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ABSTRACT

A methodology is presented that allows the derivation of low-truncation-error finite
difference equations for photonics simulation. This methodology is applied to the case of wide-
angle beam propagation in two dimensions, resulting in finite difference equations for both TE
and TM polarization that are quasi-fourth-order accurate even in the presence of interfaces
between dissimilar dielectrics. This accuracy is accomplished without an appreciable increase in
numerical overhead and is concretely demonstrated for two test problems having known
solutions. These finite difference equations facilitate an approach to the ideal of grid-independent

computing and should allow the solution of interesting problems on personal computers.
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L. INTRODUCTION

The design and analysis of photonic circuit elements, both active (diode lasers) and
passive (waveguides, switches and couplers) often depends heavily on the science of numerical
simulation. Furthermore, this dependence is expected to increase as future optical circuitry
becomes more complex and computers more powerful. A large portion of this simulation
capability (although by no means all) results from the numerical solution of finite difference

equations derived from various simplified forms of the linear Maxwell’s Equations. These

equations have for the most part been derived by replacing the differential operators in the
Maxwell Equations by the standard centered difference operators, resulting in matrix equations
that are usually tridiagonal or block-tridiagonal in form. This approach is often denoted by the
term “Crank-Nicolson” differencing’, and results (for uniform grids and materials) in difference
equations whose truncation error is quadratic in the spatial grid size. These equations are thus
usually referred to as ““second-order accurate”.

In this and the following paper, we derive finite difference equations of higher accuracy
order for photonics simulation applications in one or two space dimensions, and demonstrate
their utility on several practical problems of interest. This represents a marked difference from
the approach used in the past, where little effort is typically expended in deriving the finite-
difference equations, and a maximum of effort in the development of a multitude of numerical
techniques for solving the (usually) large matrix equations that result from the practical
requirements of reasonable accuracy. Here, we place the emphasis on building as much
“intelligence” about the problem as possible into the difference equations, thus allowing the use

of coarse grids while still maintaining good solution accuracy. The solution of the resulting




smaller matrix can then be obtained using any of a variety of well-known numerical solution
methods. Of course, it stands to reason that more accurate finite diffe/rence equations will also
allow the solution of larger, more complex problems than have been previously possiblie. The
primary impact of this work is therefore (1) the introduction of a methodology for deriving more
accurate finite difference equations whose solutions are considerably less sensitive to the choice
of grid employed (an approach to grid-independent computing); and (2) the lowering of the
numerical effort required for their solution (especially for higher-dimensional problems) to a

level that allows the simulation of interesting problems on a personal computer.

The common second-order procedure referred to above for deriving finite difference
equations is widely practiced with only a few exceptions (which shall be pointed out in the text
as they occur) primarily because of the complexity of deriving higher-order-accurate equations,
an observation certainly confirmed by the derivations reported in this work. However, other
arguments sometimes raised against the use of higher-order formulations are found upon closer
inspection to be totally without merit. For example, it is often thought that gains in accuracy
from higher-order schemes are offset by a loss of stability and numerical robustness. While this
may be true for certain nonlinear problems, it does not appear to be true for linear problems, and
no such deficiencies have been observed with the several algorithms described here. In addition,
there is a common notion that higher-order schemes are more accurate when fine grids are
employed, but actually less accurate when used with coarse grids. This argument is also
incorrect, due to the presence of still higher-order terms (for example, fifth or sixth order terms in
a fourth-order scheme) that become important with coarse grids and cause the steeply-sloping
error curve to bend over as the grid becomes coarse. This is an important point, because the

greatest advantage of higher-order difference schemes lies in their ability to provide accurate




answers even with very coarse grids, resulting in a dramatic savings in runtime for modest
problems, and the possibility of solution for otherwise impossible problems. A third
misunderstanding is that higher-order schemes increase the bandwidth of the resulting matrix,
requiring more sophisticated solution algorithms and slower execution. Contrary to this idea,
truncation errors up through fourth order may be achieved routinely with a negligible increase in
bandwidth. In fact, all the difference equations described below utilize a stencil of (three)nine
points for (1-D)2-D problems, resulting in a bandwidth equal to or just slightly greater than that

corresponding to the more common (three)five-point stencil.

In this first paper, we present a precise methodology for deriving finite-difference
equations for the important application of 2D wide-angle beam propagation. Our approach is
based on Taylor series expansions and includes the field-derivative discontinuities at dielectric
interfaces. We then apply this methodology for wide-angle beam propagation, including both TE
and TM polarizations, and derive and test the resulting 1-D finite-difference equations using
problems with known solutions. The resulting equation is shown to be quasi-fourth-order
accurate in the transverse grid size (a designation that will be made precise later on), while
retaining the conventional second-order accuracy in the propagation step size. Previous authors®®
have attempted to derive higher-order beam propagation algorithms, although these derivations
have been deficient in certain respects. Most have been restricted to paraxial propagation and/or a
uniform grid. One™>® is applicable only for the case of graded-index materials. All have neglected
to treat the discontinuities in higher field derivatives at dielectric interfaces, resulting in a
lowering of the truncation order at those points. The neglect of these discontinuities limits the

accuracy severely for coarse grids.




In the second paper, we derive finite-difference equations for the modeling of the optical
fields in a vertical-cavity surface-emitting diode laser (VCSEL). These equations are derived
starting from exact finite difference equations describing the eigenmodes of a one-dimensional
cavity. The resulting equations for a VCSEL, a device whose character is strongly 1-D-like, thus
contain built-in information about the expected solution characteristics and are shown to be
highly accurate. An additional advantage of this formalism is that thin material layers (such as

quantum wells) can be simulated using grid sizes that differ significantly between adjacent grids

without concern about increased truncation error. As in the first paper, the accuracy of this

algorithm is tested for problems having known (or approximately known) solutions and

compared with that obtained using standard second-order-accurate code.

II. DERIVATION OF FINITE-DIFFERENCE EQUATIONS

We begin with a derivation of the finite-difference equation describing the propagation of
a TE- or TM-polarized field through a medium whose refractive index depends only upon one
transverse coordinate. Furthermore, we assume that the index is piece-wise constant. The grid is
then chosen so that all dielectric boundaries occur at grid points. In this paper the beam
propagation algorithm is derived only for longitudinally-uniform structures so that tapers must be
modeled using a stair-step procedure. Algorithms designed to include tapered regions a priori
will be treated in a future publication. Wide-angle beam propagation using the (1,1) Pade
approximation is described by the differential equation’
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where k =nk, , k, is the vacuum wavevector, n' is the reference index, z is the propagation

coordinate, € is the relative permittivity, and P is the operator
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We seek a finite-difference representation of Eq. (1) on the nonuniform grid shown in
Fig. 1, where € takes on the two constant values €, and €_ as shown. Prerequisite to this,
however, are a number of definitions and derivations that must be presented. In particular, a
generalization of the first and second derivatives is derived that is valid for a nonuniform grid
and includes higher field derivative discontinuities. To develop these prerequisites, we begin by

expanding the field in a Taylor series both to the right and left of grid point i:
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where the superscripts in parentheses denote derivative order and the subscripts on derivatives
denote values immediately to the right or left of grid point i. Although almost all quantities in the
derivations described here are grid point dependent, we will omit the subscript i in order to

simplify notation, leaving the dependence implicit. Forming the linear combination
e?Ax2(2) —e€?Ax?(3) (thee” factors are inserted for reasons that will soon be evident) and
dividing by Ax, Ax_(Ax, + Ax_) results in:.
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is the commonly-used finite-difference approximation to the first derivative for a nonuniform

grid, generalized for arbitrary polarization. In a similar manner, the combination

ePAx_(2) +€fAx_(3) leads to
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 Ax, (Ax, +Ax)) * Ax_(Ax, +Ax_)
is the generalized finite-difference approximation to the second derivative.

From Egs. (4) and (6) it is apparent that when the derivatives are discontinuous, the
commonly-used forms given in Eqgs. (5) and (7) correspond to prescribed averages of the first
and second derivatives. We thus digress for a moment to concretely define these averages and
associated definitions for the purpose of cohdensing the clumsy notation in Equations (4) and (6).

For any (possibly discontinuous) function f, we define the weighted grid average as
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and a term proportional to the function discontinuity

_ f-f
[f ]_ Ax, + Ax_
A particularly common form of Eq. (9) is
[Ax?]=Ax, —Ax.

the local grid nonuniformity. From Equations (8) and (9) one may easily derive the useful

formulas
fe= ()= ax[r]
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An alternate and sometimes useful form of Eq. (12) is
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and we have defined
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In terms of the newly-defined symbols, Equations (4) and (6) may be written
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where we have made use of the polarization-independent interface matching condition
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Equations (15) and (16) may be further simplified with the use of (11)-(13). In so doing, we drop

all terms of order Ax? (Ax+ - Ax_ )+ Ax* or higher, resulting in a truncation error heretofore

referred to as “quasi-fourth-order” (and written as O~ Ax*) ) because it approaches fourth
order smoothly in the limit of a uniform grid. All formulas in this work will be truncated to this

order. The result is
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Traditionally, the use of a nonuniform grid almost always results in a decrease in truncation
order, although this disadvantage is often overshadowed by other advantages such as a reduction
in the total number of grid points. For the present formulation, in which all dielectric boundaries
are forced to be on grid points, a nonuniform grid is a necessity if a continuum of structural
dimensions is to be treated.

Now the quantities in square brackets in Egs. (18) and (19) (field derivative

discontinuities) may be evaluated from the original Helmholtz propagation equation
— =5 (20)

from which Eq. (1) is derived as an approximation. If the discontinuity of each term in Eq. (20) is

evaluated, the result is

[PH]=0




since the field and its z derivatives cannot be discontinuous. But if we differentiate Eq. (20) with

. . oH
respect to x , multiply bye?, and use [8 P Ex_} =0, then we get
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Furthermore, operating on Eq. (20) with P and using Eq. (21) gives
[P*H]=0 (23)
. . : 0 :
and operating in succession first with P and thene? P together with the use of Eq. (22) results
in
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It may be verified that Equations (21)-(24) are also valid for the Pade propagation Equation (1).
Equations (21) and (23) are not useful as they stand. However, simple manipulations using

Equations (11) and (12) lead to the useful relations
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The straightforward (but tedious) evaluation of Equations (22),(24),(25) and (26) provides the

necessary quantities
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Inserting Equations (27)-(30) into Equations (18) and (19) results in the following final

expressions for the first and second derivatives:
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At this point some observations may be made from the form of Equations (32) and (33).

First, the typical “centered difference” expressions obtained by using only the terms




8H and8’H in Equations (32) and (33) result in propagation schemes that are first-order

(second-order) accurate between dielectric boundaries for nonuniform (uniform) grids, and first-
order accurate even for uniform grids at dielectric boundaries. An improvement in accuracy back
to second order may be obtained for uniform grids by simply keeping the first-order interface
terms in the above equations. The resulting equations are denoted “improved Crank-Nicolson”
in this work and are shown in the test problems below to afford substantial improvements for
coarse grids. Second, an improvement in the accuracy beyond second order cannot be obtained
by simply keeping more terms in (18) and (19) because the next lowest-order terms involve third
derivatives, which cannot be differenced using only a three-point stencil. However, it turns out
that if the second derivative is first premultiplied by an appropriate differential operator and then
averaged, the resulting expression can be accurately represented by a three-point finite difference

expression. This procedure depends upon the coefficients in the operator being chosen in such a
way that the terms proportional to (g? H) and (s? H®) cancel. In particular, following this

approach results in the useful quasi-fourth-order expression:
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provided ¢ and b are chosen to be




For grid points not on a dielectric boundary, Eq. (34) is equivalent to the simple form
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Equation (36) is the generalization of the well-known Douglas formula®® for the case of a
nonuniform grid.

We have now developed the necessary tools to derive the finite-difference approximation
to the propagation equation (1). We begin by differencing Eq. (1) with respect to the propagation
coordinate z in a centered fashion, yielding second-order accuracy in Az. (We note in passing
that although higher-order differencing methods in the propagation coordinate are derivable, their
usefulness is limited by the necessity of keeping the propagation step size small for structures
that are z-dependent.) Applying the product of €” and the differential dperator above to Eq. (1),

using (32)-(34), and dropping terms below quasi-fourth order results in the final equation
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where the values of a and b are as given in Eq. (35), the superscripts on the field refer to the

propagation plane, and we have defined
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Note that the resulting difference Equation (37) is accurate to quasi-fourth order, even on

dielectric boundaries. A concern might arise as to whether the added complexity of this equation
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and the associated coding might slow execution to a degree sufficient to offset the advantage
incurred by the greater accuracy. That this is not the case may be understood by remembering

that most of the terms in Eq. (37) drop out for grid points not on a dielectric boundary (which is

usually the vast majority of the points). In the author’s experience, a simple test inserted in the
code to identify boundary points typically results in execution times just slightly greater (about

10%) than those observed for second-order-accurate code.

III. ACCURACY COMPARISONS

Here we demonstrate the accuracy of the algorithm just derived by comparing the
numerical results obtained on several grids of varying resolution with known answers for two
simple test problems. The first involves the computation of the modal index for the fundamental
mode of a simple symmetric waveguide. This computation was performed using both the quasi-
fourth-order method derived above and also the standard and modified Crank-Nicolson methods.
This simple problem was chosen for comparison rather than a more complex problem such as a
tilted waveguide’ because (1) the propagation constant may be computed using other methods to
very high accuracy and (2) the modeling of slanted boundaries is considered to be a separate
problem requiring additional considerations beyond that of propagation accuracy. Dirichlet
boundary conditions with appropriate absorbing regions near the boundaries were also used
instead of transparent boundary conditions™' in order to provide more exact accuracy
comparisons. However, the algorithm derived above is entirely compatible with transparent
boundary conditions, as will be seen in the second test problem. The test problem geometry is

detailed in Figure 2. For each algorithm, a trial wave for each polarization was propagated until a




steady state value was obtained and its modal index computed numerically (using a simple

intensity-weighted formula). The resulting relative errors in the normalized madal index

. n—Jg,

e e @
are Tabulated in Table 1, and plotted versus grid size in Figure 3. Relative errors were calculated
based upon normalized modal index values of 0.57451606612441(0.57354315948471) obtained
for TE (TM) polarization using a slab waveguide solver. As expected, the standard Crank-
Nicolson method leads to errors that depend quadratically on the grid size. The curve denoted
“Modified CN TE” is a Crank-Nicolson equation with first-order interface terms from Egs. (37)
and (38) included. Ordinates for the TM case are identical to the TE case and are consequently
omitted from the plot. These results are considerably better than the standard Crank-Nicolson
case for coarse grids where interface points make up a larger fraction of the total number of grid
points. As expected, results obtained using the present method show a fourth-order dependence
on grid size (since the grid is uniform) and demonstrate the present formulation to be quite
accurate even for very coarse grids. Apparent departures from fourth-order behavior at the finest
grid level for the case of TE polarization are probably due to round-off error, since changes in the
modal index are occurring in the 13™ significant figure and the calculations are performed using
double precision arithmetic, with expected uncertainties in the 14™ digit.

To emphasize the excellent performance of this algorithm using coarse grids, Figure 4
shows the intensity profile for the converged TE mode on the coarsest grid, constructed by
simply connecting intensity values at neighboring grid points with straight lines. It is remarkable

that a grid too coarse to smoothly resolve the intensity profile could still result in a reduced




modal index accurate in the third decimal place. Of course, a smoother intensity profile could be
constructed on this grid by utilizjng information about the higher derivatives.

The second test problem considered is of perhaps greater practical interest, involving the
energy exchange between two evanescently-coupled waveguides. The problem geometry is
| shown in Fig. 5 where once again a uniform grid is employed for maximum accuracy. For
convenience, transparent boundary conditions are used at both boundaries®'’. The fundamental
mode of the left waveguide alone (identical to the waveguide of the previous test) is used as

input to the problem, and the distance required for a complete transfer of energy to the rightmost

guide and back again is computed. The results are plotted in Fig. 6 versus total number of grid
points for both the present algorithm as well as the standard Crank-Nicolson equation (without
interface correction terms). Also shown in the figure are approximate lengths (6174.3 pm for
TE, 6154.1 um for TM) obtained from the difference of the propagation constants of the odd and
even eigenmodes of the coupled guides as computed from a slab waveguide solver. The latter
values must be considered approximate since the mode of the leftmost guide is only an exact
combination of the odd and even coupled modes in the limit of infinite guide separation. Again
the accuracy of the present quasi-fourth-order algorithm for coarse grids is aptly demonstrated
compared with the second-order method, which deviates sharply from the correct answer as the
grid coarsens.

It should be noted that the algorithm described in this work is non-unitary and therefore
does not conserve the intensity integral exactly. This condition results from both the inclusion of
the interface terms and also the use of a non-uniform grid. Generally speaking, the deviation

from exact conservation increases as (1) the index contrast at a dielectric interface (experiencing




significant field intensity) increases, and (2) the difference between adjacent grid sizes increases.
However, no instability has been observed so far, but rather only cyclical variations in beam
energy. Usually these are small in magnitude for reasonable grids, and because they are cyclical,
do not appear to degrade the accuracy of energy-loss calculations over long propagation
distances. (Some of the eigenmode calculations described above were run for distances of 150

mm or more without experiencing a significant overall energy loss).

CONCLUSION

In summary, we have presented a new methodology for the derivation of highly-accurate

finite-difference equations for beam propagation. This methodology was used to derive a 2D
propagation equation in cartesian coordinates for both TE and TM polarizations. The resulting
equation is quasi-fourth-order accurate, but nonetheless still tridiagonal in form and thus solvable
using the standard Thomas algorithm. Accuracy tests for both a single waveguide and coupled
waveguides confirm the predicted accuracy and demonstrate the utility of these equations even
for very coarse grids. The primary impact of this work is twofold: first, the application of the
formalism developed here to photonics simulation results in code that is relatively insensitive to
the choice of grid (grid-independent computing). This implies that the solution of interesting
problems on any reasonable grid will provide answers of sufficient accuracy for design purposes.
It therefore frees the researcher (who may not be familiar with numerical computation issues)
from concerns about truncation errors and the necessity of running the problem on a number of
different grids to be certain that they are not influencing the answer. Second, the resulting coarser
grids should reduce runtimes sufficiently so that modest problems can be solved on personal

computers and large previously-intractable problems on workstations. These improvements are




expected to be particularly impressive when the approach detailed here is extended to higher--
dimensional problems where the numerical effort is considerably more sensitive to the grid

resolution. Such an extension to beam propagation problems involving two transverse

dimensions is straightforward (but tedious) except for corner points (which are known to be

particularly troublesome'') and will be described in detail in a future publication.
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Table 1

Polarization ™ TE

N\Method

Standard Modified Standard Modified Present

Present




Polarization ™ TE
CN CN Work CN CN Work
. 1 0.5371676 0.5768063 | 0.57390475 0.5377357 0.5777236 0.5748749
0.0640 5.69x 10° 6.30 x 10* 0.0640 5.58x10° 6.25x10*
2 0.5640013 0.5775562 | 0.57356158 0.5647636 0.5785115 0.57453422
0.0166 7.00x 10° 321x10% 0.017 6.95 x 107 3.16x 10°
4 0.5711639 0.5749984 | 0.57354422 0.5720324 0.5759671 0.574517105
415x 103 2.54x 10°? 1.84 x 10 432x10% 2.52x 103 1.81x 10
8 0.5729721 0.5739658 | 0.573543224 0.5738919 0.5749375 0.5745161293
9.96 x 10 737 x10* 1.12x 107 1.09x 103 7.33 x 10* 1.10 x 107
16 0.5734134 0.5736563 |0.57354316353]  0.5743599 0.5746289 0.57451607000
226 x 10* 1.97 x 10+ 7.05% 10° 272 x 10% 1.96 x 10 6.75 x 10°
32 0.57351732 0.57357238 |0.57354315975|  0.57447701 0.57454521 0.574516066591
451x10° 509%x10° | 464x10" 6.80 x 10° 5.07 x 10° 8.12x 107
Table 2
Polarization ™ TE
N\Method Standard Present Standard Present
CN Work CN Work
1 5869 6167 5884 6187.5
2 6086.5 6164 6103.5 6182
4 6142 6163 6162.5 6182
8 6158 6163 6178.5 6183.5
TABLE CAPTIONS

1. Normalized modal index for the waveguide described in Fig. 2 computed using various
propagation schemes and grids. Just below the modal index is the relative error based on a
correct value of 0.5745160661244(0.5735431594847) for TE(TM) modes obtained from a
slab waveguide solver. The parameter N in the leftmost column labels the uniform grids as

detailed in Fig. 2.




2. Predicted propagation length for energy transfer into the second guide and back again for the

geometry shown in Fig. 5. The values may be compared with approximate analytic results

(shown as horizontal lines) of 6174.3um(6154.1um) for TE(TM) modes. The parameter N in

the leftmost column labels the uniform grids as detailed in Fig. 5.

FIGURE CAPTIONS

1. Schematic diagram showing the nomenclature and convention used in the derivation of
the finite-difference propagation equation. All dielectric interfaces are assumed to lie on a

grid point as shown in the figure.

2. Schematic diagram of waveguide and grid geometry used for propagation constant test.
" Dielectric constants are €, = (11.044,0.) ,g, = (11.088,0.), €, = (11.044,0.004) . Other
parameters are as shown, and the number of grid points in each region are scaled by the

integer N.

3. Relative accuracy of computed propagation constant for structure shown in Fig. 1 using
various propagation methods. Curve for Modified CN and TM polarization was virtually

identical to the TE case and was omitted from the plot.

4. Intensity profile for the converged TE solution to the simple waveguide problem

described in Fig. 1 using the coarsest grid. The vertical lines mark the waveguide position. In




order to emphasize the coarseness of the grid, no attempt was made to utilize a computed

knowledge of higher-order derivatives and thus smooth the profile.

5. Schematic diagram of waveguide structure for coupling test. Dielectric constants and grid

scaling are the same as listed in Fig. 1.

6. Computed length for energy transfer to second waveguide and back again for various

grids using both the standard Crank-Nicolson and quasi-fourth-order methods. Approximate

answers of 6174.3 um(6154.1um) for TE(TM) polarization determined from the difference of

the odd and even coupled waveguide eigenmodes is shown as the horizontal dotted lines.
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