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A b s t r a c t 

Diff[Sl)i the group of reparametrizations of the circle, is known as the 
Virasoro group in string theory. Reparametrizations keeping fixed a point of 
the circle form the quotient space Diff(Sl)/Sl. The geometry of this space 
is relevant for string theory and string field theory. We describe this space as 
an infinite dimensional complex manifold with a Kahler metric and compute its 
Riemann tensor and its Ricci tensor. 
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1. In t roduc t ion 

String theory1 has spurred some interesting recent developments in infinite di­
mensional geometry. On the one hand, the study of Riemann surfaces of arbitrary 
genus has led to the idea that the respective moduli spaces should be considered as 
embedded in an infinite dimensional Grassmassian. On the other hand the study of 
string field theory is naturally connected with that of loop spaces. As Bowick and 
Rajeev2 have emphasized, the geometry of the Virasoro group Diff{Sl) and more 
precisely of the infinite dimensional complex manifold Diff(Sl)/Sl, is especially rel­
evant for string field theory. The necessary mathematical tools were developed earlier 
by Dan Freed in his thesis.3 The basic notions of differential geometry can be found in 
Ref. 4. 

The purpose of these lectures is to describe the geometry of Diff(S1)/Sl in a 
way understandable to a physicist familiar with some string theory and with only the 
most basic tools of Riemannian geometry, as they are used in general relativity. This 
seems useful because Refs. 2 and its super extension, Ref. 5, are not easy reading. 
Furthermore, in both references certain misprints complicate the understanding of the 
material. We have simplified some of the derivations (e.g. the computation of the Ricci 
tensor) and hope to have achieved sufficient clarity to stimulate the reader to study the 
original literature. Our arguments are formally correct but not rigorous, in the sense 
that we have mostly ignored questions of convergence (this applies particularly to Sec. 
4). 

An important clarification was made to our subject by Pilch and Warner.6 A 
related earlier mathematical paper by Segal7 is also recommended reading. 

2. T h e difference operators 

Let g^u be the metric tensor of a Riemann manifold, whose points axe labelled by 
coordinates x*\ A vector field £ of components £"(x) is a Killing vector (an isometry) 
if it leaves the metric invariant 

C^g^ s fdxg^ + d^gxu + d^xg^ = 0. 

Here C^ denotes the Lie derivative with respect to the vector £ and d\ 
F\ " M be the Christoffel connection 

r * " M = 2^"" ^9 UP + d^gxp - dpgx„) = V^" x . 

It is easy to see that, if £ is a Killing vector, then 

£ { r / M = Cdjxu „ + dxi'T," a + d^Tx " P - dtfTx"» + dxdu? = 0. (2.3) 

(2.1) 

= & • Let 

(2.2) 
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Consider the covariant derivative V u formed with P. For instance 

Vxv'1 = d^ + rx\v\ (2.4) 

As a consequence of (2.3) C$ commutes with V w 

£ € V M = V t f £ ? (2.5) 

and with the operation of covariant differentiation V = cfiMV u 

[Cs,V] = 0. (2.6) 

Let r/M(x) be another vector field and 

V„ = i„V = ry"Vu (2.7) 

be the covariant differentiation along the field TJ. It is easy to see that (2.5) or (2.6) 
are equivalent to 

[ £ € ) V n ] = V £ { n = V K , r , ] , (2.8) 

where we have used the usual bracket of two vectors 

(£&)" = K, r,]" = tXdxif - riXdx^. (2.9) 

Note that in (2.8) £ must be a Killing vector but TJ is an arbitrary vector field. 

The curvature of the connection T can be defined from the formula 

Ik.n = V € V , - V , V e - V R i I , j . (2.10) 

In general, to compute the curvature, one needs the second derivatives of the metric 
tensor, or the first derivatives of T. However, if £ and ij are Killing vectors only T itself 
is needed, i.e. the first derivatives of the metric tensor. To show this we introduce the 
tensorial operators 

<* = £ e - V € . (2.11) 

In the difference the differentiation operators ^udu cancel. Therefore tp^ operates as a 
matrix on tensors, with no differentiation of the tensor. For instance on a vector u" 

^v» = (wyxvx (2.12) 

where 
to)<* A = -dx? - £ T „ " x = -Vtf" . (2.13) 
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We shall call derivations like ' ^ "difference operators'1 as a reminder for formula (2.11). 
Now let £ and 77 be Killing vectors. We have 

- [ £ s . V „ ] + [ r „ , V € ] . (2.14) 

Using (2.8) and the identity 
[£«,£,] = % „ ] (2.15) 

one finds 

[*»€- Vn] = %n] + [V €, V,] - 2VK i„] 
= ^ .n ] + [V«,V r , ] -V [ 5 , , ] . (2.16) 

Comparing with (2.10) we see that the curvature is given by 

^e.n = [V5, Vnl-VR.nl- (2-17) 

We repeat: provided £ and 77 are Killing vectors, the £,77 component of the curvature 
can be computed at a point of the manifold in terms of the connection at that point, 
i.e. the first derivatives of the metric at that point (and the first derivative of the 
Killing vectors). If there are enough Killing vectors, (2.17) will give the entire Riemann 
tensor at a point. The Riemann tensor is then determined everywhere by means of the 
isometries of the manifold. Notice that, for any vector £, 

V ^ M t , = 0 (2.18) 

(metric compatability of the connection). For a Killing vector (2.1) is also valid and 
therefore 

y>i9w = HftYa 9P» ~ (Vc) pv 9»e = 0. (2.19) 

This also follows from the explicit form (2.13) since a Killing vector satisfies 

V„6, + Vw&, = 0. (2.20) 

Exercise. Verify (2.17) using directly the expression (2.13) and the identity 

V„Vj£. = -R&* „ & (2.21) 

satisfied by a Killing vector. Observe that the Lie bracket (2.9) of two vectors can also 
be written as 

[Z,T,]'t = SXVxTf-r,xVx?. (2.22) 
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Consider now a complex manifold parametrized in some neighborhood by com­
plex coordinates zn,zn and endowed with a hermitian metric gmfi. Let £ = (£",!") be 
a real Killing vector. Then 

^ gmn = -(<r>«)'m 5« - ('•Pi)e

ngmi = 0. (2.23) 

Therefore, using the inverse matrix gmn, 

9mi 9ln = 9M9irn = Sm ", (2.24) 

we find 
( ^ ) m i = -g» ( ^ ) r n g™. (2.25) 

If f is not a real vector, and its components are not related by complex conjugation, 
the linear combination 

t} = a£ + Q | (2.26) 

is a real vector, where Q is an arbitrary complex number. The components of £ are 
by definition the complex conjugates of those of f. Applying (2.25) to 77 and using the 
linearity of if 

«̂€i+*€a = " % + * ¥>«, (2.27) 

we can identify separately the coefficients of a and of a to obtain 

{<PZ?m = -9mr(<ft)1'figfU (2.28) 

where 

(<*)% = O^FV (2.29) 

3. The quotient space G/H. 

Consider the Virasoro algebra 

[La,Lb] = {a-b)La+b (3.1) 

where the indices a, b take all integer values ^ 0 . We take a representation in which 
the generators are operators satisfying the reality conditions 

l\ = L.a. (3.2) 

By exponentiation this algebra generates the real Virasoro group G, a Lie group with 
infinitely many parameters whose elements can be represented, for instance, as 

g = exp[iaaLa] (3.3) 
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where the sum is over all integers o and the complex numbers aa satisfy 

Q° = a (3.4) 

We are interested in studying the geometry of the homogeneous space G/H which is 
the quotient of the Virasoro group by its one parameter subgroup H generated by 
£a = LQ . 

A standard way to parametrize the quotient space is known to physicists from 
the theory of nonlinear realizations. One writes a group element of G as the product 
of two exponentials 

g = exp £ ^ 
uotO 

exp[i3L0 (3.5) 

Every group element can be split uniquely in this way by factoring out an element of 
H on the right. The parameters ,3a,a ^ 0 can be used as coordinates for the quotient 
space G/H at least in the neighborhood of the origin. Here 0 is real and 

0" = P~a. (3.6) 

The action of an element gx of G on G/H is obtained as follows. One multiplies g from 
the left by gx and separates the result again as above: 

gig = exp 

The new coordinates (a ^ 0) 

r£0'aLa 

. a^O 
exp[i/3'L0]. 

/3'° = /3'a(/A<7i) 

give the point of G/H which is the transformed of j3h by gt. 

We shall use the notation 

(3.7) 

(3.8) 

V = exp ;£/?°i a 
o/O 

(3.9) 

where (3a satisfy (3.6). Then (3.7) can be abbreviated as 

gxV = Vexpti^Lo]. (3.10) 

V is unitary and the exponent in (3.9) does not contain L0. Now (sum over a ^0) 

V-ldV = LjaLa=u>++u-+ui0 (3.11) 

is an element of the Lie algebra of G. The separation of the various parts of (3.11) is 
defined by (sum over a > 0) 

u>+ = uiaLa 

W_ = U)~aL-a 
(3.12) 

UlQ = u°L0 
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Since V is unitary, 
ul = -u-,ul = -UJQ, (3.13) 

which means 
ZF= -uT" , u ? = -u°. (3.14) 

These one-forms are defined on G/H. They depend only on the coordinates of G/H 
and their differentials. 

Now, by exterior differentiation 

d(V-1dV) = -(V~ldV)2. (3.15) 

Therefore (sum over a ^0) 
d(^La) = -{^Laf. (3.16) 

Since one-forms anticommute, this implies 

du>aLa = -u*JLaLb = -^>aub[La,Lb], (3.17) 

which gives, from (3.1) (sum over b, c^O) 

dwa = ~^(b - c ) ^ a « V . (3.18) 

These are the Cartan-Maurer equations. The forms w° satisfy these equations on G/H. 
They are not quite invariant. From (3.10) we find 

V'-ldV' = et0'^V-1g-xd(g1Ve-i0'La) 

= eifft^V-xdV€-i&'^ + ei0'^de-i0'^ (3.19) 

which means 

u 4 = e ' ^ W i e - ' ^ 

J0 =uo-id0'Lo (3.20) 

or, in terms of components, 

u, a ' = e - * ' V ' 

u;°' =uj°-id0'. (3.21) 

Clearly the two-forms (no sum over a > 0) 

u / a u ' - a = U A J _ ° (3.22) 

are invariant for each value of a. Therefore 

1-UJ2 = £ u; auT»/(a) = 5 £ w a

W - V ( a ) (3.23) 



is an invariant two-'^rm ror any function f(a) of the integer a, which satisfies 

f(-a) = - / ( a ) . 

When is it closed? Using (3.18) we see that 

-du? = r H ( 6 ~ c ) 'W+c.o / (a ) uaujbujc. 

3,6,C 

This vanishes if 

(b - c)f(a) + (c - a)f(b) + (a - 6)/(c) = 0 

for 
a + b + c = 0. 

It is not difficult to see that the general solution of (3.26) and (3.27) is 

/ ( a ) = Aa3 + Ba, 

where A and B are constants. 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

Exercise. Show this. Also show that, for / (a) = Ba, there exists wi such that u j = dui\. 
On the other hand, for f(a) = Aa3 there is no such u>i, i.e. u>2 is closed but not exact. 

The closed two-form w2 given by (3.23) with f(a) given by (3.28) can be taken 
as Kahler form on G/H, since, as we shall explain in the next section, G/H is a complex 
manifold. 

4. Holomorphic coordinates for G/H 

The method described in the previous section is perfectly satisfactory in general, 
but in our particular application it fails to make explicitly the very important fact that 
G/H is a complex manifold. The coordinates 0a and /?° (a > 0) are not good complex 
coordinates. It is easy to see that they mix under the action of a general element g x of 
G. In order to render manifest the complex structure of G/H we introduce a further 
decomposition of the group element and write 

V = exp 

= exp 

*x>°^ 
o?W 

• E*aL° 
a>0 

exp 
l a>0 

sxp[pL0]. (4.1) 

This should be possible, at least in a formal sense, in a neighborhood of the identity. 
Observe that the La for a < 0 form a subalgebra and generate a "subgroup" F such 
that 

GDFDH. (4.2) 
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The product of the last two exponentials in (4.1) represents an element of F. Since we 
are considering the real Virasoro group we cannot take z a , p? and p as independent 
complex parameter. The relations the., satisfy can be obtained in our representation 
of tha generators by requiring that (4.1) be satisfied, i.e. that the right hand side be 
unitary and expressible as the left hand side, (without L 0 in the exponent). This gives 
fia and p as functions of z and z. These functions can be computed as power series in 
z, z. It is easy to see that the first terms in the expansion are 

f{z,z) = : - + ••• 

p(z,z) = X > | z a | 2 + 
(4.3) 

(4.4) 
o > 0 

We can take za,~z* as coordinates on G/H. The action of an element gi of G is 
obtained by multiplying (4.1) from the left by g\ and splitting the result again as in 
(4.1). This means that z'a is given by 

9\ exp E *"£. 
a>0 

= exp :£**!. 
a>0 

exp 
L a<0 

exp [i<pL0], (4.5) 

The last two exponential factors in this formula can then be combined with the last 
two factors in (4.1), since all these factors are group elements of F. Formula (4.5) 
makes it clear that 

z" = z'a(z,9l) (4.6) 

depend only on za and not on Is. The action of G on G/H is holomorphic and za,~z° 
are good complex coordinates for G/H. The transformation law of Is is obtained from 
(4.6) by complex conjugation. 

The Lie derivatives corresponding to the infinitesimal generators iLa(a^0) are 
(on functions) 

Ca=ta=Za

n(z)dn + Sa*dn (4.7) 

where the sum is over n > 0. Here dn = -^, dn = -^-, and 

They can be split into a (1,0) part 

and a (0,1) part 

£'1] = Z**(z)d* 

(4.8) 

(4.9) 

(4.10) 
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which commute with each other: 

[e°UH=0. (4.11) 

The (1,0) parts and the (0,1) parts satisfy the same algebra 

[e0)^0)]=-^-b)& (4.12) 

[e i ) .€ i a i , ]=-^-*)rfS ) - (4-13) 
Observe that the sign in (4.12) and (4.13) is opposite to that occurring ; n the algebra 
of iLa. This is as it should be because we defined the action of the group by left 
multiplication. 

It is easy to compute the first few terms of the infinitesimal transformations in 
power series of z. One finds for the Killing vectors (no sum over indices; a > 0, zn = 0 
for n < 0) 

£ 0

n (z) = -inzn + ---
&"(*) =8*n + \{2a-n)zn-a + --- (4.14) 
U n ( r ) =-i(2a + n)zn+a + •••). 

Note that, for z = 0, f0 " and f_„ n vanish, while £ , n = Sa

 n. Similarly, for z = 0, &>* 
and fa* vanish, while £_„* = Sa

n. We shall need these facts later. 

Using (4.1) we can compute the differential forms given by (3.11). We introduce 
the abbreviations. 

z-L+ = '£zaLa (4.15) 
nX) 

M - £ - = X > a £ - a (4.16) 
a>0 

and write 

V~ldV = e~"l'ae-i'lmL-[e~"L+de"L*)ei,lL-e''Lo 

+ e-pL°e-iu-L-d(ei'iL-e''Lo). (4.17) 

Clearly the last term is an element of the Lie algebra of F (generators La,a < 0) and 
contributes only to uo and w_. Only the first term contributes to u+, which shows 
that u+ contains only the differentials dzm, and not </F™. So, from (3.12) and (3.13) 

uja = dzmum

a{z,z) (4.18) 

uT a = -<*?* «„,»(«, 5) (4.19) 

(a > 0, sum over m > 0), while w° contains both dzm and <fp\ 
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5. T h e Toeplitz opera to r s . 

We now wish to compute the difference operators corresponding to the Killing 
vectors £„ of Sec. 4. It is easy to work out their effect on the (1,0) part of the vectors 
£b themselves for 6 > 0 at the origin z = z = 0. Let us denote by £ the (1,0) part of a 
vector £. Thus, if the components of £ a are 

6, = (6. ",€«*), (5.1) 

those of fa are 
i = (& n , 0 ) . (5.2) 

In the following all indices a,b-- and l,m,n,r, ••• take only positive values unless 
explicitly indicated otherwise. We first observe that,' at the origin, 

V& l, = V € _ a & = 0, z = z = 0. (5.3) 

This is immediate because, at the origin £o = 0 and 

V ? _ a ib = (£-„ m V m + £_„ *$»)&. (5.4) 

At the origin f_a

 m vanishes and in general $, is independent of z. As a consequence 
of (5.3) the difference operators (2.11) at the origin can be computed from the Lie 
derivatives alone. Thus 

¥>&& =•£& d = [£o,6>] 
»[&.&]*»*& (5.5) 

and 

= [€—, &] =i(a + b)£b-a. (5.6) 

At the origin £b-a vanishes for b < a. The difference operators <^0 and <ft-a operate 
within the space of vectors £& with positive b. For this reason, in the present applica­
tion, the difference operators are called Toeplitz operators, in analogy with operators 
occurring in the theory of Fourier series. 

To obtain ¥>5„ for a > 0 we shall make use of (2.28) and (2.29), which by (4.8) 
relates it to ip^_a. First we observe that the matrix elements of tp^_a at the origin are 

(V»«_.)m« = iff< 0 + m(2a + m). (5.7) 

This follows immediately from (5.6) and the form of the Killing vectors at the origin 
(4.14). Our metric tensor is 

g» = /(*) Ser (5.8) 
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with f(£) given by (3.28). Therefore 

= if(m-a)6t' 

This formula can be rewritten as 

1 
f(m) 

(a + m). 

^ 6 = » - 7 ^ ( 2 a + * ) i + * . 

(5.7) and (5.9) are correct also for a = 0, in which case they agree. 

(5.9) 

(5.10) 

Exercise. Verify (5.7) and (5.9) by computing the Toeplitz operators at the origin 
from their definition (2.11) as difference operators on arbitrary tangent vectors of type 
(1,0). This requires computing the connection at the origin from (A. 17), which in turn 
requires the metric to the appropriate order. Notice, in contrast, the simplicity of 
Freed's method, which we have employed above. 

In the following we shall simplify the notation and write tpa for <f£a and Rab for 
/*&,,& for all a, b. We always work at the origin. It is (a, 6-̂ -0) 

¥»[€..&] = -*(<* - &)Ve.+» = -*(a ~ &)¥>o+6- (5.11) 

Therefore (2.16) gives 

R*.m e = ([fa, <Pb] + i{a - b)<pa+b)m

 t . (5.12) 

It is easy to verify by matrix multiplication, using (5.7) and (5.9), that R<& vanishes 
except when a and b are both different from zero and have opposite sign. This is 
expected because in general 

Rob.m. = (£. % ' - & ' & ')Rn.m. (5.13) 

and for all other cases the components of the Killing vectors vanish at the origin by 
(4.14). The non vanishing components (a, 6 > 0) 

R-a,b = [<P-a,<Pb] - i(a + b)<pb.a 

can be computed from (5.7) and (5.9). The result is 

(5.14) 

D m -(2r + m){rn + r + e) 

+ (m + £)(2r + m-i) 

+(r +1) < 

/ ( m + r - l ) 
r r ) 

6{m - 1 ) 

f{m + r) 

f(m -1) 
/ (m) 

(m + t-r) 

2r-2£ + m 
f(m-e + r) 

f(m) 
<>m+r,t+s (5.15) 
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where 

6{m) = 
1 for m > 0 
0 for m < 0 

Exercise. Verify that the Ftiemann tensor satisfies the symmetry condition 

(5.16) 

valid for a Kahler manifold. Hint: use the identity (3.26), (3.27) satisfied by f{m). 
The expressions given in Refs. 2 and 5 are incomplete and do not satisfy (5.16). 

To compute the Ricci tensor we set i = m in (5.15) and sum over all positive 
values. For I ~ m (no sum) 

ftm, a = <5r» - ( 2 r + m)(2m + r) f(r) 
f(m + r) 

+{r + m)< 
2 r - m 

f(r) (2m - r) f(m) 

r >m 
r < m 

The sum over m is 

(5.17) 

E 
m = l L 

- ( 2 r + m)(2m + r) {}r} _x + (r + m)(2m - r) - ^ 
/ ( m + r) /(m)J 

/M " L (r + m ) ( 2 m - r ) ^ - + ^ ( r + " I ) ( 2 r - m ) (5.13) 
m=l / ( m ) m=l 

For (3.28), with A ^ 0, the infinite sum converges, due to cancellations between the 
first and second term. Separately the two sums diverge only logarithmically. Therefore 
one can shift the variable in the first term. Setting m' = m + r —• m the infinite parts 
cancel and one is left with 

t ( r + m ) ( 2 m - r ) - M . 
m=l / ( m ) 

(5.19) 

£ (r + m)(2r - m) = — r 3 - - r . 
m = l 

This exactly cancels the term before the last in (5.18). Therefore (5.18) reduces to 

(5.20) 
o o 

In conclusion, the Ricci tensor is given by 

flrf = -R,. = -6ra ( y r 3 - i r ) . (5-21) 

The disappearance of the function f[m) from the result is expected from the general 
structure of the Ricci tensor for a Kahler manifold. 
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Appendix. Basic formulas for Kahler manifolds. 

We consider a complex manifold whose points are parametrized in some neigh­
borhood by complex coordinates z m , F " . Let there be a hermitean metric tensor 

gum = <7mn = Qnmi 9mn = 9rnn = 0. (-4.1) 

It is called a Kahler metric if it satisfies the vanishing curl conditions 

de gmn = dm gin 

d(gmn=dngmei {A.2) 

where 

The conditions (A.2) imply at least locally the existence of a real function V(z, z) such 
that 

gmfi = dmd* V. (A.4) 

V is called the Kahler potential and plays an important role in supersymmetry and 
supergravity theories. A change 

V - > V ' = V + Jb(x)+ifc(z] (A.5) 

is called a Kahler transformation. It leaves the metric invariant, because k{z) depends 
only on zm and k(z) only on z™. To the metric tensor (A.l) one associates a two-form 

u = -2igmndzm(G* {AS) 

which is called the Kahler form of the manifold (we have omitted the wedge which 
indicates exterior product, but the differentials are understood to anticommute). The 
conditions (A.2) are equivalent to the statement that the Kahler form is closed 

du = 0 (A.7) 

while (A.4) gives 
u = -2idd V (A.8) 

where 

d =d + 8, d = dzmdm, B = dl^dm 

d2 =d2 = dii = dd + dd = 0. (A.9) 

A vector of type (1,0) has components (ve, 0), a vector of type (0,1) has compo­
nents (0, u ') , a general vector is the sum (ve, i r ) . Covariant derivatives are constructed 
by means of the connection coefficients Ttm

 n and their complex conjugates 

r ^ n = r«-„. (A.IO) 
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These are the only non vanishing components of the connection coefficients, for instance 

Tim „ = 0 . (.4.11) 

Thus the covariant derivatives of a vector of type (1,0) are 

Ve vm = devm + r e

u l

n v n (.4.12) 

Vlvm = dtvm. (.4.13) 

The metric compatibility condition states, that 

^e gmn = de gm* - Tt

 r

 m grfi = 0 (.4.14) 

and 
^I9mn = de gmn — Tf r

 fl gm* = 0. (.4.15) 

These equations can be solved by using the inverse matrix gne 

9m* gM = gingnm = Se

m ( A . 16) 

and give 

and 

From (A.2) we see that 

and 

Vir

 m = (de gm*)gnr (A.17) 

V * = gfndj gnA. ( A 18) 

I V m = r m

r , (.4.19) 

r y ^ r ^ (A.20) 
(absence of torsion). Notice the relative simplicity of (A.17), (A.18) as compared 
with the general formula (2.2) for the Christoffel connection. A Kahler manifold is a 
Riematm manifold having a very particular structure. 

One can write the above formulas in the notation of differential forms. Introduce 
the matrix one form 

<fc<IVm = ( r ) r

m (A.21) 

and use matrix notation for the metric tensor as well. Then the metric compatibility 
condition can be written as 

dg-rTg-gr = 0. (.4.22) 

This equation separates into two equations 

dg -TTg = Q (A.23) 
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(equivalent to (A. 14)) and 
dg-gr = 0 (A.24) 

(equivalent to (A. 15)). Here T r is the transposed of the matrix T and f the complex 
conjugate matrix. Finally (A.23) and (A.24) are solved by 

rT = (dg)g-\ r = g-ldg (A.25) 

which are equivalent to (A. 17) and (A. 18) respectively. 

To obtain the Riemann tensor, we first define the matrix valued Riemann two-
form 

Rr

m = (dT + r2)r

m. (.4.26) 

From (A.25) we see that 

RT = dTT - ( r r ) 2 = d(dgg-x) - dgg-'dgg-1 

= ddgg-1 +dgg-l(d + d)gg-1-dgg-1dgg-1 

= ddgg~l + dgg'^gg'1 

= d{dgg-l)=drT . (,4.27) 

This gives the components 

Ren,"m = d-t(dn gmlgn = <krn

r

m 

= (didn gm-. - dn gm-t glu d-e g^g'"- (A.28) 

Lowering the index r we obtain 

R'tn,rm = 9**%*,' m = d]dn gm7 - dn gm-t gtu d-e gu7. (A.29) 

From the first line of (A.28) we see that the Kahler condition (A.2) implies the sym­
metry relation 

R-ln:rn=R-tm:n. (A.30) 

Also, (A.29) shows that the hermiticity relation 

R~tn,rm = ^ . S r (A.31) 

is itisfied. The only other nonvanishing components of the Riemann tensor are ob­
tained by complex conjugation, e.g. 

Rl~^ = Rt*.™, (A.32) 

or using the antisymmetry condition 

Rtfl.rih — —Rnt,rfh = _ Rtn.rhr- (A.33) 
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We finally come to the Ricci tensor. It is defined as usual 

RIm = R~en, "">! (-4.34) 

however, for a Kahler manifold, we see from the symmetry condition (A.30) that it is 
also obtained by summing over the last two indices 

Rlm ~ R?m.n"• (.4.35) 

Using this formula and (A.28) one finds 

A?m = d-((dn gn-a g'n) 

= didm log det gn? = -Rm2- (.4.36) 

The other components of the Ricci tensor vanish 

Rim = Rgn = 0. (.4.37) 

One also defines the Ricci two-form 

p = -2iRJn-tdzmdz1 

= -2iddlogdetgtiS. (A.38) 

It is obvious that it has the very important property of being closed, 

dp = 0, (A39) 

i.e. the Ricci tensor satisfies vanishing curl conditions analogous to those satisfied by 
the Kahler metric. 

Formulas (A.36) and (A.38) show that the Ricci tensor of the manifold can 
be interpreted as the curvature of a line bundle, the metric for the line bundle being 
given by the determinant of the metric tensor of the manifold. This means that the 
transformation functions for the line bundle are the Jacobians of the coordinate trans­
formations. It is the bundle of scalar densities. Ref. 6 exploits this connection and uses 
directly vacuum line bundles thereby avoiding the route through the Riemann tensor. 
We note that in Refs. 2 and 5 the Ricci tensor is computed from the Riemann tensor 
by using (A.35). Our computation in Sec. 5 using (A.34) appears somewhat simpler. 
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