
+

' '
~
J

..... -

MASTEl
Co (0(- _ ! () 1 o I!- ~ I
SAND SO - 105/- C.

.---------DISCLAIMER---------,

This book was prepared as an account of work sponsored by an agency of the Unhed States Government.
Neither the United s18185 Government nor any agency thereof, nor any of their employees, makes any
warranty, express Of implied, or assumes any legal liability or responsibility for t~ accuracy,
completeness, or usefulness of any information, apparatus, product. or proc:ess dtsclosed .. ~r
represenu that its use would not infringe privcnetv owned rights. Reference hereto to anv_ specthc
commercial product, process, or S8fvice by trade name, tradel'l'\itrk, manufacturer, or otherwtse, ~oes
not necessarily constitute or imply its endorsement, reoJmmendation, or favoring by the Untted
States Government or any agency thereof. The views and opinions of authors eKpressed herein do not
necessarily state Of' reflect those of the United States Government Of any agency thereof.

Teacning Old Fortran .Programmers New Tricks *

Abstract

For a number of valid reasons, Fortran remains in
widespread use. It can be difficult to get long
time Fortran programmers to accept the use of new
software tools that are increasingly required to
lower software costs. In order to gain acceptance
for a new software tool, it is necessary for it to
be easy to learn and use, as well as to provide
new benefits. In the process of introducing the
use of the Ratfor preprocessor tor · Fortran, a
number of useful guidelines were defined for
gaining the acceptance of any new software tool in
an existing environment.

Bruce E. Wampler, PhD
Sandia National Laboratories

Division 1723
Albuquerque, NM 87185

(505) 844-8414

In the Pvent thAt thi~ paper is accepted,
the author will attend COMPSAC '80.

* SAND80-1051C - Describes work
National Laboratories under
DE•AC04-76DP00789.

performed
D.O.E. ·

at Sandia
contract

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

Teaching Old fortran Programmers New Tricks *

.1Dt~cduct1CD

Bruce E. Wampler
Sandia National Laboratories

Albuquerque, NM 87185

The rising cost of computer -software has made it

essential to use state of the art software engineering

practices to improv~ software productivity. Almost no one

would ·disagree with the fact that the use of modern

techniques of structured program design, preferably

supported by a structured programming language, can reduce

both initial software costs and long term maintenance costs.

While the ideal would call for the universal use of a

structured programming language such as Pascal, Fortran is

still th~ language most widelY. used in a large part of the

computer software industry. Fortran has many qualities that

keep it the one truly universal programming language

available today. First and f~remost, a Fortran compiler is

available for virtually every computer made.·

usually heavily supported bY the major

manufacturers, with its compiler often generating

Fortran. is

computer

the most
~

efficient code of any language processor available for a

particular machine. In addition, rortran usually interfaces

to a large library of system suppdrt routines and utility

----------------* SAND80-1051C - Describes work perfor~ed at Sandia
National Laboratories under D.O.E. contract
DE~AC04a76DP0~789.

(I

PAGE 2

programs, as well as to assembly language programs.

There is another reason for fortr~n's continued· use:~

many programmers already know it,· use it, and if not love

it, at least see no reason to leave it. While most recent

graduates ·from computer science programs have-been heavily~

exp6sed to structured programming t~chniques and langUages,

there are a great many people already working in the

software industry who "grew up" on fortran. For these

people, who have been "thinking" in Fortran for many years,

the advanced control and data structures of a language like

Pascal can be extremely difficult to learn. ln addition,

th'ere can be a great deal of inertia i nvo 1 ved and

programmers are often reluctant to leave the security of the

status quo.

Even though these and other-factors have resulted in

the continued use of Fortran, it simply· does not contain the

language features needed to support.structured programming.

Fortran 77 is not much of an improvement. The proqrammer

still lacks a complete set of loop control structures, is

limited oy data types, and is forced to use a rigid and

inconvenient statement layout format.

One ' solution to the ptoblem is the use Of a

preprocessor that converts a language with structured

control statements and pleasant cosmetics into standard

Fortran. The g~od points of Fortran are retained, while the

benefits of a structured language are also obtained. Since

'tl

'·
·PAGE 3

the underlying language is fortran, it is also an easier ..

·calthough still not trivial) task for long time Fortran·.

programmers to learn the new language. Once of the best and

most widely available preprocessors is Ratfor (Rational

Fortran), originallY developed b~ Kernighan and Plauger and·

described fn their book Saft~a~e Iccls (11. Ratfor provides

structured control statements (if else, ·while, for, repeat,

and do loops) as well as some other features that make the

language easier to use (free form input, character string

fa~ilities, better comment conventions, define statement,

and include file processing).

The author is currently involved in a large project at

Sandia National Laboratories that is will link a large

number of remote data gathering computers in different parts

of the country to a central site tor processing and d.isplay.

While the use of a structured lang~age like Pascal would . be

·very desirable to use for software development, several

factors dictated the use of Fortran: it ·,was the best

supported language on the computer used for initial
.

development ~ork, the ultimate target computer was· unKnown,

and the other project members were long time Fortran users.

Since Fortran is so unpleasant to use Cat least for someone

accustomed to a more structured language), Ratfor seemed to

be a reasonable alternative.

While Ratfor has a number of advantages over Fortran,

the other project members were not ready to instantly accept

't

PAGE 4

i~s u~e. It should be emphasized that the· use of ~atfor\.

depended 'SOlely ·on user acceptance in an informal·

environment, with no decrees from management to comp~~ its~

use. The' Ratfor preprocessor Cas- described in So.ft~az:e.­

Iools and distributed by Addison _wesley Publishing) was~

designed with portability as a ~ajor g~al and as result

lacks a number of features needed for program development

work in a professional production environment, such as

complete error diagnostics and a clean interface to the

existing operating system environment. It took a number of

changes to the Ratfor preprocessor and ·the implementation of

ad'd i ti onal support tools before the other users were w i 11 i ng

to accept Ratfor. The resulting Rattor software development

environment has turned out to be far superior to both

Fortran and the original version of Ratfor.

Guidelines foz:_gaicico accegtaQce. of a ~cft~a~e tool

The rest of this paper · describes the author's

experiences in getting a new software tool accepted by users

in an established environment. While these experiences

describe the problems 9ettlng Fortran users to accept

Ratfor, they actually reflect ·the basic human nature~

Consequently, these experiences can be readily extended to

the general situation of getting established users of any

system to acc~p~ a new software tool.

guidelines summarize these experiences.

The following

PAGE 5

1. It .should be ~asy to learn.

. .
2. It should conform to present system usage conventions.

3 •. lt shou1d interface with: ~xisting ~oftware: system ,

services, utilities, libraries.

4. It should have adequate documentation and support

tools.

5. It should run efficiently and generate efficient code.

6. It should be as flaw free as possible.

7 •. Its benefits should be great enough to justify leaving

the current system.

Each of the above guidelines is di~cussed in greater detail

in the ·following sections.

1. It should be easy to learn.

Recent graduates of computer science schools have

received training in the use of structured programming

languages and techniques. Most of these graduates have been

taught to learn and maiter a new proqrnmming in n short time

as a matter of course. Gaining acceptance for a new

language .or tool from this se~ment of programmers is a

relatively easy task.

On the other hand, many of programmers working in

PAGE 6

industry today have not had this trainiog (usually because
' I

of a lack of opportunity), and find learning a hew language

a difficult task. Many of· these. programmers have.been

11 r a 1 sed 11 on F o·r t ran , and are u·s e d to · so 1 v 1 n g pro b 1 ems in

Fortran.- After spending. many· ·years ·thinKing of problems in

terms of Fortran, it is often very difficult to change into

the structured mode of thinKing allowed by a language.such

as Pascal. And wnile the structured control constructs are

difficult enough for Fortran programmers to learn, the rich

data types and structures used by languages such as Pascal

can be totally bewildering.

· Faced with the double problem of learning new control

constructs as well as complicated data. type declarations and

syntax, many·Fortran programmers will give· up before they

. have the chan~e to realize the full benefits provided by a

modern language. In order for them to. even try a new

lang~age, let alone accept it for full time use, it must be

easy to learn. The learning process can be facilitated if

much of their knowledge of Fortran can be ~pplied directly

to the new language.

2. rt should conform to present system usage conventions.

Once the programmers have been conVinced to try a new

language, they should not be forced to also learn a new set

of rules for using the language on the existing operating

sy.stem. The new language should be usable in the same

fashion.to whi~h the users have become accustomed when using

PAGE.?

Fortran. They should be able to use the same fi~e system,

the same editors, and the same operating system command

. language syntax to compile a program.. If listings and

compilation diagnostics are prpduced by the· new language,

they· ~hould use the same conventions used by the Fortran ~

~ompiler. If the new language come~ as a. stand alone system

with its own editor and command syntax, there will be more

obstacles to be overcome by the new user~ and widespread

acceptance is unlikely unless the new system gives an

immediate and obvious improvement over the existing system.

Usually however, programmers like with stick to familiar

operating procedures, even if they are not as good as might

be possible.

3. It should interface with existing software.

Typically, an operating system will provide · the·

programmer with a number of system services to perform

various functions such as obtaining system time, performing

specialized IIO, and other such system dependent tasks. In

addition, there are often other utility libraries, such as

graphics packages, mathematical analysis routines, and sort

utilities provided within the normal environment of the

operating sYstem. Most commonly,

choices for interfacing with these

language or Fortran.

the Proqrammer has two

utilities: assembly

Fortran users are accustomed to these facilities and

are not usually willing to give them up. In order for a new

PAGE 8

language to be accepted, it too snoulq interface to these or

equivalent services and lib~aries. This interface should be

.easy to use. Requirements for . special declaration

statements or use of indirecr. interface technique can lead

to rejection·.ot the entire tool or lariguage, no matter how ·~

great the. other benefits may be.

4. It should have adequate documentation and support tools.

While Fortran may not be the ideal problem solving

languagej at least· the procedure tor compiling, linking, and

executing a Fortran program will usually be straightforward,

and the techniques needed for performing that procedure are

usually well 'documented and familiar from· long use. Any new

language or tool must be at least as easy to use as Fortran.

Documentation required to use the language (language

specification, user's. manual, etc.) must be complete and

useful. Incomplete, obscure, or inaccurate documentation

can be worse than no documentation at all.

In addition to generating object code, Fortran

compilers usually are able to produce very complete listing

files which usually include a numbered listing of each

a cross reference

A new language processor should

anv error.

be able to

subprogram,

diagnostics.

perform the same functions. The error diagnostics must be

complete, informative, and correct.

If a preprocessor is used, then an intermediate file of

generated Fortran code will be produced~ It is often

...

. -

PAGE 9

difficult or· impossible ·to map errors detected by the

Fortran compiler

such d~fficulties

back· to the original source code. ~hile

may be impossible to eliminat~, they

should be minimized as much as possible.

Other support tools many be neeped in addition. .for

example, structured programs require indentation in order to

achieve full readability. Extensive revision of programs

that were originally nicely indented and laid out can result

in a tangled mess. The availability· of an automatic

formatting program which will reformat a program to follow a

well defined set of indentation and layout rules can be a

big factor in gaining acceptance .for. a new programming

languagee

will t91<e

Programmers can be lazy and if the new language

care of program formatting automatically, then

that will often be a big advantage over Fortran. Formatters

also can

project

produce

involving

code that is uniform across an entire

many· programmers. . However, such

formatters. should handle comments reaso~ably and allow the

user to override the formatter defaults when necessary.

Many current operating systems .provide powerful

iriteractive debuggirig facilities. Often, these debugging

facilities interface only with assembly language or Fortran.

A new language should either provide its own debugging

facilities, or. interface easily with the curr~nt debugger.

If the new language provides its own enhanced debugging

tools, as well as an interface to the exi&ting debugging

PAGE 10

facilities, so much the better.

5. It should run efficiently and generate efficient code.

Production Fortran compilers usually run fast and ·

almost always produce efficient object code. While

execution speed is no longer as critical as it once was, it

is s~ill important. If the . cod~ produced by the new

language. processor is not as efficient as that produted by

Fortran, then there is a reason to reject the new language.

Perhaps just as important as the execution speed is the

compilation speed. Programmers do not like- to wait for
',

their programs to.be compiled. If a Fortran preprocessor is

used, the total compilation must necessarily be longer than

the Fortran compilation time alone. If th~ preprocessor

does much more than double the total time, it is likely to

be rejected.

6. It should be as flaw free as possible.

Unwilling 1.1 s P. r s can go to great lengths to find

something wrong or inconvenient with the use of a new

language or tool. If acceptance is to be gained, legitimate

complaints about the operation of a new tool cannot be

dismissed lightly. If the new product is to be commercially

purchased, it should first be thoroughly evaluated to be

sure. there will not be grounds for serious complaints. If

the source code for the new product is available, there is

more flexibility since the complaint. can be -handled by

r

\ ':
PAGE 11

fixing the problem. There Should be cpmpromise, however~

While no complaint can be dismissed without at least

considering it, unjustified complaints should not be allowed

to result in either the rejection of a or

unnecessary revision in its standard operation. T~e result

of: this constructive give and take process will not only

increase the chances for acceptance, but will also likely

lead to a much better end product.

7. The benefits should justify leaving the current system.

The introduction of a new language or tool will require

an initial learning curve for users not already familiar

with it. The snorter the learning curve, the greater the

chance for acceptance. If the new language is implemented

as a pteprocessor, for example, then there will also ·be some

overhe~d in compilation time and ease of use (relating

generated Fortran back to the. original code, for example).

In addition, there will likely be a great deal of inertia to

overcome. The benefits produced by switching to the new

language or tool ~hould be great ~nough to outweigh all of

these costs.

If a great enough -benefit can be obtained ·from a· new

tool or language, then it is still possible for it to gai·n

acceptance even · th~~gh it fails one of the previous

criteria. However, if the· benefits are only marginal (or

perceived to be maruin~l), then falling any of the criteria

will likely lead to rejection.

P~GE 12

Gaioioa acceQtacce fa~ Ratfo~

The above guidelines were .discovered (or rediscovered)

.in the .process of gaining acceptance for Ratfor. While in

retrospect the rules may seem obviousi had they all been

known and believed beforehand, tnat process would have been

much easier. Ratfor already complied ~ith some a£ the

guidelines, but failed to meet others until modifications

were made. The following paragraphs describe how the new

version of Ratfor complies with these guidelines.

Probably the main thing Ratfor has to offer is that it

is designed to work on top of a Fortran environment. The

step from Fortran to Ratfor is mucn easier to take than the

step from Fortran to Pascal. The basic data types of Ratfor

are .the same and the control structures are typical of any

structured programming language (e.g., if then else, while,

repeat). Thus, wnen learning Ratfor, tne fortran progra~mer

is -confronted only with the new control structures, and does

not have to face a h~ffling array of new, complicated data

types. In fact, most fortran programmers can start to learn

Ratfor by converting a few old programs from Fortran into

Ratfor.

In addition, since Ratfor is translated directly to

Fortran, it will interface directly with anything that

Fortran will. Thus, any existing system services,

libraries, or ~tility packages that Fortran can use are

equally available to Ratfor. This eliminates one argument

.•

PAGE 13

that can bften b~ used against ~other languages such as

Pascal.

On the other hand, the distributed portable version of

the Ratter ·preprocessor was definitely not easy to use.

"There was: a two-step process the programmer has to·.,

explicitly invoke when. compiling a program: Ratfor to

Fortran, then Fortran to object code. The Ratfor to Fortran

step usually could not use the same system conventions as

the Fortran to object code step. It was also very difficult

to debug Ratfor programs translated by the distributed

version of the preprocessor. The· error diagnostics, while

1 nforma t 1 ve, were · very d if t i cult to · r e 1-g:rt-e. back to the

offending line of the origin~! Ratfor code.

Fo~tunately, the Ratfor preprocessor itself was written

in Ratfor, and was ~hus easily modified to overcome its

shortcomingso The error diagnostics were changed so that

they would print the message, the offe~din~ line, and an

exact line number within a routine on the user's interactiv~

terminale Several new preprocessor options were also

implemented in the form of user specified switcheso These

switches. allow the programmer to include Ratter source line

numbers and comments in the generated Fortran code, as well

as to include statements tor debugging that are compiled

only when the corresponding switch has been enabled.

Finally, the new version of the preprocessor. has been

installed on the operating system so that it can be invoked

.
• t .. PAGE 14

in the same manner as the~ Fortran compile~ or any other

system utility. By using the appropriate command, the

Ratfor user can now either invoke the Ratfor to Fortran step

only or the entire Ratfor to object code translation in a .

single comm~nd to the operating. system.· ·

.Modifying the preprocessor itself so that it is in. an

easy to use form was only the ~irst step in gaining

acceptance for Ratfor. While the original Ratfor paper gave

a fairly complete description of an early version of the

language (2], the current version of Ratfor has a number of

extensions over the original. A much more complete Ratfor

do~ument Cas well as source code for the preprocessor) had

been obtained from the Advanced Systems Research Group at

the Lawrence Berkeley Laboratory [3] • That document was

extensively rewritten and reorganized to present Ratfor in a

more orderly fashion, as well ·as to describe the new

features. A fairly large librar~ of useful Ratfor routines

was also supplied by the ·Lawrence Berkeley group. This

library was expanded (and currently includes nearly 40

.routines) and a description of each routine was included in

the user's document. The resulting document, almost 75

pages long, now- serves as a complete and definitive Ratfor

programmer's manual.

Ratfor is easiest to read if it is well laid out and
0 .

folldws a consistent set of indentation rules. The other

project members requested that an automatic formatting

PAGE 15

program be obtai~ed or written. Since no other·Ratfor

formatter was knnwri to exist, one was. written one using the

original version of the Ratfor preprocessor as a starting

shell. Using this shell, he Ratfor f6rmatter was written in

less than a week. The formatter i~ not a trivial program

and it is extremely doubtful .that it could have been written

so quickly had· ·the the language been Fortran instead .of

Ratfor.

The final tool added to the Ratfor arsenal was a cross

reference generator. A cross ·reference generator is useful

for detecting typo~raphical errors (~.g., 'lisths' instead

of 'listhd'), a~ well as aiding tl1e understanding of the

overall variable. usage of someone else's program. Again

stariing with the Ratfor preprocessor as a snell, the cross

reference generator was written in less than two days. The

fact tha~ it was possible to write both the formatter and

the cross reference generator in such a short time, as well

as the ease of maintaining the original Ratfor preprocessor

code, can be attributed largely to the language benefits of

Ratfor.

The efficiency of both. the preprocessor and the

resulting generated code was also of concern. The oiiginal

distributed version of Ratfor took 175 seconds to translate

itself to Fortran on a Digital Equipment VAX/VMS system,

while. the Fortran compiler took only 81 seconds to produce

the object code from the resulting generated code. Uslnq

•

~ PAGE 16

some s~ggestions from Scft~a~e Icolst as well as from Comer

[4), the preprocessor was modified so that the final

production version takes only 36 seconds to .translate itself.

to fortran.· Thus, the total translation time for Ratfor to

Objeci cod~ is only 44% greater than fortran to object ·~ode .

time alone.

Earlier. studies of the efficiency of code generated by

fortran preprocessors had indicated a fairly low overhead

cost [5) in both speed and space with Ratfor. In ~n effort

to remove· what little overhead there was, the Ratter

preprocessor was modified to generate the "If -· THEN - ELSE

- END IF" fortran-77 construct recognized by the VAX Fortran

compiler. Results of benchmarks showed virtually no

difference in execution speed of Ratfor code and carefully

hand coded equivalent Fortran •.

An entire Ratfor environment has been created within

the normal usage conventions of· the operating ~ystem to

compl~ with the acceptance ·guidelines. The enhanced version

of Ratfor· is much easier to use and is better documented

thari the 0Llglndl v~rsion of natfor •. ·In addition to thP

obvious benefits of improved control structures and free

form input, the maintainability of Ratfor has also been

shown by the ease of the modifications to the preprocessor

itself, as well as the fast implementations of the formatter

. ..
..

PAGE 17

and cross reference· generator.

While this paper describes the specific experiences of

getting a group of.Fortran programmers to accept Ratfor, the

results should apply to any new :software tool in any

environment. Any · new tool ~ust work· we11 within. the ~

conventions of the existing system arid provide significant

benefits before it stands a chance of being accepted. By

recognizing this beforehand and taking appropri~te Steps, it

should be possible to dangle a big enough carrot to get even

the most reluctant user to try a useful new software tool.

And once Fortran programmers have accepted a tool such as

Ratter, the next step to Pascal or other language tool will

not·seem as big.

[11 B. Kernighan, and P. Plauger, Soft~a~e Iools,. Addison
Wesley Publishing Co., Reading, MA, (1976).

[2) s •. Kernighan, "Ratfor - rt
Fortran", Software Practice

Preprocessor · for
and Experience,

Rational
Vol. 5,

395-406 (1975).

[3J ·The Advanced Systems Research Group,
and Applied Mathematics Department,
Laboratory, Berkeley, CA., (1979).

Computer ·Science
Lawrence Berkeley

[4) D.
Rat for
Vol.

Comer, "MOUSE4:
Preprocessor",

8, 35-40 (1978).

An Improved Implementation of the
Software - Practice and Experience~

[5) R. Meeson, and A. Pyster, "Overhead in Fortran
Preprocessors", Software - Practice and Experience, Vol. ?'
987-9.99, (1979).

