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E n g i n e e r i n g  s c a l e  o p e r a t i o n  was s t a r t e d  on h y d r i d i n g  o f  

z? rcon ium f o r  a p p l i c a t i o n  t o  t r i t i u m  s t o r a g e  s y s t e m s .  E i g h t  r u n s  

.were made w i t h  commerc ia l -g rade  z i r c o n i u m  sponge  a t  338' t o  4 9 9 ' ~  and 

0  t o  770 t o r r ,  h y d r i d e d  t o  h y d r o g e n - t o - z i r c o n i u m  a tom r a t i o s  up  t o  

'2. R e a c t i o n  rates were  d e t e r m i n e d ' f o r  hydrogen  f low rates o f  2 .72  
3 

t o  9 .24  cm a t  S T P ~ ~  Zr-min ,  F o r  e a c h  r u n ,  hydrogen  p r e s s u r e  was 

p l o t t e d  on a  s e m i l o g  s c a l e  a g a i n s t  t i m e  and H/Zr a tom r a t i o  t o  

e l u c i d a t e  t h e  r e a c t  i o n  mechanism i n  t e r m s  o f  r e a c t i o n  k i n e t i c s ,  

d i f f u s i o n ,  and e q u i l i b r i u m  hydrogen  v a p o r  p r e s s u r e .  Lack o f  c o n s i s -  
I 

t e n c y  i n  some o f  t h e  r u n s  i s  p r o b a b l y  due t o  d i f f e r e n c e s  i n  t h e  

e x t e n t  o f  t h e  d i f f u s i o n  b a r r i e r  formed on t h e  m e t a l  b e c a u s e  o f  r e a c t i o n  

w i t h  oxygen and o t h e r  c o n t a m i n a n t s .  S t a t i c  l e a c h  t e s t i n g  o f  z i r c o -  

nium sponge  and r o d  i n  d i s t i l l e d  w a t e r  was c o n t i n u e d ;  l e a c h  r a t e s  

r anged  f rom 8 .  g x l ~ - ~ t o  1 . 7 x 1 0 - ~  cm/day f o r  t h e  166 t o  208 day  l e a c h  

p e r i o d .  



I. TRITIUM STORAGE I N  METAL HYDRIDE 

A program h a s  been i n i t i a t e d  t o  demons t ra te  a  s a f e  and econo- 

m i c a l  p r o c e s s  f o r  t h e  f i x a t i o n  o f  t r i t i u m  a s  a t r i t i d e  i n  a  m e t a l  

h y d r i d e .  F o r  t r i t i u m . a b s o r p t i o n  and r e t e n t i o n  purposes ,  z i r con ium 

a p p e a r s  t o  be  most d e s i r a b l e  a l t h o u g h  a l t e r n a t i v e  such  a s  T i ,  Hf, V ,  

Nb and c e r t a i n  a l l o y s  of  t h e s e  c a n  a l s o  be  used .  The c h o i c e  of  

z i r con ium a s  t h e  l e a d i n g  c a n d i d a t e  m e t a l  f o r  t h i s  s t u d y  i s  based on 

. t h e  known chemica l  and p h y s i c a l  p r o p e r t i e s  of t h e  m e t a l  and i t s  

h y d r i d e .  The p r o c e s s  can  be  r e v e r s e d ,  i f  d e s i r e d ,  by h e a t i n g  t h e  

h y d r i d e  above i t s  decomposi t ion t e m p e r a t u r e  ( d e f i n e d  a s  t h e  tempera- 

t u r e  a t  which t h e  h y d r i d e  d i s s o c i a t i o n  p r e s s u r e . i s  above 1 atm) and 

c o l l e c t i n g  t h e  evolved g a s .  ~ h i l i  t h e  f i x a t i d n  p r o c e s s  w i l l  be  

developed f o r  long t e r m  s t o r a g e  o r  d i s p o s a l  by b u r i a l ,  r e t r i e v a b i l i t y  

o f  t h e  t r i t i u m  w i l l  be  c o n s i d e r e d  f o r  f u t u r e  needs  such  a s  f o r  u s e  i n  

c o n t r o l l e d  the rmonuc lea r  r e a c t o r s .  

A.  Eng ineer ing  S c a l e  Equipment 

I n  t h e  e n g i n e e r i n g  s c a l e  f l o w s h e e t  ( s e e  F i g u r e  I ) ,  a  f e e d ,  

s t r e a m  of  H o r  HT is r e g u l a t e d  by a  f low r a t e  c o n t r o l l e r  provided 
2 

w i t h  a  f low i n t e g r a t o r . '  The p r e s s u r e  i s  moni tored by gauges and 

p r e s s u r e  t r a n s d u c e r s  (maximum d e s i g n  p r e s s u r e :  100 p s i g ) .  A vacuum . 

sys tem c o n s i s t i n g  of  a  c o l d  t r a p ,  d i f f u s i o n  pump, and mechan ica l  
-4  

pump c a p a b l e  o f  producing a  vacuum o f  1 0  t o  t o r r  i s  provided 

f o r  o u t g a s s i n g  t h e  r e a c t i o n  m e t a l  and removal of t r a c e  q u a n t i t i e s  

of  oxygen, n i t r o g e n ,  e t c . ,  which have a n  i n h i b i t i n g  e f f e c t  on t h e  

t r i t i d e - h y d ; i d e  r e a c t  i o n .  The r e a c t  i o n  v e s s e l  ( s e e  F i g u r e  2) i s  

approx imate ly  3 i n c h e s  i i d i a m e t e r  and 19 i n c h e s  h igh  and i s  

p rov ided  w i t h  a  porous m e t a l  f i l t e r  t o  p r e v e n t  d i s c h a r g e  of  r e a c t i o n  

p roduc t  f i n e s .  An e l e c t r i c  h e a t e r ,  clamped e x t e r n a l , l y o  t o  t h e  v e s s e l  

i s  used t o  p rov ide  a n  o p e r a t i n g  t 'emperature up t o  600 C .  Temperatures  . 
i n  t h e  r e a c t o r  a r e  moni tored e x t e r n a l l y  and a l s o  i n t e r n a l l y  w i t h  a  . 

c e n t e r l i n e  thermowel l .  The r e a c t i o n  m e t a l  i s  pl.aced i n  a w i r e  mesh 

b a s k e t  i n ~ i d e  t h e  r e a c t o r  t o  permit  optimum p o s i t i o n i n g  f o r  tempera- 

t u r e  c o n t r o l  and measurement, and a l s o  t o  a v o i d  expans ion  problems 
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t h a t  can r e s u l t  from hydride formation.  The assembled equipment and 

in s t rumen ta t i on  i s  shown i n  F igures  3 and 4 .  

B. Hydriding Procedure and Resu l t s  

A t o t a l  o f  e i g h t  experiments were conducted i n  t h e  engineer ing  

s c a l e  equipment w i t h  commercial grade zirconium sponge. The z i r c o -  
* 

nium f o r  t he se  experiments  were from t h e  same l o t .  A void volume 

of 13.7% was determined on one p iece  of sponge, which i s  t y p i c a l l y  

i r r e g u l a r  i n  shape and porous,  by machining i t  t o  a cube and comparing 

i t s  bulk d e n s i t y  t o  t h e  d e n s i t y  of  s o l i d  zirconium. Up t o  t h r e e  

p ieces  of  sponge were used i n  each run  w i t h  t o t a l  weights  of  17 t o  

40 g .  The sponge samples were washed i n  water  s e v e r a l  times t o  

remwe Mg C 1  p r e sen t  from t h e  magnesium reduc t ion  process ing  s t e p ,  
2  

degreased w i t h  ace tone ,  and then  placed i n  t h e  r e a c t i o n  v e s s e l  

basket  f o r  ou tgass ing  p r i o r  t o  hydr id ing .  The samples w E r e  outgassed 

from one t o  t h r e e  days a t  room temperature  (o r  up t o  100 C), and 

outgass ing  was cont inued dur ing  hea t ing  t o  ope ra t i ng  temperature  
-4 u n t i l  a f i n a l  vacuum reading  of approximately 1x10 t o r r  w a s  

reached. 

For  each hydrid i ng  run,  commercial-grade, 99.95% minimum 

p u r i t y  hydrogen w a s  fed i n t o  t h e  r e a c t i o n  system a t  a  cons t an t  r a t e  

t o  determine t h e  r e a c t i o n  rate du r ing  flow under e s s e n t i a l l y  i s o -  

thermal  cond i t i ons .  Hydrogen feed r a t e s  of  2.72 t o  9.24 cm3 a t  STP/g 

Zr-min and temperatures  from 338'to 4 9 9 ' ~  were i n v e s t i g a t e d .  The 

hydrogen p re s su re  i n  t h e  r e a c t i o n  system was measured and recorded 

dur ing  each run  and then  p l o t t e d  a g a i n s t  t i m e  (Figures  5-12). Values 

were taken  from t h e s e  curves  and used i n  c a l c u l a t i n g  t h e  r e a c t i o n  

rate and average  H / Z ~  atom r a t i o  f o r  v a r i o u s  r e a c t i o n  t imes (Tables 

1-8) .  The p re s su re  bu i ldup  r a t e  i n  t h e  r e a c t i o n  system was t aken  i n t o  

* Supplied by Amax S p e c i a l t y  Meta l s ,  I nc . ,  Akron, N.Y., and having 

t h e  fo l lowing  a n a l y s i s :  0.09% chromium + I r o n ,  0.01% hafnium, 
<0.05% carbon, < 0.01% n i t r o g e n ,  p 99.2% zirconium and hafnium. 



accoGnt Zi i  t h e s e  c a l c u l a t i o n s  and was s u b t r a c t e d  from t h e  hydrogen gas  

feed rate t o  determine t h e  r e a c t i o n  r a t e  and a l s o  t h e  average H / Z ~  atom 

r a t i o .  The "apparent" volume of  t h e  system w a s  determined a t  s e v e r a l  

temperatures  t o  e s t a b l i s h  a ' l i n e a r  p l o t  and was used i n  t h e  PVT rela- 

t i o n s h i p  f o r  c a l c u l a t i n g  t h e  hydrogen p re s su re  bui ldup.  

I 
Figure 3. Engineering scale metal hydride system 

- front view. 



Figure 4. Engineering scale metal hydride 
system - rear view. 
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Figure A .  Hydrogen pressure vs.  
reaction time - run 2 .  
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Figure 8. Hydrogen pressure vs.  
reaction time - run 4. 
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TABLE 1 

Hydrogen Reaction. Rate with zirconium Sponge - Run 1 

Time . Pressure, H / Z ~  atom Reaction rate 
(min) (torr). rat io  (cm3 a t  S T P / ~  zr-min) 

Zirconium Weight: 36.7463g to ta l  (three pieces) 

3 
Hydrogen feed rate: 1 . 3 h c r n J a t  ~ p ~ ~ ~ r - r n i n  (0-10uli i~)  . 

2;72 ch a t  sTP/g Zr-min' (10-95 min). 
9" . 0 

, I  ! 

Temperature: 384-432 C (408 C average) 

Apparent system volume: [I .325 l i t e r s  



t 
TABLE 2 

Hydrogen Reaction  ate with Zirconium Sponge - Run 2 

Time . Pressure H / Z ~  atom . React ion rate 
(min) , ., - (torr) : rat io  (cm3 a t  S T P / ~  Zr-min) 

. . 
Zirconium weight: 40.5743g to ta l  ' (three pieces)  

3 . . Hydrogen feed rate:  2.72 cm a t  S T P / . ~  Zr-min . . 

0 0 .  

Temperature: 366-370 C ,  350 C a t  s tart  

, ' Apparent system volume : 4.167 1 i t ers  



TABLE 3  

Hydrogen R e a c t i o n  Ra te  w i t h  Zirconium Sponge - Run 3  

. Time ' . 

(min) '. . 
P r e s s u r e  

( t o r r )  
k / z r  atom e a c t i o n  r a t e  

r a t i o  (cm' a t  S T P / ~  Zr-min) 

Zirconium weigh t  : 40.8885g t o t a l  ( t h r e e  p i e c e s )  

3 Hydrogen feed  r a t e :  2.72 cm a t  S T P / ~  ~ r - m i n  
0 0 

~ e m p e r a t u r e :  338-348 C ,  328 C a t  s t a r t  

h p p a r e n t  s y s t e m  volume: 4 .069 l i t e r s  



TABLE 4 
. . 

Hydrogen ~ e a c t i o n  Rate w i th  zirconium' Sponge .- Run 4 

Time Pressure  H / z . ~  atom . Reaction r a t e  
(min) . . . ( t o r r )  . r a t i o  (cm3 a t  sTP/g Zr'-min) 

Zirconium weight: '34.4185; t o t a l  ( t h r e e  piedes)  

3 Hydrogen feed r a t e :  2.72 cm a t  S T P / ~  Zr-min 
0 (? 

Temperature: 465-467 C ,  450 C a t  s t a r t  

Apparent system volume: 4.553 l i t e r s  



TABLE 5 

Hydrogen R e a c t i o n  Ra te  w i t h  Zirconfum Sponge - Run 5 

Time P r e s s u r e   ratom om . R e a c t i o n r a t e  
(min) . . ( t o r r )  r a t i o  (cm3 a t  S T P / ~  Zr-min) 

Z i rcon ium weigh t :  36.6760g t o t a l  ( t h r e e  p i e c e s )  

3  Hydrogen .feed r a t e  : 2.94 cm a t  S T T / ~  Zr-min) 
0 ' 0 

Temperatute :  492-499 C ,  47s C ac s tar t  

Apparent  sys tem volume: 4 .671 l i t e r s  



. . .. . . . / .. . .  . . 
TABLE 6 

Hydrogen R e a c t i o n  Ra te  w i t h  Zirconium 'Sponge - Run 6 
. . 

Time P r e s s u r e  H / Z ~  atom React  i o n  r a t e  
(min) ( t o r r )  r a t i o  (cm3 a t  STPIP Zr-min) 

Zirconium weigh t :  32.3147 g t o t a l  ( twb p i e c e s )  

- 3  .. . 
Hydrogen f e e d  r a t e :  2.7'2 c i  a t  S T P / ~  Zr-min 

0 E ' . ', 
Temperature:  495-497 "C, 476 C a t  s t a i t  

, :' . . 
Apparent  system volume: 4 .671 t i t e r s  ' 



TABLE 7  

Hydrogen R e a c t i o n  Ra te  w i t h  Zirconium Sponge - Run 7  

Time P r e s s u r e  H / Z ~  atom Reac t ion  r a t e  
(min) ( t o r r )  r a t i o  ' . (cm3 a t  S T P / ~  Z r ~ m i n )  

36-45 776-1427 1.90 0 .00 

Zirconium w e i g h t :  17.0977g t o t a l  (two p i e c e s )  

3 Hydrogen feed  r a t e :  9.24 cm a t  S T P / ~  Zr-min 

0 0 

Temperature:  482-490 C ,  476 C a t  s tart  

Apparent  sys tem volume: 4 .631 l i t e r s  
- 



TABLE 8 

Hydrogen Reac t ion  Ra te  w i t h  Zirconium Sponge - Run 8 

Time 
(min) 

P r e s s u r e  
. ( t  o r r )  

H / Z ~  atom 
r a t i o  

React  i o n  r a t e  
(cm3 a t  S T P / ~  Zr-min) 

5.74 

5 .61  

Zirconium weigh t :  21.4053g t o t a l  (one p i e c e )  
Hydrogen feed  r a t e f  5.58 cm; a t  S T P / ~  Zr-min 
~ e m ~ e r a t b r e :  414-416O~,  386 C a t  s t a r t  
Apparent  system volume: 4.352 l i t e r s  



A s u f f i c i e n t  amount o f  hydrogen was f e d  i n t o  t h e  r e a c t  i o n  sys tem i n  

e a c h  r u n  t o  r e a c t  t h e  z i r c o n i u m  t o  i t s  t h e o r e t i c a l  l i m i t  o f  ZrH2. 
. . 

I n  t h e  r ims  wtie're t h i s  t h e o r e t i c h l  l i m . i t  was n-of exdeeded,  t h e  p r e s -  

s u r e  was down t o  z e r o  .by t h e  ' f o l l o w i n g  d a y ,  w i t h  t h e  sys tem a t  room 

t e m p e r a t u r e .  

The hydrogen p r e s s u r e  f o r  t h e  e i g h t  r u n s  . ( F i g u r e s  5-12) 

i n d i c a t e s  t h e  r e l a t i o n s h i p  w i t h  t ime  t o  be e i t h e r  l i n e a r  o r  monl inea r  

when p l o t t e d  on a  semi log  s c a l e .  T h i s  . r e l a t i o n s h i p  can  p robab ly  be 

b e s t  examined on t h e  b a s i s . o f  t h e  f o l l o w i n g  t h r e e  s t e p s  invo lved  i n  

t h e  o v e r a l l  hydrogen-metal  r e a c t i o n :  . . 

(1) hydrogen-metal  r e a c t  i o n  k i n e t i c s  , 
(2 )  \ d i f f u s i o n  o f  hydrogen i n t o  t h e  m e t a l ,  and 

(3)  e q u i l i b r i u m  hydrogen v a p o r  p r e s s u r e  o f  t h e  

m e t a l  h y d r i d e .  

The r a t e  o f  r e a c t i o n  of hydrogen wi th '  m e t a l ,  s t e p  (1) above ,  

i s  p r o p o r t i o n a l  t o  t h e  a c t i v i t y  o f  t h e  r e a c t i v e  s p e c i e s ,  which may be  

e i t h e r  d i a t o m i c  o r  monatomic hydrogen.  .Gulbransen and Andrew (1) 
d 

have de te rmined  t h a t  t h e  r e a c t . i o n  of  hydrogen w i t h  z i rcon ium a t  300 C 

f o l l o w s  t h e  s q u a r e  r o o t  o f  p r e s s u r c  l a w  f o r  i n i t i a l  r e a c t i o n  r a t e s ,  

which i n d i c a t e s  t h a t  t h e  r e a c t i v e  s p e c i e s  i s  monatomic hydrogen;  
. . 

d i a t o m i c  hydrogen i s  t o o  l a r g e  a  molecu le ,  a p p a r e n t l y ,  t o  p e n e t r a t e  

t h e  z i rcon ium l a t t i c e .  The r e a c t i o n ,  t h e r e f o r e ,  i s  o f  o r d e r  % and 

t h e  r e a c t i o n  r a t e  i s  a p p r o x i m a t e l y  p r o p o r t i o n a l  t o  t h e  s q u a r e  r o o t :  

of  t h e  s y s t e m  hydrogen p r e s s u r e  when t h e  d i f f u s i o n  of  monatomic hy- 

d rogen  i s  n o t  a  l i m i t i n g  s t e p  and t h e  e q u i l i b r i u m  hydrogen vapor  

p r e s s u r e  i s  n o t  s i g n i f i c a n t .  However, r e g a r d l e s s  of  t h e  o r d e r  o f  t h e  

hydrogen-metal  r e a c t i o n ,  when s t e p  (1) i s  c o n t r o l l i n g ,  t h e  hydrogen 

p r e s s u r e  shou ld  remain c o n s t a n t  when t h e  hydrogen f e e d  r a t e  ( o r  

r e a c t i o n  ;a te)  i s  a l s o  c o n s t a n t .  I n  F i g u r e  5 ,  t h e  hydrogen p r e s s u r e  . .  . 
i s  c o n s t a n t  d u r i n g  t h e  i n i t i a l  r e a c t i o n  p e r i o d .  However, as t h e  

r e a c t i o n  p r o g r e s s e s ,  t h e r e  i s  a  s h a r p  r i s e  i n  t h e  hydrogen. p r e s s u r e ,  

which i n d i c a t e s  a n  i n c r e a s e  i n  t h e  d i f f u s i o n  e f f e c t .  A s  t h e  , 

d i f f u s i o n  s t e p  becomes c o n t r o l l i n g  because  o f  t h e  g r e a t e r  hydrogen 

p e n e t r a t i o n  d e p t h  i n t o  t h e  m e t a l , .  a n  i n c r e a s e  must  o c c u r  i n  t h e  . 



hydrogen c o n c e n t r a t i o n  g r a d i e n t  ( o r  H / Z ~  atom r a t i o )  w i t h  as con- 

comi tan t  h i g h e r  hydrogen e q u i l i b r i u m  vapor  p r e s s u r e .  The system 

hydrogen p r e s s u r e  i s  t h e r e f o r e  t h e  suri o f  s t e p s  (1) through ( 3 ) .  
r 

Runs 2 and 6 (F igures  6 and 10) show a s i m i l a r i t y  . t o  r u n  1, . b u t  

w i t h  a much s h o r t e r  c o n s t a n t  o r  n e a r l y  c o n s t a n t  . r e a c t  i o n  p e r i o d .  

By comparison,  t h e  i n i t i a l  hydrogen p r e s s u r e  i n  r u n  1 i s  h i g h e r ,  

p o s s i b l y  because  of a d i f f u s i o n  b a r r i e r  a t  t h e  s u r f a c e  o f  t h e  m e t a l .  - 

Otherwise ,  a l l  t h r e e  runs  show a s i m i l a r  i n c r e a s e  i n  p r e s s u r e  w i t h  '' 
t i m e ,  which i n d i c a t e s  t h a t  a s i m i l a r  d i f f u s i o n  mechanism is  involved 

a s  t h e  r e a c t i o n  p r o g r e s s e s .  . 

. Runs 3-5 as p l o t t e d  i n  F i g u r e s  7-9 show v e r y  good l i n e a r i t y  on 

a semilog s c a l e ,  excep t  f o r  t h e  i n i t i a l  monisothermal p e r i o d .  The 

much h i g h e r  p r e s s u r e s ,  h o w e v e r , ' i n d i c a t e  t h a t  t h e  e f f e c t  of r e a c t i o n  

k i n e t i c s  i s  i n ~ ~ g n i f i c a n t  i n  t h e s e  r u n s .  Most 1ik.eI.y the h i g h e r  

p r e s s u r e s  a r e  the .  r e s u l t  of  a n  a p p r e c i a b l e  d i f f u s i o n  ' b a r r i e r  t h a t  

i I e x t e n d s  t o  a c o n s i d e r a b l e  d e p t h  i n t o  t h e  m e t a l .  

S i n c e  a l l  of t h e  r e a c t i o n '  t imes  we,re no t  t h e  same, semilog 

p l o t s  were  made of t h e  hydrogen p r e s s u r e  v s .  t h e  c a l c u l a t e d  a v e r a g e  

H/Z atom r a t i o  s o  a s  ,to: pe rmi t  a more v a l i d  .comparison. Runs 1 and 

8 . ( F i g u r e '  . 13) , were made a t  approx imate ly  t h e  same tempera tu re  range 

(384 - 43Z6c.and 414 -..4'16@C, r e s p e c t i v e l y )  s o  t h a t  t h e  e f f e c t  of 

approx imate ly  d o u b l i n g  t h e  hydrogen,  f eed  . , r a te  i n  r u n  8 (5.58 v s  2.72 . 

cm3 a t .  S T P / ~  Zr-min) can be  s e e n  i n t h e  h i g h e r  p r e s s u r e  t h a i  r e s u l t e d  

i n  r u n  8 ,  e x c e p t  f o r  t h e  i n i t i a l  r e a c t i o n  p e r i o d .  ~ h i s . : s a m e  

i n c r e a s e d  p r e s s u r e  e f f e c t  can  b e  se2n.when comparing r u n s  6 and 7 

(F igure  1 4 ) ,  which were  made a t  h i g h e r  t empera tu re  ranges  (495 - 4 9 7 ' ~  

and 482 - 49O6c, r e s p e c t i v e 1 9  w i t h  t h e  flow r a t e  i n  run  7 approxi:- 
3 

m a t e l y  3% t imes  f a s t e r  t h a n  i n  run  6 (9.24.17s. 2.72 cm a t  S T P ~ ~  

Zr-min).  The i n c r e a s e d  flow r a t e  i n  r u n  7 p robab ly  caused t h e  , 

de layed  i n i t i a l  r e a c t i o n  o f  t h e  two s.ponge specimens .as s h w n  by the 
two p r e s s u r e  peaks on t h e  i n i t i a l  p a r t  of t h e  curve.. The s i m i l a r i t y  

of r u n s  6 and 7 can  be s e e n  when t h e  r a t i o  of t h e  hydrogen p r e s s u r e  

o f  r u n  6 t o  r u n  .7 i s  compared f o r  any H / Z ~  atom r a t i o  between 0 . 8  and 

1.7.  . 
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Figure  15. Hydrogen p ressure  vs .  H / Z r  atom r a t i o  
- runs 3_5. 



This  va lue  i s  n e a r l y  cons t an t ,  ranging between 14.5 and 16.7. Runs 
3 

2 and 6 were made a t  t h e  same hydrogen feed r a t e  (2.72 cm a t  STP/ 

Z r-min) but  a t  d i f f e r e n t  temperature ranges (366 - 3 7 0 ' ~  v s .  495 - 497Oc). 

The hydrogen p re s su re  r a t i o  of  run 2 t o  run  6 i n  t h i s  case  is  l e s s  

cons t an t ,  however, and v a r i e s  between 1 .9  and 2.8 f o r  H / Z ~  atom r a t i o s  

between 0.2 and 1.8.  

Runs 3-5 show l e s s  l i n e a r i t y  when p l o t t e d  a g a i n s t  t h e  H/Z r atom 

r a t i o  (Figure 15) than  when p l o t t e d  a g a i n s t  t ime,  e s p e c i a l l y  a t  t h e  

h igher  H k r  atom r a t i o s .  Runs 3 and 4 were made a t  t h e  same hydrogen 
3 feed r a t e  (2.72 cm a t  S T P / ~  zr-min) b u t  a t  d i f f e r e n t  temperature 

ranges (338 - 3 4 8 ' ~  and 465 - 4 6 7 ' ~ ~  r e s p e c t i v e l y ) ,  y e t  t h e  two p l o t s  

a r e  n e a r l y  co inc iden t ,  thus  i n d i c a t i n g  l i t t l e  temperature e f f e c t .  

The p re s su re  i n  run  5 shows a s t e e p e r  i nc rease  than  i n  t h e  o the r  two 

runs ,  perhaps because of t h e  s l i g h t l y  h igher  feed r a t e  (2.94 v s  . 2.72 

cm3 a t  sTP/g Zr-min) and a l s o  becausc of  a g r e a t e r  hydrogen e q u i l i -  

brium p res su re  e f f e c t ,  e s p e c i a l l y  a t  t h e  higher  H / Z r  atom r a t i o s .  

The hydrided specimens a r e  shown i n  F igures  16 and 17 and can 

be compared w i t h  nonhydrided sponge l a b e l e d  Z r  i n  t h e  same f i g u r e s .  

The specimens were r eac t ed  t o  a n  average H / Z ~  r a t i o  of  a t  l e a s t  1.8 

during the  hydrogen feed per iod ,  and t h e  r e a c t i o n s  d id  cont inue  t o  o r  

nea r  completion a f t e r  shu t  down. I n  gene ra l ,  t h e  h ighes t  degree of 

phys i ca l  i n t e g r i t y  was observed i n  t hose  runs where the  hydrogen 

p re s su re  remained low and t h e  semilog p l o t s  were nonl inear .  The 

specimens from run 1 and 6 remained e s s e n t i a l l y  i n t a c t .  By comparison, 

t h e  specimens from runs 3-5, where t h e  hydrogen p re s su re  was high and 

t h e  semilog p l o t s  were l i n e a r ,  were s e v e r l y  broken. No e f f e c t  of 

temperature,  which ranged from 338 ' 3 4 8 ' ~  f o r  run 3 t o  492 - 4 9 9 ' ~  f o r  

run 5 was observed. The zirconium sponge a s  rece ived  from t h e  

s u p p l i e r  normally con ta ins  some cracks .  Hydriding, even under t h e  

b e s t  cond i t i ons ,  does tend t o  i nc rease  t h e  number of c racks  and en- 

l a r g e  e x i s t i n g  c racks .  A l l  hydrided specimens were f r i a b l e  and c a r e  

was requi red  dur ing  handl ing  t o  prevent  f u r t h e r  breakage. 



Figure 16. Hydrided specimens from runs 1-4 and 
nonhydrided zirconium sponge. 

Figure 17. Hydrided specimens from runs 5-8 and 
nonhydrided zirconium sponge. 



Hydr id ing  t o  a  lower hydrogen- to-metal  r a t i o  shou ld  reduce t h e  

f r i a b i l i t y  and improve t h e  p h y s i c a l  i t i t e g r i t y .  

C .  D i s c u s s i o n  o f  Hydr id ing  R e s u l t s  

The l a c k  of cons , i s t ency  i n  t h e  d a t a  makes a  more q u a n t i t a t i v e  

comparison d i f f i c u l t .  Th i s  l a c k  o f  c o n s i s t e n c y  can  p robab ly  be 

a t t r i b u t e d  t o  d i f f e r e n c e s  i n  t h e  r a t e  o f  d i f f u s i o n  o f  hydrogen from 

specimen t o  specimen and i s  most l i k e l y  t h e  e f f e c t  of o x i d e s ,  

n i t r i d e s ,  e t c . ,  forming d i f f u s i o n  b a r r i e r s  on t h e  s u r f a c e ,  as w e l l  a s  

pe rhaps  deeper  i n t o  t h e  b u l k  o f  t h e  m e t a l .  Th i s  i n h i b i t i o n  e f f e c t  

on t h e  h y d r i d i n g  of z i rcon ium h a s  been observed by o t h e r  workers  (2) 

and c a n  i n  f a c t  r e s u l t  i n  ex t remely  low o r  n e g l i g i b l e  r e a c t i o n  r a t e s .  

The s u r f a c e  p r e p a r a t i o n  p rocedure  and ,  perhaps  even more s o ,  t h e  

o u t g a s s i n g  procedure  and vacuum sys tem a r e  impor tan t .  Because o f  

t h e  p o r o s i t y  and i r r e g u l a r i t y  of  t h e  sponge s u r f a c e  which p r e c l u d e s  

t h e  u s e  of mechanical  t r e a t m e n t ,  t h e  s u r f a c e  p r e p a r a t i o n  i s  l i m i t e d  

t o  washing and chemical  t r e a t m e n t .  B e t t e r  c o n t r o l  of t h e  o u t g a s s i n g  

procedure  w i t h  r e s p e c t  t o  t ime ,  t e m p e r a t u r e ,  and vacuum a t t a i n m e n t  

shou ld  improve t h e  c o n s i s t e n c y  o f  t h e  r e s u l t s  from r u n  t o  run .  Of 

c o u r s e  t h e  s u r f a c e  c o n d i t i o n  and i m p u r i t y  c o n t e n t  a r e  s u b j e c t  t o  

v a r i a t i o n  from one s o u r c e  of s u p p l y  t o  a n o t h e r  and a l s o  from b a t c h  

t o  b a t c h .  I n  a d d i t i o n ,  t h e  p u r i t y  o f . t h e  hydrogen gas .mus t  be 

t a k e n  i n t o  a c c o u n t ,  p a r t i c u l a r l y  w i t h  r e g a r d  t o  r e a c t i v e  i m p u r i t i e s  

such as oxygen, n i t r o g e n ,  w a t e r ,  and ca rbon  ' d i o x i d e .  

The r e a c t i o n  r a t e s  o b t a i n e d  i n  t h e s e  r u n s  a r e  more t h a n  a d e q u a t e  

i n  terms.  o f  t r i t i u m  r e t e n t i o n  requ i rements  f o r  t h e  f u t u r e .  . I f  a  

maximum r r i t i u m  p r o d u c t i o n  r a t e  o f  2 x 1 0 ~  Cilyr from p a r e r - s p e n t  . 

r e a c t o r  f u e l s  f o r  t h e  y e a r  2000 i s  assumed based on e s t i m a t e s  made by 

K u l l r n ,  Trevorrow , and S t e i n d l e r  (3)and ant a v e r a g e  t r i t i u m  a c t i v i t y  

o f  5000 ~ i / l  i n  t h e  f i n a l  waste .  s t r e a m  p r i o r  t o  e l e c t r o l y s i s  i s  a l s o  
3 

assihmed, a r e a c t i o n  r a t e  o f  2.5 cm of  HT a t  S T P / ~  Zr-min would r e q u i r e  

a n  i n v e n t o r y  uf only about  3.8 kg o f  z i rcon ium p e r  ba.tch f o r  a 24. hr/dny 

con t inuous  o p e r a t i o n .  T h i s  would cor respond  t o  a  68 min r e a c t i o n  t ime 

f o r  a n  H / Z ~  atom r a t i o  of 1 .5 .  However, because  o f  t h e  h i g h  h e a t  of 



r e a c t i o n  (approx imate ly  39 k c a l / g . m o l e  of hydrogen r e a c t e d )  t h e  

l i m i t i n g  f a c t o r  i n  t h e  d e s i g n  o f  t h e  r e a c t i o n  system would probably  

be h e a t  t r a n s f e r  r a t h e r  t h a n  r e a c t i o n  r a t e .  

D. S t a t i c  Leach T e s t i n g  of Zirconium Hydride 

S t a t i c  l e a c h  t e s t i n g  of z i rcon ium sponge and rod specimens 

p repared  p r e v i o u s l y  ( 4 )  ' (5) w a s  c o n t i n u e d .  The r r i t  i a t e d  specimens,  

were  immersed i n  25 m l  of d i s t i l l e d  w a t e r  which w a s  n o t  changed d u r i n g  

t h e  166 t o  208 day l e a c h  p e r i o d .  Two m i l l i l i t e r  a l i q u o t s  were  removed, 

f i l t e r e d ,  and t h e n  counted i n  a l i q u i d  s c i n t i l l a t i o n  c o u n t e r .  

The. l e a c h  r a t e s ,  expressed  as , (cummula t ive  f r a c t i o n  t r i t i u m  , 

- 6  r e l e a s e  p e r  day) x (v/s) ranged from 8 .91c l0-~  to 1 . 7 ~ 1 0  cm/day ( s e e  

Tab le  9 ) .  The f a c t o r  V/S , where V i s  t h e  specimen volume and S i s  i t s  

geomet r ic  s u r f a c e  a r e a ,  i s  i n c l u d e d  s o  t h a t  t h e  t r i t i u m  r e l e a s e  a s  

e x p r e s s e d  i s  independent  of sample geometry and s i z e .  Zirconium 

sponge is  i r r e g u l a r l y  .shaped and q u i t e  porous  and i t s  V/S was c o n s e r -  

v a t i v e l y  e s t i m a t e d .  t o  be  e q u i v a l e n t  t o  a  geomet r ic  c y l i n d e r  of e q u a l  

w e i g h t  w i t h  a d i a m e t e r  of one h a l f  i t s  l e n g t h .  These l e a c h  r a t e s  a r e  

approx imate ly  one h a l f  t h e  v a l u e s  r e p o r t e d  p r e v i o u s l y  (5) f o r  t h e  same 

specimens t h a t  were  l eached  f o r  a  s h o r t e r  t ime  p e r i o d .  



TABLE 9 

Sample 
No. 

. S t a t i c  Leach T e s t i n g  o f  Zirconium i n  D i s t i l l e d  Water (a)  

Form - 
Sponge 

Sponge 

Sponge 

Sponge 

Sponge 

Rod 

%" Rod 

H ' / z ~  atom 
r a t i o  

Cumrnula t i v e  
f r a c t i o n  t r i t i u m  

r e l e a s e  r a t e ,  day-' 

1 . 5 x 1 0 - ~  

1 . 5 ~ 1 0  
-5 

(Cummula t i v e  
f r a c t i o n  t r i t i u m  . 

r e l e a s e  r a t e )  x (V/S), 
cm/dav 

(a )  Leach t i m e  of 166 t o  208 days  

(b) V/S  f o r  sponge e s t i m a t e d  t o  be e q u i v a l e n t  t o  a geomet r i c  c y l i n d e r  
o f  e q u a l  w e i g h t  and w i t h  a d i a m e t e r  o f  one h a l f  i t s  l e n g t h .  
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