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ABSTRACT

When a partial differential equation in two independent variables
is invariant to a group G of stretching transformations, it has similarity
solutions that can be found by solving an ordinary differential equation.
Under broad conditioﬁs, this ordinary differential equation is also
invariant to another stretching group G’, related to G. The invariance
of the ordinary differential equation to G' can be used to simplify its
solution, particularly if it is of second order. Then a method of Lie's
can be used to reduce it to a first-order equation, the study of which
is greatly facilitated by analysis of its direction field. The method
developed here is applied to three examples: Blasius's equation for
boundary layer flow over a flat plate and two nonlinear diffusion

equation ce, = ¢ and ¢, = (c .
q S» t zz t ( Cz)z



1. INTRODUCTION

Self-similar functions preserve their forms under certain scale
transformations of their magnitudes and arguments. For example, the
function ¢ = exp(—r2/4t:)/(lnrt)3/2 preserves its form under the group of
transformations r’ = Ar, t’ = A%t, ¢’ = A73¢c, where A is any positive
number. This function, as the reader may recognize, is the instantaneous
point source solution of the spherically symmetrical diffusion equation
ct = crr + 2cr/r. Its self-similarity arises from the invariance of the
diffusion equation to the wider group of transformations r’ = Ar, t' =
Azt, ¢’ = pyc, where A and p are posilive numbers independent of each
other. Such self-similar solutions to partial differential equations
are important because they are much easier to find than other solutions:
when the partial differential equation has two independent variables,
its self-similar solutions can be found by solving an ordinary differential
equation.

According to Ames,1 the study of self-similar solutions began in
1894 with Boltzman,? who studied the diffusion equation e, = [D(c)cx]x.
As Ames also points out, Blasius's3 1908 solution of the Boundary layer
flow over a flat plate is self-similar. So are the 1941 solutions of
TaylorL+ and von Neumann® for the pressure and flow fields created in air
by a point explosion.

A Birkhoff® (1950) was the first explicitly to mention that invariance
of a partial differential equation to a group of transformations (the
word "group'" now being used in iecs rigorous sense) could be used to find
self-similar solutions. Since the time of Birkhoff's hint, self-similar
solutions have been published to problems in diffusion, heat and mass
transfer, hydrodynamics, shock propagation, solid mechanics, plasma
physics, and applied superconductivity.7

Most applications involve one-parameter groups of stretching
transformations, i.e., transformations in which images are formed by
multiplication by powers of the group parameter, Quite often, the
ordinary differential equation to which the problem reduces is also

invariant to a stretching group. This is no coincidence, and the

conditions for it are explained below (Sect. 2). ‘The group invariance



of the ordinary differential equation can be exploited in two ways, the
discussion of which forms the bulk of this paper. First, if the solution
of the ordinary differential equation satisfies two-point boundary
conditions, we can use the group invariance to find it without trial and
error. This is illustrated below with Blasius's problem of boundary
layer flow over a flat plate (Sect. 4). Second, if the ordinary differ-
ential equation is of second order, we can find, with the help of the
group, new independent and dependent variables whose use reduces the
equation to one of first order.8 This first-order equation can be
analyzed by studying its direction field.Y The advantages of this
reduction are illustrated below for the nonlinear diffusion equations
cepo= e aud €= (c.c.:z)Z (3ects. 5=9). These examples make clear how
important the group invariance of the ordinary differential equation is

to the calculation of self-similar solutions.



2. GROUP INVARIANCE OF THE ORDINARY DIFFERENTIAL EQUATION

Suppose we have a partial differential equation with one dependent
variable c and two independent variables z and t. Suppose the partial
differential equation is invariant to the family of one-parameter groups

of transformations:

z! = Az (
t' = >\Bt 0 < A < o0, (1)
¢! = 2%

(Note that we lose no generality by taking the exponent of A in the
first line equal to 1.)

If the partial differential equation is written in the primed
variables and the substitution (1) made, it quite often happens that
each term in the partial differential equation is multiplied by a power
of A. The exponents of A in these multipliers are linear combinations
of o, ‘B, and 1. Invariance means that the exponents of all terms are
equal, and this equality leads to one or two independent linear equations
in a and B. (There cannot be more than two independent linear equations
because that would mean there is no solution for o and 8 and contradict
the assumed invariance of the partial differential equation.) If there
are two linear relations, a and B are uniquely determined, and the
family of groups (1) reduces to a single group. If there is one linear

relation, say,

Mo + Ng = L , (2)

then the partial differential equation 1is invariant to a one-parameter
family of one-parameter groups. The groups of the family are labeled by
o or B; the transformations of each group are labeled by A. It is this
second case that interests us.

To find self-similar solutions we look for solutions invariant to

the group (1). The most general invariant relation connecting the



variables ¢, z, and t can be written:10

t2/3 - (ti/s) . : , | )

where y is an arbitrary function. Substitution of (3) into the partial
differential equation gives an ordinary differential equation that the

function y(x) must satisfy (here x is an abbreviation for the argument

z/tl/e). The values of o and B are selected so that the boundary

conditions can be satisfied. For example, if c(0,t) = a prescribed
0

constant, ¢ = 0 and B = L/N. 1If /P cdz = a prescribed constant,
-O0

a =-1and B = (L + M)/N. Denote by N and Bo the values, satisfying
(2), so selected. Then

a /B :
(o] (o] z
c=t y<—‘——1/80> ' : . (4)
t

is the most general relation connecting ¢, a, and t that is invariant to
group (1) of the family for which o = @ and B = Bo.

If we transform c(z,t) given by (4) according to other groups of
the family (1) for which o # o and B # Bo, ite image c’'(z',t’') must
also satisfy the partial differential equation because the latter is

invariant to all groups ot the family (l). We tind that

(uﬁo—uoﬁ)/ﬁo uo/BO (8 ﬁo)/ﬁo

5
c! = A (t") y A 21/3 . (5)
(e °
It is easy to verify that
aBO - aoB ) E. 6)
B, - B M



regardless of the values of a and B as long as o and B satisfy (2).
(8-8_)/8,
Therefore, if we set A = p and drop the primes, (5) becomes

a /B _ a /B _
c=¢t% 9, L/M y (u 173 > _e 0 0 L/M y(ux) . N
o

t

The function c(z,t) given by (7) is also a solution of the partial
differential equation and is furthermore invariant to (1) when a = o
and B = B .

o L/

The one-parameter family of functions of x, u . M y(ux), appearing

in (7), is the family of images of y(x) under the one-parameter group

L/M
y'=u/y '
0 <p<owo, (8)
x' = ux
[For y'(x'") = uL/M y(x) = HL/M y(x'/u). If we replace u by 1/u, this
-L/M

becomes y'(x') = y(ux').] A one-parameter family whose curves
transform into each other under a group is said to be invariant to the
group. Each function y(x) satisfying (4) generates an invariant one-
parameter family of functions y(x) also satisfying (4), the invariance
of the family being with respect to the group (8).

Suppose that the ordinary differential equation for y(x) is of nth
order. The solutions of sucﬁ an equation form an n-parameter family of ‘
curves. From what we have just seen, this n-parameter family must
decompose into an (n - 1l)-parameter set of one-parameter families, each -
of which is invariant to (8). But then the entire n-parameter family is
invariant to (8). This means that the differential equation for y is

also invariant to (8), which is what we wanted to prove.



3. EXCEPTIONAL SOLUTIONS OF SECOND-ORDER EQUATIONS

Lie% has given a prescription for ffndiﬁg the most general second-

order differential equation invariant to the group (8). If we introduce

a group invariant u(x,y) as a new independent variable and a first-

differential invariant v(x,y,&) as a new dependent variable, the most

general second-order equation for y in terms of x has the form dv/du =

G(u,v), where G(u,v) is some function of u and v. An invariant and a

first-differential invariant of (8) are

X L.
(T
v = 2
a-1

Differentiation gives

(v - au)(gg),
a=2
X X

[F(u,v) - (a - l)VJ(g%)

du

dv

o M -
becaiuse Lie's theorem tells us that y/x

u and v. Thus

dv _ Flu,v) - (a - v
du v - au

(9)

(10a)

(10b)

(10¢)

2 must be a function F(u,v) of

(11)

Any integral curve v(u) of (ll) represents a first-order differential -

equation for y in terms of x, i{e., a one-parameter family of integral

curves y(x) that transform into one another under the group (8). In ‘

addition to these one-parameter families, there are exceptional solutions



arising from the éingular points of (11). These exceptional solutions
y(x) correspond to constant values u, and v, of u and v. Constant

values of u, and v, mean that as x and y vary, u and v remain fixed at
uo and v Thus du = dv = 0, and we see then from (10) that u, and v,

must satisfy the equations

F(uo,vo) = (a - l)v; | (12a)
and
v, = au . ' 3 | (12b)

The only solutions of (12), of course, are the singular points of (11),
assuming F(u,v) is not itself singular. Thus the solution y = uoxa

corresponds to the singular point (u_,v ).



4. EXAMPLE: BLASIUS'S EQUATION

Blasius's equation for the stream function c¢c of the boundary layer

developing along a flat plate can be written

c,c -c.c = ¢ , (13)

where z measures distance transverse to the plate and t measures distance
along the plate. (Special units have been chosen in which the kinematic
viscosity and the mean stream velocity are both equal to one.) Equation
(13) is invariant to the group (l)bif a-Bf=-1, i.e., if M=1, N = -1,

and L = =1, The bouuudary couditluns of Blaslus's problem are:

c(0,t) = 0, | (l4a)
cz(O,t) =0, ' (14b)
CZ(”,t) =1, (l4c)
Ct(z,O) =0 . (144)

Equatione (l4a) and (14b) become y(0) - O and y(0) - 0, rcopcctively.

In order to satisfy (l4c) we must have a = a, = 1, B = Bo = 2., Then
(l4c) becomes y(=*) = 1. Equation (14d) becomes i:g(y - xy) = 0 or what
is the same thing, ii:(y/x) = A = a constant; this condition is the same

as the condition y(«) = 1 if A is chosen to be one. The differential

equation for y turns out to be
2.}.;+y.);=0’ (158)
and the boundary conditions again are

y(0) = y(0) = 0 (15b)



and
y(®) =1 . , (15¢)

The group (8) has the form
=X
" (16)

"= ux

in this example. It is easy to verify that (15a) is invariant to (16).
The boundary conditions (15b) and (15c) refer respectively to x = 0
and x = ©, Neither (15b) nor (15c) alone is sufficient to allow numerical
solution of (15a). Ordinarily, we would assume a value of y(0),
integrate (15a) to large x, find $(«), correct y(0), and repeat. We can
avoid repetition by using the relation §’' = y/p? to find the value of u
that will make y'(%) = 1. Then using (12) we can find y'(x') by scaling
the function y(x) calculated in the first numerical integration. If

high accuracy is sought, much repetition can be avoided in this way.
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5. FXAMPLE: THE EQUATION cc. =c,,

The equation ce, = ¢ arises in the problem of transient heat
transfer from a heated surface to a single-phase, near-critical fluid

and in the problem of the expulsion of fluid from a long, slender, heated
tube. 1In both of these problems the boundary and initial conditions are
c(z,0) = 0, c(»o,t) = 0, and cz(O,t) = -b, a prescribed constant. These
are the boundary conditions we shall consider here.

The partial differential equation is invariant to the group (1) if

a -8=-2, i.e., if M=1, N= -1, and L = -2, In order to satisfy the
boundary condition that c(0,t) is constant, o must be chosen equal to
aj = 1; then B = BO = 3, For convenience, we introduce a factor of \fg

into the definition of x, i.e., take c = t1/3 y(zﬁJg t1/3) = ¢1/3 y(x).

¥ =yl - xy) ’ ‘ (17a)
and
y(™) =0, ¥(0) = -bv3 . : (17b)

The group (8) now takes the tform

d , (18)

w

and, as expected, the ordinary differential equation (17a) is invariant
8

ko
~
1}

to it. According to the theorem of Lie,® if we introduce as new indepen-
dent and dependent variables a group invariant u(x,y) and a first~
differential group invariant v(x,y,y), Eq. (17a) will become a first-
order differential equation for v in terms of u., Analysis of the
direction field of this first-order equation can tell us much about the
solutions of (18a); in this problem it will give us the value of y(0) at

the cost of a single integration.



11,
The choice of u and v is not unique; a convenient choice is
u = xzy ' (19a)
and A
v = x2(y -xy) . 4_ » (19b)
Using (17) we find that

dv _ v(2 - v) . (20)

du 3u - v
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6. THE DIRECTION FIELD OF EQ. (20)

Shown in Fig. 1 is the direction field of Eq. (20). The slope
dv/du vanishes on the lines Lj;: v = 0 and Lyt u = 2 and is infinite on
the line L3: v = 3u. There are two singular points, 0: (0,0) and
P: (2,6). The singular point P is a saddle point; the origin 0 is a node.
Traversing P are two separatrices S; and Sy;. The separatrix §; also
traverses the singular point 0. Some typical integral curves are also
shown in Fig. 1.

The family of integral curves of Eq. (17) we are seeking transforms
into itself under the transformations of the group (18). In other
words, the image of each curve of the family is another curve of the
family. - The family thus corresponds to a single integral curve in the
(u,v) plane. Furthermore, this single curve must pass through the origin
0 because u and v both approach zero as x approaches zero with y and ¥
remaining finite. Of the integral curves passing through the origin,
the separatrix S; is the one we want. For in the neighborhood of the
singular point P, y = 2/x2, and this is a satisfactory asymptotic

behavior for the integral curve we are seeking.
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7. CALCULATION OF THE SEPARATRIX

Near the origin where u << 2, Eq. (20) can be approximated by the
homegeneous equation dv/du = 2v/(3u - v). By "homogeneous" we mean that
the differential equation is invariant to the group v' = Av, u’ = Au.
The separatrix S;, being an invariant curve of the group, must have the
form v = mu, Substitution into the homogeneous differential equation
shows that m = 1,

If we substitute v = u + w into (20), then to lowest order dw/du =
3w/2u, so that w = Uu3/2. This suggests that v may be expanded in

1/2

powers of u near the origin. If we set

v =u+ Cud/2 + Du2 + Eu5/2 4+ Fud + cu”/2 + Hu* + Ju%/2 + KuS + ...,

(21)

substitute into (20), clear fractions, and equate coefficients of equal

powers of u, we get

-3 .2 - l(l - S § 2 L oan2 L
D=%3C 1, E-5{zc C), T 3(4CL‘12D - D) ,

119 - 1|52 _
G—4[>2(DE+FC) E] H—S[ZE + S5(FD + GC) - F| ,
J=4x Ll—(FE+GD+CH)-G],

6|2
K=%[3F2+6(GE+HD+CJ) - H] . O (22)

From Eq. (22) it is clear that once we fix C, all the higher coefficients
in (21) are determined. Since all the integral curves passing through
the origin are tangent to one another (and to the line v = u), it is
clear that they are distinguished from one another by the wvalue of C.

Finally,
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_lim (v -u) _ _ i(O). |
© 7w <u3/2 > [y(013/2 | 2

A similar procedure near the singular point P: (2,6) gives for the

separatrix S$;

t = As + Bs?2 + Rs3 + Ss* + ceesy , _j | .5 o . ‘(24a)
t=v -6, s=u-2, , (24b)
1 Va1 - S
_ B(1 - 2B) _ L(1 - 5B)
R=Ta-9 » 5= Tsa 12 (24¢)

We find the value of C on S; by using (24) to advance a short
distance along S; away from P. Then we integrétéA(ZO) numerically,
advancing along S; towards 0. When we get close to 0, we match the
numerical solution to the series (21) by chooéing c correctly. In this

way, with a single numerical integration, we find
C = 0.932 . : a (25)

This numerical integration, as well as all others mentioned later, was
performed by the fourth-order Runge-Kutta method on a programmable desk
calculator (Hewlett-Packard 97). Once the value of C is in hand, cal-
culation of y is an easy matter because consiétent initial vélues can be
obtained from (23). Figure 2 sﬁows the curve of’y versus X for which
y(0) = 1. As expeéted, y 2/x2 for large x. Also shown is the follow-

ing simple analytic approximation y:

2\-1 '
y = (1 + Cx +-§—) , ' (26)
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for which y(0) = 1 and §(0) = -C, It follows from (18) that in general

2,2\-1 :
y = A2 (1 + ACx + 2‘—55-) . : : (27)
Finally,
c(0,8) _ 51 p2/3 . | -' | : (28)

el/3



8. GENERALIZATION TO c“ct =c,,

. . n .
The partial differential equation c c, = ¢ can be treated in the

zz
same way when n # 1 as when n = 1. In general, na - B = -2 so that
M=n, N= -1, and L = -2, To satisfy the boundary condition cz(O,t) = -b,

a prescribed constant, we must take o = a, = 1l and B = Bo =n+ 2. If

1/8

1/8
we setc=t © y(éﬁvso t 0) , we find y = yn(y - xy), y(0) = -bvﬁ;,
and y(®) = 0 as before. As expected, the differential equation for y is
invariant to the group y' = u—2/n y, x' = uyx, If we choose u = XZ/n y
and v = xz/n(y - xy) we find
dv _ v(2 - nu™) (29)

du  (u + 2)u=nv °

The direction field of (26) is similar to that of Fig. 1. There is a
right triangle formed by lines Lj, Lp, and L3 in the (u,v) plane like
the one formed by L), Ly, and L3y in Fig. 1. On L3: (n + 2) u = nv fhe
slope is infinite; on Ly: u = (2/n)1/n and Ly;: v = 0 the slope is
zero. The two vertices on the line L; are singular points. These
poines are 0: (0,0) and P: [(Z/u)l/n, (11 2/u)(2/n)l/n]; They aré

joined by a separatrix that near the origin has the form

(n+2)/2 (30)

v=u+Cu
n
50 that
lim v - u _ -y (0)
¢ - _ . (31)
n u-o u(n+2)/2 ] [y(O)](n+2)/2 .

Finally, the separatrix near P corresponds to asymptotic behavior of

y(x) of the form
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y (3)1/n x 2

n

- ()

1+1/n ~1-2/n
X .

When n = 2, I used the power series method to éalculate C, and

found C; = 0.777. When n = 0, the ordinary differential equation

Yy =y - xy is solved by

(32a)

(32b)

(33)

It follows from (33) that y(0) =1 and-&(O) = /1/2. Thus Co =n/2 =

1.253. Finally,

c0,0)_ _ (vax 2\ ™D 2/ (av2)
tl/(n+2) ' c o
n

(34)

Knowing Cp, C1, and C;, we can interpolate to find Cn for intermediate

o]
values. It is worth remarking that when n = 2, L ydx diverges, a fact

which may be of importance in applications.
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9. THE EQUATION ¢ = (ccz)Z

This partial differential equation ¢, = (ccz)z is invariant to the

group (1) if a + B =2, i,e., if M= 1, N=1, and L = 2. 1If we set

c=t°‘/3-y(z ) , | (35)

we find the following ordinary differential equation for y:

B(y&). = qy - x& . . . . o (36)

\

Equation (36) is invariant to the group y' = p?y, x' = ux as expected.

If we set u = y/x% and v = y/x we obtain the first-order equation:
y q

dv _au - v - gv® - Bvu - :
du Bu(v - 2u) ’ (37)

The choice of o and B depends on the boundary conditions. Some
typical boundary conditions together with the corresponding values of a

and B are as follows:

1. Clamped temperature: c¢(0,t) constant a =0, B =2
21 s = 3

2. Clamped flux: (ccz)z=0 constant @ =5, g = >
3. Ramped temperature: c(0,t) v t o =1, R =1

Joo
4, Point source: _/ ¢dz constant o ==-1, g =3

-0
Let us first coneider cace 4, for which (37) baecomes
dv _ _ (u +v)1 + 3v) ) (38)

du 3u(v - 2u)
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The direction field of (38) is shown in Fig. 3. The slope dv/du vanishes
on the lines L;: u+ v =0 and Ly: v = -1/3 and is infinite on the
lines L3: u = 0 and Ly: v = 2u. There are three singular points, O:
(0,0),‘P: (0,-1/3), and Q: (—1/6,—1/3). It is immediately evident

from the figure that v = -1/3 solves (38). Thus ‘

y=-3 (39a)
and
(xg - x2)
y=——F—", (39b)

6

1 Solution (39) enables us to

a solution found earlier by Pattle.!
satisfy the requirement that y be zero at infinity by making y vanish

for x 2 X, For x < X , we use (39b). Interestingly, there is no
solution y(x) for which y and § approach zero continuously as x approaches
infinity. Such a solution would correspond to an integral curve in the
(u,v) plane passing throﬁgh the origin. However, none of the integral
curves that do so ever attains the limit u - .

Let us now turn to case 2. Then (37) becomes

dv _u - 2v - 3Q2 - 3uv
du 3u(v - 2u) : : (40)

Figure 4 shows the direction field of (40). The slope dv/du = 0 on the
curve C: u =v(2 + 3v)/(1 - 3v). '(The curve C has two branches, one of
which is shown in Fig. 4. The other branch is in the second quadrant
and is of no concern to us here.,) The slope dv/du = © on the lines Lj:
u=20and Ly: v = 2u. There are three singular points, 0: (0,0), P:
(0,-2/3), and Q: (-1/6,-1/3), and two separatrices, S; and S;: v = u/2.
The singular point Q leads to the exceptional solution y = -x2/6 and the
separatrix S; leads to the family of solutions y>= constant Vx. Neither
of the solutions is of any use to us here since neither is ever zero for

any x > 0,
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The direction field of Eq. (40).

Fig. 4.
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There is no solution for which y and § + 0 as x > ®, Such a
solution must correspond to an integral curve in the (u,v) plane passing
through the origin. All such curves are tangent to Sp; near the origin
and thus behave asymptotically like Vx for large x. If we look for
solutions y(x) that have a root at some x = X then at X, ¥ = 0 and
y < 0 so that u = 0, v < 0. The only point that fills the bill is the
singular point P, and the family of curves y(x) we are seeking corre-
sponds to the separatrix S;. The value of v at the point P gives the
slope &(xo) = —2x0/3, and knowing this slope, we can undertake a numerical
integration to find y(x). The results of such an integration for the
case x_ = 1 are shown in Fig. 5. Other cases can be obtained by trans-
formation with the group y' = uly, x' = ux.

When u is large and positive, the separatrix S; has the asymptotic
form v = —CVG; where C is a constant. If we substitute the definitions
of u and v in this equation, we find § = —CV;: Since u » w as x =+ 0,

this means

-y(0) =C . . ‘ . (41)

The numerical integration of (36) used to draw Fig. 5 gave C = 0.679; a
numerical integration of (40) starting on S| near P gave the same result.

At this point we break off further discussion of examples.
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