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ABSTRACT 

When a partial differential equation in two independent variables 

is invariant to a group G of stretching transformations, it has similarity 

solutions that can be found by solving an ordinary differential equation. 

Under broad conditions, this ordinary differential equation is also 

invariant to another stretching group G', related to G. The invariance 

of the ordinary differential equation to G' can be used to simplify its 

solution, particularly if it is of second order. Then a method of Lie's 

can be used to reduce it to a first-order equation, the study of which 

is greatly facilitated by analysis of its direction field. The method 

developed here is applied to three examples: Blasius's equation for 

boundary layer flow over a flat plate and two nonlinear diffusion 

equations, cc = c and c = (ccZ)=. 
t z z t 



1. TNTRODUCTION 

Se l f - s imi l a r  func t ions  preserve  t h e i r  forms under c e r t a i n  s c a l e  

t ransformat ions  of t h e i r  magnitudes and arguments. For example, t h e  

func t ion  c  = exp(- r2 /4 t )  / ( 4 n t )  312 preserves  i t s  form under t h e  group of 

t ransformat ions  r '  = Ar, t '  = X 2 t ,  c '  = x - ~ c ,  where X is  any p o s i t i v e  

number. This  func t ion ,  a s  t h e  reader  may recognize,  is  t h e  ins tan taneous  

po in t  source s o l u t i o n  of t h e  s p h e r i c a l l y  symmetrical d i f f u s i o n  equat ion  

c  = c + 2c /r .  I t s  s e l f - s i m i l a r i t y  a r i s e s  from t h e  inva r i ance  of t h e  
t r r r 

d i f f u s i o n  equat ion  t o  t h e  wider group of t ransformat ions  r '  = Xr, t '  = 

X 2 t ,  c '  = P C ,  where X and v a r e  posiLive numbers independent of each 

o t h e r .  Such s e l f - s i m i l a r  s o l u t i o n s  t o  p a r t i a l  d i f f e r e n t i a l  equat ions  

a r e  important  because they  a r e  much e a s i e r  t o  f i n d  than  o t h e r  s o l u t i o n s :  

when t h e  p a r t i a l  d i f f e r e n t i a l  equat ion  has two independent v a r i a b l e s ,  

i t s  s e l f - s i m i l a r  s o l u t i o n s  'can be found by so lv ing  an  ordinary d i f f e r e n t i a l  

equat ion.  

According t o  AmesY1 t h e  s tudy  of s e l f - s i m i l a r  s o l u t i o n s  began i n  

1894 wi th  BoltzmanY2 who s tud ied  t h e  d i f f u s i o n  equat ion  c  = [ D ( c ) c ~ ] ~ .  t 
A s  Ames a l s o  p o i n t s  ou t ,  ~ l a s i u s ' s ~  1908 s o l u t i o n  of t h e  boundary l a y e r  

flow over  a  f l a t  p l a t e  i s  s e l f - s i m i l a r .  So a r e  t h e  1941 s o l u t i o n s  of 

~ a ~ l o r ~  and von ~ e u m a n n ~  f o r  t h e  p re s su re  and flow f i e l d s  c r ea t ed  i n  a i r  

by a p o i n t  explosion.  

Bi rkhoff6  (1950) was t h e  f i r s t  e x p l i c i t l y  t o  mention t h a t  i nva r i ance  

of a p a r t i a l  d i f f e r e n t i a l  equat ion  t o  a group of t ransformat ions  ( t h e  

word "group"  low Leliig used i n  i e s  t i g o r o u s  sense)  could be used t o  f i n d  

s e l f - s i m i l a r  s o l u t i o n s .  S incc  t h e  t ime of B i r k l ~ o f f ' s  h i n t ,  s e l f - s i m i l a r  

s o l u t i o n s  have been publ ished t o  problems i n  d i f f u s i o n ,  h e a t  and mass 

t r a n s f e r ,  hydrodynamics, shock propagat ion,  s o l i d  mechanics, plasma 

phys ics ,  and app l i ed  superconduct iv i ty .  

Most a p p l i c a t i o n s  involve  one-parameter groups of s t r e t c h i n g  

~ r a ~ ~ s I u r m a t i o n s ,  i . e . ,  t ransformat ions  i n  which images a r e  formed by 

m u l t i p l i c a t i o n  by powers of t h e  group parameter.  Qui te  o f t e n ,  the  

o rd ina ry  d i f f e r e n t i a l  equat ion  t o  which t h e  problem reduces is  a l s o  

i n v a r i a n t  t o  a s t r e t c h i n g  group. This  i s  no coincidence,  and t h e  

cond i t i ons  f o r  it: are explailied below (Sect .  2 ) .  'The group inva r i ance  



of the ordinary ditferential equation can be exploited in two ways, the 

discussion of which forms the bulk of this paper. First, if the solution 

of the ordinary differential equation satisfies two-point boundary 

conditions, we can use the group invariance to find it without trial and 

error. This is illustrated below with Blasius's problem of boundary 

layer flow over a flat plate (Sect. 4). Second, if the ordinary differ- 

ential equation is of second order, we can find, with the help of the 

group, new independent and dependent variables whose use reduces the 

equation to one of first order.* This first-order equation can be 

analyzed by studying its direction field. The advantages of this 

reduction are illustrated below for the nonlinear di.ffusion equations 

cc  - c aud  c = ( c ~ ~ ) ~  ( 3 1 2 ~ ~ s .  5 - 9 ) .  These examples make clear how 
t z z L 

important the group invariance of the ordinary differential equation is 

to the calculation of self-similar solutions. 



2. GROUP INVARIANCE OF THE ORDINARY DIFFERENTIAL EQUATION 

Suppose we have a partial differential equation with one dependent 

variable c and two independent variables z and t. Suppose the partial 

differential equation is invariant to the family of one-parameter groups 

of transformations: 

(Note that we lose no generality by taking the exponent of X in the 

first line equal to 1.) 

If the partial differential equation is written in the primed 

variables and the substitution (1) made, it quite often happens that 

each term in the partial differential equation is multiplied by a power 

of A .  The exponents of X in these multipliers are linear combinations 

of a,.@, and 1. Invariance means that the exponents of a11 terms are 

equal, and this equality leads to one or two independent linear equations 

in a and 6. (There cannot be more than two independent linear equations 

because that would mean there is no solution for a and B and contradict 

the assumed invariance of the partial differential equation.) If there 

are two linear relations, a and are uniquely determined, and the 

family of groups (1) reduces to a single group. If there is one linear 

relation, say, 

Llien the partial differential equation is invarianr to a one-parameter 

family of one-parameter groups. The groups of the family are labeled by 

a or B ;  the transformations of each group are labeled by A. It is this 

second case that interests us. 

To find self-similar solutions we look for solutions invariant to 

the group (1). The most general invariant relation connecting the 



4 

variables c, z, and t can be written: l o  

where y is an arbitrary function. Substitution of (3) into the partial 

differential equation gives an ordinary differential equation that the 

function y(x) must satisfy (here x is an abbreviation for the argument 

/ t 6 )  The values of a and 6 are selected so that the boundary 

conditions can be satisfied. For example, if c(0,t) = a prescribed 
+03 

\ constant, u = 0 and B = L/N. If / cdz = a prescribed constant, 
-03 

a = -1 and B = (L + M)/N. Denote by a and Bo the values, satisfying - 0 

(2) , so selected. Then 

is the most general relation connecting c, a, and t that is invariant to 

group (1) of the family for which u = a and B = Bo. 
0 

If we transform c(z,t) given by (4) according to other groups of 

tho family (1) for which a $ a and 0 # Bo,  it^ image c'(a',tr) must 
0 

also satisfy the partial differential equation because the latter is 

invariant to a i l  groups ot the family (I). We tind that 

It. j.s ea.sy t n  ~rerdfy t h a t  



regardless of the values of a and B as long as a and B satisfy (2). 
(B-Bo) /Bo 

Therefore, if we set A = 11 and drop the primes, (5) becomes 

The function c(z,t) given by (7) is also a solution of the partial 

differential equation and is furthermore invariant to (1) when a = a. 

and B = Bo. 
-L/M The one-parameter family of functions of x, 11 , y(px), appearing 

in (7), is the family of images of y(x) under the one-parameter group 

[For y '(x ') E IrL/M y (x) = pL/M y (x '111). If we replace II by 1/11. this 

becomes y ' (x ') = Ir-L/M (ex ') . ] A one-parameter family whose curves 

transform into each other under a group is said to be invariant to the 

group. Each function y(x) satisfying (4) generates an invariant one- 

parameter family of functions y(x) also satisfying (4), the invariance 

of the family being with respect to the group (8). 

Suppose that the ordinary differential equation for y(x) is of nfi 

order. The solutions of such an equation form an n-parameter family of 

curves. From what we have just seen, this n-parameter family must 

decompose into an (n - 1)-parameter set of one-parameter families, each 
of which is invariant to (8). But then the entire n-parameter family is 

invariant to (8). This means that the differential equation for y is 

also invariant to (a),  which is what we wanted to prove. 



3. EXCEPTIONAL SOLUTIONS OF SECOND-ORDER EQUATIONS 

~ i e ~  has given a prescription for £&ding the most general second- 

order differential equation invariant to the group (8). If we introduce 

a group invariant u(x,y) as a new independent variable and a first- 

differential invariant v(x,y,$) as a new dependent variable, the most 

general second-order equation for y in terms of x has the form dv/du = 

G(u,v) , where G(u,v) is some function of u and v. An invariant and a 

first-differential invariant of (8) are 

Differentiation gives 

3-2 
because Lie's theorem tells us that y/x must be a function P(u,v) of 

u and v. Thus 

Any integral curve v(u) of (11) represents a first-order 'differential 

equation for y in terms of x, i.e., a one-parameter family of integral 

curves y(x) that transform into one another under the group (8). In 

addition to these one-parameter families, there are exceptional.solutions 



arising from the singular points of (11). These exceptional solutions 

y(x) correspond to constant values u and v of u and v. Constant 
0 0 

values of uo and v mean that as x and y vary, u and v remain fixed at 
0 

u and vo. Thus du = dv = 0, and we see then from (10) that uo and vo 
0 

must satisfy the equations 

and 

The only solutions of (12), of course, are the.singular points of (ll), 
a 

assuming F(u,v) is not itself singular. Thus the solution y = u x 
0 

corresponds to the singular point (uo,va). 



Blasius's equation for the stream function c of the boundary layer 

developing along a flat plate can be written 

C C  - C C  = c  
z zt t z z  zzz ' (13) 

where z measures distance transverse to the plate and t measures distance 

along the plate. (Special units have been chosen in which the kinematic 

viscosity and the mean stream velocity are both equal to one.) Equation 

(13) is invariant to the group (1) if a - B = -1, i.e., if M = 1, N = -1, 

aud L -1. Tlle L U U L I ~ ~ L  y C U I L L I ~ L ~ U L ~ S  u1: Blaslus' s problem are: 

Equafion~ (1113) and (l11b) bccomc ~(0) - 0 and $(0,) - 0, rcopcctivclyi 
In order to satisfy (14c) we must have a = a = 1, B = Bo = 2. Then 

0 

1 im 
(14c) becomes ?(a) = 1. Equation (14d) becomes xw(~ - x?) = 0 or what 

1 im 
is rhe same thing, (y/x) = A = a constant; this condition is the same 

X* 

as the condi,tion ?(a) = 1 if A is chosen to be one. The differential 

equation for y turns out to be 

and the boundary conditions again are 



and 

The group (8) has the form 

in this example. It is easy to verify chat (15a) is invariant to (16). ' 

The boundary conditions (15b) and (15c) refer respectively to x = 0 

and x = w. Neither (15b) nor (15c) alone is sufficient to allow numerical 

solution of (15a). Ordinarily, we would assume a value of y(O), 

integrate (15a) to large x, find ?(a), correct y(O), and repeat. We can 

avoid repetition by using the relation 3 ' = 7/p2 to find the value of P 

that will make +'(a) = 1. Then using (12) we can find y'(x') by scaling 

the function y(x) calculated in the first numerical integration. If 

high accuracy is sought, much repetition can be avoided In this way. 



5. EXAMPTdE: THE EQIJATION cct = c 
Z Z  

The equation cc = c arises in the problem of transient heat 
t ZZ 

transfer from a heated surface to a single-phase, near-critical fluid 

and in the problem of the expulsion of fluid from a long, slender, heated 

tube. In both of these problems the boundary and initial conditions are 

c(z,O) = 0, c(m,t) = 0, and cZ(O,t) = -by a prescribed constant. These 

are the boundary conditions we shall consider here. 

The partial differential equation is invariant to the group (1) if 

a - B = -2, i.e., if M = 1, N = -1, and L = -2. In order to satisfy the 

boundary condition that c(0,t) is constant, a must be chosen equal to 

m = 1; then B = B = 3. For convenience, we introduce a factor of 6 
0 0 

into the definition of x, i.e., take c = t1I3 y(z/& t1I3) = t1I3 y(x). 

Then 

and 

The group (8) now takes the form 

and, as expected, the ordinary differential equation (17a) is invariant 

to it. According to the theorem of ~ i e , ~  if we introduce as new indepen- 

dent and dependent variables a group invariant u(x,y) and a first- 

differential group invariant v(x,y,$), Eq. (17a) will become a first- 

order differential equation for v in terms of u. Analysis of the 

direction field of this first-order equation can tell us much about the 

solutions of (18a); in this problem it will give us the value of y(0) at 

the cost of a single integration. 



11. 

The choice of u and v is  no t  unique; a convenient choice is 

u = xZy 

and 

Using (17) we f i n d  t h a t  



6. THE DIRECTION FIELD OF EQ. (20) 

Shown i n  F ig .  1 i s  t h e  d i r e c t i o n  f i e l d  of Eq. (20).  The s l o p e  

dv/du vanishes  on t h e  l i n e s  L1: v = 0 and L2: u = 2 and is  i n f i n i t e  on 

t h e  l i n e  L3: v = 3u. There a r e  two s i n g u l a r  p o i n t s ,  0: (0,O) and 

P:  (2 ,6 ) .  The s i n g u l a r  p o i n t  P i s  a s add le  p o i n t ;  t h e  o r i g i n  0 is  a node. 

T rave r s ing  P a r e  two , s e p a r a t r i c e s  S1 and S2. The s e p a r a t r i x  S1 a l s o  

t r a v e r s e s  t h e  s i n g u l a r  p o i n t  0. Some t y p i c a l  i n t e g r a l  curves a r e  a l s o  

shown i n  F ig .  1. 

The family of i n t e g r a l  curves of Eq. (17) we a r e  seeking t ransforms 

i n t o  i t s e l f  under t h e  t ransformat ions  of t h e  group (18).  I n  o t h e r  

words, t h e  image of each curve of t h e  family i s  another  curve of t h e  

fami ly .  The fami ly  thus  corresponds t o  a single i n t e g r a l  curve i n  t h e  

(u ,v)  p lane .  Furthermore, t h i s  s i n g l e  curve must pas s  through t h e  o r i g i n  

0 because u and v both approach zero a s  x approaches zero  wi th  y and 9 
remaining f i n i t e .  Of t h e  i n t e g r a l  curves pass ing  through t h e  o r i g i n ,  

t h e  s e p a r a t r i x  S1 i s  t h e  one we want. For i n  t h e  neighborhood of t h e  

s i n g u l a r  po in t  P ,  y 2 /x2 ,  and t h i s  i s  a s a t i s f a c t o r y  asymptot ic  

behavior  f o r  t h e  i n t e g r a l  curve we a r e  seeking.  
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Fig ,  1. The d i r e c t i o n  f i e l d  of Eq, (20). 0 and P a r e  the 
s i n g u l a r  p o i n t s ,  S1 and S2 a r e  t h e  s e p a r a t r i c e s ,  and t h e  curves  
marked w i t h  I a r e  i n t e g r a l  curves .  



7. CALCULATION OF THE SEPARATRIX 

Near the origin where u << 2, Eq. (20) can be approximated by the 

homcgeneous equation dvldu = 2v/(3u - v). By "homogeneous" we mean that 

the differential equation is invariant to the group v' = Xv, u' = Xu. 

The separatrix Sly being an invariant curve of the group, must have the 

form v = mu. Substitution into the homogeneous differential equation 

shows that m = 1. 

If we substitute v = u + w into (20), then to lowest order dwldu = 

3w/2uY so that w = cu3/'. This suggests t h a t  v may be expanded in 

powers of u1I2 near the origin. If we set 

substitute into (20), clear fractions, and equate coefficients of equal 

powers of u, we get 

I 5 G = + FC) - E , H = $ [ ? E 2  + 5(FD + GC) - F] , 

+ GD + CH) - G , 1 
I K = 7 [ 3 ~ ~  + 6(GE + HD + CJ) - H] . (22) 

From Eq. (22) it is clear that once we fix C, all the higher coefficients 

in (21) are determined. Since all the integral curves passing tlirough 

the origin are tangent to one another (and to the line v = u), it is 

clear that they are distinguished from one another by the value of C. 

Finally, 



A similar procedure near the singular p0int.P: (2,6) gives for the 

separatrix S1 

We find the value of C on S1 by using (24) to advance a short 

distance along S1 away from P. Then we integrate (20) numerically, 

advancing along S1 towards 0. When we get close to 0, we match the 

numerical solution to the series (21) by choosing C correctly. In this 

way, with a single numerical integration, we find 

This numerical integration, as well as all others mentioned later, was 

performed by the fourth-order Runge-Kutta method on a programmable desk 

calculator (Hewlett-Packard 97). Once the value of C is in hand, cal- 

culation of y is an easy matter because consistent initial values can be 

obtained from (23). Figure 2 shows the curve of y versus x for which 

y(0) = 1. As expected, y Q 2/x2 for large x. Also shown is the follow- 

ing simple analytic approximation y: 
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1 .o 

Fig. 2. The function y(x) in Sect, 7 for the case y(0) = 1. 



f o r  which y(0)  = 1 and ;(0) = -C. It fo l lows  from (18) that i n  gene ra l  

F i n a l l y ,  



8. GENERALIZATION TO cnct = c  
Z Z  

n 
The p a r t i a l  d i f f e r e n t i a l  equat ion  c  c  = c  can be t r e a t e d  i n  t he  

t Z Z  

same way when n  # 1 a s  when n  = 1. I n  gene ra l ,  na - = -2 so  t h a t  

M = n ,  N = -1, and L = -2. To s a t i s f y  t h e  boundary cond i t i on  c Z ( O y t )  = -by 

a  p re sc r ibed  cons t an t ,  w e  must t ake  a  = a  = 1 and f3 = Bo = n + 2. I f  
11 Do 

0 

n  w e  set c  = t ( I  o t o )  , we f i n d  9 = y (y - x i ) ,  ;(o) = -w%, 
and y ( m )  = 0 a s  be fo re .  A s  expected,  t h e  d i f f e r e n t i a l  equat ion  f o r  y  i s  

-2111 i n v a r i a n t  t o  t h e  group y '  = p y, X '  = 2111 px. I f  we choose u  = x 

and v  = x2In(y - x we f i n d  

dv .v(2 - nun) - =  
du (XI + 2) u-nv ' 

The d i r e c t i o n  f i e l d  of (26) i s  s i m i l a r  t o  t h a t  of Fig.  1. There i s  a  

r i g h t  t r i a n g l e  formed by l i n e s  L1, L 2 ,  and L j  i n  t h e  (u,v) p lane  l i k e  

t h e  one formed by L1, L 2 ,  and L 3  i n  Fig.  1. On Lj :  (n + 2) u  = nv t h e  
I./n 

s l o p e  i s  i n f i n i t e ;  on L2: u  = (21x1) and L1: v  = 0 t h e  s lope  i s  

ze ro .  The two v e r t i c e s  on t h e  l i n e  L2 a r e  s i n g u l a r  po in t s .  These 

peines are 0: (0,O) aud P:  [ ( 2 / 1 1 ) ~ ,  ( 1  I 2 )  ( I L I ) ~ ' ~ ]  They ore , 

jo ined  by a s e p a r a t r i x  t h a t  near  t h e  o r i g i n  has  t h e  form 

l i m  v - u  -jr(O) 
n  = u Iu(n+2) 12 ] = [J,(o) (n+2)12 

F i n a l l y ,  t h e  s e p a r a t r i x  n e a r  P corresponds t o  asymptot ic  behavior  of 

y(x)  of t h c  form 



When n = 2, I used the power series method to calculate C2 and 

found C2 = 0.777. When n = 0, the ordinary differential equation 

y = y - xy is solved by . . 

It follows from (33) that y(0) = 1 andi(0) = m. Thus Co = m 2  = 

1.253; Finally, 

Knowing Coy C1, and C2, we can interpolate to find C for intermediate 
03 

n 
values. It is worth remarking that when n 2 2, .f o ydx diverges, a fact 

which m e  be of importance in applications. 



9. THE EQUATION ct - (cc ) 
Z Z 

This partial differential equation c = (ccZ)= is invariant to the 
t 

group (1) i f a +  B = 2,i.e., i f M = l , N = l ,  a n d L =  2. If we set 

we find the following ordinary differential equation for y: 

Equation (36) is invariant to the group y' = p2y, x' = p x  as expected. 

If we set u = y/x2 and v = ;/x we obtain the first-order equation: ' 

The choice of a and 6 depends on the boundary conditions. Some 

typical boundary conditions together with the corresponding values of a 

and B are as follows: 

1. Clamped temperature: c(0,t) constant a = O ,  B = 2  

1 a = -  - 3 
2. Clamped flux: (CC,)~=~ constant B = -  2 '  2 

3. Ramped temperature: c(0.t) t a = 1  , @ = . I  

Sco 

4. Point source: cdz constant a = - 1 ,  B = 3  

Lct ua firct considar caca 11, for which (37) becomes 



The d i r e c t i o n  f i e l d  of (38) i s  shown i n  Fig.  3 .  The s l o p e  dv/du vanishes  

on t h e  l i n e s  L1: u  + v = 0 and L2: v  = -113 and i s  i n f i n i t e  on t h e  

l i n e s  L3: u  = 0 and L4: v  = 2u. There a r e  t h r e e  s i n g u l a r  p o i n t s ,  0: 

(0 ,0 ) ,  P:  (0 , -1/3) ,  and Q: - / 6 - 3  It i s  immediately ev ident  

from t h e  f i g u r e  t h a t  v  = -113 s o l v e s  ( 3 8 ) .  Thus 

and 

a  s o l u t i o n  found e a r l i e r  by P a t t l e .  l 1  So lu t ion  (39) enables  us t o  

s a t i s f y  t h e  requirement t h a t  y  be ze ro  a t  i n f i n i t y  by making y vanish  

f o r  x  2 xo. For x  < x w e  use  (39b).  I n t e r e s t i n g l y ,  t h e r e  i s  no '. 0 

s o l u t i o n  ~ ( x )  f o r  which y and y approach zero  cont inuous ly  a s  x approaches 

i n f i n i t y .  Such a  s o l u t i o n  would correspond t o  an i n t e g r a l  curve i n  t h e  

(u,v)  p lane  pass ing  through t h e  o r i g i n .  However, none of t h e  i n t e g r a l  

curves  t h a t  do so  eve r  a t t a i n s  t h e  l i m i t  u  -t 

L e t  u s  now t u r n ,  t o  ca se  2. Then (37) becomes 

F igure  4 shows t h e  d i r e c t i o n  f i e l d  of (40) .  The s l o p e  dv/du = 0 on t h e  

curve C :  u  = v ( 2  + 3 v ) / ( l  - 3v) .  (The curve C ha s  two branches,  one of 

which i s  shown i n  Fig.  4. The o t h e r  branch i s  i n  t h e  second quadrant  

and i s  of no concern t o  US hers,) The s l o p e  dv/du = on t h e  l i n e s  L1:  

u  = 0 and L2: v  = 2u. There a r e  t h r e e  s i n g u l a r  p o i n t s ,  0 :  ( 0 , 0 ) ,  P: 

(0 , -2 /3) ,  and Q:  (-116,-1/3), and two s e p a r a t r i c e s ,  S1 and S2: v  = u/2.  

The s i n g u l a r  p o i n t  Q l e a d s  t o  t h e  excep t iona l  s o l u t i o n  y = -x2/6 and t h e  

s e p a r a t r i x  S2 l e a d s  t o  t h e  fami'ly of s o l u t i o n s  y = cons t an t  A. Nei ther  

of t h e  s o l u t i o n s  i s  of any use t o  us  he re  s i n c e  n e i t h e r  is  eve r  zero  f o r  

any x > 0. 
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Fig .  3 .  The d i r e c t i o n  f i e l d  o f  Eq. (38) .  



Fig .  4 .  The direction field of Eq. ( 4 0 ) .  



There i s  no s o l u t i o n  f o r  which y and y -+ 0  a s  x  + m. Such a  

s o l u t i o n  must correspond t o  an i n t e g r a l  curve i n  t h e  (u ,v)  p lane  pass ing  

through t h e  o r i g i n .  A l l  such curves a r e  tangent  t o  S2 n e a r  t h e  o r i g i n ,  

and t h u s  behave a s y m p t o t i c a l l y  l i k e  \/;;- f o r  l a r g e  x. I f  we look f o r  

s o l u t i o n s  y(x)  t h a t  have a  r o o t  a t  some x  = x  then  a t  x  y  = 0  and 
0 0 

y  < 0  s o  t h a t  u  = 0,  v < 0.  The only  po in t  t h a t  f i l l s  t h e  b i l l  i s  t h e  

s i n g u l a r  p o i n t  P ,  and t h e  fami ly  of curves  y(x)  we a r e  seeking corre-  

sponds t o  t h e  s e p a r a t r i x  S1. The va lue  of v a t  t h e  po in t  P g ives  t h e  

s l o p e  ;(xo) = - 2 ~ ~ 1 3 ,  and knowing t h i s  s l o p e ,  we can undertake a  numerical  

i n t e g r a t i o n  t o  f i n d  y ( x ) .  The r e s u l t s  of such an i n t e g r a t i o n  f o r  t h e  

case x = 1 a r e  shown i n  Fig.  5 ,  Other  c a s e s  can be ob ta ined  by t r ans -  
0 

format ion  wi th  t 'he group y '  = p2y,  x '  = px. 

When u  i s  l a r g e  and p o s i t i v e ,  t h e  s e p a r a t r i x  S1 h a s  t h e  asymptot ic  

form v = -&, where C i s  a  cons tan t .  I f  w e  s u b s t i t u t e  t h e  d e f i n i t i o n s  

of u  and v  i n  t h i s  equa t ion ,  we f i n d  ; = -L*. Since  u -+ a s  x  + 0 ,  

t h i s  means 

The numerical  i n t e g r a t i o n  of (36) used t o  draw Fig.  5 gave C . =  0.679; a  

numkrical  i n t e g r a t i o n  uf (40) s t a r t i n g  on Sl n e a r  P gave t h e  same r e s u l t .  

A t  t h i s  p o i n t  w e  b reak  o f f  f u r t h e r  d i s c u s s i o n  of examples. 

I wish t o  exp re s s  my g r a t i t u d e  t o  J .  K. Ba l lou  f o r  w r i t i n g  t h e  

computer g r aph ic s  program w i t h  which F igs .  1, 3 ,  and 4 were produced. 
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Fig .  5. The s o l u t i o n  y(x) o f  E q .  ( 3 6 )  f o r  case 2 :  a = 1 1 2 ,  B = 3 1 2  when 
x = 1. 
0 
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