proof, where the total proof has a length
equal to the sum of the lengths of the subproofs. In contrast, there may exist a proof whose so-to-speak sub-
proofs are not nearly so short, sharing many steps in common, such that the resulting total proof (of the theorem
in question) is far shorter than that just described. Summarizing, although ancestor subsumption (coupled with
back subsumption) can provide the program with a powerful means for completing shorter proofs, its use can
lead to a sinister outcome.

As further evidence of how complicated the search for shorter proofs is—in contrast to the preceding
case—even if one decides not to use ancestor subsumption but to rely on forward subsumption to block the
retention of many copies of the same conclusion, again trouble can easily be encountered. In particular, the pro-
gram might complete a long proof of some needed intermediate conclusion, a proof many of whose steps are of
use nowhere else, and then derive the same needed conclusion by pursuing a much shorter path. The second
copy will not be retained because of the use of forward subsumption, which may in turn cause the program to
complete a proof (of the target theorem) that is far longer than would otherwise be completed if the shorter sub-
proof were used. Just for the record, if one is tempted to suggest that a feasible approach rests with the
avoidance of forward subsumption, experience with automated reasoning programs shows that such an approach
will drown in redundant information; see [Wos91b].

5. Applying the Iterative Methodology

At this point, one might naturally conjecture that the effectiveness of the methodology is derived (perhaps .

inadvertently) in some way from the theorem (DUAL-BA-3) that is the main focus of the preceding sections. In
the following, I present evidence that refutes this conjecture. The emphasis is still on theorems in which equal-
ity is the dominant relation.

The first bit of evidence still concerns Boolean algebra, specifically, a theorem in which equality is the
only relation. In [McCune96], the theorem is denoted by DUAL-BA-5; with its proof, an open question was
answered. The following clauses capture the theorem to be proved. (When a line contains a *“%’’, the charac-
ters from the first %’ to the end of the line are treated by OTTER as a comment.)

X=X

y+x*(y*z)=y. % L1
(x*Y+@F*))+y=y. %L3
X+ *x+y@)=x % B1
y*¥x+@y+2)=y. % 1.2
x+y)*@y+z)*y=y. %L4
x*y+x*y@)=x. % B2

X+y=y+x

x*¥y=y*x

x+y)+z=x+(y +12z)

(x*y)*z=x*(y*2).
A*B)+(A*C)1=A*B+C)I(A+B)*B!=BIB +B@ = A + A@.

The theorem asserts that the equations L1-L4, Bl, and B2 are a basis for Boolean algebra. To prove the
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theorem, one is asked to show that three conclusions hold, respectively corresponding to a distributive law, an
absorption law, and the fact that x+x@ is a constant.

As in the theorem DUAL-BA-3, discussed earlier, a starting point was supplied by McCune; he had
obtained with OTTER a proof of length 119 and, as with DUAL-BA-3, was interested in a more elegant proof.
The goal was to find a proof of length 100 or less. My approach was iterative, in the sense detailed earlier.
The following summarizes the highlights.

For the first experiment of significance, the pick given ratio was assigned the value 4, max_weight the
value 23, and heat the value 1. The following two clauses were placed in the (input) hot list.

X+Y=y+X.

x*y=y*x.
The assigned values were those used by McCune; the choice of clauses for list(hot) was based on the usual and
perhaps uninspired rule of including simple clauses. The resonators were the correspondents of the deduced
steps of McCune’s 119-step proof.

In 115 CPU-seconds with retention of clause (12600), OTTER completed a proof of length 103 and level
21. As is so typical in view of my interest in the hot list strategy, the experiment was then repeated with but
one change: The heat parameter was assigned the value 2 rather than 1. In 206 CPU-seconds with retention of
clause (18556), a 91-step proof was completed, one of level 26. Then, following the iterative aspects of the
approach, the next experiment mirrored the preceding with one exception: New resonators were used, those
corresponding to 87 positive deduced steps of the 91-step proof produced during the preceding experiment. In
192 CPU-seconds with retention of clause (22114), OTTER completed a 63-step proof of level 12, a reduction
in proof length that was (for me) indeed unexpected. Then, a slight variant of the experiment was conducted, in
which the value 1 (instead of 2) was assigned to the heat parameter. In 48 CPU-seconds with retention of clause
(9397), a 118-step proof was found, one of level 27.

The last two cited results together provide a nice illustration of why an algorithm for finding shorter
proofs would be difficult to produce, and they also provide some insight into why the methodology presented in
this technical report was formulated. Specifically, although many experiments suggest that assigning the value 1
to the (input) heat parameter (when the hot list strategy is in use) is the most effective assignment, here one
witnesses a far better result obtained with an assignment of the value 2.

At the same time the first of the two items (the 63-step proof) suggests that an even more elegant proof
might be obtainable if one were to conduct a quite extensive set of experiments. Such a set of experiments
would involve assigning a small time limit for each run and simply trying numerous combinations of option
choices and parameter assignments, still emphasizing the methodology that proved so successful with the
theorem DUAL-BA-3. One can easily feel impatience at the prospect of having to set up one experiment after
another, even though the use of OTTER is often so rewarding and even though the modifications in each case
take little actual time. McCune again came to the rescue: He wrote a program, super-loop, that systematically
and sequentially sets up and runs experiments that focus on combinations of a variety of user-chosen options and
assignments. To use super-loop, one attaches to the end of the designated input file a set of commands of the
following type.

% end of fixed part

meta_hot_set(2,3,4).
X+y=y+X.

x¥y=y*x.
x+y)+z=x+({ +2).
x*y)*z=x*(y*2).
end_of list.

assign(heat,2,1,0,3).

assign(pick_given ratio,4,5,6,7,8,9,10,12).
assign(max_weight,5,10,15,20,25).
flag(ancestor_subsume,set,clear).

For example, using the remainder of the specified input file, in one experiment OTTER will assign max_weight




the value 15 and the pick given ratio the value 7, will set ancestor_subsume, and will use three of the given
four clauses in the context of the hot list strategy.

With access to super-loop and with a quick review of the methodology used to yield the 100-step proof of
DUAL-BA-3, I decided to run the sequence of experiments determined by the just-cited set of commands, with
one addition, namely, the use of the resonance strategy. I chose for the resonators the steps of McCune’s proof
of length 119, assigning to each the value 2. Except for the cited variations from experiment to experiment, the
approach was reminiscent of that used to obtain the 103-step proof discussed earlier. I set the time limit to 120
CPU-seconds.

In the 209th experiment (directed by super-loop), a 30-step proof (of DUAL-BA-5) of level 6 was com-
pleted in 15 CPU-seconds. The crucial option choices and parameter assignments that were used were an
assignment of the value 8 to the pick given ratio and the value 25 to the max_weight and the setting of ances-
tor subsumption; the hot list strategy was not used.

The success with DUAL-BA-3 (when studied with the methodology central to this technical report) cou-
pled with the just-cited success with DUAL-BA-5 motivated the study of DUAL-BA-2; see [McCune96]. The
theorem asserts that the following seven clauses axiomatize Boolean algebra.

x+y)*y=y.
x*y+)=Ex*y)+ & *2).
x+x@ =1.
p(x.y,2) = (x*y@) + ((x*2) + (y@ * 2)).
P(X.Xy) =y.
p(x.yy) = X.
p(x,y.x) = X.
For the study, the following clause was also included because of the use of paramodulation.
X=X

The theorem asks one to prove three properties of Boolean algebra, the same three properties proved in DUAL-
BA-5, namely, a distributive law, an absorption law, and the fact that x+x@ is a constant. If one denies the and

of the three properties, one obtains the following clause.
A+B*C)!1=(A+B)*(A+C)I(A*B)+B!=BIB*B@ = A * A@.

To initiate the study (with the goal of fulfilling McCune’s request for a more elegant proof), I used his
135-step proof. The iterative approach led to the completion of a 93-step proof. Then, by using super-loop
focusing on 89 deduced steps of the 93-step proof as resonators, an 86-step proof was completed. The proof
was found in the 87th experiment directed by super-loop. Regarding options and values, the pick given_ratio
was assigned the value 5, the max_weight was assigned the value 8, ancestor subsumption was used, and the hot
list strategy was not used; 6 CPU-seconds sufficed to produce the 86-step proof of level 22. Super-loop was
again used, focusing on 82 deduced steps from the 86-step proof as resonators. In the third experiment, in 3
CPU-seconds with the value 12 assigned to the pick given ratio, the value 8 assigned to max_weight, and the
use of ancestor subsumption, an 83-step proof of level 23 was completed.

I then had an inspiration, most likely resulting from some earlier experiments with Robbins algebra. In
the next use of super-loop, I merely cleared eq units_both ways. (If this flag is set, then unit equality clauses,
positive and negative, can be stored in both orientations; see [McCune94].) In the seventh experiment, in 4
CPU-seconds, with the pick given_ratio assigned the value 12, the max_weight assigned the value 16, and the
use of ancestor subsumption, OTTER found an 81-step proof of level 28.

By following the type of iteration just illustrated, a 77-step proof was completed, one of level 27, in 3
CPU-seconds. The experiment required assigning the value 12 to the pick given ratio, assigning the value 8 to
the max_weight, assigning the value 1 to the heat parameter, using ancestor subsumption, and setting the flag
eq_units_both_ways; only 3 CPU-seconds were required. The hot list contained the following four clauses.

x+x@=1.
p(x’x’y) = y'
p(x.y.y) = x.
p(x,y,Xx) = x.
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The result was obtained in the 221st experiment directed by super-loop.

To test the iterative methodology further, I shifted focus from Boolean algebra to quasilattices, focusing
on the theorem denoted by QLT-3. McCune and his colleague Padmanabhan [McCune96] had obtained with
OTTER the first known equational proof that the following self-dual equation can be used to specify distribu-
tivity.

((x"Nv) " NvE " x)=>(xvy) z)vy) " (zVX)

(All earlier proofs are model-theoretic.) The proof I was asked to replace with a more elegant proof has length
183.

As with DUAL-BA-3, this theorem taxed the iterative methodology greatly, in the sense that many experi-
ments were required to reach the best result, a proof of length 108 and level 14, completed in 166 CPU-seconds.
Among the points of interest are the fact that McCune’s proof (used as the starting point) has level 24 and the
fact that, in contrast to many of the so-called final experiments in a study, this one required a few CPU-minutes.
Also of interest, perhaps suggesting the difficulty of obtaining such a short proof and even suggesting the charm
of the proof, the use of super-loop produced no further progress.

For the researcher intrigued by the challenge of finding a shorter proof, the following clauses can be used
to attack the problem.

X=X

X"X=x

X"y=y"x
x"y)"z=x"(y" 2).

XVX=X

XVy=yVX
Evy)vz=xv(yvaz).

T v)vEx"y)=x"(yva)
vy )" Evy)=xv(yz).
(xX"Nv " NvE )=(xvy) " 2)vy) (VX))
A BvO!=(A"B)yv(A~Q).

Then, I used the methodology- to attack another theorem chosen by McCune from quasilattices. The
theorem, QLT-5 [McCune96], asserts that the following self-dual equation can be used to express modularity in
quasilattices.

X"vz Evy)=Gvy) EvEx"y)
As in the preceding problem, the object was to find a proof even more elegant than that first obtained by

McCune using OTTER, the first known equational proof. The so-called target proof has length 125 and level
19. To consider the problem, I used the following clauses.

X = X.
X"X=X
x"y=y” " x
x"y)z=x"(y" 2.
X VX=X

XVy=y VX
xvy)vz=xv(yvaz.
x"xvy)=x
xv(x“Ty)=x
X*X=x.
x*¥y=y*x
x*y)*z=x*(y*2).
x*xEvy) =x
xv{x*y)=x.
A"B!=A*B.

Before the use of super-loop was invoked, the basic methodology eventually led to a 95-step proof. Then,
for some obscure reason, I initiated the attack with super-loop by using as resonators 101 deduced steps of a
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proof of length 106, obtained early in the use of the basic methodology. Perhaps the reason was that use of the
95-step proof would lead no further, that it would place the program in a cul de sac, whereas starting a bit
further back might avoid the dead end. As in some of these experiments, the approach was to use super-loop to
find (if successful) a shorter proof, then use the positive deduced steps of the shorter proof for the next use of
super-loop.

In Experiment 3745 of the last use of super-loop, with the pick given ratio assigned the value 9, the
max_weight assigned the value 15, the heat parameter assigned the value 1, and the use of ancestor subsump-
tion, 7 CPU-seconds sufficed to yield a proof of length 30 and level 13. Two clauses, the following, were
present in list(hot).

X V X=X.
XVy=sy VX

This result was singularly satisfying, and it demonstrated splendidly (because of occurring in Experiment 3745)
the value of using super-loop.

6. A Promising Shortcut

With little doubt, one interested in finding a more elegant proof than that in hand might wish access to an
approach that is far less complex, an approach that requires far fewer iterations and judgments to be made. The
following two-step approach is easy to apply and often does yield impressive results.

The first step of the approach (or methodological shortcut) merely takes the input file that produced the
target proof and adds the use of the hot list strategy. For the (input) hot list, one chooses for its members so-
called simple or short clauses (as was the case with DUAL-BA-3, the theorem that is the focus for much of this
technical report). If successful, the program will find a shorter proof and will find it in far less CPU time. If
the first step succeeds, the second step merely takes the input file used in the first step and adds the use of the
resonance strategy. The resonators are the correspondents of the positive deduced steps (required to be unit
clauses) of the proof obtained in the first step of the abridged approach. The results of applying the just-cited
two-step approach to various theorems are next in order.

Quite naturally, the first theorem that was attacked was DUAL-BA-3, that studied in detail in the 26 cited
experiments; see Section 3. Three experiments were conducted. The first was designed to find (if possible) a
proof without the use of the hot list strategy or the resonance strategy. The second experiment, as dictated by
the two-step approach, differed from the first only in its use of the hot list strategy. The members of the hot list
were the following.

X+ x@=1.
X *x@ =0.

The third, again dictated by the approach, added the use of the resonance strategy, where the resonators were the
correspondents of the positive deduced steps yielded by the second experiment. Of course, I was somewhat
prepared for the possibility that any of the three experiments might fail to complete a proof.

Fortune smiled: Each of the three experiments produced a proof. In order (on the equivalent of a
SPARGCstation-10), the CPU times in seconds are 6681, 585, and 242. In order, the levels are 96, 75, and 64.
The respective lengths are 803, 515, and 475. The ensemble of the three experiments suggests that the shortcut
is promising, having reduced the proof length from 803 to 475. (Regarding the proof length of 803, in contrast
to the expected 816, apparently the precise input file used by McCune is lost to antiquity.)

Next, three corresponding experiments were conducted for the theorem DUAL-BA-5. As expected, the
first experiment produced a proof of length 119; its level is 16, and it was completed in 52 CPU-seconds. Two
clauses, the following, were then placed in the hot list.

X+y=y+X.

x*¥y=y*x.
The second experiment required 100 CPU-seconds to complete a proof, with level 38 and length 160. These
results were a surprise, for adding the use of the hot list strategy so often reduces the CPU time and yields a
proof of smaller length. I was faced with a dilemma: (1) truncate the study of DUAL-BA-S, concluding that
the shortcut was a failure for this theorem; (2) intervene by making some modification to the shortcut; or (3)
continue the study as if nothing unusual had occurred.
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The third possibility was (to me) clearly the preferred, for one should apply a suggested approach (that is
being tested for value) even in the face of intermediate disappointment. Also, I was most intrigued to determine
what would happen if I used so many resonators, those corresponding to the positive deduced steps of the 160-
step proof (only 101 were used in the first visit to this theorem, as discussed in Section 5). Therefore, as if
nothing untoward had occurred, 159 resonators were adjoined, and the third experiment was conducted.

In 36 CPU-seconds, a proof of level 12 and length 47 was found. The result, which vindicated the
shortcut, is indeed satisfying, if one takes into account that the best proof obtained with the basic methodology
followed by the use of super-loop has level 6 and length 30.

The next target was DUAL-BA-2. The first experiment behaved as expected in regard to proof length,
completing a proof of length 135 and level 32 in 55 CPU-seconds. The following clauses were then placed in
the hot list for the second experiment.

X+x@=1.
px.x.y) =y.
p(x.y.y) = x.
px,y.X) = X.

Reminiscent of the preceding study, the second experiment required 229 CPU-seconds to complete a proof, one
of level 37 and (not enticing) length 150. When 144 resonators were then adjoined, corresponding to positive
deduced steps of the 150-step proof, 36 CPU-seconds were sufficient to find a proof of level 27 and length 120.

Regarding further evidence, two additional theorems were studied with the two-step shortcut. The first,
QLT-1, is from quasilattices. The following clauses were used to attack this theorem.

X = X.
X" x=x
X"y=y" x
x"y)"z=x"("2).
XVX=X

XVy=y VX

xvy)vz=xv(yvaz).

G v vETy)=x"( V.

vy " 2)"&vy)=xv(y 2.

XTyvxTz)=x"(yva).

A" BvOI=(A"B)vA~C).
The first nine clauses axiomatize quasilattices. The theorem asserts that the tenth clause is a new way to express
distributivity in quasilattices. The eleventh clause is the denial of distributivity. McCune had obtained a 47-step
proof. In the three experiments with the shortcut methodology, 1 obtained proofs of length 47, 46, and 61,
respectively. The time required was 3, 6, and 5 CPU-seconds, and—of some small disappointment—the levels
are 10, 15, and 18, respectively. The conclusion is that the shortcut was far from effective for this theorem.

However, the results naturally led to an experiment in which the hot list was trimmed from the following
four members to just two, the first and the third.

X X=X
XTy=y~x
XVX=X

XVy=YyVX

This move led to a proof of level 8 and length 19, completed in 5 CPU-seconds. Then when resonators were
adjoined that correspond to the positive deduced steps of the 19-step proof (to satisfy the natural curiousity), in
3 CPU-seconds, a proof of level 5 and length 21 was found.

Finally, I thought one additional experiment must be run. The reasoning was that if progress was made by
trimming the size of the hot list, and if some of that progress was then lost, perhaps a reduction in max_weight
was in order with all other items left unchanged. In 1 CPU-second, after the max_weight was changed from 19
to 15, OTTER completed a proof of level 4 and length 8. (For the researcher who wonders how wild is the
space of proofs, one of the experiments focusing on this theorem yielded a proof of level 70 and length 386,
providing an impressive contrast to the proof of length 8.) One perhaps unfortunate conclusion from this
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ensemble of experiments focusing on QLT-1 is that even the shortcut methodology benefits from tinkering. Yet,
if one steps back from the study a bit, tinkering should be expected, for mathematics and logic so seldom admit
an algorithmic approach when the prize is an elegant proof.

Before turning to the last theorem on which the promising shortcut was tested at this time, I answer the
following natural question that an experienced researcher might ask. What results are obtained if one conducts
three experiments using the effective max_weight (15) rather than that which was originally used (19) and using
the smaller hot list? If, in addition to testing the shortcut, one has the goal of finding an elegant proof, the new
set of three experiments begins rather explosively, completing in 5 CPU-seconds a proof of level 8 and length
25. The second experiment brings the excitement and the attempt to a halt, producing no proof when the
smaller hot list is then added. Other paths are left as research topics and challenges, especially where the goal
is to find a proof of length strictly less than 8.

The final theorem that was studied in the context of the promising shortcut is denoted by McCune as LT-
8. This theorem from lattice theory says that the meet (intersection) operation is unique in the sense that, given
a set L of elements that have the same join (union) operation and two possibly different meet operations, the two

meet operations are the same. The following clauses were used to study this theorem, again suggested by
McCune.

X =X.

% (v,”) is a lattice.
X"x=xX
X"y=y " x
xy)z=x"(y "2
X VX=X

XVy=yVX
xvy)vz=xv(yvz).
x"@vy) =x
xv(x"y)=x

% equations to make (v,*) a lattice.
x*¥x=x
x*y=y*x
x*y)*z=x*(y*2).
X*(xvy)=x
XxXvE*y)=x
A"B!=A*B.

McCune’s proof, used as a target, has length 19 and level 6. In the first experiment (in which neither the
hot list strategy nor the resonance strategy was used), 50 CPU-seconds were required to produce a proof of

length 19 and level 6. For the second experiment, use of the hot list strategy was added with the following
clauses in the hot list.

X" X=X
XVX=X
x"y=y“"x

XVYy=yVX

The required time increased to 119 CPU-seconds, with a proof of length 18 and level 6. For the third experi-
ment, 18 resonators were adjoined, the correspondents of the deduced steps of the just-cited proof. Although but
1 CPU-second sufficed, the resulting proof still has length 18; in that its level is 9, the proof is different from
the 18-step proof yielded by the second experiment. In the second 18-step proof, commutativity of join was not
required. Of the deduced steps, five are not shared by the two 18-step proofs.

Annoyed by the insignificant decrease in proof length, influenced by what occurred in the study of QLT-1,
and motivated by the objective of presenting McCune with a more elegant proof and the objective of offering an
interesting challenge, I conducted two tightly coupled additional experiments. First, I removed from the hot list
the two clauses that encode commutativity. In 55 CPU-seconds, OTTER produced a 19-step proof of level 6.
The proof contains the same deduced clauses as the 19-step proof obtained when neither the hot list strategy nor
the resonance strategy was used. Then, I used the 19 deduced steps as resonators, noting that three of them are
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not among the 18 that were used in the third experiment (that which yielded an 18-step proof). Success
occurred: In 1 CPU-second, a proof was completed, one of length 14 and level 5. Immediately, this advance
motivated me to tinker just a bit more, seeking an extra drop (or perhaps more) of satisfaction. When the
pick_given_ratio (which had been assigned the value 4) was commented out, causing OTTER to choose as the
focus of attention clauses by weight only, 1 CPU-second sufficed to complete a 13-step proof of level 6.

7. Research, Review, and Remarks

In this closing section, research topics are briefly discussed, a review of the content of this technical report
is given, and various remarks of a somewhat disjointed nature are made. Of the various alternatives, motivated
by my typical intertwined list of objectives, I have chosen to present the material of this section as if the three
areas (research, review, and remarks) are tightly coupled.

The focus in this technical report is on automating the search for elegant proofs. (For the actual proofs, or
proofs of a similar flavor, see [McCune96] or either of the following two Web addresses,
http://www.mcs.anl.gov/home/mccune/ar/monograph/ or http://www.mcs.anl.gov/people/wos/index.html.)
Although a precise definition of elegance is debatable, four properties are studied: proof length, term structure,
variable abundance, and deduced-step complexity. The first (proof length) of these four is featured.

Clearly, proof length is somewhat hazy. For example, frequently in a mathematics book, one finds a proof
in which symmetry and transitivity of equality are used implicitly only. For OTTER, their use would be explicit
and, if used, add to the proof length. On the other hand, the use of demodulators (rewrite rules, for example, in
the context of canonicalization) does not ordinarily contribute to proof length. Proof length in this technical
report and for OTTER measures the number of specific steps that are present but that are not part of the input.
(Sometimes, the cited length of a proof is not what is expected, for proof length does not measure, for example,
the number of equality substitutions; in particular, as noted, the substitutions resulting from the use of demodula-
tors do not contribute to proof length. If one wishes to see explicitly all substitutions and their effect, as one
might with a preference for a different definition of proof length, OTTER offers the needed feature, namely,
build_proof object, which gives all of the gory details.) Therefore, here most or all ambiguity regarding this
aspect of elegance is removed.

In contrast to merely touching on means offered by OTTER for addressing the second through the fourth
aspects of elegance, this technical report features a methodology for automating the search for shorter proofs; in
Section 6, a shortcut is studied. A review of the details of the methodology shows how complex such a search
can be. Although the approach on which this technical report is based is clearly not an algorithm—a practical
algorithm appears to be out of reach—the evidence given here suggests that the methodology can be indeed
effective. One of the more graphic illustrations concerns starting with a proof of length 816 and, by applying
the approach, eventually obtaining a proof of length 100. The approach relies heavily on OTTER, McCune’s
automated reasoning program. In Section 3, the key experiments, 26 of them, are detailed with commentary;
they are summarized in Table 1 at the end of that section.

To dispel the thought that the space of proofs, in the context of proof length, does not behave wildly, one
merely considers the theorem QLT-1; see Section 6. The best proof that was obtained has length 8. In contrast,
in the search for a shorter proof, the program also completed a proof of length 386. The longer proof was found
in 56 CPU-seconds with the heat parameter assigned the value 1, the pick_given ratio assigned the value 6,
max_weight assigned the value 27, and without the use of ancestor subsumption but with the use of
eq_units_both ways. Two clauses were present in the hot list, that for idempotence of join (union) and that for
commutativity of join. The proof was found when the program super-loop was used (in job 4735), a program
that permits the researcher to run a sequence of OTTER experiments.

The shorter proof (that of length 8) was completed with assigning the heat parameter the value 1, the
pick_given_ratio the value 4, max_weight the value 11, and with the use of both ancestor subsumption and
eq_units_both_ways. The hot list differed from that used to find the 386-step proof; it consisted of idempotence
of join and of meet. The shorter proof was found with the first job directed by super-loop, in the same run in
which the longer proof was completed.

In conirast to the first aspect of elegance studied here (that of proof length), the second through the fourth
aspects of elegance admit a quite straightforward attack. The second property of elegance, term structure, can
be directly addressed by relying either on weighting or on demodulation. The third property, variable abun-
dance, is directly addressable by assigning the desired value to max_distinct_vars. For the fourth property,




deduced-clause complexity, the value assigned to max_ weight is the key. (As an aside, a tempting research
problem focuses on adding the feature of being able to assign a value to max_level, instructing the program to
retain no clauses whose level exceeds the chosen value; access to such a feature might give the researcher and
the program another weapon for seeking more elegant proofs.)

Proof length (in contrast to the other three discussed properties of elegance)—especially when the goal is
to find a “‘short’’ proof—naturally brings one face to face with cul de sacs and, most piquant, the need to follow
a tortuous path that is often indeed narrow. For example, some experiments yield no proof at all unless the
pick_given ratio is assigned the value 11; all other values yield nothing. For a second example—especially
because of the appeal of proving lemmas early—intuitively, one might conjecture that it is always profitable to
have the program focus on the clauses in the initial set of support before focusing on any deduced clause (to
drive the reasoning); in fact, such a move sometimes leads to finding no proofs at all.

One might immediately wonder why the task of seeking shorter proofs is so complicated, why the path to
success can be so convoluted. At least for problems in which equality is featured, the answer rests in part with
the need to find and then use appropriate demodulators (rewrite rules). Indeed, even a small change in the order
in which demodulators are found and applied can produce dramatic changes in the program’s performance, in
the paths that are pursued, and in the results that are obtained. Nevertheless, such diverse behavior is typically
what is required, if the objective is to find ‘‘short’ proofs. Often, the objective is reached only by radically per-
turbing the search space. Fortunately, OTTER offers various means in this regard, not the least of which is use
of the hot list strategy. As detailed, to find the proofs cited with the methodology presented in this technical
report required basing later runs on earlier runs or on combinations of earlier runs. At this time, I can offer no
rules for deciding which early runs to key on. For the researcher desirous of a ‘“‘quick fix”’, the shortcut
presented in Section 6, however, is often effective to a significant extent.

That use of an automated reasoning program is necessary if one is to obtain so-called best results seems
evident to me. For a supporting view from a researcher not in this field of automated reasoning, I need only
turn to Dana Scott and his reaction to a success concerning two-valued sentential (or propositional) calculus
[Wos91a]. I had sent Scott a new axiom system for this area of logic and the corresponding 8-step proof; he
returned to me a 7-step proof [Scott90], suggesting that the shortest in that regard had been found. Shortly
thereafter, I used OTTER with a different set of options and, most unexpectedly, found a 4-step proof, one that
appeared to me to indeed be elegant. When I notified Scott of this 4-step proof, his reaction, given by e-mail,
was that it might indeed be ‘‘a very neat proof that would not be obvious to a human investigator’’. I offer this
anecdote as but one indication of why the assistance of a program such as OTTER might be just what is needed.
Indeed, this program often attacks a theorem in a manner that a mathematician or logician would simply avoid;
examining in detail a huge space of conclusions is simply untenable.

In part as a challenge and in part to add to one’s appreciation of the power of some automated reasoning
programs, using the following clauses (pertinent to the study of two-valued sentential calculus and the communi-
cation with Scott), one might attempt to find a 4-step proof (by contradiction) of the type just discussed, with or
without a program.

-P(i(x,y)) | -P(x) | P(y).

PGGG(x.y)2)i(y,2))).

PG((1(x,y),2),i(n(x),2))).
P(i(i(u,i(n(x),2)),i(w,i(i(y,2),i(i(x,y),2)))).
-P(i(i(n(p).).i(i(q.0),i(i(p.q),)))) | SANS(step_th_59).

The first of the five clauses when considered with hyperresolution encodes condensed detachment, the inference
rule often used to study various areas of logic. The second through the fourth are what Lukasiewicz calls theses
19, 37, and 60, respectively, the axiom system I discovered with OTTER’s assistance. The fifth clause is the
negation of thesis 59; one of the Lukasiewicz axioms systems for this area of logic consists of theses 19, 37, and
59.

In contrast to the study of a property of elegance in isolation, OTTER can also be used to study combina-
tions of properties simultaneously. For an example (studied in [Wos96a]}) that concerns two aspects of elegance
simultaneously, proof length and term structure, I focus on many-valued sentential calculus (which is weaker
than two-valued sentential calculus). The theorem asserts that the fifth of the following five formulas is deduci-
ble from the first four; again the inference rule is condensed detachment.
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(MV1) i(x,i(y,x))

(MV2) i(i(x,y),i(i(y,2),i(x,2)))

(MV3) i(iG(x,y),y)i(1(y.X),X))

(MV4) i(i(n(x),n(y))i(y,x))

(MV5) 1(G(x,y).1(y.x).i(y.x))
Lukasiewicz conjectured that the five formulas axiomatize many-valued sentential calculus; the function i can be
interpreted as implication and the function n as negation. The (primary) challenge was met by Wajsberg (page
145 in [Lukasiewicz70]) by proving that the five given formulas do provide an axiomatization of the calculus.
When years later Meredith proved that MV5 is dependent on MV1 through MV4 [Lukasiewicz70], the related
challenge (for automated reasoning) was born: With an automated reasoning program unaided by a researcher’s
guidance, obtain a proof of that fact. Although the challenge was met in Chapter 5 of [Wos%6a] by relying on
a not-very-often used strategy, one might find an independent study of the theorem more than intriguing.

In the context of elegance (rather than simply finding any proof), the challenge was to find an elegant
proof simultaneously with respect to proof length and term structure. Regarding term structure, the goal was to
find a proof that avoids the use of terms of the form n(n(f)) for any term z. At least one of my colleagues
thought the goal unreachable, especially if coupled with finding a “‘short’” proof. As it turns out, with invalu-
able assistance from OTTER, I found a 34-step proof of the theorem and a proof avoiding the n(n(f)) terms; see
Chapter 11 of [Wos96a]. For the resecarcher who enjoys a substantial challenge, whether one uses OTTER or
not, finding such a proof will prove difficult—or worse.

Regarding a comparison of a short proof (one of length 100) that completes a study with the long proof
(one of length 816, serving as a target) that often initiates a study, the theorem DUAL-BA-3 provides an
interesting example. Of the deduced steps of the (short) 100-step proof, 75 are not present among the deduced
steps of the (long) 816-step proof obtained by McCune. To be candid, I was overwhelmed by this comparison.
However, the result is indeed consistent with what I have learned from more than thirty years of using an
automated reasoning program. Specifically, in contrast to what I would have conjectured as a graduate student
in mathematics at the University of Chicago, the number of widely differing proofs for a given theorem is often
spectacularly abundant. I suspect that mathematicians and logicians who have little or no experience with an
automated reasoning program will find it a delight to examine the myriad of diverse but interesting proofs that
can be completed.

Of a different nature, and surprising even to the experienced user of an automated reasoning program, is
the failure to return a given proof all of whose steps are being used to guide the search. In fact, sometimes the
use of proof steps as resonators coupled with a max_weight no larger than the value assigned to the resonators
leads to a shorter proof, as can occur when, for example, the hot list strategy is used; see Chapter 13, Section 5
of [Wos96a].

Especially for the researcher new to the use of OTTER, one feature is of particular interest, namely, the
autonomous mode. The choice of this option removes for the user the need to make other option choices, for
the program sets them based on various syntactic criteria. If one is familiar with the options, but not sure which
values to assign, then one can rely on super-loop; see Section 5. As for what to vary when using super-loop, 1
recommend max_weight, the pick given ratio, the heat parameter, the number of elements in the hot list, the
setting and clearing of ancestor_subsume, and (if appropriate) the setting and clearing of eq_units_both_ways.
By way of a piquant phenomenon relevant to the use of ancestor subsumption, although the presence of back
subsumption is virtually required in most cases, to my surprise its absence (clearing it) can lead to an interesting
proof.

From a general perspective, one finds that the iterative methodology (clearly not an algorithm) often
returns shorter proofs and in rather small CPU times. Immediately several challenges arise, challenges of
finding proofs shorter than those cited in this technical report. One can rely on the approach taken here, or one
can devise a radically different approach. If the former, one must expect to (at least briefly) examine results
obtained early to decide on which combination of options and assigned values to use in later runs. One must
also expect to make choices regarding the members of the initial hot list, when the hot list strategy is in use.
Fortunately, a good rule to follow suggests the members be short clauses, which (to me) seems natural and, as
indicated, can lead to significant progress. To begin applying the approach, one can either initiate the attack
with a known proof or attempt to obtain a proof with OTTER. As expected (in view of the nature of the prob-
lem of seeking elegant proofs), one will often be forced to backtrack or to combine option settings from various




runs.

In addition to the just-given rule for clause placement in list(hot), one might wish some guidance regard-
ing the placement of the clause or clauses that result from assuming that the theorem under study is false.
When the denial of the theorem is encoded with a negative unit clause, my preference is to place that clause in
list(passive); the elements of that list are used to detect unit conflict (as a test for proof completion) and used
also for forward subsumption. My preference is in part based on the desire to seek forward proofs, rather than,
say, bidirectional proofs. However, because clauses in list(passive) are not subject to demodulation, one may be
forced to place such a denial clause in, for example, list(sos). Indeed, the search for a proof may require the
demodulation of the denial clause, or the search may require paramodulation into the denial clause, neither per-
mitted with members of the passive list.

Many of the obstacles discussed in this technical report (see, for example, Section 4) are not inherent in
automated reasoning; instead, they are actually present in the search for a proof in general (whether by program
or by person). Those familiar with the literature of mathematics and of logic can most likely cite various
instances of theorems whose proof eluded the researcher for years. Proof finding, especially if one is seeking an
elegant proof, is indeed challenging, often complicated by the narrowness and tortuousness of the path that must
be followed if one is to succeed. For example, unaided, the researcher can be misled into believing that some
particular property of the underlying theory merits emphasis. For a second example, when aided by the use of
an automated reasoning program, one sometimes finds that the decrease by 1 in the assignment of the value to a
single parameter proves to be the crucial move.

Regarding the first example, I can offer little other than the accrual of experience and the guidance of
other researchers. As for the second example, fortunately, one can rely on super-loop or on the autonomous
mode. The use of either markedly reduces the need (for the user of a program such as OTTER) to master the
fine points of automated reasoning. Even the researcher familiar with OTTER will find super-loop and the auto-
nomous mode useful, as suggested by the fact that some of the successes reported here relied on assigning the
value 4 to max_weight where others required an assignment of 40.

My main research, in the context of elegance, has focused on problems in which equality was the only or
the dominant relation and on problems featuring the use of condensed detachment. Quite different from such
problems are problems focusing on non-Horn sets. Related to non-Horn problems is the problem of finding
elegant proofs when the equality relation is heavily mixed with relations not concerned with equality, as occurs,
for example, in the study of set theory. Just as reported here, either area of research most likely will meet with
cul de sacs and occasionally require reliance on a proof far from the best in hand. Such is the nature of search-
ing for elegant proofs.

At the other end of the spectrum, in the context of automated reasoning, more than occasionally the sim-
plest approach to proof checking some given proof can fail, the approach in which the proof steps are placed in
a weight list with an assignment to each of, say, the value 2 and with an assignment of 2 to max_weight.
Failures of the cited type are especially likely when equality, and hence demodulation, are in focus. Even more
~ complicated than one might expect, the use of proof steps as resonators in a second run, where the resonators
are the correspondents of the deduced steps of a proof obtained in a first run, and where all other conditions are
unchanged, often does not result in the program simply returning the proof found in the first run.

Of course, perhaps the most pressing question concerns identifying the key ingredient for finding elegant
proofs, for proving a new theorem, for completing a difficult assignment, and for succeeding in research when
one is relying on the assistance of an automated reasoning program. Predictably, my answer is the one I give
when asked about the key ingredient for sharply increasing the power of such a program, namely, access to a
variety of strategies, some to restrict the reasoning and some to direct it. For evidence that supplements the
results presented here regarding the importance of strategy, the following experiment suffices.

Again, the theorem in focus is DUAL-BA-5, whose best proof known to me had length 30, that is, until a
different strategic approach was taken by my colleague McCune. He removed the restriction on paramodulation
that blocks paramodulation info nonunit clauses, and he added the use of what is called basic paramodulation
[Bachmair92]. Briefly, the cited strategy prevents paramodulation into terms that arise by instantiation of vari-
ables in ancestor clauses; in particular, nonvariable terms in input clauses are marked as admissible into terms,
and terms in paramodulants that correspond to marked terms in the parents are marked as admissible. He also
decided to focus on a proof of distributivity only. To my amazement, the automated reasoning program he used
produced an 18-step proof. He then used Veroff’s hints strategy [Veroff96], using as hints the steps from the
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18-step proof, and obtained a 17-step proof of DUAL-BA-5. I then used super-loop with McCune’s approach,
and OTTER found a 16-step proof of DUAL-BA-5; OTTER also found a 13-step proof of distributivity.

Finding the 16-step proof demonstrates the value of using strategy, but it also suggests what may exist in
the context of elegant proofs. After all, the study of DUAL-BA-5 began with a proof of length 119. Neither I
nor McCune would have believed possible the completion of a proof of length 16. Therefore, research designed
to find proofs dramatically shorter than those cited in this technical report could prove fascinating and, perhaps,
markedly rewarding.

Regarding research of a more general nature, (in the context of automated reasoning) clearly merited are
strategies aimed at dramatically reducing the CPU time required to complete proofs. Admittedly, such reduc-
tions do not impress all researchers. However, often overlooked is the fact that theorems and, even more
significant, open questions that were out of reach will become within reach of such a program as the required
CPU time decreases sharply. Rather than with the reduction in time——which one might suggest is obtainable
merely by using a more powerful computer—the significance rests with the cause of the reduction. Specifically,
if the saving in time results from sharply reducing the number of paths to be traversed—which is not address-
able with a faster computer—progress is occurring. Indeed, as Bledsoe has remarked more than once, the fastest
computer is not the solution, for the space of possible conclusions to be deduced is indescribably large. Were it
not for access to strategy, (it seems clear to me) an attack on deep questions or hard problems would almost
always fail, for there exist far too many ways to get lost. Despite years of experience and the accrued intuition,
even the talented mathematician or logician can get lost, often pursuing one false lead after another. The use of
strategy, such as the set of support strategy, decreases the likelihood of the program getting lost, tends to focus
its attention on more profitable paths of inquiry. Ideally, additional strategies offering power somewhat compar-
able to that offered by the set of support strategy would mark a most significant advance for automated reason-
ing.

The following three themes are central to the research presented in this technical report. First, without the
use of a program such as OTTER, many elegant proofs would remain undiscovered. Second, as expected by
those familiar with my research, I am certain that the greatest advances in automated reasoning when measured
by the power to prove a theorem will result from the formulation of yet more strategies, some to restrict the rea-
soning and some to direct it. Third, OTTER functions as an invaluable research assistant for the pursuit of
knowledge of various types when the study focuses on mathematics or on logic.

I can say with conviction that if one learns how to use OTTER, one will in the long run save many more
hours than one spends in the learning, especially if one’s interest is an area of abstract algebra.

Remarks. Portions of this technical report have been expanded, refined, replaced, or modified in a manuscript
entitled ‘‘Automating the Search for Elegant Proofs’’ {Wos97], which is to appear in the Journal of Automated
Reasoning.
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