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SUMMARY . 

' . ' S tud ies  o f  t he  o x i d a t i o n  and g a s i f i c a t i o n  o f  o i l  shale char have 

been extended t o  an i n v e s t i g a t i o n  o f  the e f f e c t s  o f  minera l  c a t a l y s i s .  

S i x  shales w i t h  d i  f f e r r i n g  minera l  composit ions were studied, i n c l u d i n g  

samples from t h e  s a l i n e  zone i n  the  Western Colorado and f rom the  

A n t r i m  shales o f  Michigan. Ox ida t ion  k i n e t i c s  data, co r rec ted  f o r  mass 

t r a n s f e r  e f f e c t s ,  were compared f o r  a l l  s i x  samples. A h igh  assay 

sha le  from Utah and a sample from the  s a l i n e  zone were found t o  have 

t h e  h ighes t  o x i d a t i o n  ra tes .  by examlnleg the  data f u r  shales which 

were water  leached and the rma l l y  pret reated,  i t  was concluded t h a t  bo th  

NaO and CaO a c t  as o x i d a t i o n  c a t a l y s t s .  

However, as a r e s u l t  o f  minera l  decomposit ion experiments 

conducted w i t h  a sample from the  C-a lease t r a c t ,  i t  appears as though 

t h e  a n k e r i t i c  dolomi te f r a c t i o n  w i l l  n o t  decompose as l ong  as there  i s  

a minimal C02 over pressure. Rather, low temperature s i l i c a t i o n  

r e a c t i o n s  appear t o  take  p lace once the  temperature exceeds 92%. 

An exterisive eva lua t i on  was a l s o  complctcd f o r  the  g a s i f i c a t i o n  O f  

an An t r lm  shale fro111 M i ~ t ~ i g d n .  Both the r a t e s  o f  C02 and steam 

g a s i f i c a t i o n  o f  the  char  were found t o  be markedly lower than t h a t  

observed f o r  a shale sample from the  Parachute Creek member i n  

Colorado. However, un l  i ke the  Colorado. shale, the  make gas r e s u l t i n g  

f rom t h e  steam g a s i f i c a t i o n  o f  the Ant r im shale produced nea r l y  equal 

q u a n t i t i e s  o f  LO and COZ, Thus, desyi t e  the h igh  concent ra t ion  o f  i r o n  

i n  t he  An t r im  shale, the  water gas s h i f t  r e a c t i o n  i s  n o t  ca ta lyzed 

n e a r l y  t o  the  same e x t e n t  as i n  western shales. 
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I NTRODUCTION 

Over the  pas t  6 years the  p r i n c i p a l  i n v e s t i g a t o r  i n  t h i s  research 

endeavor has been i nvo l ved  i n  s tud ies  o f  the  occurrence and associated 

k i n e t i c s  o f  o i l  shale char react ions.  There has been and remains a 

h i g h  mo t i va t i on  f o r  s tud ies  o f  these reac t i ons  because o f  the  f a c t  t h a t  

as Dockter [l] has po in ted  out, there  i s  more than enough energy i n  the  

r e s i d u a l  char remaining on r e t o r t e d  o i l  shale than i s  requ i red  t o  

supply the  process heat  f o r  the  r e t o r t i n g  process i t s e l f .  Our i n i t i a l  

s tudy [2] focused on the  combustion and steam g a s i f i c a t i o n  k i n e t i c s  o f  

a shale sample from the  Parachute Creek member. Not  on ly  d i d  t h i s  

study produce useable r e a c t i o n  r a t e  expressions f o r  t h i s  o i l  shale, b u t  

i t  a l so  po in ted  o u t  the importance and uniqueness o f  the  var ious  

minera l  species w i t h  respect  t o  t h e i r  c a t a l y t i c  a c t i v i t y  f o r  those 

reac t ions .  With these r e s u l t s  the research was extended t o  consider  

o t h e r  o i l  shales w i t h  d i f f e r r i n g  mineral composit ions i n  an e f f o r t  t o  

determine whether char o x i d a t i o n / g a s i f i c a t i o n  r e a c t i o n  r a t e s  would be 

s u b s t a n t i a l  l y  a1 t e r e d  i n  the  presence o f  d i f f e r r i n g  minera l  

composit ions. Th i s  r e p o r t  deals w i t h  the  r e s u l t s  o f  t h a t  extended 

research e f f o r t .  

A t  the  t ime t h i s  research was i n i t i a t e d  i t  appeared t h a t  study o f  

shales found i n  Utah and Wyoming as w e l l  as samples from the  An t r im  

sha le  deposi ts  i n  Michigan would be a l l  t h a t  was necessary i n  o rder  t o  

achieve the  goals o f  the  research. However, very e a r l y  i n  the  p r o j e c t  

i t  was discovered t h a t  a number o f  o ther  o i l  shale samples had even 

more unusual minera l  composit ions and was f a r  more deserving o f  stuay. 

No t  on ly  d i d  the o i l  samples which were a c t u a l l y  s tud ied  d i f f e r  from 

t h a t  o r i g i n a l l y  planned, b u t  as the course o f  t he  research progressed, 



i t  became apparent t h a t  focus ing  on the o i l  shale char  reac t i ons  

themsel ves would be f r u i t l e s s  unless a g rea te r  understanding was 

ob ta ined  o f  the  minera l  reac t ions .  I n  a d d i t i o n  i t  soon became apparent 

t h a t  q u a n t i t a t i v e  analyses of  the var ious o i l  shales was extremely 

impor tan t  and t h e r e  was very l i t t l e  i n fo rma t ion  regard ing  the  

q u a n t i t a t i v e  composi t ion o f  western o i l  shales. Even more 

s i g n i f i c a n t l y  i t  was n o t  c l e a r  exac t l y  how t o  b e s t  proceed w i t h  an 

accura te  and p r e c i s e  q u a n t i f i c a t i o n  o f  the  minera l  composit ion o f  

western o i l  shales. Thus the o r i g i n a l  research was a1 te red  t o  i nc luae  

a more r i go rous  q u a n t i f i c a t i o n  o f  the  minera l  composit ions o f  se lec ted  

o i l  shales and t o  focus on some o f  the minera l  changes and reac t i ons  

wh ich  occur d u r i n g  c o n d i t i o n s  t y p i c a l  o f  char  o x i d a t i o n s / g a s i f i c a t i o n .  

A S  a r e s u l t  o f  t h i s  change i n  d i r e c t i o n  a k i n e t i c  study o f  the steam 
J 

g a s i f i c a t i o n  o f  these var ious  shale samples was n o t  undertaken. 

Rather,  a  more thorough i n v e s t i g a t i o n  was undertaken i n  order  t o  

determine t h e  s p e c i f i c  minera ls  (and t h e i r  composit ions) which r e s u l t  i n  

c a t a l y s i s  o f  the  char  redctrons.  I t  was fuurid t h a t  t h i s  was achicvcd 

much morc r e a d i l y  by concen t ra t i ng  on the eo111busli01'1 r 'eactions o f  

v a r i o u s  shales s incc  we had a l ready d e v e l o p ~ n  th i s  technique t o  a f a r  

g r e a t e r  ex ten t .  Furthermore the  combustion r e a c t i o n s  proceed a t  

temperatures which a r e  lower than those a t  which the  n ~ i ~ i e r a l  speeies 

r e a c t .  

I n  a d d i t i o n  t o  a r a t h e r  complete study o f  t he  e f f e c t  o f  minera ls  

on char. combustion, a number of expcrirnental techniques were a l so  

developed i n  o rder  t o  o b t a i n  a b e t t e r  app rec ia t i on  o f  the  e x t e n t  and 

occurrence o f  the  impor tan t  minera l  reac t ions .  I n  combfnation w i t h  

t h i s  approach, i t  was a l s o  decided t o  o b t a i n  experimental  measurements 
. . .  

o f  t he  r e a c t i o n  r a t e s  o f  some s p e c i f i c  minera l  reac t i ons  s ince they 



occur simultaneously w i t h  res idua l  o i l  shale char  o x i d a t i o n / g a s i f i c a t i o n .  

T h i s  r e p o r t  w i l l  d iscuss the experimental  equipment and techniques 

which were used.dur ing  the  course o f  the  research (some o f  which had t o  

be developed) and prov ides a  thorough d iscuss ion  o f  some . o f  the 

r e s u l t s .  The chapter  dea l i ng  . w i t h  the  r e s u l t s  o f  the  research w i l l  

d iscuss  the c h a r a c t e r i z a t i o n  r e s u l t s  as w e l l  as the combustion ra tes  o f  

western shale and the associated e f f e c t s  o f  minera l  c a t a l y s i s .  I n  

con junc t i on  w i t h  t h a t  p a r t i c u l a r  phase o f  t he  p r o j e c t ,  an a n a l y t i c a l  

technique w i l l  be descr ibed which was necessary , to account f o r  gas- 

s o l i d  mass t r a n s f e r  e f f e c t s  du r ing  o i l  shale char combustion i n  a  TGA- 

GC apparatus. Th i s  wi31 be fo l lowed by a  presen.tat.ion o f  the  

q u a n t i t a t i v e  measurements o f  some o f  the  impor tan t  minera l  reac t i ons  . 

which a c t  as precursors t o  the  c a t a l y s i s  o f  o i l  shale char 

o x i d a t i o n / g a s i f i c a t i o n .  F i n a l l y ,  r e s u l t s  w i l l  a l s o  be presented f o r  

t h e  C02 g a s i f i c a t i o n ' A n t r i m  o i l  shale and some semi -quant i ta t i ve  

r e s u l t s  o f  the steam g a s i f i c a t i o n  o f  t h a t  oi.1 shale. 



EXPERIMENTAL EQUIPMENT AND TECHNIQUES 

D e s c r i p t i o n  o f  Shales 

S i x  o i l  shale samples were se lec ted  f o r  eva lua t i on  and comparison: 

one f rom the Parachute Creek Member (PCM), one f rom a deep core sample 

o f  t he  C-a t r a c t  (C-a), two from the  s a l i n e  zone i n  western Colorado 

(S-A & S-B), one f rom t h e  Geok ine t ics  s i t e  i n  eas tern  Utah (GEOK) and 

one sample o f  An t r im  sha le  from Michigan (ANT). A l l  o f  the shale 

samples were r e t o r t e d  i n  master batches and under i d e n t i c a l '  cond i t i ons  

i n  a 2.5 cm diameter f i x e d  bed r e t o r t .  A n i t r o g e n  sweep gas a t  100 

scc/min was employed and the  temperature was e levated 'a t  a r a t e  o f  5 

K/mi.n t o  a maximum temperature o f  785 K a t  which p o i n t  i t  was h e l d  f o r  

1 hour. 

Equipment 

F i g u r e  1 shows a schematic sketch o f  the  experimental  equipment 

wh ich  was used throughout  the  research p r o j e c t .  Approximately 1.5 

grams o f  spent shale ( p a r t i c l e  s i z e  approximately 100 microns) were 

p laced  i n  a 400 mesh s t a i n l e s s  s t e e l  basket  which was suspended from a 

r e c o r d i n g  e lect robalance.  Th i s  p rov ided cont inuous grav imet r ic  

read ings  as t h e  reac t i ons  proceeded. The r e a c t o r  vessel was 

cons t ruc ted  o f  310 s t a i n l e s s  s t e e l  and p laced i n  a furnace capable o f  

reach ing  temperatures as h i g h  as 1200K. Any s i n g l e  gas o r  m ix tu re  o f  

gases cou ld  be metered t o  the  r e a c t o r  v i a  a 3.2 m i l l i m e t e r  sparge tube 

and p r o v i s i o n s  were made t o  sample the  e x i t  gases w i t h  on l i n e  gas 

chromatography. T h i s  l a t t e r  f ea tu re  d i f f e r s  f rom most TGA apparatus 

wh ich  t y p i c a l l y  use extremely small sample s izes.  We were fo rced  t o  

use a r e l a t i v e l y  l a r g e  sample sSze i n  OrdeT t o  produce enough product  

gases so t h a t  measurements cou ld  be made on the  gas chromatograph. I n  
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o r d e r  t o  i n s u r e  t h a t  d i f f u s i o n a l  res is tances  w i t h i n  the  shale sample 

bed were minimized, t h e  shale was c a r e f u l l y  spread over  the  basket i n  a 

r e l a t i v e l y  t h i n  l a y e r  (approximately 0.4 m i l  1  imeters ) .  Worst-case 

d i f f u s i o n a l  c a l c u l a t i o n s  i n d i c a t e d  t h a t  d i f f u s i o n  res i s tance  cou ld  be 

s a f e l y  neg lec ted  and t h i s  was v e r i f i e d  when experiments w i t h  h a l f  

l oad ings  gave the  same r e s u l t s  as those w i t h  f u l l  1.5 gram loadings.  

The r e a c t o r  had a d iameter  o f  10 cent imeters  and a t o t a l  volume o f  1100 

c u b i c  cent imeters.  Two sh ie lded chromel-alumel thermocouples were 

p laced  near t he  shale sample. One thermocouple was p laced two 

cetr t in leters above the  sample and the o the r  was p laced so t h a t  i t  bare l y  

missed touch ing  the  sample i t s e l f .  The l a t t e r  thermocouple was used t o  

mon i to r  temperature excurs ions du r ing  the  i n i t i a l  stages o f  combustion. 

The temperature d i f f e r e n c e s  between these two thermocouples r a r e l y  

exceeded 10 K and then o n l y  f o r  one o r  two minutes. 

Whi le  t h e  TGA-GC system j u s t  descr ibed was t h e  pr imary 

exper imenta l  equipment used i n  t h i s  research, se lec ted  shale samples 

were a l s o  analyzed v i a  var ious  e l e c t r o n  microscope/microprobe appara t i .  

Use was a l s o  made o f  the  Department nf  Geology's X-ray f loresccnce u n i t  

( f o r  elemental composi t ion data) and o f  the  X-ray d i f f r a c t i o n  apparatus 

a t  DOE'S f a c i l i t y  i n  Laramie, Wyoming. I n  add i t i on ,  a number o f  the  

samples were f u b j e c t e d  t o  a c i d  leach ing  I n  o rder  t o  quan t i f y  the  

percentage o f  minera l  carbonates present  i n  the  shale. Some of thc  

samples were a l s o  leached i n  water as w e l l  as i n  a c i d  and i n  bo th  

eases the  leachate waters were analyzed by the Department o f  Chemical 

Eng ineer ing 's  atomic absorp t ion  apparatus. 

P rocedures 

Depending on the  phase of the research be ing  conducted, d i f f e r e n t  

procedures were fo l lowed and these were c r i t i c a l l y  impor tan t  t o  the 



c a r r y i n g  o u t  o f  the  experimental  research plan. F i r s t  o f  a l l  w i t h  

respec t  t o  the combustion studies,  the samples were f i r s t  heated t o  the  

des i red  temperature i n  a he l ium atmosphere i n  o rder  t o  remove adsorbed 

moisture.  Once the  we igh t  t r a c e  on the TGA-GC s t a b i l i z e d ,  the  des i red  

concen t ra t i on  o f  oxygen was se lec ted  by d i l u t i n g  a i r  w i t h  helium. A 

number o f  the experiments were conducted i n  the  presence o f  

undecomposed carbonates and i n  these cases the  temperatures were never 

a l lowed t o  exceed 800K. I n  some cases the  samples were f i r s t  subjected 

t o  h i g h  temperatures (800-1050K) i n  e i t h e r  a he l ium o r  C02 atmosphere 

i n  o rder  t o  e f f e c t  changes i n  the  mineral composit ions. Once t h a t  goal 

had been obta ined the  sample was then cooled t o  the  des i red  combustion 

temperature and exposed t o  the  pre-selected oxygen concent ra t ion .  I n  

o t h e r  cases the samples were f i r s t  water leached o r  a c i d  leached i n  

o rder  t o  e x t r a c t  minera l  carbonates and/or s o l u b l e  sodium sa l  ts .  

P r i o r  t o  the combustion t e s t s  themselves, these samples were f i r s t  

d r i e d  i n  an i n e r t  atmosphere a t  575K and then the  procedure j u s t  

descr ibed was fol lowed. 

A l l  o f  the  shale samples s tud ied  i n  t h i s  i n v e s t i g a t i o n  were f i r s t  

g ross l y  charac ter ized w i t h  respect  t o  t h e i r  minera l  con ten t  by a1 lowing 

them t o  decompose i n  a he l i um atmosphere as the  temperatures were 

r a i s e d  from 800K t o  1200K a t  a heat ing  r a t e  o f  2.7K/min. As mentioned 

e a r l  i e r ,  two o f  the shale samples were se lec ted  f o r  a more, thorough 

i n v e s t i g a t i o n  o f  t h e i r  minera l  reac t i on  a c t i v i t y .  I n  these experiments 

t h e  samples were f i r s t  "decharred" under m i l d  o x i d a t i o n  cond i t i ons  (10 

percent  02, 700K). Since the pr imary methods o f  a n a l y s i s  i nvo l ved  TGA 

techniques, i t  was impor tan t  t o  at tempt t o  i s o l a t e  the  var ious  minera l  

reac t i ons  so t h a t  some guarantee cou ld  be obta ined t h a t  we were l o o k i n g  



a t  i n d i v i d u a l  r e a c t i o n s  and n o t  simultaneous reac t ions .  As w i l l  be 

d iscussed i n  the  Resu l t s  sec t i on  o f  t h i s  r e p o r t  t h i s  was n o t  always 

poss ib le .  The procedures and ensuing problems a re  b e s t  understood by 

r e f e r r i n g  t o  the  th ree  se ts  o f  reac t ions  which descr ibe the  pr imary 

m ine ra l  r e a c t i o n s  occur r ing :  t he  decomposit ion o f  a n k e r i t i c  dolomi te 

(Equat ion  ( 1 )  1, t h e  r e v e r s i b l e  decomposition o f  c a l c i t e  (Equation ( 2 )  1, 

and t h e  fo rmat ion  o f  s i l i c a t e s  from c a l c i t e  (Equat ion ( 3 )  1. 

CaMgxFel-x(C03)~Ca0 + xMgO + (1-x) FeO + 2C02 (1 

CaCO3 + MgO + Si02+CaMg S i l i c a t e s  + co2 ( 3  

I n  a1 1 samples t h e  presence o f  Cop cou ld  prevent  c a l c i t e  decomposit ion 

because o f  t h e  r e v e r s i b l e  natures o f  (2).  However, o f  t he  two samples 

s t u d i e d  i n  t h i s  phase o f  t he  p r o j e c t  (C-a and PCM), i t  was found t h a t  

t h e  a n k e r i t i c  do lomi te  i n  the  C-a sample would n o t  decompose (Equation 

1 ) below 925 K i n  the  presence of COY Th is  minimum temperature f o r  

a n k e r i t i c  do lomi te  decomposit ion was very c l o s e  t o  the  range where 

s i  l i c a t i o n  r e a c t i o n s  were expected. Therefore, i t  was f i r s t  necessary 

t o  s tudy the s i l i c a t i o n  r e a c t i o n s  (Equation ( 3 ) )  by r a i s i n g  the  sample 

t o  the  des i red  tempe'rature (1000-1150 K )  i n  the  presence o f  Cop. 

Anke r i  t i c  dolomi te decomposit ion was i n v e s t i g a t e d  by measuring the 

decomposit ion r a t e s  o f  v i r g i n  samples i n  a C02-free environment a t  

temperatures between 800 K and 925 K.  Revers ib le  c a l c i t e  decomposi t i n n  

was then s tud ied  by recarbonat ing  the  CaO formed i n  Equat ion ( 1 )  and 

v a r y i n g  the C02 pressures as w e l l  as temperature. 

I n  our e a r l i e r  work w i t h  the  g a s i f i c a t i o n  of  the  PCM shale, i t  was 

found t o  be necessary t o  f i r s t  decompose the  shale t o  ca lc ium ox ide  i n  



orde r  t o  p revent  c a l c i t e  decomposit ion f rom o c c u r r i n g  simultaneously. 

Since i n  the  work repo r ted  here we concentrated on the  An t r im  shale and 

t h i s  shale i s  extremely low i n  minera l  carbonates (see d iscuss ion  under 

Resu l ts ) ,  we were ab le  t o  prepare the  sample f o r  C02 and steam 

g a s i f i c a t i o n  by f i r s t  a l l o w i n g  i t  t o  decompose i n  an i n e r t  he l ium 

atmosphere a t  a temperature o f , l 1 0 0  K.  Dur ing  t h i s  p r e l i m i n a r y  

p repa ra t i on  we were su rp r i sed  t o  f i n d  t h a t  t he re  was a slow b u t  steady 

decomposit ion r e a c t i o n  which occurs. However the  r a t e s  were so low 

t h a t  i t  was n o t  poss ib le  t o  measure any th ing  i n  the  o f f g a s  except  f o r  a 

very small q u a n t i t y  o f  C02 which we suspect i s  be ing  produced by the  

r e l a t i v e l y  slow decompos-i t i o n  o f  a s i d e r i  t i c  minera l .  Another 

p o s s i b i l i t y  i s  t h a t  i t  i s  due t o  the  h igh  temperature decomposit ion o f  

very s t a b l e  c l a y s  which would be expected t o  g i v e  o f f  water  and which 

c o u l d  n o t  be detected w i t h  the  equipment used i n  our  study. 



RESULTS 

Shale C h a r a c t e r i z a t i o n  

As discussed e a r l i e r ,  a l l  s i x  shale samples were sub jec t  t o  X-ray 

d i f f r a c t i o n  (XRD) analyses, X-ray f lorescence analyses (XRF), and a c i d  

leach ing .  I n  a d d i t i o n  the  o i l  yie1.d. du r ing  the  r e t o r t i n g  was measured 

and i s  repo r ted  as g a l l o n s  per  t on  (no te  t h a t  t h i s  i s  - n o t  a F i s h e r  assay 

procedure).  The r e t o r t e d  shale was then submit ted f o r  CHN analyses and 

t h i s  i n  t u r n  was used t o  c a l c u l a t e  the  percentage o f  organic carbon on 

t h e  spent shale. As anyone versed i n  the f i e l d  of minera l  analyses i s  

aware, i t  i s  ext remely d i f  f l c u l  t t.o nht .a in p r e c i s e  quant i  e a t i  vc 

i n f o r m a t i o n  on minera l  composit ion. Wi th  t h i s  i n  mind the  r e s u l t s  

shown i n  Tables I and I 1  should n o t  be viewed w i t h  anymore p r e c i s i o n  

than  2 20%. Table I shows the  q u a n t i t y  o f  o i l  c o l l e c t e d  d u r i n g  

r e t o r t i n g ,  t he  percentage. o f  organic carbon on the  spent shale and the 

percentage o f  some o f  t he  more impor tan t  elements ob ta ined by XRF. 

A l though the re  i s  a wide v a r i a t i o n  i n  the  o i l  y i e l d s ,  we have p rev ious l y  

showv~ C31 the re  t o  be no e f f e c t  o f  assay on the  combustion a c t i v i t y  o f  

t h e  spent shale. However, i t  i s  i n t e r e s t i n g  t o  note t h a t  the GEOK 

spent  shale sample had over  tw ice  thc  organ ic  car.bur~ con ten t  o f  the 

PCM sample even though the  two had s i m i l a r  o i l  y i e l d s .  T h i s  cou ld  

i n d i c a t e  t h a t  t h e  o r i g i n a l  kerogen i n  the  GEOK sample was more aromatic 

t han  t h a t  i n  t h e  PCM sample C41. The o the r  parameter which va r ies  

s i g n i f i c a n t l y  f rom shale t o  shale i s  the  percentage o f  ca lc ium present  

i n  t h e  spent shale. As  can be secr~, i t  ranges i'ro111 d h i g h  o f  15.2% i n  

t h e  GEOK sample t o  a low o f  0.7 percent  i n  t h e  ANT sample f rom Michigan. 

I t  I s  a l s o  noteworthy t o  p o i n t  o u t  the  d i f f e r e n c e  i n  the  ca lc ium 

c o n t e n t  between t h e  S-A and S-8 sample. The S-A sample has 8 t imes the 

q u a n t i t y  o f  ca lc ium as t h e  S-8 sample and 7 t imes the sodium content .  



TABLE I 

COMPOSITION OF SPENT SHALE SAMPLES 

UGT % SPENT SHALE 

SAMPLE G P T ~  cb ca Mq Fe A 1 Na K S i 

PCM 50 5.1 . 10.2 3.4 2.8 5.0 2.6 1.7, 18.8 

C-a 25 3.5 12.3 3.5 2.5 4.3 2.0 1.7 16.2 

GEOK 44 11.9 15.2 4.3 3.1 4.8 2.3 2.0 19.6 

S-A 30 3.8 8.4 3.6 3.1 6.3 2.8 2.1 22.3 

S- B 40 3.9 1.0 1.0 5.6 10.9 0.4 1.7 30.2 

ANT 11 7.0 0.7 1.2 5.4 8.3 0.4 3.4 31.0 

a Gal Ions per ton 

Organic carbon 



TABLE I1 

Mineral and Elemental compositions 

WGT. % SPENT SHALE 

Minerals GEOK C -a S-A S -B ANT 

Ankerite 
Dolomite 
Kutnohorite-Mg 
Calcite 
Quartz 
Pyrite 
Pyrrhotite 
Siderite 
Albite 
Microcline 
1l.l.ite 
Uelier 

Elemental 



The S-A sample i s  f rom the  s a l i n e  zone i n  Colorado and i s  known t o  be 

h i g h  i n  n a h c o l i t e  and dawsonite. Another p iece  o f  data t o  be po in ted  

o u t  i s  the  f a c t  t h a t  a1 though the i r o n  contents are roughly the  same i n  

a1 1 o f  these samples they are  s l  i g h t l y  h igher  i n  the  S-B and the  ANT 

samples. I r o n  i s  t y p i c a l l y  found i n  spent shale i n  the  form o f  

anker i  t i c  dolomite, p y r i t e ,  p y r r h o t i  t e  and s i d e r i t e .  It i s  i n t e r e s t i n g  

t h a t  i n  v iewing the  minera l  composit ions repo r ted  i n  Table I 1  (as  

repo r ted  by DOE ' S .X-ray d i f f r a c t i o n  measurements), t h a t  the  percentage 

o f  p y r r h o t i t e  i n  t he  S-B and ANT samples i s  s i g n i f i c a n t l y  lower than 

t h a t  i n  the  S-A sample even though the  former had a h igher  i r o n  content.  

As a r e s u l t  i t  i s  d i f f i c u l t  t o  r a t i o n a l i z e  the percentage o f  p y r r h o t i t e  

shown f o r  the  S-A sample. I n  comparing the  S-B and ANT mineral  

analyses, the  ANT sample would appear t o  have s u b s t a n t i a l l y  h igher  i r o n  

than the  S-B sample. T h i s  a r i s e s  from the f a c t  t h a t  i t  conta ins  5% 

P y r i t e ,  6% P y r r h o t i t e  and 6% S i d e r i t e .  The 6% value f o r  s i d e r i t e  i s  

c o n s i s t e n t  w i t h  some o f  t he  h igh  temperature decomposit ion reac t i ons  

discussed e a r l i e r .  I t  i s  a l so  i n t e r e s t i n g  t o  observe t h a t  p y r i t e  was 

found on ly  i n  the  ANT sample. I t  i s  thought t h a t  du r ing  r e t o r t i n g  

p y r i t e  reac ts  w i t h  the  hydrogen given o f f  du r ing  the  p y r o l s i s  o f  

kerogen t o  form p y r r h o t i t e .  This  exp la ins  the absence o f  p y r i t e  i n  the 

o t h e r  f o u r  samples and the  f a c t  t h a t  a l l  b u t  the  C-a sample c o n t a i n  

subs tan t i a l  q u a n t i t i e s  o f  p y r r h o t i t e .  I t  i s  poss ib le  t h a t  s ince  the  

ANT sample i s  known t o  be h igh  i n  sulphur and the  kerogen i s  low i n  

hydrogen, t h a t  a l l  o f  t he  p y r i t e  was n o t  converted t o  p y r r h o t i t e  du r ing  

r e t o r t i n g .  Again, t h i s  d iscussion p o i n t s  t o  the  d i f f i c u l t y  i n  

a t t a c h i n g  q u a n t i t a t i v e  s i g n i f i c a n c e  t o  X-ray d i f f r a c t i o n  r e s u l t s  i n  the  

absence o f  an i n t e r n a l  standard, 



F i g u r e  2 i s  another  method o f  i l l u s t r a t i n g  the  e f f e c t s  o f  

carbonate minera ls  i n  t h e  var ious  shale samples. As can be seen t h i s  

f i g u r e  shows t h e  mass l o s s  f o r  t he  spent shales as the  temperature was 

r a i s e d  l i n e r a r l y  a t  2.7O~/min. i n  a hel ium purge stream. I n  the  GEOK 

sample, on ly  one l a r g e  mass l o s s  i s  apparent and t h i s  occurs a t  about 

600'~.  Th i s  i s  a t t r i b u t e d  t o  dolomi t e l c a l c i  t e  decomposit ion and i s  

c o n s i s t e n t  w i t h  the  r e l a t i v e l y  h i g h  percentage o f  ca lc ium present  i n  

t h i s  shale (see Table I ) .  There a re  two d i s t i n c t  mass l o s s  occurrences 

w i t h  the  ANT sample: one a t  500' C and the  o t h e r  a t  6 ~ 5 ~ ~ .  These are  

a t t r i b u t e d  t o  c l a y  m ine ra l s  which a re  t y p i c a l l y  found i n  devonian 

shale.  The comparison between S-A and S-B i s  very i n t e r e s t i n g  s ince 

t h e r e  appears t o  be much l e s s  minera l  decomposit ion i n  the S-B sample. 

Again t h i s  i s  q u a l i t a t i v e l y  cons i s ten t  w i t h  the  minera l  composit ion 

r e s u l t s  shown i n  Table I 1  where none o f  the  minera l  carbonates 

( anke r i  te,  do1 omi te, ku tnohor i  t e )  were detected. However, the  f a c t  

t h a t  t h i s  sample d i d  experience an a d d i t i o n a l  weight  l o s s  o f  3% a t  

te l l~pera tures  m o v e  5 5 0 ' ~  p o i n t s  t o  the f a c t  t h a t  t he re  must indeed have 

been some mineral  carbonates present  i n  the shale desp i te  the  minera l  

ana lys i s .  The we igh t  l o s s  behavior  f o r  the  S-A sample shows an 

increase i n  t he  mass l o s s  r a t e  a t  4 8 0 ' ~  and then another a t  about 

620%. The former i s  a t t r i b u t e d  t o  dawsoni t e  decomposit ion and the  

l o s s  a t  6 2 0 ' ~  i s  a t t r i b u t e d  t o  c a l c i t e  decomposition. 

I n t e r p r e t a t i o n  O f  K i n e t i c  Data From - A S  TGA Experiments 

Whereas TGA tec l~r l iques  have desi r a i  le arid unique properties when 

i t  comes t o  the  a n a l y s i s  of  the r a t e s  o f  s o l i d  reac t i ons  which a re  

accompanied by we igh t  changes, t he re  are a l s o  a number o f  d e f i c i e n c i e s  

assoc ia ted  w i t h  t h i s  technique. For  one, depending upon the  s i z e  of 

t h e  sample u t i l i z e d ,  h i g h  sweep gas f low r a t e s  can cause severe 



FIGURE 2 



o s c i l l a t i o n s  i n  t h e  g rav ime t r i c  weight  t race  and lower the  u l t i m a t e  

s e n s i t i v i t y  o f  t he  technique i t s e l f .  Unfor tunate ly ,  i n  the case o f  

h i g h  s o l i d  r e a c t i o n  r a t e s  (such as combustion) h igh  sweep gas r a t e s  are 

d e s i r a b l e  i n  order  t o  minimize gas-so l id  mass t r a n s f e r  l i m i t a t i o n s .  

D u r i n g  t h e  course o f  t h i s  i n v e s t i g a t i o n  we discovered t h a t  the  char 

combustion a c t i v i t i e s  were unusual ly  h igh  and, consequently, mass 

t r a n s f e r  1 i m i t a t i o n s  p layed a s i g n i f i c a n t  ro le ,  p a r t i c u l a r l y  a t  the  

h igher  temperatures. T r i a l  and e r r o r  exper imentat ion i n d i c a t e d  t h a t  we 

c o u l d  n o t  e l i m i n a t e  t h e  mass t r a n s f e r  res is tance by simply r a i s i n g  the  

sweep gas f low r a t e  due t o  unacceptable o s c i l l a t i o n s  i n  the  grav imet r ic  

readings. Consequently, i t  was decided t o  a t tempt  t o  model t he  

behav ior  o f  char  combustion i n  our TGA apparatus and thereby account 

f o r  t h e  mass t r a n s f e r  res is tances separately. 

S t i l l  another problem was associated w i t h  the  f a c t  t h a t  a t  

t ime  = zero, a des i red  oxygen o r  steam concent ra t ion  was se lec ted and 

f e d  t o  the  reac tor .  Even i n  the absence of t he  r e a c t i n g  s o l i d  there  i s  

a f i n i t e  amount o f  t ime requ i red  Before the reac to r  i t s e l f  w i l l  reach 

t h e  i n l e t  concent ra t ion  o f  the  r e a c t i n g  gas. Since our reac to r  system 

behaved as an i d e a l  backmix reactor ,  t h i s  i s  e a s i l y  accounted f o r  by 

standard t r a c e r  techniques and these have already been conducted and 

descr ibed i n  an e a r l i e r  p u b l i c a t i o n  C31. However, i n  the case o f  a 

r e a c t i n g  sample the  problem i s  aggravated by the  f a c t  t h a t  the  reac tan t  

gas i s  consuined d u r i n g  the  r e a c t i o n  a t  the  same t ime t h a t  i t  i s  

a t tempt ing  t o  f i l l  t h e  r e a c t o r  t o  t h e  des i red  concentrat ion.  Again, 

t h e  o n l y  recourse here was t o  model the  TGA apparatus and thereby 

simultaneously aecuunt f o r  the  mix ing phenomenon i n  the  CSTR along w i t h  

t h e  r e a c t i o n  o c c u r r i n g  on the  s o l i d  surface. 



Assuming i d e a l  back mixing, an unsteady s t a t e  ma te r ia l  balance f o r  

t h e  gaseous reactant ,  ' A ' ,  g ives 

where T i s  the  space time, CAi i s  the  feed gas concentrat ion,  Ms i s  the  

s o l i d  sample mass and rG i s  the g lobal  r a t e  o f  r e a c t i o n  expressed on a 

pe r  u n i t  mass basis. Assuming t h a t  the  r e a c t i o n  i s  f i r s t  o rder  w i t h  

respect  t o  both A and the  s o l i d  species, B , rG i s  g iven by 

- C . C  r~ - k~~ A B (5) 

where the  apparent r a t e  constant, kAp accounts f o r  bo th  the  mass 

t r a n s f e r  (k,,,) and k i n e t i c  ( k )  r a t e  c o e f f i c i e n t s  

where A i s  the  sur face area o f  t he  exposed s o l i d  sur face per  u n i t  o f  
9 

mass. A s i m i l a r  balance on the s o l i d  species y i e l d s  

Another p o t e n t i a l  problem i s  tha t ,  due t o  the  h i g h l y  exothermic 

nature  o f  the combustion, the  ac tua l  s o l i d  temperature may be h igher  

than the  surrounding gas temperature. Th is  can be accounted f o r  .by 

t a k i n g  an energy balance on the  so l i d ,  assuming t h a t  t he  gas 

temperature remains constant  a t  T. 



where TS i s  t h e  so l  i d  temperature and C AH, and h are the heat P ' 
capac i t y ,  the  heat  o f  r e a c t i o n  and the  heat  t r a n s f e r  c o e f f i c i e n t  

respec t i ve l y .  

Equations 4-8 were solved simultaneously us ing  an equation- 

o r i e n t e d  dynamic s i m u l a t i o n  program. A l l  o f  the non-react ion 

parameters were known w i t h  the  except ion o f  the  heat and mass t r a n s f e r  

c o e f f i c i e n t s .  The hea t  t r a n s f e r  c o e f f i c i e n t  was determined by 

comparing the .p red ic t i ons  of t he  computer-simulat ion t o  measured 

su r face  tea~perat.lrre responces o f  a aampl e dur.i rly an actual  coribustf on 

run. S i m i l a r l y ,  t h e  mass t r a n s f e r  r a t e  c o e f f i c i e n t  was determined by 

comparing the  p r e d i c t i o n s  o f  the program t o  an ac tua l  experiment which 

was obv ious ly  c o n t r o l  l e d  by gas-sol i d  mass t r a n s f e r  rates. The only 

o t h e r  assumption i n  t h i s  model was t h a t  the  r e a c t i o n  be f i r s t - o r d e r  

w i t h  respect  t o  bo th  t h e  gaseous and s o l i d  reactants.  For tunate ly ,  

t h i s  tu rned o u t  t o  be t h e  case and the  successful  comparison o f  t he  

model p r e d i c t i o n s  w i t h  ac tua l  experimental data val  i dated t h i s  

assumption. 

To i l l u s t r a t e  the success o f  t h i s  approach, F igu re  3 shows the  

cha r  combustion data f o r  t h e  GEOK sample. Note t h a t  the  h igher 

temperature data do n o t  f o l l o w  a s t r a i g h t  l i n e  on a f i r s t - o r d e r  p l o t .  

The f a c t  t h a t  t h e  lowest  temperature run  d i d  f o l l o w  a s t r a i g h t  l i n e  and 

t h a t  t h e  low c.onversion data are s i m i l a r  a t  a l l  temperatures i s  a c l c a r  

i n d i c a t i o n  of.mdss t r a n s f e r .  problems. The downward t r e n d  o f  the  h igh  

convers ion data i s  due t o  t h e  s h i f t i n g  o f  t he  char reac t i on  order  from 

0 (mass t rans fe r  c o n t r o l  ) t o  1 ( k i n e t i c  c o n t r o l  1. As can be seen from 

equat ion  (61, t h e  apparent r a t e  constant  i s  a f u n c t i o n  o f  the  

concen t ra t i on  o f  the  s o l i d  species (CB) a t  any time. Thus i n i t i a l l y ,  





when CB i s  high, t h e  apparent r a t e  constant  i s  i n v e r s e l y  p ropor t i ona l  

t o  CB and t h e  r a t e  (equat ion  5 )  becomes zero order  w i t h  respect  t o  species 

B. Note t h a t  i n  t h i s  case the  apparent r a t e  constant  i s  c lose  t o  the  

mass t r a n s f e r  r a t e  c o e f f i c i e n t .  What i s  more, l a t e  i n  the  run when CB 

i s  low, the  apparent r a t e  constant  approaches the  k i n e t i c  r a t e  

constant ,  k. I n  t h i s  case, equat ion (5 )  p r e d i c t s  t h a t  the  g loba l  r a t e  

w i l l  be f i r s t - o r d e r  w i t h  respect  t o  bo th  species A and species B. As 

can be seen from F i g u r e  3, the  model g ives an e x c e l l e n t  p r e d i c t i o n  o f  

b o t h  t h e  low and h i g h  convers ion data f o r  the  run a t  775 K, S i m i l a r  

r e s u l t s  were obta ined a t  the  o the r  temperatures ( n o t  shown) and f o r  a l l  

t h e  shale samples u t i l i z e d  i n  t h i s  i nves t i ga t i on .  

Char Combustion K i n e t i c s  

As i n  our  e a r l i e r  work C51 the  combustion r e a c t i o n  r a t e  was found 

t o  be f i r s t  o rder  w i t h  respect  t o  bo th  O2 and char content.  Table I 1 1  

l i s t s  t h e  apparent r a t e  constants i n  terms o f  t he  pre-exponential  

f a c t o r  and t h e  a c t i v a t i o n  energy f o r  a l l  s i x  samples as w e l l  as 

comparative values a t  700 K.  The S-A sample had the  h ighest  a c t i v i t y  

and has h lgh  concent ra t ions  of dawsoni t e  ?nQ nahcol i te.  A1 though these 

m ine ra l s  w i l l  have decomposed p r i o r  t o  combustion, t he  decomposition 

products  (Na2C03, A1203) are  present  and, as w i l l  be shown, there  i s  

s t r o n g  evidence t o  i n d i c a t e  t h a t  t h e  sodium ac ts  as a c a t a l y s t .  I t  i s  

a l s o  i n t e r e s t i n g  t h a t  t h e  a c t i v a t i o n  energies are lowest  f o r  the  two 

shales (S-A and GEOK) w i t h  the  h ighest  r a t e  constants. It i s  tempting 

t o  a t t r i b u t e  t h i s  r e s u l t  t o  c a t a l y t i c  i n f l uences  o f  the  mineral mat ter  

but ,  a t  these temperatures (<800K) the  carbonate minerals are s t i l l  i n  

t h e i r  o r i g i n a l  s t a t e  and there  i s  no evidence t o  suggest t h a t  they are  

c a t a l y t i c  under these cond i t ions .  Char combustion k i n e t i c s  have been 
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p r e v i o u s l y  repo r ted  f o r  An t r im  shale by Rostam-Abadi and Mickelson 161. 

I n  t h a t  study the  authors  repor ted  t h a t  t he  r a t e  was second order  w i t h  

respect  t o  t h e  char remain ing and t h a t  there  was not iceab le  

chemisorpt ion of 02. Attempts t o  f i t  our data f o r  t h e  Ant r im shale t o  

a second order  r a t e  expression were unsuccessful and, i n  a l l  cases, the  

data  appeared t o  f o l l o w  f i r s t  o rder  k i n e t i c s .  Although we d i d  n o t  have 

t h e  p r e c i s i o n  t o  measure O2 chemisorption, t h a t  phenomenon i s  

c o n s i s t e n t  w i t h  our  prev ious  observat ions C51 o f  c a t a l y t i c  a c t i v i t y  i n  

those shales c o n t a i n i n g  decomposed mineral  carbonates. That i s ,  the  

c a t a l y t i c  a c t i v i t y  o f  CaO was a t t r i b u t e d  t~ its ability t~ chemisorb 

02. As w i l l  be d iscussed i n  more d e t a i l  below, the  Ant r im shale sample 

d i d  n o t  con ta in  such carbonates and no c a t a l y t i c  behavior was observed. 

However, the  magni tude o f  the  r a t e  constants re.ported by Ros tam-Abadi 

and Mickelson a re  very s i m i l a r  t o  those measured here. 

F i n a l l y  i t  should be po in ted o u t  t h a t  the  pre-exponential  f a c t o r  

1 i s t e d  i n  Table 111 f o r  t h e  PCM sample, d i f f e r s  f rom the value we 

repor ted  e a r l  ler [51. k rom our measurements o f  t he  ac tua l  shale 

temperatures we have d iscovered t h a t  t he  measured temperatures i n  t h e  

e a r l i e r  study were i n  e r r o r .  The values l i s t e d  i n  Table I 1  are now 

c o n s i s t e n t  w i t h  the  repor ted  measurements o f  Sohn and K i m  C71. 

Minera l  C a t a l y s i s  

The mineral r e a c t i o n s  t h a t  accompany' h igh  temperature char 

combustion have a l ready been l i s t e d  i n  equations (1-3). Although we 

made no e f f o r t  t o  study t h e  reac t i on  r a t e s  o f  these mineral reac t i ons  

i n  d e t a i l ,  S t  i s  impor tan t  t o  understand j u s t  how f a s t  these reac t i ons  

a r e  under t y p i c a l  temperature-gas composit ion cond i t ions .  For  example, 

i n  some e a r l i e r  work [2]  we found t h a t  equat ion (1) would go t o  the  

"ha l f - ca l c ined"  s t a t e  when C02 i s  present.  That i s ,  on ly  1 molecule o f  



C02 would be given o f f  and calc ium carbonate r a t h e r  than ca lc ium ox ide 

would be a product. However, i n  the  case o f  t he  C-a shale we 

discovered t h a t  t h i s  mineral  carbonate remained undecomposed even i n  

the  presence o f  s l  i g h t  C02 overpressures ( 7  KPA). That  r e s u l t  was 

noted a t  a temperature o f  850 K b u t  when the temperature was r a i s e d  t o  

approximately 925 K, a no t iceab le  weight l o s s  was observed on our  TGA 

apparatus. We have t e n t a t i v e l y  concluded t h a t  i n  t h i s  shale, a n k e r i t i c  

dolomite w i l l  n o t  decompose i n  the  presence o f  C02; b u t  a t  t h e  

r e l a t i v e l y  low temperature o f  925 K i t  w i l l  undergo low temperature 

s i l i c a t i o n  reac t ions  o f  t he  form shown i n  equat ion ( 3 ) .  I n  another 

sample (GEOK sample) t h e  shale was al lowed t o  undergo p a r t i a l  

s i l i c a t i o n  and then the  sample was ground and po l i shed  and subjected t o  

e l e c t r o n  microprobe ana lys is .  The r e s u l t s  o f  t h i s  ana lys i s  are  shown 

i n  F igu re  4 which shows a l i n e  scan t raverse across a 10 g r a i n  o f  

s i l i c a .  As can be seen, there  i s  v i r t u a l l y  no ca lc ium present  i n  the  

i nne r  regions o f  the  s i l i c a  g ra in  and no s i l i c a  present  beyond the  

ou te r  sur face o f  t he  gra in .  However, there  i s  a d i s t i n c t  s h e l l  o f  

approximately one-half  micron t h i c k  which cons is t s  o f  both ca lc ium and 

s i l i c a .  Obviously a s i l i c a t e  l a y e r  i s  forming around a s i l i c a  gra in.  

Th is  i s  s i g n i f i c a n t  since, as w i l l  be discussed below, the  ox ide  

decomposition products a re  those species which we b e l i e v e  t o  be 

responsib le f o r  char combustion ca ta l ys i s .  I f  s i l i c a t e s  are formed 

such as shown i n  F igu re  4, then c a t a l y t i c  a c t i v i t y  w i l l  n o t  r e s u l t  and 

cou ld  have a s i g n i f i c a n t  In f luence on the  design o f  s u i t a b l e  char 

combustors. 

. Whi le these two mineral  reac t ions  are important,  i t  i s  r e v e r s i b l e  

c a l c i t e  decomposition (equat ion ( 2 ) )  which i s  the  most s i g n i f i c a n t  
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mineral  r e a c t i o n  o f  i n t e r e s t  here. Not on l y  i s  t he  r e v e r s i b l e  na ture  

of  t h i s  r e a c t i o n  o f  importance, b u t  a l l  o f  our  data p o i n t  t o  t he  

s i g n i f i c a n t  c a t a l y t i c  a c t i v i t y  o f  the  product,  CaO. I n  an e a r l i e r  

experiment C51 we took a f r e s h l y  r e t o r t e d  PCM sample and a1 lowed i t  t o  

thermal ly  decompose a t  900 K t o  the minera l  ox ides (equat ion  (1) 1. 

When t h i s  r e a c t i o n  was complete, the temperature was lowered t o  700 K 

and the  sample exposed t o  oxygen. Under these cond i t i ons  the  observed 

combustion r a t e  was 10 t imes h igher  than when the  carbonates were l e f t  

i n t a c t ;  i.e., corresponding t o  the k i n e t i c  r e s u l t s  g iven i n  Table 111. 

By process o f  e l im ina t i on ,  t h e  increased a c t i v i t y  i n  t h i s  case was 

a t t r i b u t e d  t o  the  presence o f  CaO. I n  o rder  t o  f u r t h e r  i n v e s t i g a t e  

t h i s  phenomenon, the  same experiment was c a r r i e d  o u t  w i t h  the  C-a and 

w i t h  the  ANT sample. The C-a sample was chosen due t o  the  f a c t  t h a t  i t  

conta ined more ca lc ium than char  on a molar basis.  On the  o the r  hand, 

t h e  ANT sample had a very low ca lc ium content ,  and as we have a l ready  

seen i n  F igu re  2, i t  was very low i n  minera l  carbonates. 

F i g u r e  5 shows. the  comparative responses o f  the  raw 

thermogravimetr ic readings when the  decomposed samples were exposed t o  

10% O2 a t  t ime = zero. S i m i l a r  behavior was observed f o r  t he  C-a and 

PCM samples; t h a t  i s ,  the  r a w  weight  increased due t o  the  recarbonat ion 

o f  CaO. 

Since the  combustion r a t e  i s  a t  l e a s t , a s  f a s t  as the  recarbonat ion  

ra te ,  the d d t d  i n  F i g u r e  5 eorrespond t o  a combustion r a t e  increase o f  

about an order  o f  magnitude i n  bo th  samples. I t  should be po in ted  o u t  

t h a t  the weight  change i n  PCM reached a maximum and then decreased aue 
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( t o  the  t o t a l  recarbonat ion o f  t he  a v a i l a b l e  CaO p r i o r  t o  complete 

combustion o f  the  char. T h i s  was n o t  the  case f o r  C-a which has more 

CaO than char. I t  i s  a l s o  i n t e r e s t i n g  t o  note t h a t  the  ANT sample, 

which has minimal Ca, d i d  n o t  experience a weight  ga in  d u r i n g  

combustion. I n  f a c t ,  t he  combustion r a t e  was i d e n t i c a l  t o  t h a t  

observed f o r  ANT samples which had n o t  been thermal ly  p re t rea ted .  

These r e s u l t s  tend t o  support  the hypothesis o f  CaO as a combustion 

c a t a l y s t .  Al though i r o n  ox ides cannot be t o t a l l y  r u l e d  out, i t  should 

be noted t h a t  the  ANT sample i s  very h igh  i n  i r o n  (most o f  i t  as FeS 

and FeS2 b u t  some as i r o n  ox ide)  b u t  e x h i b i t e d  no c a t a l y t i c  a c t i v i t y .  

A d d i t i o n a l  experiments were a l s o  run  i n  o rder  t o  examine the  

e f fec ts  o f  water so lub le  minera l  species on the  combustion ra te .  

F i g u r e  6 shows f i r s t  o rder  p l o t s  f o r  one S-B an'd two S-A samples. As 

po in ted  o u t  e a r l i e r ,  t he  S-A and S-B samples a re  s i m i l a r  except  f o r  

h i g h  concent ra t ions  o f  n a h c o l i t e  and dawsonite i n  t he  former and i t  i s  

t h i s  sample, which had the  h ighes t  combustion a c t i v i t y  (Table 111). 

S ince i t  i s  poss ib le  t o  water  leach sodium minerals,  t he  S-A sample was 
. . 

sub jec t  t o  water washing p r i o r  t o  combustion. ' A f t e r  dry ing,  the  sample 

was combusted under i d e n t i c a l  cond i t i ons  and, as can be seen f rom 

F i g u r e  6, the  combustion r a t e  f o r  the  water  washed S-A sample was 

i o e n t i c a l  tn  t.hst. observed w i t h  the  S-8 sample. In order  t o  deter-iiiir~e 

t h e  elements removed du r ing  the  water leach ing  process, t he  wash-water 

was analyzed us ing  atomic absorpt ion.  Table I V  shows the  r e s u l t s  o f  

these analyses f o r  t he  S-A sample as w e l l  as f o r  the  S-B and GEOK 

samples. As expected, the  S-A leachate was extremely h i g h  i n  Na. The 

f a c t  t h a t  n e i t h e r  Ca nor  Fe was leached from the  S-A sample and t h a t  

t h e  GEOK sample showed no change i n  combustion r a t e  desp i te  s i m i l a r  

potassium values p o i n t s  t o  t h e  probable r o l e  o f  Na as an o x i d a t i o n  

27 
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c a t a l y s t .  T h i s  i s  n o t  t oo  s u r p r i s i n g  s ince  i t  i s  w e l l  known t h a t  t he  

Group I - a  and, t o  a l e s s e r  extent ,  Group 11-a elements a re  good 

g a s i f i c a t i o n  c a t a l y s t s  C81. 

Table I V .  Elemental Ana lys is  o f  Leachate Water 

Concentrat ions - mg/g Spent Shale 

SHALE . N a K C a F e 

S -A 21.7 0.24 0.0 0.0 
S -B 0.15 0.05 0.49 0.0 
GEOK 0.93 0.23 1.90 0.0 

An t r im  Shale G a s i f i c a t i o n  

One o f  t he  comp lex i t i es  i nvo l ved  i n  s tudy ing  a n t r i m  shale 

g a s i f i c a t i o n  by TGA techniques i s  the  necess i ty  t o  q u a n t i f y  

accompanying minera l  reac t ions .  To achieve t h i s ,  a sample o f  decharred 

a n t r i m  shale was heated i n  a he l ium sweep gas and the  minera l  r e a c t i o n s  

were monitored by we igh t  l o s s  and chromatographic ana lys i s  o f  t he  o f f -  

gas. F igu re  7 shows these r e s u l t s  i n  t he  form of  an Arrhenfus p l o t .  

Al though there  i s  some data sca t te r ,  i t  appears t h a t  t he re  a re  two 

d i s t i n c t  reac t ions ,  one o c c u r r i n g  between 800K and 1000K, and t h e  

second a t  temperatures g rea te r  tt~iir~ looOK. The on ly  gaseous specics 

present  a t  t he  lower temperatures i s  C02 b u t  i t  i s  n o t  p resent  a t  t h e  

h igher  temperature. I t  i s  1 i k e l y  t h a t  t he  lower temperature r e a c t i o n  

i s  a minera l  decomposit ion (perhaps s i d e r i t e  decomposit ion) b u t  t he  

source o f  the  weight  l o s s  a t  t he  h igher  temperatures has n o t  been 

i d e n t i f i e d .  

Because o f  the  unexpected minera l  decomposit ion reac t ion(s1 ,  we 

were n o t  ab le  t o  r e l y  on g rav ime t r i c  methods alone t o  determine the  
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char g a s i f i c a t i o n  rates.  Thus, i n  the  case o f  C02 g a s i f i c a t i o n  we a l s o  

monitored the  r a t e  o f  p roduct ion  o f  CO, s ince t h i s  can be r e l a t e d  t o  

char  consumption by equat ion  (11) .  

co2 + c=nco (11  

I n  the  case o f  steam g a s i f i c a t i o n ,  two reac t i ons  were expected t o  be 

s i g n i f i c a n t  

H20 + C 4 C O  + H2 

H20 + CO-CO2 + H2 (13)  

Since both CO and C02 c o u l d  be expected i n  the  e x i t  gas stream, the  

char  consumption r a t e  was determined by c a l c u l a t i n g  the  molar 

p roduct ion  r a t e  o f  carbon i n  the  e x i t  gas (by measurements o f  t he  gas 

c o ~ o s i t i o n  and the  gas f l o w  r a t e ) .  When these c a l c u l a t i o n s  were 

compared t o  measured we igh t  losses and co r rec ted  f o r  minera l  

decomposit ion (F igure  71, agreement t o  w i t h i n  10% was achieved. 

Q2 G a s i f i c a t i o n  

Measureable Cop g a s i f i c a t i o n  began a t  about 1000 K and was 

reasonably f a s t  a t  1250 K. F igu re  8 shows the  r e s u l t s  when t h e  e x i t  CO 

f l o w  r a t e  i s  p l o t t e d  as a f u n c t i o n  o f  t ime a t  temperatures between 1073 

and 1173 K f o r  PCO = .20 atm. Fo r  an i d e a l  back mix reac tor ,  the  
2 

ac tua l  char reac r lon  r a t e  i.s r e l a t e d  t o  the  molar CO f l o w  ra te ,  NCO, 
by equat ion (14). 

where VR I s  the  reac to r  volume and MS i s  the  mass o f  the  s h a l e  loading.  

I t  i s  i n t e r e s t i n g  t o  compare these r e s u l t s  w i t h  those measured 

e a r l i e r  C91 f o r  a western shale f rom the  Parachute Creek member (PCM 
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sample). Such a comparison i s  shown i n  Table V and, as can be seen, 

t h e  g a s i f i c a t i o n  r a t e s  here are  about a f a c t o r  o f  f i v e  lower a t  1073 K 

TABLE V 

Comparison o f  C02 G a s i f i c a t i o n  Rates 

and a f a c t o r  o f  about 10 lower a t  1173K. Th i s  i n d i c a t e s  t h a t  t he  

a c t i v a t i o n  energy f o r  C02 g a s i f i c a t i o n  i s  lower f o r  the  ANT shale. The 

r (mole char/min-g shale)  XI0 3 

f a c t  t h a t  there  a l so  seems t o  be l e s s  o f  a dependence on C02 pressure 

f o r  the  ANT sample, might  be i n d i c a t i v e  o f  increased adsorp t ion  

Temp. 

Pco2 
(atm) 

ANT 

.PCM 

i n h i b i t i o n  by the  C02 product.  

1173 K 

Steam G a s i f i c a t i o n  

C 

1073 K 

I n  the case o f  steam g a s i f i c a t i o n  the re  are  two f a c t o r s  which a re  

o f  importance; the r a t e  o f  char  comsumption and the  composit ion o f  the  

make gas. Wi th  respect  t o  t he  former, Table V I  shows the  char  

30 

- - 
-- 

10 

.ll 

.98 

g a s i f i c a t i o n  r a t e s  f o r  bo th  the  ANT sample i n v e s t i g a t e d  here and the  

PCM sample C91. 
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TABLE V I  

Comparison O f  Steam G a s i f i c a t i o n  Rates 

[PHZ0 = 0.5 atml  

Here again t h e  ANT sample has a lower g a s i f i c a t i o n  r a t e  a l though i t  

appears that ,  i n  steam g a s i f i c a t i o n ,  the  a c t i v a t i o n  energies a re  

s i m i l a r .  

However the  make-gas composi t ion was d ramat i ca l l y  d i f f e r e n t  f rom 

ANT 

P CM 

t h a t  repo r ted  e a r l i e r  [ 21  f o r  t h e  PCM sample. Over a wide range o f  

pressures and temperatures, the  q u a n t i t y  o f  CO produced w i t h  the  PCM 

sha le  was extremely low. Th i s  was a t t r i b u t e d  t o  the tendency o f  t he  

PCM shale t o  promote the  water  gas s h i f t  r e a c t i o n  (WGSR), equat ion  

(13) .  That  i s ,  as soon as the CO i s  formed by the  g a s i f i c a t i o n  

rc (moles char/min - g shale)  X 10 4 

r e a c t i o n  (equat ion  (121, i t  immediately reac ted  w i t h  excess H20 t o  

produce C02 and Hz. 

Tha t  t h i s  i s  n o t  t h e  case here can be seen i n  F igu re  9 and 10 

wh ich  show the  make-gas composi t ion a t  1123 and 1173 K f o r  PH = 0.5 
2 

atm. A 1  the lower temperature (F igure  Y), the CO/C02 r a t i o  i s  about 

1123 K 

2.2 

8.8 

u n i t y  throughout t h e  run. I n  t he  PCM sample, i t  was c o n s i s t e n t l y  l e s s  

1173 K 

3.7 

13.2 

than 0.10, p a r t i c u l a r l y  a t  PH values greater  than 0.2 atmospheres. 
2 

However, a t  t he  h ighe r  temperature, the CO/C02 r a t i o  i s  l e s s  than 1.0 

a l though the r a t e  o f  p roduc t i on  of both CO and C02 increases 

s i g n i f i c a n t l y .  I f  a l l  o f  the  H2 produced r e s u l t s  from the  steam 

g a s i f i c a t i o n  of t he  -char, i t  should agree w i t h  



FIGURE 9: 

.Make Gas Composit ion a t  1123 K 

( P  = 0.5 atm) 
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FIGURE 10: 

Make Gas Composit ion A t  1173 K 
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Thus, a t  1123 K i t  should have a peak value o f  about 30 X lo-' 

moles/min. However, the  data shown i n  F igu re  9 i n d i c a t e  t h a t  N 
H2 

i s  cons is ten t l y  tw ice  what would be p red ic ted  by equat ion (15). A 

goodly p o r t i o n  o f  t h i s  d i f f e r e n c e  a r i s e s  from the hydrogen conta ined i n  

t h e  char. I n  add i t ion ,  i t  i s  l i k e l y  t h a t  the  p;rrhotite i s  r e a c t i n g  

w i t h  the  steam t o  produce i r o n  oxides, H2S and, perhaps, a d d i t i o n a l  H2. 

A t  the  h igher temperature (F igure  101, the  hydrogen make i s  - l e s s  

than t h a t  ca l cu la ted  f rom equat ion (15). As can be seen from F i g u r e  

11, which shows the  hydrogen product ion r a t e  f o r  t he  two temperatures, 

t h e  r a t e  i s  d ramat ica l ly  reduced a t  1173 K. The explanat ion here i s  t h a t  

*much o f  the  H2 being produced i s  undergoing f u r t h e r  reac t i on  t o  reduce 

p y r r h o t i t e  and produce H2S. Th is  was v e r i f i e d  by measuring the  H2S i n  

the  e x i t  gas and n o t i n g  t h e  increase a t  1173 K versus 1123 K. Thus, 

i f  'steam g a s i f i c a t i o n  can be accompli'shed a t  a reasonable r a t e  a t  lower 

temperatures, i t  appears as though H2S product ion  can be minimized. 



FIGURE 11 : 

H2 Make Gas 
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