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Abstract

Dif f(S"), the group of reparametrizations of the circle, is known as the
Virasoro group in string theory. Reparametrizations keeping fixed a point of
the circle form the quotient space Dif f(S')/S!. The geometry of this space
is relevant for string theory and string field theory. We describe this space as
an infinite dimensional complex manifold with a Kahler metric and compute its
Riemann tensor and its Ricci tensor.
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1. Introduction

String theory! has spurred some interesting recent developments in infinite di-
mensional geometry. On the one hand, the study of Riemann surfaces of arbitrary
genus has led to the idea that the respective moduli spaces should be considered as
embedded in an infinite dimensional Grassmassian. On the other hand the study of
string field theory is naturally connected with that of loop spaces. As Bowick and
Rajeev® have emphasized. the geometry of the Virasoro group Diff(S!) and more
precisely of the infinite dimensional complex manifold D:f f(S5')/S?, is especially rel-
evant for string field theory. The necessary mathematical tools were developed earlier

by Dan Freed in his thesis.® The basic notions of differential geometry can be found in
Ref. 1.

The purpose of these lectures is to describe the geometry of Dif f(5')/S! in a
way understandable to a physicist familiar with some string theory and with only the
most basic tools of Riemannian geometry, as they are used in general relativity. This
seems useful because Refs. 2 and its super extension, Ref. 3, are not easy reading.
Furthermore, in both references certain misprints complicate the understanding of the
material. We have simplified some of the derivations (e.g. the computation of the Ricci
tensor) and hope to have achieved sufficient clarity to stimulate the reader to study the
original literature. Our arguments are formally correct but not rigorous, in the sense

that we have mostly ignored questions of convergence (this applies particularly to Sec.
4).

An important clarification was made to our subject by Pilch and Warner.® A
related earlier mathematical paper by Segal” is also recommended reading.

2. The difference operators

Let g,. be the metric tensor of 2 Riemann manifold, whose points are labelled by
coordinates r*. A vector field £ of components £#(z) is a Killing vector (an isometry)

if it leaves the metric invariant

Legu = 600G + 8.6 9r + 8,829 = 0. (2.1)

Here L¢ denotes the Lie derivative with respect to the vector £ and 8y = 3%. Let

['y¥ . be the Christoffel connection
1 v
Eg” (0rGup + Ougro — Gogrn) =L s (2.

v —
Cu=
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It is easy to see that, if £ is a Killing vector, then

LeTav =000 u+ 00T, +0,6°TaY , — 06 Ta?, + 00,6 =0.  (23)



Consider the covariant derivative V, formed with . For instance

Vit = Ot 4+ Ty 4 v (2.4)

As a consequence of (2.3) L¢ commutes with V',
LV, =V, Le (2.5)
and with the operation of covariant differentiation V = dz#V,
[Le. V] =0. (2.6)
Let n*(r) be another vector field and
Vo=1,V ="V, (2.7)

be the covariant differentiation along the field n. It is easy to see that (2.5) or (2.6)
are equivalent to

(L& Vo] = Vi = Vigap (2.8)

where we have used the usual bracket of two vectors

(Len)* = [E,n)* = E0an* — n a6, (2.9)
Note that in (2.8) £ must be a Killing vector but n is an arbitrary vector field.

The curvature of the connection I' can be defined from the formula

R{.ﬂ = VEV,-, - V,,VE - V[E-ﬂ]‘ (210)

In general, to compute the curvature, one needs the second derivatives of the metric
tensor, or the first derivatives of I'. However, if £ and 7 are Killing vectors only I itself
is needed, i.e. the first derivatives of the metric tensor. To show this we introduce the
tensorial operators

(,9£=£€—-V€. (211)

In the difference the differentiation operators £“0, cancel. Therefore ¢ operates as a

matrix on tensors, with no differentiation of the tensor. For instance on a vector v*

we v* = (pg)* 2 v’ (2.12)

where
(ve)» = =06 = €T %5 = =V~ (2.13)



We shall call derivations like ¢ “difference operators™ as a reminder for formula (2.11).
Now let £ and 7 be Killing vectors. We have

[?“'Ev "r’n] = [CEV Cn] + [viv vn]
—[Le. Vo] + (L4, V). (2.11)
Using (2.8) and the identity
(L) Lq] = Ligm) (2.15)

ore finds

[Pe2n] = Ligmp + Ve, V] = 2V
= ven + Ve Vil = Vg (2.16)

Comparing with (2.10) we see that the curvature is given by

Ren = [Pe,9n] — Plenl- (2.17)

We repeat: provided £ and n are Killing vectors, the £, component of the curvature
can be computed at a point of the manifold in terms of the connection at that point,
i.e. the first derivatives of the metric at that point (and the first derivative of the
Killing vectors). If there are enough Killing vectors, (2.17) will give the entire Riemann
tensor at a point. The Riemann tensor is then determined evervwhere by means of the
isometries of the manifold. Notice that, for any vector &,

Vg =0 (2.18)

(metric compatability of the connection). For a Killing vector (2.1) is also valid and
therefore

Y€ Juv = —(ve)’ u Gow — (‘Pf)p v Gup = 0. (2.19)

This also follows from the explicit form (2.13) since a Killing vector satisfies
Viby + Vil =0. (2.20)
Exercise, Verify (2.17) using directly the expression (2.13) and the identity
V.Vibu=-Ru’ . & (2.21)

satisfied by a Killing vector. Observe that the Lie bracket (2.9) of two vectors can also
be written as

[&,n]* = Van* = Vg~ (2.22)


http://Vnl-VR.nl-

Consider now a complex manifold parametrized in some neighborhood by com-
plex coordinates 2".z" and endowed with a hermitian metric gma. Let £ = (€™ £7) be
a real Killing vector. Then

2g gmi = —(¢) m Gea = (€)% n Gz = 0. (2.23)
Therefore, using the inverse matrix g™",

9mi gln = gﬂglﬁl = 571\ n’ (224)

we find

(2e)" e = —Ger (Pe) n g (2.25)

If £ is not a real vector, and its components are not related by complex conjugation,
the linear combination

n=af+a (2.26)

is a real vector, where & is an arbitrary complex number. The components of £ are

by definition the complex conjugates of those of £. Applying (2.25) to 1 and using the
linearity of ¢

Pagy+b62 = 6 e + b e, (2.27)

we can identify separately the coefficients of a and of & to obtain

(S’E)l m = ~gmr (‘176)'ﬂ QM (2.28)
where
(0e)" 2 = (9&)" n- (2.29)

3. The quotient space G/H.
Consider the Virasoro algebra
[Lm Lb] = (a - b)La+b (31)

where the indices a, b take all integer values $0. We take a represertation in which
the generators are operators satisfying the reality conditions

L' =L_,. (3.2)

By exponentiation this algebra generates the real Virasoro group G, a Lie group with

infinitely many parameters whose elements can be represented, for instance, as

g = explia®L,] (3.3)



where the sum is over all integers a and the complex numbers o® satisfy

a®=a" (3.4)

We are interested in studying the geometry of the homogeneous space G/H which is

the quotient of the Virasoro group by its one parameter subgroup H generated by
LQ = L;’.

A standard way to parametrize the quotient space is known to physicists from
the theory of nonlinear realizations. One writes a group element of G as the product

of two exponentials
g = exp l:i Z ,3“[.,] exp[iBLy]. (3.3)
a0

Every group element can be split uniquely in this way by factoring out an element of
H on the right. The parameters 3%, a # 0 can be used as coordinates for the quotient

space G/H  at least in the neighborhood of the origin. Here 3 is real and
3e=p"°. (3.6)

The action of an element g; of G on G/H is obtained as follows. One multiplies g from
the left by g; and separates the result again as above:

919 = exp [i > B’“La] exp(if’Lo). (3.7)
a0

The new coordinates (a # 0) »
8" = 5"(8% g1) (3.8)
give the point of G/H which is the transformed of 3° by g,.

We shall use the notation

V =exp [i ) ﬁ"La] (3.9)

ax0
where 3° satisfy (3.6). Then (3.7) can be abbreviated as

a1V = V'exp[tf'L,). (3.10)
V' is unitary and the exponent in (3.9) does not contain L,. Now (sum over a 20)
VY = wPL, = wy + w + wo (3.11)

is an element of the Lie algebra of G. The separation of the various parts of (3.11) is
defined by (sum over a > 0)

wy =w'l,
wo =wL_, _ (3.12)

wop =w'Ly.



Since V is unitary,

u_r,_ = —w_, w(T) = —wp, (3.13)

which means

F= Tt = W (3.14)
These one—forms are defined on G/H. They depend only on the coordinates of G/H
and their differentials.

Now, by exterior differentiation

d(V™ldV) = —(V'dV)2, (3.15)
Therefore (sum over a 20)
d(w®L,) = —(wLa)? (3.16)
Since one-forms anticommute, this implies
dutfly = - L Ly = —%u“ub[[,n, L), (3.17)
which gives, from (3.1) (sum over b, c20)
1
dw® = —-5(6 — €)8bac® WhWC. (3.18)

These are the Cartan-Maurer equations. The forms w? satisfy these equations on G/H.
They are not quite invariant. From (3.10) we find

VAV = 8 loy=lgrid(g Ve o)
= P loy-ldyeFlo 4 F'lode=il'Lo (3.19)
which means

wy = e 'L”wie".‘ﬂ”

wg = wp —idF'L, (3.20)
or, in terms of components,
W = e s
W =w’—idf. (3.21)

Clearly the two—forms {no sum over a > 0)
w?w'™? =Wtw? (3.22)
are invariant for each value of a. Therefore

Wy = Zw"w‘“f(a) = -;- Z ww™? f(a) (3.23)

a>0 0%0

i
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is an invariant two~">rm Ior any function f(a) of the integer a, which satisfies

f(=a) =—f(a). (3.24)
When is it closed? Using (3.18) we see that

)
, 1
Sdwr = 3 (b — €) babico f(a) WPt (3.25)

a,b,c
This vanishes if

(b-c)f(a) + (c~a)f(b) +(a—b)f(c) =0 (3.26)
for
a+b+c=0. (3.27)
It is not difficult to see that the general solution of (3.26) and (3.27) is

f(a) = Aa® + Ba, (3.28)
where A and B are constants.

Exercise, Show this. Also show that, for f(a) = Ba, there exists w; such that wy = dw,.
On the other hand, for f(a) = Aa® there is no such w,, i.e. wy is closed but not exact.

The closed two-form w, given by (3.23) with f(a) given by (3.28) can be taken

as Kahler form on G/ H, since, as we shall explain in the next section, G/ H is a complex
manifold.

4. Holomorphic coordinates for G/H

The method described in the previous section is perfectly satisfactory in general,
but in our particular application it fails to make explicitly the very important fact that
G/H is a complex manifold. The coordinates 3* and 3° (a > 0) are not good complex
coordinates. It is easy to see that they mix under the action of a general element g, of
G. In order to render manifest the complex structure of G/H we introduce a further
decomposition of the group element and write

V =exp [i 3 /3“1;,]

as#0
= exp [i z z“La] exp [i Z p"‘L_a} exp[pLo)- (4.1)
a>0 a>0

This should be possible, at least in a formal sense, in a neighborhood of the identity.
Observe that the L, for a < 0 form a subalgebra and generate a “subgroup” F' such
that

GO FDOH. (4.2)



The product of the !last “wo exponentials in (4.1) represents an element of F'. Since we
are considering the real Virasoro group we cannot take 2%, u® and p as independent
complex parameter. The relations the, satisfy can be obtained in our representation
of the generators by requiring that (4.1) be satisfied, i.e. that the right hand side be
unitary and expressible as the left hand side, (without Lo in the exponent). This gives
u* and p as functions of z and z. These functions can be computed as power series in

z,%. [t is easy to see that the first terms in the expansion are

p(z,3) =4 (4.3)
p(z.5) =Y alz*f+--- . (4.4)
a>0

We can take 2°,z° as coordinates on G/H. The action of an element g; of G is

obtained by multiplying (4.1) from the left by g, and splitting the result agaip as in
(4.1). This means that 2" is given by

g1 exp [iZZ“La] =

a>0
= exp [i > z"’LQ] exp [i Y ﬁ“L_u] exp (1@ Lq] . (4.5)
a>0 a<0

The last two exponential factors in this formula can then be combined with the last
two factors in (4.1), since all these factors are group elements of F. Formula (4.5)
makes it clear that

£ = %(z,q1) (4.6)

depend only on z° and not on z3. The action of G on G/H is holomorphic and 2°,2°%
are good complex coordinates for G/H. The transformation law of 2% is obtained from
(4.6) by complex conjugation.

" The Lie derivatives corresponding to the infinitesimal generators iL,(a20) are
(on functions)
Lo=8=6"(2)0n+&"0n (4.7)
where the sum is over n > 0. Here 3, = a—f;, Oq = 5‘2—,,, a.t_1d
Er=€6,." , G=¢a (4.8)
They can be split into a (1,0) part ,
69'0) =& "(z)an (4.9)
and a (0, 1) part
£ = €."(2)0m (4.10)



which commute with each other:

[, =0 (4.11)

The (1,0) parts and the (0, 1) parts satisfy the same algebra
609, 9] = ~i(a—8) €4 (4.12)
gD, efM] = —i(a—8) €85 (4.13)

Observe that the sign in (4.12) and (4.13) is opposite to that occurring ‘n the algebra
of iL,. This is as it should be because we defined the action of the group by left
multiplication.

[t is easy to compute the first few terms of the infinitesimal transformations in
power series of z. One finds for the Killing vectors (no sum over indices; a > 0,z" =0
for n <0)

&(2) =—inz"+-.--
&(z) =6"+ %(2a—n)z"‘° 4+ (4.14)
£o"(z) =—i(2a+n)z"+..1).

Note that, for z =0, & "™ and £_, ™ vanish, while £, = §,™. Similarly, for Z =0, &,
and &, vanish, while £, = §,™. We shall need these facts later.

Usmg (4.1) we can compute the differential forms given by (3.11). We introduce
the abbreviations.

z-Ly= Z 2°L, (4.15)
a>0
=Y ul., (4.16)
a>0
and write
V-4V = e"‘"""‘e'i‘"L'(e'i"[‘*dei"[‘*)ei“'[“ eflo
+ e~PLlog=inLl- d(eiu-L- CFLO). (4.17)

Clearly the last term is an element of the Lie algebra of F' (generators L,,a < 0) and
contributes only to wp and w... Only the first term contributes to w,, which shows
that w, contains only the differentials dz™, and not dz™. So, from (3.12) and (3.13)

w?® =dz™wm *(2,2) (4.18)

= —d7™ W, 9z, %) (4.19)

(a > 0, sum over m > 0), while w® contains both dz™ and dz™.



5. The Toeplitz operators.

We now wish to compute the difference operators corresponding to the Killing
vectors &, of Sec. 4. It is easy to work out their effect on the (1,0) part of the vectors
£ themselves for b > 0 at the origin z = z = 0. Let us denote by £ the (1,0) part of a
vector . Thus, if the components of £, are

£ = (Ea"asaﬁ)v (51)

those of fa are
€ = (&7,0). (5.2)
In the following all indices a,b--- and I,m,n,r,--- take only positive values unless

explicitly indicated otherwise. We first observe that, at the origin,
Ve b =Ve,b=02=2=0. (5.3)

This is immediate because, at the origin £ = 0 and
Vica b = (b—a "Vim +€-a ™). (5.4)

At the origin £_, ™ vanishes and in general &, is independent of 7. As a consequence
of (5.3) the difference operators (2.11) at the origin can be computed from the Lie
derivatives alone. Thus
06 b = Leo b = 60,4y
= [fo,fb] =ib (5.3)
and
el = Lo, b= [6-a, &
= [ &) =i(a+ ) b (5.6)
At the origin s, vanishes for b < a. The difference operators g, and p¢_, operate
within the space of vectors £ with positive b. For this reason, in the present applica-

tion, the difference operators are called Toeplitz operators, in analogy with operators
occurring in the theory of Fourier series.

To obtain ¢, for a > 0 we shall make use of (2.28) and (2.29), which by (4.8)

relates it to we_,. First we observe that the matrix elements of (¢_, at the origin are
(Pe_a)™ ¢ = 18" (2a + m). (5.7)

This follows immediately from (5.6) and the form of the Killing vectors at the origin
_(4.14). Our metric tensor is

ger = f(£) ber (5.8)

10



with f(€) given by (3.28). Therefore

(Pea)™ e =1iger b a+r9ﬂm(2a +r)

=if(m-a)b™" f(in) (a + m). (5.9)
This formula can be rewritten as
- b -
Pea & = if({z(-&-) b) (2a + b) Lass. (5.10)

(5.7) and (5.9) are correct also for a = 0, in which case they agree.

Exercise. Verify (5.7) and (5.9) by computing the Toeplitz operators at the origin
from their definition (2.11) as difference operators on arbitrary tangent vectors of type
(1,0). This requires computing the connection at the origin from (A.17), which in turn
requires the metric to the appropriate order. Notice, in contrast, the simplicity of
Freed’s method, which we have employed above.

In the following we shall simplify the notation and write ¢, for ¢, and R,, for
Re, ¢, for all a,b. We always work at the origin. It is (a, 520)

Pleas]l = —t(a = by, = —i(a = b)pays. - (5.11)
Therefore (2.16) gives '
Rap,™ ¢ = ([par o8] + i(@ — b)pays)™ 2. (5.12)

[t is eagy to verify by matrix multiplication, using (5.7) and (5.9), that R,, vanishes
-except when a and b are both different from zero and have opposite sign. This is
expected because in general

Rcb. me= (Ea 'Eb ‘- & 'Ea l)R"l. ™. (5-13)

and for all other cases the components of the Killing vectors vanish at the origin by
(4.14). The non vanishing components (a, b > 0)

R_ap = [p-aripp] —i{a + b)py_a (5.14)
can be computed from (5.7) and (5.9). The result is

mn fim+r=29
R ™, = —(2r+m)(m+r+E)———-——f(m+r)
+(m+€)(2r+m—€)f—(fn%n:)—e)0(m—€)
2r—2%4+m >4
r : —_ r 6," rd+3 - 3.15
Hred (m+£—r)‘f(mf(nf)+) " <e O

11



where

1 form>0
f(m) = .
0 form<0

Exercise. Verify that the Riemann tensor satisfies the symmetry condition
Ree,™ s = Res ™ (5.16)

valid for a Kahler manifold. Hint: use the identity (3.26), (3.27) satisfied by f(m

The expressions given in Refs. 2 and 5 are incomplete and do not satisfy (5.16).

To compute the Ricci tensor we set ¢ = m in (3.15) and sum over all positive
values. For £ = m (no sum)

M= - (2r+m)(2 r S
R?m. s — 67'.1 (2 + )(‘-m + ) f(rn + 1‘)
. 2 (5.17)
r+m f(r) 3.
2m —r) 7(7—’5 <m
The sum over m is
3 —(2r r) ___f(r) r+m -r) f(r)
mz=l [ (2r + m)(2m +r) (m+r)+( +m)(2m f(m]
- Z r+m)(2m—r) + Z (r+m)(2r—m). (5.18)
m=1 m=1

For (3.28), with A # 0, the infinite sum converges, due to cancellations between the
first and second term. Separately the two sums diverge only logarithmically. Therefore
one can shift the variable in the first term. Setting m’ = m +r — m the infinite parts
cancel and one is left with

. f(r) -
r+m)(2m —r)=—-. 5.19
This exactly cancels the term before the last in (5.18). Therefore (5.18) reduces to
Z (r+m)2r—-m)= E1'3 - l1'. (5.20)
m=1 6 6
In conclusion, the Ricci tensor is given by
Rsi' - —Rﬁ - rs (1637'3 - ér) (521)

The disappearance of the function f{m) from the result is expected from the general
structure of the Ricci tensor for a Kahler manifold.

12



Appendix. Basic formulas for Kahler manifolds.

We consider a complex manifold whose points are parametrized in some neigh-
borhood by complex coordinates z™,z™. Let there be a hermitean metric tensor

gam = gmrn = ﬁv gmn = gmn = 0. (A_]_)

It is called a Kahler metric if it satisfies the vanishing curl conditions

Ot gma = Om gea

ag_ Gma- = aﬁ Imis (4"‘2)
where P 5
o = 52—5, O = ﬁ . (A3)

The conditions (A.2) imply at least locally the existence of a real function V(z, ) such
that

gma = On0a V. (A4)

V is called the Kahler potential and plays an important role in supersymmetry and
supergravity theories. A change

VoV =V+k(z)+ k() (A.5)

is called a Kahler transformation. It leaves the metric invariant, because k(z) depends

only on z™ and k(z) only on z™. To the metric tensor (A.1) one associates a two-form
w = —2igmadz"dz" (A.6)
which is called the Kahler form of the manifold (we have orriitted the wedge which

indicates exterior product, but the differentials are understood to anticommute). The
conditions (A.2) are equivalent to the statement that the Kahler form is closed
do =0 (A.7)
while (A.4) gives
w=-2i98 V (A.8)
where
d =90+0, 3=dz™0n, 0=dz™0a
? =8°=0"=00+08=0. (A.9)

A vector of type (1,0) has components (v¢,0), a vector of type (0, 1) has compo-
nents (0, uf), a general vector is the sum (v?, uf). Covariant derivatives are constructed

by means of the connection coefficients I's™ , and their complex conjugates

T a=T"n. (A.10)

13



These are the only non vanishing components of the connection coefficients, for instance
[¢"n=0 (A.11)
Thus the covariant derivatives of a vector of type (1,0) are
Ver™ =0, v™ +T¢™ a7 (4.12)
Viv™ =0 v™. (A.13)
The metric compatibility condition states that
Vegma =0t gma—Le" m gra =0 (A.14)

and
Vigma = g gma — [z a gma = 0. (A.13)

These equations can be solved by using the inverse matrix g™

G 9% = g gum = 64, (A.16)
and give
Fe™m = (Ot gmn)g™" (A.17)
and
_ L™ m =" gnm. (A.18)
From (A.2) we see that '
Fe"m=Tm"¢ (4.19)
and
77m=lx"; (A.20)

{absence of torsion). Notice the relative simplicity of (A.17), (A.18) as compared
with the general formula (2.2) for the Christoffel connection. A Kahler manifold is a
Riemann manifold having a very particular structure.

One can write the above formulas in the notation of differential forms. Introduce
the matrix one form

dz'T"m = () (A.21)

and use matrix notation for the metric tensor as well. Then the metric compatibility
condition can be written as

dg-TTg—gl =0. (A4.22)
This equation separates into two equations

0g-TTg=0 (A.23)

14



(equivalent to (A.14)) and

dg—gl=0 (A.24)
(equivalent to (A.15)). Here I'T is the transposed of the matrix I and T the complex
conjugate matrix. Finally (A.23) and (A.24) are solved by

T =(89)g™', T=g""dg (A.25)
which are equivalent to (A.17) and (A.18) respectively.

To obtain the Riemann tensor, we first define the matrix valued Riemann two-
form

R = (dT +T?) .. (4.26)

From (A.25) we see that

RT =dI'" —(IT)? =d(dgg™") — Bgg~'dgg™"
=0309g™" + 899~ (0+d)gg™" ~gg~'dga"
=030gg™" +8gg'Bgg™"
=0(dgg~') =0rT. (A.27)

This gives the components

Riﬂi rm = 62(0'! gﬂ'ﬁg") = &Fﬂrm
= (0z0n gms = On Gz 9™ 95 9.:3)9" - (A.28)

Lowering the index r we obtain

Rin_?m = gs?R'in, * m = Of0On gmz ~ On 1% gEu ai Gur- (A.29)

From the first line of (A.28) we see that the Kahler condition (A.2) implies the sym-
metry relation

R, "m=Ri, "n (A4.30)
Also, (A.29) shows that the hermiticity relation

Rawrm = Batme (A.31)

is itisfied. The only other nonvanishing components of the Riemann tensor are ob-
tained by complex conjugation, e.g.

R?n,Fm = Rﬁ,rn—'n ( ‘4'32)

or using the antisymmetry condition
Rearm = —Ratem = —Reane- (A.33)
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\Ve finally come to the Ricci tensor. It is defined as usual

R;, = Rz, "m; (A.34)

however, for a Kahler manifold, we see from the symmetry condition (A.30) that it is

also obtained by summing over the last two indices

R?m = R?m. ) n- (‘435)
Using this formula and (A.28) one finds

R, = 8:(0m 9us ™)
= }0m logdet gs = —R_ ;. (4.36)

me

The other components of the Ricci tensor vanish

Rem = Rz =0. (A.37)
One also defines the Ricci two-form
p = —=2iR, zdz™dz¢
= ~2i00 logdet g,3 . (A.38)

[t is obvious that it has the very important property of being closed,

dp =0, (A.39)

i.e. the Ricci tensor satisfies vanishing curl conditions analogous to those satisfied by
the Kahler metric.

Forrmulas (A.36) and (A.38) show that the Ricci tensor of the manifold can
be interpreted as the curvature of a line bundle, the metric for the line bundle being
given by the determinant of the metric tensor of the manifold. This means that the
transformation functions for the line bundle are the Jacobians of the coordinate trans-
formations. It is the bundle of scalar densities. Ref. 6 exploits this connection and uses
directly vacuum line bundles thereby avoiding the route through the Riemann tensor.
We note that in Refs. 2 and 5 the Ricci tensor is computed from the Riemann tensor

by using (A.33). Our computation in Sec. 5 using (A.34) appears somewhat simpler.
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