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2 1 INTRODUCTION

Abstract:

In this paper we consider the evolutionary dynamics of populations of sequences, under a
process of selection at the phenotypic level of structures. We use a simple graph-theoretic
representation of structures which captures well the properties of the mapping between
RNA sequences and their molecular structure. Each sequence is assigned to a structure
by means of a sequence-to-structure mapping. We will make the basic assumption that
every fitness landscape can be factorized through the structures. The set of all sequences
that map into a particular random structure can then be modeled as a random graph in
sequence space, the so-called neutral network. We analyze in detail how an evolving popu-
lation searches for new structures, in particular how they switch from one neutral network
to another. We verify that that transitions occur directly between neutral networks, and
study the effects of different population sizes and the influence of the relatedness of the
structures on these transitions. In fitness landscapes where several structures exhibit high
fitness, we then study evolutionary paths on the structural level taken by the population
during its search. We present a new way of expressing structural similarities which are

shown to have relevant implications for the time evolution of the population.

1 Introduction

An understanding of the mapping between genotypes and phenotypes is of central im-
portance in evolutionary theory, as well as bearing on biologically-inspired computational
optimization techniques. For real organisms, the properties of this mapping are almost
completely unknown, although, for the simple paradigmatic example of the mapping of
RNA sequences into secondary structures, the surprising properties of this mapping are
being elucidated [7]. In this more restricted case, the properties of this mapping are rel-
evant for the understanding of evolutionary optimization of biopolymers, and the theory
of molecular evolution [8], and indicate why the folding of molecular sequences into their

spatial structures is of central interest in biophysics [9].




In this paper we use an even more coarse-grained representation of biomolecules as “ran-
dom structures”, and study the dynamics of populations of sequences which replicate
according to their fitness. The dynamics of such populations of sequences replicating with
mutation is of course closely related to the gnderlying fitness landscape. In this paper we
will make the basic assurﬁption‘ that each ﬁtness landscape can be factorized through a
set of such “structures”, i.e. thét there exists a:unique mapping that assigns fitness val-
ues to structures. Therefore all sequences mapping into a particular structure have equal
fitness, and the preimage of a structure (i.e. the set of all sequences that are mapped into
that structure) forms a so-called neutralnétwork in sequence space [7], upon which the

sequences move by point mutations while still mapping into the same structure.

Let us first describe our basic framework: sequence space is a graph Q% (where ¢ is the
size of the alphabet of which sequences are composed, i.e. 4 for the A, U, G, C alphabet
of RNA sequences, and n is the sequence length), its vertices are n-tuples V = (z1, ..., 2Zn)
and any two sequences are adjacent if they differ in exactly one base. The term “structure”,
can reflect various levels of coarse graining. Here we will consider “structure” to consist
of a list of all pairs of coordinates of the sequence that are joined by means of chemical
bonds (the underlying contact graph), and a multi-set of relations on the edges of the
graph which specify the base-pairing rules (for example, the allowable Watson-Crick base
pairs) [5, 6]. For each structure there exists a set of compatible sequences, that is the set
of all sequences whose coordinates fulfill the relations imposed by the edges of the contact
graph of the structure. The preimage of the structure is then the subset of this set of
compatible sequences, containing sequences which are mapped into the structure by the
mapping algorithm. The preimage thus forms a random graph in sequences space, the
neutral network. By choosing an ordering among the set of structures we then obtain a

mapping from sequences into structures simply by iterating this random process.

One important question, then, is how neutral networks are embedded in sequence space.
It has been shown [5, 6] that the graph structure of the union of the contact graphs
of two structures is of particular relevance. For example it encodes the coupling of the

corresponding two neutral networks in terms of the time in which a population can switch
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Figure 1: A contact graph, consisting of an ordered set of vertices (numbered), between
which there can be either secondary (gray) or tertiary (thin black) edges, together with its
set of components. On the right hand side, the bases of one compatible sequence are shown
on the vertices, indicating that, in the random structure, certain relations associated with
the edges have to be fulfilled (in this case Watson-Crick base-pairing rules).

from one net to the other. This graph contains information how close the neutral networks
come in sequence space and how likely it is that bi-compatible sequences, i.e. sequences
that are simulataneously compatible to both structures, will exist. For random structures,
we can determine precisely the structure of this union graph, the properties of which show
dramatic changes with increasing proportions of tertiary interactions in the constituent
structures [1]. More specifically, it exhibits a phase transition reflected in the sudden
emergence of a giant component in the graph above a certain threshold for this proportion.
Below the critical value, the neutral networks of any two random structures come very
close in sequence space, and it is of central interest how populations perform the transition

from one network to the other.

This transition phenomenon clearly depends on the population size, the random structures
and the mutation rate per replication event. It is also of interest v-vhether these transition
happen directly or via the 1 or 2-mutant hull around the neutral nets. Clearly, if a fraction
of the population has realized a reasonably fit structure, sequences on this net will produce

relatively many offspring. Because of mutations, some proportion of these offspring will




o

be mapped into other structures, and in a sense “fall off” the neutral network of the
fitter structure. This scenario allows populations to search for better structures with their
variant offspring while keeping the mean fitness high. Once a neutral net is found that

corresponds to a fitter structure, the population performs a transition to this network.

" _The paper is structured as follows: first we review the concepts of random structures,

compatible sequences and neutral networks. Second, we:analyze transitions between ran-
dom structures of equal fitness. Third, we study the ease with which transitions occur

when there is some structural similarity between the underlying contact graphs.

2 Random structures, compatible sequences and neutral
networks

Let us first review some terminology of graph theory. A graph X consists of a tuple
(vX,eX) and a map o® ¢ : eX — vX X vX. vX is called the verter set and eX the
edge set. An element P € X is called a vertez of X; an element y € X is called an edge.
The vertex o(y) is called the origin of y and the vertex #(y) is called the terminus of y;
o(y), t(y) are called the eztremities of some edge y. There is an obvious notion of Y being
a subgraph of X. We call a subgraph Y induced, if for any P, P’ € Y being extremities of
an edge y € X, it follows y € Y. A path in X is a sequence (Q1,%1,Q2,¥2,- -+ Yn, @ns1)s
where Q; € X, y; € X, o(y;) = Q; and £(y;) = Qiy1- A path such that Q, = Qnyy is
called a cycle. X is called connected if any two vertices are vertices of a path of X. A
connected graph without cycles is called a tree. Being connected is an equivalence relation

in X, and the maximal connected subsets of vertices are called components of X.

Let m be thg number of secondary bonds, and ¢; the fraction of nucleotides involved in
tertiary bonds. Then the contact graph is a graph on the n indices of the coordinates of
a sequence, whose edge set is the union of the edge sets of two random graphs. The first
one is a l-regular graph on 2m vertices, obtained by picking m pairs of indices without

replacement. The second one is a random graph on n vertices, obtained by selecting the
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remaining (’2’) — m edges with independent probability p = 2. Here, cg is the probability
of a specific nucleotide being involved in a tertiary interaction. It has been shown in [5]
that in the limit of long sequences almost all vertices of the random contact graphs are

contained in tree components of logarithmic size (relative to sequence length).

A random structure, s,, on n nucleotides of a finite alphabet A consists of:

e a contact graph X; ® X

e a family of symmetric relations (R«, Ry)yex,, where R,, Ry C AXx A

Each Ry is supposed to have the property: for all a € A there exists at least one b € A
with the property: aRyb. The relation R, is motivated by Watson-Crick base-pairing
rules observed in RNA secondary-structures. For y € X _the relation R, corresponds to

a specific (tertiary) interaction rule that might be context dependent.

A number of asymptotic results on contact graphs and their union has been proven in [5].
As is typical for random graph results, these hold in the limit of long sequences. First, an

upper bound for the expected number of paths of length £ in contact graphs is given by
nley + co)f. (1)

This implies that the contact graphs decompose with probability 1 into small components.
In contact graphs the largest component is at most of the order C'ln(n) with constant
C > 0 for ¢ < 0.25. Next we turn to the structure of the union graph. Following [5]
there is a phase transition in (X7 U X]) ® (X2 U X)) concerning the emergence of a largest
component of order C'n with constant C’ > 0. The latter transition is expressed in terms
of ¢, the average number of tertiary interactions per nucleotide and c;, the fraction of
secondary interactions. The exact result reads that for small values of ¢; the components
of the union graph have sizes bounded by C In(n) and, in the limit of large sequence length,

for ¢1, ce such that

8ci1[2—cylea > 1, (2)




there exists a unique large component of size Kn, K > 0, with probability tending to 1.

A vertex (sequence) V € QF is called compatible to s, if and only if

e for all bonds y of the partial 1-factor graph X its nucleotides indexed by the extrem-
ities {o(y), t(y)} have the property Fo(, R« Py (note that since R, is symmetric we
‘also have Py R Po(y))

e its nucleotides fulfill for all tertiary bonds y € Xo: PRy Pyy)-

The set of compatible vertices with respect to the random s'tructm;e 8y, is called C(sp).
Suppose a random structure sp, is fixed. Then its preimage is necessarily contained in
C(s,). The contact-graph induces a partition of the indices {1,...,n} into its compo-
nents. Accordingly, we can regroup the indices of the nucleotides of a compatible sequence
into the componénts of the contact graph. Formally we can now consider each multi-set
(Pi, ..., P;,), consisting of nucleotides whose indices belong to a component of the contact
graph, to be an element of a new alphabet, A;. Accordingly, we can rewrite a compatible
sequence as (A;,...,A;,) (£ being the number of components of the contact graph). In
general the set of compatible sequences is the vertex set of H?:l Qni where } ;i n; =n.
o; = |A4;], h is the number of components, and n; the length of the i-th component of
the contact graph. Next we construct the preimage of the random structure s,. It will
be a random induced graph by selecting the vertices in each factor Qp? with independent
probability A;. Note that “vertex” here corresponds to a multi-set (7, ..., F;,) consist-
ing of nucleotides whose indices belong to a component of the contact graph of s,. In

©

this sense “vertex” can be viewed as a certain segment of the sequence. A; (i being the
index of a component) can be interpreted as the stability of the random ’structure with
respect to a mutation that has (i) occurred in the ¢-th component and that has (ii) led
to a compatible sequence. To summarize, the preimage of a random structure is obtained
by selecting certain segments of sequences in Q7 at random. For this process the math-

ematical structure of randomly induced subgraphs of generalized n-cubes is of particular

relevance. It has been shown [7] that A* = 1 — “Va~1 is a threshold value for density
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and connectivity. These results suggest that the preimage of a random structure consists
above the threshold of large connected subgraphs in sequence space. In order to define a
complete mapping into random structures by the above procedure we only have to iterate
the above process. We obtain méppings f: Q% — {sp} by constructing the correspond-
ing preimages as random graphs as follows: we fix a mapping r : {s,} — N having the

property j <i = r(s;) > r(s;)} and set

£ (s0) = Talsa]  £7(s4) = Talsd] \ | [Cals O Talss]] -

j<i

3 Dynamics on random structures

3.1 The basic replication scheme

In this section we will study the time evolution of finite populations V of sequences which
are replicated with a probability p of mutation at each nucleotide. The replication event
itself is a point process; more precisely a birth-death process in which sequences are chosen
for replication with respect to their fitness, and randomly for deletion. A population V,
of size N, is a (finite) multi-set of sequences (V;|i € N) where {V;|i € N} C QF and
N > 1. The theory of point processes provides a powerful tool by identifying (V; |7 € N)

with an integer valued measure ¢ : QF - R,

N
V=(V|ieN) +— ¢=29Vv where gy, (v) =

s 0 otherwise .
=

{1 forV £ V;

We call the set of sequences where ¢ is nonzero the support of ¢. Clearly, the restriction
of ¢ to a subgraph ¥ < QF corresponds to considering subpopulations on the vertices of
Y. Note that ¢(f~1(s)) is the number of elements of V contained in f~(s). The time
evolution of ¢ is then obtained by a mapping from (V;|i € N) to the family (V;|i € N)
as follows: we select an ordered pair (W, Vi) where V,Vi € {Vi|i € N}. For this
purpose let res;¢ be the restriction of ¢ to all sequences that are mapped into s. Clearly

the subpopulation that corresponds to res,¢ consists of sequences all having fitness f(s).




3.1 The basic replication scheme 9

Fitness of most-represented structure (mrs)

sl tas 1

Population mean fitness

P

Proportion of population on mrs

Entropy

0- 50 100 150 200 - 250 300
Generations

Figure 2: A typical time evolution of a population of 2000 sequences of length 40 in a
landscape of 10* random structures f, ¢(s;) € R where p{f, ¢ = k€} = %I;-e"’, and A =0.8.
Displayed are mean fitness of the population, the fitness of the most represented structure
(mrs), the fraction of elements of the population realizing the mrs and the Rertyi-entropy
as functions of time. The highest possible fitness in this experiment was 250.

Accordingly the average fitness of ¢ reads
fo=2 o NF(s).

Now, the first coordinate V; of the above ordered pair is chosen, according to fitness, with
probability f(sv;)/f, among the elements of V. The second coordinate of the above pair
is selected with uniform probability on (V; # Vi |i € N), i.e. 1/(N — 1). We select those
pairs of sequences at equidistant time steps, and for a population of size N we refer to a

generation as N such time steps.

Next, in the error-prone replication step, we map the first sequence, V; = (2, ..., z,), into

the sequence V* = (zi,...,z},). This is performed by assigning to each coordinate z; a
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z # x; with probability p where all z} # z; are equally distributed and leave the coordinate
fixed otherwise. This random mapping ; — v* is called replication. Finally, we delete the
second coordinate of the pair (V}, Vi), that is V; and have a mapping (V;, Vi) — (V1, V™).
Thereby we obtain a new family by substituting the V; by the V*. This process is referred

to as the replication-deletion process.

The above replication—deletioﬁ scheme will be used to generate the time evolution of a
population. The generic parameters for the following experiments are mapping probability
A = 0.8, fraction of secondary bonds ¢; = 0.6, fraction of tertiary bonds c; = 0.05, and
an error rate p such that pn = 1. A typical run is shown in figure 2, in which a certain
fraction of the population realizes the structure with the highest fitnesses discovered so far.
"This structure will be referred to as the most frequent structure realized by the population
(mrs). According to the replication-deletion process described above, its error mutants
search for better structures. Given that many error mutants find better structures the
population spreads on the corresponding neutral networks and is rather delocalized. If
the mrs has relatively high fitness the population is more localized on its neutral network.
- These findings are not really apparent in the trends in mean fitness. Close inspection of
the entropy curve shows that when a fitter structure is discovered, the entropy peaks low.
In this situation the population becomes more localized and then begins to diffuse on the

newly found neutral network, whence the entropy increases again.

fitness index number of random sequences
folding into s
250 7894 2
240 6661 4
220 816 3
220 7624 2
220 5634 3
220 4574 2
220 3096 9
220 2927 7
220 2388 2
220 1204 1
220 1143 4
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The likelihood of a randomly-generated sequence being mapped into the structure found by
the evolving population is of interest here. In the table below the numbers of 10° random
sequences that were mapped into the eleven most-fit structures in the run are shown,
showing that the chances of a random seciuence realising one of the more fit structures is

extremely low.

3.2 A stochastic phenomenon in flat landscapes: Transitions

There are various ways of representing how a population of sequences is organized in se-
quence space. The standard methods, like cluster analysis, are in fact too fine-grained.
Generalizing a representation in [7], we introduce pairs of distances with respect to two
neutral networks. The distances are obtained By counting simply the numbers of incompat-
ible base pairs with respect to each structure s; and sz respectively. The population then
has a certain number of elements in say, (4, k), that is these elements have ¢ incompatible

sequences w.r.t. s; and k w.r.t. sg respectively.

In our first experiment, we use this representation for a transition as shown in figure 3,
where both structures have equal fitness. Therefore the transition phenomenon does not

necessarily depend on the presence of a fitness gradient; it is a stochastic phenomenon.

Our second experiment consists of the following. Let s1, s2 be two random structures. We
set their fitness to 10 and all other structures bave fitness 1. We construct the neutral
networks with respect to s; and s with A = 0.8 and initialize a random process by selecting
N random sequences on the neutral networks w.r.t. s;. We choose the error rate p such
that np ~ 1 and start the replication-deletion scheme described above. Then we repeat
the experiment increasing the population size, the results of which are show"n in Figure 4.
These show that for small population sizes, the vast majority of the population realises
the same structure. Increasing the population size allows the population to split between

both the neutral networks.

Third we analyze to what extent the transition phenomenon depends on structural sim-
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Number ofsequences

70000
Generations

Number of base pairs Number of base pairs
incompatible with structure 2 incompatible with structure 1

Figure 3: Transitions between neutral networks of equally fit structures, in a population
of 300 sequences of length 30. Displayed are: Upper: the numbers of sequences on the
neutral network of s1 (black) and sy (gray) as a function of time. Lower: the numbers of
sequences with respect to the distance pairs (i,k), as described in the text, for a sample
transition, in steps of 2 generations.

ilarities. For this purpose we choose a random structure so and consider two further
-structures sj, so with n = 35. While s; is a random structure and chosen independent of
sp, S2 shares a fraction o of its secondary bonds with sg. We initialize a population of 500
random sequences on the neutral network of sp and let the population evolve until either
a transition to one of the neutral networks of s; or s has occurred or we terminate the
run after 10* generations. The table below shows summary data from 10% runs of this
experiment, the columns showing the proportions of runs terminating on the neutral net-
works of each of the structures s; and s; respectively. It is clear that increasing structural

similarity makes transitions more likely.
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fraction of common fraction of runs fraction of runs
secondary bounds o | that terminate with s; | that terminate with sp
0.1 0.3604 0.6436
0.15 0.3604 0.6436
0.2 0.2560 0.7440
0.25 - 0.2240 0.7760
0.3 , 0.1280 0.8720
- 0:35. 0.1210 : 0.8790

4 Conclusions

Random structures, as well as secondary structures [7], induce neutral networks in sequence
space, i.e. extended, practically connected subgraphs consisting of all sequences that are
all mapped into a particular random structure. Neutral networks are either connected or
consist of a few components, whose size depends on the fraction of neutral point mutants
(with respect to the structure). They are stable under point mutations aﬁd allow hence
for neutral evolution [4]. These properties of mappings of sequences into structures are

generic properties and of central importance for the understanding of molecular dynamics.

Under the basic assumption that every sequence realizes a particular structure that ex-
clusively determines its fitness, the time evolution of those structures exhibits unique
features. Small populations diffuse on neutral networks and search for fitter structures by
their variant offspring that fall off the net. Ounce a fitter structure is found small popula-
tions perform a transition to the neutral network that corresponds to the fitter structure.
Interestingly this phenomenon is observed even if the new structure has equal fitness i.e. in
a flat landscape. In a neutral evolution complete populations switch between two neutral

networks associated to two structures having the same fitness.

The transition phenomenon is caused by the interplay of two effects. The first is the
dieout time of a population located on one of the neutral networks, s; say, induced by

the replication-deletion process. The second effect is the flow of elements which perform
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1 1] 1] L] 1 L] L4 L]
o] 61 02 03 04 05 06 07 08 098 1
Proportion of population on network 1

Figure 4: Here two neutral networks w.r.t. the structures sy, s are given. Both structures
have fitness 10 and all other structures are assumed to have fitness 1. We display the
negative logarithm of a multi-set of probability distributions indexed by population sizes.
The distributions represent the numbers of elemenis in the population that are on the
neutral network w.r.t. s;. The time evolution of the population bases on the replication-
deletion scheme described in the tezt.

a transition from s to sy, i.e. the mutants of s3 sequences which are mapped into s;. It
is well known that the dieout time of a population of size N in a Markov process scales
with e~ [3], therefore below a certain fraction of the population on s;, there cannot
be sufficient flow from the network of s; in order to maintain it. Consequently, a small
population spread across two neutral networks is in an unstable state, and will rapidly
move onto either one of the networks. This is clearly shown in Figure 3. The transition
phenomenon is restricted to fairly small population sizes. Above a certain population size
we observe that the population splits onto both networks and searches in parallel. Hence
for given error rate p and given structures si, sg there is a critical population size above
which populations split aniong neutral networks corresponding to structures with equal

fitness and and below which the population does not split (Figure 4).

Such transitions have been recently reported for RNA secondary structures [2]. In this
case, a detailed analysis is rather difficult, because the union graph corresponding to the
two structures cannot be described probabilisticly, although a group theoretical argument

can be used [7]. For random structures, we can do this—transitions are closely related
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to the properties of the union graph of the two underlying structures. These properties
are amenble to analysis, having a complete probability space at hand. This allows us to
determine what graph structures are typical for the union graph, and therefore to predict
typical transition rates between two random structures. The properties of the union of two
contact graphs of random structures depend heavily on the fraction of tertiary interactions
[5, 1]. For a ¢; = 0.6 the critical fraction of tertiary interactions for the emergence of a
giant component in the union graph of two random structures has ¢y = 0.15 as an upper
bound (eq. (2)). For ¢; = 1 a lower bound on the critical fraction would be 0.125.
The existence of this dramatic change, which is a phase transition in the limit of long
sequences, does not depend on c; as long as ¢; > 0. Known 3D-structures (for example
t-RNA) have values of c; which are well below this critical threshold, with about 4-6%

nucleotides involved in tertiary interactions.

Of course, evolutionary adaptations on the structural level are rarely between completely
unrelated structures, with continuing function dependent on at least some structural simi-
larity. Here, we measure similarity in terms of shared secondary edges between structures,
which will have significant impact on the structure of the union graph. As we have shown,
transitions between such structures are much more likely. This suggests that evolution-
ary paths may exist, consisting of pairwise similar structures along which the population

evolves in time.
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