Comﬁ‘fﬁfﬁ/f;* /

ml’m SANVD 80 - 1D5[-¢

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, makes any
implied, or assumes any legal liability or responsibility for the accuracy,

express of
cot ess, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does
or imply its endorsement, recommendation, or favoring by the United

warranty

not necessarily constitute
States Government or any agency thereof. The views and opinions of authors expressed herein do not

necessarily state o reflect those of the United States Government or any agency thereof.

Teaching 0ld Fortran Programmers New Tricks ¥

Abstract

For a number of valid reasons, Fortran remains in
widespread use., It can be difficult to get 1long
time Fortran programmers to accept the use of new
software tools that are increasingly required to
lower software costs. In order to gain acceptance
for a new software tool, it is necessary for it to
be easy to learn and use, as well as to provide
new benefits. In the process of introducing the
use of the Ratfor preprocessor for Fortran, a
number of useful guidelines were defined for
gaining the acceptance of any new software tool in
an existing environment,

Bruce E. Wampler, PhD
Sandia National Laboratories
Division 1723
Albuquergue, NM 87185
(505) 844-8414

In the event that this paper is accepted,
the author will attend COMPSAC ‘8@.

¥ SANDBU-1051C - Describes work performed at Sandia
National Laboratories under PDelieEe contract
DE=-ACG4=76DPBQOT789.

N
P ; /)—

DISTRIBUTION OF THIS ARV ZHT f2 uoLi

IR IR (3
nig | L.-'..-U.-\'E.,‘

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

Teaching 01d Fortran Programmers New Tricks %
Bruce E. Wampler .

Sandia National Laboratories
Albuguerque, NM 87185

Jptroductioan

fhe rising cost of éomputer -software has made |t
" essential to use state of tﬁe art software engihee;ing
practicesAto improve software productivity. . Almost no one
would " disagree with the fact that the use of modern
techniques of structured =~ program design, préferably
supported by a strucfured programming language, can reduce
both initial software costs énd long term maintenance costs.

While the.ideal would call for the universal use of a
structured programming language sdch as Pascal, Fortran 1is
still the language most widely used in a large part of the
computer software industry. Fortrén naé many qualities that
keep it the one truly universal pfogramming language
available today. First and foremost, a Fortran compiler is
available for virtually every computer made.: Fortran. 1s
ugually heavily supported by the major computer
manufacturers, with its compiler often generating theo most
efficient &ode of "any language processor available for a
particular méchine. " In addition, Fortran usually interfaces
to a 1large library of system support routines and utility
"---‘;-;;;;;8:;;Sic - Describes work performed at Sandia

National - Laboratories - under D.0.E. contract
DE~ACP4=T6DPVVT789. .

0

PAGE 2

programs, as weli a; to assembly language proérams.

There is another‘reasoﬁ for Fortréﬁ's continued . use::
many prograﬁmers 'already ‘Know it, use it, and if not love:
it, at least see no reason to leave it. While most recent.

graduates ‘from: computer science programs have -been heavily-

éprsed to structured programming tééhniques and languages,

there ére a great many people élready ‘working in the
software industry who ‘"grew up" on Fortran; For these
people, who have been "thinking" in Fortran for mény years,i
the advanced control and data structures of a language iike
Pascal can be extrehely difficult to learn. In addition,
thére can be a great deal of inertié' involved and
progrémmers are often relucﬁant to ieave the security of the
status quo. |)

Even though ;hese and other. factors haQe resulted in
the continued use of Fortran, it simply does not contain the
language features needed to supbort's;ructured programming.
Fortran 77 1is not much of an improvement. "The programmer
still lacks a8 complete set of‘loop control structures, is
limited bpy data types, and is forced to use a rigid and
inconvenient statement layout‘iofmat.

One ' solution to the problem is the use of a
preprocessor that ”converts a language with' structured
control stétements aﬁd pleasant cosmetics into standard
Fortran. The good points of Fortran are retained, while the

benefits of a structured language are also obtained. Since

K]

'PAGEV3

the ’underlfihg lénguage is Fortran, it is also an easier .
"(although still not trivial) task :or long time Fortran-
brogrammers to learn the new language. Once of the best and:
most widely avallable preprocessors s .Ratfor. (Rational .

Fortran), originally developed by Kernighan and Plauger and:

described in their book Saftuare TAAls (11. Ratfor provides
structured -control statements (if eise,'whiie, fof,.repeat,
and do. loops) as well as{some othef feaﬁures that make the
language easier to uée (ffee form input, character string
faCilitiéé, better comment conventibns, define étatement,
and include file processing).

The. author is currently involved in a large project at
sandia National Laboratories that 1is will 1ink a large
number of remote data gathering computers in different parts
of the country to a central site for processing and display.

While the use of a structured language like Pascal would be

"very desirable to wuse for software development, several

factors dictated the' use of Fortran: it - was the best

1]

supported language ‘on the computer = used for initial

development~WOrK, the ultimafe target computer was unknown,

and the other project members were long time Fortran users.

Since Fortran 1Is so unpleasant to use (at least fbr someone

accustomed. to a more structured language), Ratfor seemed to

be a reasonable alternative.
" While Ratfor has a number of advantages over Fortran,

the other project members were not ready to instantly accept

PAGE 4

itS‘USe; It should be emphasized that the use. of Ratfor:

depended ‘'solely ‘on user acceptance. in an informal-
environment, with no decrées from management to compel 1its: -
" use. Theg Ratfor preprocessor - (as- described in Soffuare.

Icols and distributed by Addison WWesleyA~PUbiishing)n was'i.
designed with portability. as' a ‘major goal and és result -
lacks a number of features needed for program devgiOpment
vwork in a professional production environment, such as
complete error diagnostics and a8 <clean interface to the
existing operating system environmeﬁt. It took a number of
changes to the Ratfor preprocessor and -the implementation of
édditional support tools before the other users were Willing
to accept Ratfor. The resulting Ratfor software develppment
environment has - turned out to. be far superior to both

Fortran and the original version of Ratfor.

Guldelipes for gaioing acceptance ef a seftuare Laol '

The re;t of this papef * describes 'the 'author’s
experiences in getting a new soffware tool accepted by users
ih an establisned‘ environment. While these -experiences
describe the problems ggtting Fortran users to accept
Ratfor, they actually refléct “the 'basic human natures,
Consequently, these experiences can be readily extended to
the geqeral situation of getting.establisned. users of any
system to .accépt a new soﬁtware tool.-‘ The foliowing

guidelines summarize these experiences.,

PAGE S

1. It should be easy to learn.
2. It should conform to present system usage conventions.

3..1It should interface with. éxisting software: system -

services, utilities, libraries.

4, It should have adeqﬁate documentation and support

tools.
5. It should run efficiently and generate efficient code.
‘6., It should be as flaw free as possible.

7. Its benefits should be great enough to Justify leaVing

the current systenm.

Each of the above guidelines is discussed in greater detail

in the following sections,

1. If 5h001d be eésy to learn.

Recent graduates of ’compdter science 'schools. have
received training in the wuse of structﬁred programming
languages and techniques. Most of these-graduates'have been
taught to learn and master a new brmqramming in A snor; time
as a matter of course. Gaining acceptaﬁce for a -new
vlangﬁage .or . tool from this éegment of programmers 1is a
relatively easy‘task; ' |

On the other hand, many o0f programmers working in

PAGE 6

lindustry today have not‘had this training (dsuglly because
0of a lack of opportunity), and find learning a déw language
a difficult task. Many ;of: tnese: programmers havé.been
"raised" on Fortran, and are used to solving problems 1in
Fortran, . After spending many-years :.thinking of problem§ in
terms 6f Fortran, it is often very difficult to change _into
the structured mode of thinkihg allowed by é language .such
as Pascal. And wnile.fhe structured control cénstructs are
difficult enough for Fortran programmers to learn, the rich
data types and structures used by languages such as Pascal
can be totally bewildering.' |

" Faced with the double problem of learning neQ control
constructs as well as complicated data type declarations and
syntax, many Fortran programmefﬁ will give up before they
~have the chahce to realize the full benefits provided by a
m?dern language. In order for theh to .- even try a new
language, let alone accept it for full timé use, it must be
easy to learn. The learning process can be facilitated if

much of their knowledge of Fortran can be applied directly

to the new language,

2. It should conform to present system usage conventions.
Once the progfammers have.beeh convinced to try a new

language, they shduld not be forced to also lea;n a hew set

of rules for using the language on fhe ‘existing operating

system, The new language should be usable in the same

fashion. to which the users have become accdstomed when using

PAGE 7

Fortfan. They should be able to use tﬁe same file system,
the same editors, and the same operating system command
.languagg syntax. to .compile -a prograi.. If 1listings and
‘compilation diagnostics are produced by the: new language,
they - should use the same conventions used by tﬁe Fortran
compiler, If the new language comes as a stand alone system
with 1ts own editor and cﬁmmand syntax, thére will be more
obstacles to be évercbme by the new user, and widespread
acceptance {is unlikely unless the new 'system gives an
immediate and obvious improvement over the existing system,
Usually howevef, programmers like "with stick to familiar
opera;ing pfocedures, even if they aré not as good as might

be possible,

3. It should interface with existing software,

Typically, - an operating system wi;l provide the-
programmer with a number of system services tq perform
various functions such as obtaining system time, performing
spgcialized I/0, and other such system dependent tasks. In'
addition, thereAare often other utility libraries, such as
graphics packages, mathematical analysis rou;ines, and sort
utilities provided within the normal environment of the
operating system, Most COhmODlY: the programmer has two
choices for interfacing with these utiiities: assembly
language or Fortran. |

Fortran usefs'are accustomed to. these facilities and -

are not usually willing to give them up. In‘order for a new

PAGE 8

language to be aécepted, it too sbéuld interface to these or
equiialent services and libraries. This interféce should be
.easy to use,. Réquirements for . special declaration
statements or use of indirect. interface technique canilead'
to rejection:pf the entire tool or language, no matter how

great the. other benefits may be,.

4, It should have adequate documentation and support tools.

While Fortran may not be the ideal problem solving
languagev'at'least'the procedure for Eompiling, linking, and
executing a Fortran program will usually be straightforward,
and the techniqugs needed for performing that prbcedure are
usually well‘docﬁmented and familiar from long use. Any new
language or tool must pbe at least as easy to use as Fortran,
Documentation required to use the language (language
specification, wuser‘’s. manual, .etc.) . must be complete and
- useful., Incomplete, obscure, or -inaccurate doéumentation
can be worse than no documentation at all.

In addition to generating object . code, Fortran
compilers usually are able to p}oduce very complete listing
files'which usually include a numbered 1listing of each
'.subprdqram. a éross reference map., and any error.
diagnostics. A new language processor should be able to
berform the same functions. The error diagnostics must be
complete, Informative, and corre&t.

If a preprotessor is used, then an intermediate file of

generated Fortran code will be produced. It 1is often

PAGE 9

difficult or impossible -tolfmapA errors Adetected by- the
Fortran compiler back to the original source code. Nhile
such difficulties may be impossible to eliminate, they
should be minimized 8s much as possible,

‘Other supportvtools many be needed 1in addition. - .For -.-
example; strpctured programs require indentation in order to -
achieve‘full readability. Extensive revision of programs.
that were 6riginally nicely indentea and laid out can result
in a tangled mess. The availability of an automatic
formatting program which will reformat a program to follow a
well defined set of indentation and layout rules can be a
big' factor in 4gainin§ acceptancé for. a new programming
-languageo Péogrammers can be lazy and if the new language
will take <care of program formatting automaticaily, then
that will often be a big advantage over Fortran. Fofmatters
alsb can produce code that 1is uniform across an entire
project involving many’ programmers. However, such
formétters. should handle comments reasonably and allow the
user to override the formatter defaults when necessary.

Many current operating systems .provide powerful
-ihteraétive Adébugging facilities. bften) thése débugging
facilities interface only with assembly languagé or Fortran.
A new language should either provide {ts own débugéiﬁg
facilities, or interface easily witﬁ the current debugger.
If the new languége proviées its own enhanced debugging

tools, as well as an interface ¢to the existing »dcbugging

PAGE 1v

facilities, so much the better.

5. 1It shopld run efficiently and generéte efficient code.

Production Forttén compilers usually run fast and-
almbs; always produce -effiéiept object code. While
execution speed'is no longer as critical as it once was, it
is still important. If the ,Eode produced by the new
language.processo; is not as efficient as that produced by
Foftran,A then there is & reason to reject the new language.
Perhaps just as important as the execution. speed is the
compilation speed. Programmers do not 1like to wait for
thgir programs to be compiled. If a Fortran ;reproces$or is
‘used, the tdtal compilatibn must necessarily be longér than
the Fortran compilation time alone, If the preprocessor
does much moré than doﬁble the total time, iﬁ is likely to

be rejected.

6. It should be as flaw free as possible,

Unwi;linq i1sers can ¢go to great 1engths to find
some;hing wrong or 1inconvenient with the use 6f a new
~lahgua§e of tool; If acceptance is to be gained,lleéitimate
complaints about the operation of a new tool cannot be
dismissed iightly. If the new product is to be commercially
purchased, ‘it should ﬁirst be thofoughly evaluated to be
sure. there will not be grounds for'éerious complaints. If

the 'source 'code for the new product is available, there is

more flexibility since the complaint. can be ‘.handled by

PAGE 11

fixing the problem, There Shquld be cpmpromise, however,
While no . complaint can be dismissed without at least
considering it, unjustified cohplaints should not be allowed
to result in either thé rejection of- a 'prqduct» or
unnecessary revision in its standard operaﬁion. The result
of:thié.constructive give and take process will not only
increaée' the chances for aCcebtance, but will also likely

lead to a much better end product.

7. The benefits should justify leaving the current system.

~The introduction of a new language or ;ool will require
an 4initial 1learning curve for uéers not already familiar
with it. The shorter the learning curve, the greater the
chance for acceptance. If the new language is implemented
as a préprocessor, for example, then ﬁhere will also ‘be some
overhead in - compilation time and ease Of use (relating
generated'Fortran back to the original code,' for example).
In addition, thgfe will 1likely be a great'éeal of inertia to
overcome. The benefits producéd by switching to the new
language ' or tool should be great enough to outweigh all of
these costs..

If a great enough-benéfit can be obtained.'from a newv
_tool or language, then it is still possible for it to gain
acceptance even -though it ~fails one of the previous .
cfiteria. However, {f the benefits are only marginal (or
pcfceived to. be harginal); then ﬁailing.any of the «criteria

will likely lead to rejection.

PAGE 12

Galniog acceptance fqr Ratifar

The above guidelines were .discovered (or rediscovered)

in the .process of Qaining acceptance for Ratfor. Wwhile in

retrospec; the rules may seem obvious; had- they‘ all been
Kﬁown' and believed beforeﬁand, that process would have been
much easier. Ratfor already complied with. some of the
guideiihes,‘ but failed té'meet‘others until modifications
were made, The following paragraphs describe ho& the new
version of Ratfor complies with these quidelines.

Probably the main thing Ratfor has to offer is that it
is designed to work on top of a Fortran environment. The
step from Fortran to Ratfor is much eésiér tb take thaﬁ the
step from Fortran to Pascal. The basic data types of-Ratfor
are .the same and the control stfuctures are tYpical of any
structured -programming 1anguagé (e.g., if then else, while,
repeat). Thus, when learning Ratfor, the Fortran prbgrammer
1s.ébnfronted only with the new control structures, and does .

not have to farce a haffling array of new, complicated data

types. In fact, @ost Fortran programmers can start to learn

"Ratfor by converting a few old programs from Fortran into

Ratfor.

in addition, since Ratfor |is tran;lated directly to
Fortran, it will interface directly with anything that
Fortran will. Thus, any ° existing system services,
libraries, or utility packages that Fortran can use are

equally avallable to Ratfor. This eliminates one argument

PAGE 13

that can often be used against :other languages such as
Pascal.
'On the other hand, the distributed portable version of

the Ratfor -“preprocessor was definitely not easy to use.

‘There was. a tWO‘Stép process the programmer has to -

explicitly - invoke when. compiling a brogram: Ratfor to -
Foftfan} then Fortran td object code, Thé Ratfor to Fortran
step usually could not use the same system conventlions as
the Fortran to object code step. It was also.very difficult
to. debug Ratfor programs translated by the distributed
versioh of the preprocessor, The error diagnostics, while
informative, were 'very diff1CU;t' to ‘rela@ef'back to the
offending line of the originél Ratfor code.

Fo:tunately, the Ratfor preprocessor ipself was written
16 Ratfor, and was thus easily modified to overcbme its

shortcomings., The error diagnostics were changed so that

they would print the message, the offending line, and an

exact line number within a routine on the user’s interactive
terminal. Several new preprocessor options were also

impiemented in the form of user specifled switches. These

switches allow the prbgrammer to include Ratfor source line

numbers and éomments in the generated Fortran cdde, as well
as to include ;tatements for debugging that are compile&
only when the ‘corresponding swifch has been enabled.
Finally, the"ngw version éf the preprocessor. . has been

installed on the operating system so that it can be 1invoked

-4

PAGE 14

in the same manner as the Fortran cbmpiler or any other -
systém utility. By using the appropriate c¢ommand, the -
Ratfor user can now either invoke the Ratfor to.Fortran~step
only or thé‘entire Ratfor to object code t;anslation -in 'a <
single command to the operating system,-

Modifying the;preprocessor itself so that it is 1in. an

easy to use form was .only the . first step in gaining

acceptance for Ratfor. While the original Ratfor paper gave

a fairly complete description of an early version of the
lapguage {2), the current version of'Ratfor has a number of
extensions over the original. A much more complete Ratfor
69Cument (as well as source code for the preprocessor) had
been thained Vfrom tﬁe Advanced Systems Research Group at
the Lawrence Berkeley Laboratory [31. That»‘document was
extensively rewritten and reorganized to present Rat:or in a
more orderly fashion, as well. as - to Qescribe ~the hew
features. A fairly large library of useful Ratfor routines
was also supplied by the 'Lawfence Berkeley . grodp. This

library was expanded (and currently includes nearly 49

.routines) and a description of each routine was included in

the user’s document, The resulting document, almost 75
pages long, NowW.- serves as-a complete and definitive Ratfor
programﬁer’s manual,. | |

Ratfor 1is easiest to readaif,iﬁ is well 1laid out and
follows a cons;stent set of indentation rules. The other

project members requested that an automatic¢ formatting

-

PAGE-15

program be obtained or written. Since " no other Ratfor

formatter was known to exist, one was written one using. the

‘original ‘vérsion of the Ratfor preprocessor as a starting

shell. Using this shell, he Ratfor formatter was written in
less than a week. The formatter is not a trivial program
and it is extrémely doubtful that it could have béen written
éo quickly- had- "the the llahgﬁage‘been Fortran instead of
Ratfor. |

The final tool added to the Ratfor arsenal was a Cross

reference denerator, A cross reference generator is useful

for detecting typodraphiéal errors'(é.g., *lisths” instead
of “listhd”’), as well as aiding the Qnderstanding'ofrthe.
overall variableAuéage of someone else’s program. . Again
starting with the Rétfof preprocessor as a snell, the cross
reference generator. was written in less than two dayé. The

fact that- it was possible to write both the formatter and

the cross reference generator in such a short time, as well

.as the ease of maintaining the original Ratfor pfeprocessor

c¢ode, can be attributed largely to the language benefits .of
Ratfor.
The efficiency of both. the -preprocessor and the

resulting'=generated code ‘was also of concern. The original

distributed version of Ratfor took 175 seconds to translate

jtself to Fortran on a Digital Equipment VAX/VMS system,
while. the Fortran compiler took ohly 81 -seconds to produce

the object -code from the resulting generated code. Using

PAGE 16

some suggestions from Spgftkare Ipals., as well as from cdmer~
{4), the preprocessor waS modified so that the final
production vérsion takes only 36 seconds to .translate itself =
to Fortran. Thus, the ‘total translation time for Ratfor to
'object'codé is only 44% greater than Fortran to object i¢ode.‘
time alone. |

EaflierAstudieé bf the efficiency of'code generated by
Fortran preprocessors had 1Iindicated a fairly low overhead
cost [5] in both speed and space with Ratfor. - In an effort
to remove what little overhead there was, the Ratfor
preprocessor was modified to generate the "IF = THEN - ELSE
= END IF" Fortran=-77 construct recoénized by'thé VAX Fortran
compilér. Results of benchmarks showed V virtually no
difference 'in execution speed of Ratfor code and cérefully

hand coded equivalent Fortran..

Canclusians

An entire Ratfor environment has beeh creaﬁed within
tbeA normal uéage conventions of the operating system to
comply with theAaéceptanqe'guidelines. ThéAenhancgd version
of 'Ratfor' is much -easier to use and 1s better documented
than the uilyginal version of Ratfor. - In addition tn the
obvious benefits of {improved ~control structures and free
form input, the maintainability 6f Ratfor has élso been
ghown by the ease of the modifications to the preprocessor

itself, as well as the fast 1mplémentations of the formatter

PAGE 17

and cross re:grence-géﬁerator.

While tﬁis paper describe5<tné specific expéfiences of
getting a group of,Fo;tran programmers to accept Ratfor, the
results should apply _to any new :software tool in any.:
environment, Any "new tool -must work- well within.. the

cqnventions of the existing system and provide significént

bénefité before it stands a chance of being accepted., By

recognizing this béforehand and taking appropriate $Steps, it
should be possible to dangle a big énougﬁ carrot to get even
the most';eluctant user to try a usefﬁl new softQare tool.
And once Fortran programmers have accepted a tool such as
Raﬁfbr,-tné next step to Pascal or other langhage tool will

not seem as big.

References

(1) B. Kernighan, and P. Plauger,'80ftﬂa:e Iaals, Addison

Wesley Publishing Co., Reading, MA, (1976).

. (.) :
[2] B.. Kernighan, "Ratfor = A Preprocessor - for Rational
Fortran", Software = Practice and Experience, Vol. 5,

1395-4p6 (1975).

' [3] The Advanced Systems Research Group, Computer Science

and Applied Mathematics ~ Department, Lawrence Berkeley

‘Laboratory, Berkeley, CA., (1979).

(4] D. Comer, "MOUSE4: An Improved Implementation of the
Ratfor Preprocessor", Software = Practice and Experience,
Vol. 8, 35-49 (1978). '

[5):- R. Meeson, and A. Pyster, “Overhead in Fortran
Preprocessors", Software =~ Practice and Experience, Vol, _g,
987-999, (1979). ‘ -

