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Abstract

We present a method for formulating gauge theories of chiral fermions in
lattice field theory. The method makes use of a Wilson mass to remove dou-
blers. Gauge invariance is then restored by modifying the theory in two ways:
the magnitude of the fermion determinant is replaced with the square root of
the determinant for a fermion with vector-like couplings to the gauge field; a
double limit is taken in which the lattice spacing associated with the fermion
field is taken to zero before the lattice spacing associated with the gauge field.
The method applies only to theories whose fermions are in an anomaly-free
representation of the gauge group. We also present a related technique for
computing matrix elements of operators involving fermion fields. Although
the analyses of these methods are couched in weak-coupling perturbation the-
ory, it is argued that computational prescriptions are gauge invariant in the

presence of a nonperturbative gauge-field configuration.
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I.INTRODUCTION

The interaction of chiral spin-1/2 particles with gauge fields is a feature of many field-
theoretic models, including the standard electroweak model. The implementation of chiral
gauge theories in lattice field theory is, of course, a prerequisite to the numerical simulation
of such theories; but it is also of importance in establishing that chiral theories can be defined
outside of the domain of perturbation theory.

In this paper, we present a new method for constructing lattice versions of chiral gauge
theories. Our approach makes use of a Wilson mass [1] to remove fermion species doublers.
We then partially restore the chiral symmetry by replacing the magnitude of the fermion
determinant with the square root of the determinant of a fermion with vector-like couplings
to the gauge field [2-6]. This modification of the fermion determinant amounts to the
addition of local counterterms to the action [3-5]. The philosophy of using local counterterms
to restore the chiral symmetry has also been suggested by the Rome group [8]. (Local
counterterms are required to restore the chiral symmetry in the proposal of the Zaragoza
group [9], as well.) However, unlike the approach of the Rome group, our method does not
entail the tuning of counterterm coefficients.

After we have modified the fermion determinant, it is gauge invariant in the presence of
a background gauge field, except for contributions from the Adler-Bardeen-Jackiw (ABJ)
anomaly. These violations of chiral symmetry cancel, as usual, when one considers a theory
containing a suitable complement of physical fermions.

The presence of dynamical gauge fields introduces new ultraviolet divergences and po-
tentially requires the introduction of many new counterterms to restore the chiral symmetry.
We circumvent this difficulty by introducing separate lattice cutoffs for the fermion fields

and gauge fields [6,7,10-13].! In the double limit in which the fermion cutoff is removed be-

'For a recent review of lattice chiral-fermion proposals, including those which make use of separate

regulators for the gauge fields and fermion fields, see Ref. [14]
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fore the gauge-field cutoff, the violations of chiral symmetry vanish with at least one power
of the ratio of cutoffs. The use of this double limit in conjunction with the modification of
the magnitude of the fermion determinant has been emphasized previously in Refs. [6,7]

Most of the analysis in this paper is couched in weak-coupling coupling perturbation
theory. However, we are able to show, by exploiting the finite radius of convergence the
perturbation expansion of the fermion determinant, that our method is also valid in the
presence of nonperturbative gauge-field configurations.

The remainder of this paper is organized as follows. In Section II we discuss, in general
terms, fermion doubling, its elimination through the use of a Wilson mass, and the breaking
and restoration of chiral symmetry. In Section III we introduce a lattice implementation of
a theory of left-handed fermions coupled to a non-Abelian gauge field. Although our specific
analyses in subsequent sections of the paper refer to this model, our methods generalize
immediately to models that contain right-handed as well as left-handed fermion fields and
to models that contain scalar particles. In Section IV we discuss the nature of the violations
of gauge invariance that arise from the introduction of a Wilson mass. Section V contains an
analysis of the chiral-symmetry properties of the fermion determinant in the presence of a
background gauge field. This analysis allows us to derive a modification of the determinant
that restores the chiral symmetry in the case of an anomaly-free theory. In Section VI
we discuss the difficulties that arise from dynamical gauge fields and present the double
limiting procedure for dealing with them. In Section VII we indicate how the methods used
in computing the fermion determinant can also be applied in computing matrix elements of
operators containing fermion fields. A proof of the validity of the methods for computing
the fermion determinant and operator matrix elements in the presence of nonperturbative
gauge fields is sketched in Section VIII. Finally, in Section IX, we summarize our results
and discuss various options for implementing our chiral-fermion method.

While this paper was in preparation, a paper by Herndndez and Sundrum [15] on the
same subject appeared. The methods that these authors propose for computing the fermion

determinant (but not the matrix elements of fermion operators) are essentially identical to
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the ones proposed in the present paper. Many of the conclusions drawn in the present paper
and in Ref. [15] are the same; one exception is noted at the end of Section VIB5. However,

the details of the proofs in the two papers are, in general, quite different.

II. DOUBLING, WILSON MASSES, CHIRAL SYMMETRY: GENERAL

CONSIDERATIONS

It is well known that the most straightforward transcription of the Dirac operator to the
lattice is problematic because of the phenomenon of fermion doubling: for each left- or right-
handed particle in the continuum theory, there are 24! left-handed and 247! right-handed
particles in the lattice theory, where d is the dimensionality of space-time [16].

For the case of QCD, Wilson [1] suggested that one could remove the doublers by giving
them a mass that goes to infinity as the lattice spacing a goes to zero. Of course, the
introciuction of a mass explicitly breaks the chiral symmetry. However, this is not expected to
present a serious problem in QCD, since the gauge symmetry remains intact. Consequently,
the renormalization program is unaffected and one should recover the continuum theory as
the lattice regulator is removed (a — 0).

In the case of a chiral gauge theory, the introduction of a Wilson mass has more serious
consequences. For such a theory, the Wilson mass and, hence, the UV regulator, break the
gauge symmetry, thereby jeopardizing the renormalization program and the decoupling of
unphysical degrees of freedom.

In a chiral theory, one cannot completely avoid such a breaking of the gauge symmetry.
There are several no-go theorems which state, under a variety of assumptions, that any gauge
theory that does not exhibit fermion doubling must violate chiral symmetry [16,17). One
can argue this very generally on the basis of the properties of the ABJ anomaly. If a lattice
theory preserves a chiral symmetry, then the corresponding chiral current is conserved. In
particular, the triangle anomaly is zero and remains zero in the continuum limit. But, ac-

cording to the proof of Adler and Bardeen [18], there is no Lorentz-covariant Bose-symmetric



counterterm that removes the anomaly in the triple-chiral-current Green’s function for a the-
ory containing a single fermion species. That is, there is no UV regulator under which the
anomaly vanishes as the regulator is removed. Hence, a lattice regulator that preserves the
chiral symmetry must cancel the anomaly through the presence of multiple fermion species,
i.e. doubling. Note that this argument leaves open the possibility that one might eliminate
the doubling in a way such that the violations of chiral symmetry arise solely from the ABJ
anomaly. Such a result is our goal.

In employing continuum perturbative UV regulators, such as dimensional regularization,
one deals with violations of a chiral gauge symmetry by adding counterterms order by order
by order in perturbation theory so as to restore the chiral symmefry in selected Green’s
functions. The remaining violations of the chiral symmetry arise from the ABJ anomaly
and cancel when one introduces an appropriate complement of physical fermion species. Such
an order-by-order approach is, of course, incompatible with a nonl;erturba.tive regularization
of the theory. However, one might still hope to effect a restoration of the chiral symmetry
by introducing local counterterms with appropriate coefficients.

A heuristic argument in support of this idea is the following. Once one has eliminated
doubling, so that the lattice theory has the same low-energy spectrum as the continuum
theory, then the lattice is simply a UV regulator. It follows from the definition of a regulator
that the differences between the lattice regularization and any other UV regularization
must reside at loop momenta on the order of the UV cutoff of the theory. Hence, the
differences must arise at short distances (~ 1/cutoff); that is, they have the form of local
interactions. Therefore, we can conclude that, if there exists a satisfactory UV regularization
of a chiral gauge theory (that is, one that respects the chiral gauge symmetry), then it must

be equivalent to the (Wilson) lattice-regularized theory, plus local counterterms.




III. A LATTICE CHIRAL-FERMION MODEL

Now let us discuss the lattice implementation of a specific model: a left-handed fermion
coupled to a non-Abelian gauge field. As we have already mentioned, the techniques that we
present are easily generalizable to models containing right-handed fermions and/or scalar

particles.

We assume that the gauge-field part of the (Euclidean) action has the standard plaquette

form:

S¢ = % SN TrU(2)U,(z + a,)Ul(z + a,)Uj(2) + h.c,, (3.1)

T pFv

where, as usual,

Uu(z) = exp [tagd,(z + a,/2)] (3.2a)

Ul(z) = exp [—iagA,(z + a,/2)] (3.2b)

are the lattice link variables, 4, = AT, is the gauge field, T, is a gauge-group matrix in
the fundamental representation, g is the gauge-field coupling, a is the lattice spacing and a,

is a unit vector in the p direction. Initially, we introduce the fermion through the “naive”

lattice action for a Dirac particle:

Sw = o 3 Bl (e + a,) — (e - ), (33)

where the 4’s are Buclidean Dirac matrices satisfying {7u, 1} = 26,,. Note that, in contrast
with some formulations of chiral theories, our approach retains both left- and right-handed
components in the fermion field. The chiral nature of the theory arises from the coupling to

gauge fields, which involves only the left-handed Dirac component:
— 1
Snr = adz¢(m)7#PL2_g{[U#(m) —1p(z + a,) - {UZ(:B —au) = 1|Y(z — a,)}, (3.4)
z,u

where Pr/p = (1/2)(1 £ 7s), {7s,7} = 0, 72 = 1. (In four dimensions, 75 = —Y1727¥374-)

The fermion propagator corresponding to the naive action is

6



i85 (p) = [(1/a) 3_ dyu sin(pua)] ™, (3.5)

where p is the incoming fermion momentum. The order g and order g? gauge-field vertices

that arise from the gauging of the naive action are

VEM(p, 1) = TV (p, )Py = ~ig Ty P cos|(pu + $1,)al, (3.62)

V;Si?ﬁ(p: [y, lz) = TaTpr(g)N(P: L, l2)PL = ia'ngaTb&w'Y#PL Sin[(pu + %llu + %ZZu)aL (3'6b)

where the V¥’s are the vertices that arise from the gauging of the naive lattice action for a
theory of fermions with vector-like couplings to an Abelian gauge field. Here T,,Ty,... are
the gauge-group matrices, a,b,... are the gauge-field indices, g, v ... are the polarization
indices, and l,[,,... are the incoming momenta, all of which are associated respectively
with the gauge fields. The incoming fermion momentum.is p. The vertices of higher order

in g can be obtained conveniently from the recursion relation

V(n+1) (p, l1, ceey ln+1)

H1eeoping1
Vlfln)#n(p + l,,,+1, l1, ey ln) - V‘E?)”n(p, l1, ey ln)
= —'gaﬂnﬂn+1 d (l ) )
HBnir\‘ntl

(3.7)

where
d, = (2/a)sin 1p,a. (3.8)

In addition to the usual pole at p = 0, the naive propagator (3.5) has extra poles when
one or more momentum components are equal to 7w/a. It can be seen that half of the poles
have positive chiral charge and half have negative chiral charge [16]. Thus, this doubling
phenomenon leads to gauge-field couplings to both left- and right-handed species; the theory,
at this stage, is not chiral.

We follow the standard approach of eliminating the doublers by including a Wilson mass

term [1] in the action:
Sw = a"ZE(:z:)—é—%[Z‘gb(:D) —¥(z + a,) — bz — a,)]. (3.9)
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We can gauge the Wilson term by adding to the action

Swi=a? Zt_b(m)é'lg{[l = Uu(@)]¥(z + au) + [1 = Ul(z - a,)]e(z — a,)}. (3.10)

As we shall see, it may sometimes be convenient to drop this coupling of the Wilson term
) % pang

to the gauge field.)

Now the fermion propagator is

iSF (p) = {(1/a) Y ivusin(pua) + M(p)} 2, (3.11)

where M(p) is the Fourier transform of the Wilson mass:

M(p) = (1/a) 3_[1 ~ cos(p,a)). (3.12)

The additional vertices that arise from the gauging of the Wilson term are
Ve (p,1) = TV (p,1) = —gTosin((p, + 11,)a] (3.13a)

Vit (5,1, 1) = TV (p, 1, 1) = ag? TuTy8 v, cosl(p + Ha + H)al,  (3.13b)

where the higher-order contributions can again be obtained from the recursion relation (3.7).

We see that the propagator (3.11) now has a pole only at P = 0. This would seem to leave
us, as desired, with a single Dirac particle with only left-handed couplings to the gauge field.
Unfortunately, the Wilson terms Sw and Sy, having the Dirac structures of masses, lead to
a nonconservation of the left-handed vector current by coupling the right-handed component
of the Dirac field back into the theory. This implies that the chiral gauge invariance of the
theory is broken.

Such violations of the chiral gauge symmetry cause serious difficulties. Gauge invariance
1s an important ingredient in the standard renormalization program. Without it, there is
an explosion of new counterterms. For example, in the absence of current conservation, the
vacuum polarization can generate a quadratically divergent gauge-boson mass, the light-

by-light graph requires counterterms, Lorentz-noncovariant counterterms can arise on the
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lattice, and, in non-Abelian theories, the gauge-boson-fermion coupling can become different
from the triple-gauge-boson coupling. In order to recover a satisfactory theory of chiral
fermions coupled to massless gauge bosons, one would need to tune all of these counterterms
in such a way as to restore the chiral current conservation. This is required, for example, to
obtain a massless gauge boson and to guarantee that ghost fields decouple and that unitarity
is preserved.

On the other hand, we note that the Wilson mass (3.12) and vertices (3.13) have the
property that they vanish in the continuum limit ¢ — 0 for fixed momenta: they are
lattice artifacts. Consequently, we expect the violations of the gauge symmetry generated
by the Wilson mass to vanish, except when momenta of the order the lattice cutoff w/a
are important. That is, we expect that, in the continuum limit, the violations of the chiral
gauge symmetry in the Green’s functions of the theory will persist only in ultraviolet (UV)

divergent Feynman diagrams and subdiagrams.

IV. GAUGE VARIATIONS

In order to test this expectation, let us examine in more detail the nature of the violations
of the gauge symmetry that result from the introduction of a Wilson mass. An infinitesimal
transformation of the gauge field

Uu(z) = Uu(z) + iA(2)Uu(z) — iUu(2)A(z + ay)
Ul(z) — Ul(z) + iA(z + a,)U(z) — iU} (z)A(z) (4.1a)

can be compensated, so as to leave Sy + Syr unchanged, by a transformation of the left-

handed component of the fermion field:
P(z) = [1 +iPpA(z)]¥(z)
P(z) — P(z)[1 — iPrA(z)]. (4.1b)

The Wilson terms, however, are not invariant under the transformation (4.1). The gauge

transformation results in a change in the action:
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S(Sw + Swr) = o Y- H(2) =2 Pu — P)A)()
11~ PR)AE)UL) - (1~ Po)Uu()A(e + )]0(e » o]
~[(1 - P)A(2)Ui(= — )
(1= POz - 0,)A( — a,)}(e - a,)). (42)

By Fourier transforming (4.2), one can arrive at the Feynman rules for the vertices corre-

sponding to a gauge variation. There is a A-fermion vertex,
Mm)(?: k’) = _iTa(l - PR)]VI(p) + 7:Ta(l - PL)M(p + k): (433‘)
and there are A-gauge-field-fermion vertices involving n > 1 gauge bosons,

M;(Z?..p,-,,,al...a,-_(p) k: ll) SR lﬂ) = _ZTa(l - PR)v(n)W (P, ll: sy l‘n)

H1.efin,81...00

+iTu(1 — Pp)Y™ (p+k0,..., 1),  (4.3b)

vfin,Q1...80n

Here, T, is the gauge-group matrix associated with the gauge transformation A, k is the
incoming momentum associated with the gauge transformation, p is the incoming fermion
momentum, and the /; are the incoming gauge-field momenta. Note that the A vertices (4.3)
contain factors of g only for the gauge fields, not for the A fields.

If we choose not to gauge the Wilson term, then all of the gauge variation in the action

resides in Sw:

5(Sw) = & X B(w) 5= {2(Ps ~ Pr)A(e)(2)
~(~Prd(2) + PoA(z + a,)i(e + an)

~[~Pal(2) + Po(z — a,)lb(z — a,)}. (4.9)
In this case, there is a slightly different A-fermion vertex,
MO p, k) = iT, PaM(p) — iT.PLM (p + k), (4.5)

and there are no A-gauge-field-fermion vertices.
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In the analysis to follow, we will frequently make use of the fact that theories with vector-
like couplings to the gauge field exhibit a gauge invariance, even in the presence of a Wilson
mass term. A theory with vector-like couplings to the gauge field can be obtained by setting
Prp = Pr = 1 in the action (3.3), (3.4), (3.9), (3.10). Then, if one sets Pr = P, = 1 in
the gauge transformation (4.1), the gauge variation (4.2) and the-A vertices (4.3) vanish, as
expected. Note, however, that the gauge symmetry is violated if one drops the gauging of
the Wilson term (3.10) from the action, as can be seen from examination of (4.4) and (4.5).

There is also a property of the A vertices that will be crucial for our subsequent analysis.
The A vertices are linear combinations of either Wilson masses or Wilson vertices. Conse-
quently, they all vanish in the continuum limit @ — 0 for fixed momenta. Thus, the gauge
variations can persist in the limit @ — 0 only if momenta of order the lattice cutoff w/a are

important, that is, only in divergent Feynman diagrams.

V. AMPLITUDES IN A BACKGROUND GAUGE FIELD

As a first step in identifying and dealing with the violations of gauge symmetry in the
Green’s functions of the chiral theory, let us consider the case of fermion amplitudes in the
presence of background gauge fields in which the momentum of a gauge-field quantum is

limited be much less in magnitude than the lattice momentum cutoff 7/a.

A. Counting powers of a

First let us consider, in the limit @ — 0, the size of the contribution from a fermion loop
containing zero or one gauge-variation (A) vertices and any number of background gauge-
field vertices. We will analyze, in turn, the region of integration in which the magnitude of
the loop momentum is much smaller than 7/a and the region of integration in which the
magnitude of the loop momentum is of order 7 /a.

As we have seen, a A vertex vanishes in the limit @ — 0 unless momenta of order 7/a

are important. Thus, we expect that a loop containing a A vertex will receive a vanishing
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contribution from the region of integration in which the magnitude of the loop momentum
1s much smaller than 7 /a. Since the external gauge-field momenta are assumed to be much
smaller than #,a, one can take the a — 0 limit in this region simply by taking the a — 0
limits of the propagators and vertices, holding momenta fixed. In this limit, propagators and
naive single-gauge-field vertices go over to continuum propagators and vertices, which are
a independent. while multi-gauge-field naive vertices, Wilson vertices, and A vertices vanish
as at least one power of a. Furthermore, since the trace of an odd number of v matrices
vanishes, a A vertex is always paired with a Wilson vertex or a Wilson term in a propagator
numerator. The volume of integration in this region is independent of a. Thus, we conclude,
that a loop that contains a A vertex receives a contribution from this region of integration
that vanishes as at least two powers of @ in the limit @ — 0.

Now we consider the région of i-ntegration in which the magnitude of the loop momentum
is of order m/a. We can determine whether this is an important region of integration by
examining the sizes of the propagators, vertices, and the domain of integration. (See, for
example, Ref. [19] for further details.) Away from its pole at the origin, the propagator
(3.11) is of order a. Here, it is crucial that we have eliminated doublers; otherwise there
would be poles in the propagator for components of the loop momentum of order 7/a. An
n-gauge-field-fermion vertex is of order "1, and a A-n-gauge-field-fermion vertex is of order
a®"!. The domain of integration is of order a=% in d dimensions. From this it follows that
the region in which the magnitude of the fermion-loop momentum is of order 7/a gives a
contribution of order a™s~¢, where N, is the number of external gauge fields. Note that this

result is independent of the number of A vertices.? We define the degree of divergence of a

loop to be
D=d- N, (5.1)
?Since we are concerned only with infinitesimal gauge transformations, we need never consider
the case of more than one A vertex.

12



which corresponds to the expression in continuum field theory. If the loop is UV convergent,
that is, if D is negative, then the contribution from the region in which the magnitude of
the loop momentum is of order w/a vanishes as a power of a in the limit ¢ — 0. In this
case, f.or a loop containing no A vertices, the contribution from the region in which the
magnitude of the loop momentum is much less than 7/a dominates. One can obtain the
a — 0 limit of this contribution by replacing the integrand with the continuum expression.
The resulting integral is UV-convergent, so one can extend the range of integration to
infinity with negligible error. Hence, the a — 0 limit of this contribution is identical to the
continuum amplitude.

We conclude that a fermion loop containing a A vertex gives a vanishing contribution in
the limit @ — 0, unless the degree of divergence is non-negative. Hence, for d = 4, the gauge
variations that persist in the continuum limit arise only from loop's involving a A vertex and
four or fewer external gauge-field vertices.

Using these same arguments, we can also conclude that a term in a loop amplitude that
is proportional to a Wilson mass or vertex gives a contribution that vanishes as a power of a
in the limit @ — 0, unless the degree of divergence of the loop is non-negative. Furthermore,
in the case a nonnegative degree of divergence, the dominant contribution comes from the
region of integration in which the loop momentum is of order 7/a. That is, the contribution

takes the form of a local interaction, with configuration-space size of the order of the inverse

of the lattice UV cutoff w/a.

B. Modifying the fermion determinant

At this point we could attempt to restore the gauge symmetry by adding renormalization
counterterms to the theory. Of course, no counterterm can remove violations of the gauge
symmetry that arise from the ABJ anomaly. Partly because of the absence of full rotational
symmetry on the lattice, the number of possible counterterms is quite large. In addition to

the usual rotationally invariant gauge-field wave-function renormalization, there are coun-
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terterms corresponding to a gauge-field mass, a rotationally non-invariant wave-function
renormalization, and rotationally invariant and non-invariant gauge-field-gauge-field scat-
tering amplitudes. The tuning of all of these counterterms in a lattice simulation would
be awkward. Fortunately, there is a trick that can be used to implement the required
counterterms automatically [3-5]. Motivated by the fact that a theory with vector-like cou-
plings of the fermion to the gauge field is gauge invariant, we will attempt to rearrange the
fermion-loop amplitude so that it looks like the loop amplitude for a vector-like theory.
Consider an arbitrary fermion-loop amplitude. We can write the projectors Pr = (1 —
7s)/2, which appear only in the naive vertices, in terms of the unit matrix and vs and expand
the expression for the amplitude. The result is a sum, each term of which contains an even

or an odd number of factors of 7s.

1. The even-parity part

For those terms that contain an even number of ¥s’s, which we call even-parity terms,
we would like to move the factors of 45 together and use the identity 42 = 1 to eliminate
them, thereby obtaining the corresponding expression for a vector-like theory. This would
amount to a simple algebraic manipulation, were it not for the fact that vs anticommutes
with the naive terms in the rationalized-propagator numerators and naive vertices, but
commutes with the Wilson terms in the rationalized-propagator numerators and Wilson
vertices. We would obtain a result that is proportional to the corresponding expression in
a vector-like theory were we to treat s as if it anticommuted with the Wilson terms in the
rationalized-propagator numerators and Wilson vertices. We will follow this procedure. Of
course, the resulting expression will differ from the original one, and we must account for this
difference. However, the difference is always proportional to a Wilson mass from a propagator
numerator or a Wilson vertex. As we have demonstrated in Section V A, a loop containing
a Wilson mass or vertex vanishes as at least one power of a in the limit ¢ — 0, unless

the degree of divergence is non-negative, and then the contribution corresponds to a local
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interaction. Thus, such contributions have the form of renormalization counterterms. We
can drop them without affecting the nature of the theory: such a procedure amounts merely
to adding renormalization counterterms to the action and choosing a particular tuning of the
counterterm coefficients. Then, for the terms in the original loop amplitude that contained
an even number of 7s’s we obtain expressions that are proportional to the corresponding
expressions in a vector-like theory. We now work out the constants of proportionality.

Consider first a contribution from a loop amplitude that contains at least one naive
vertex. We are interested only in manipulating the terms containing an even number of vs’s.
However, it is simplest to work out the combinatorics by moving the complete projectors Pr,
until they stand next to each other, treating vs as if it commute.d with all other factors in
the amplitude. Each projector is separated by N propa.ga:tors and N vertices from another,
so, in the process of moving one projector so that it is adjacent to another, the projector
flips from a Py to a Pg, but always winds up as a P in the end. Since P: = Pr, we have
just one projector Py = (1 — s)/2 when the process is finished. The even-parity part of
the amplitude corresponds to the term 1/2. Thus the even-parity part yields a contribution
that is exactly half the corresponding contribution in a vector-like theory.

Now consider a contribution from a loop amplitude that contains no naive vertices. In
this case, there are no projectors Py, the contribution is entirely even in parity, and it is
equal to the corresponding contribution in a vector-like theory. In order to combine it with
the even-parity parts of the contributions containing at least one naive vertex, so as to obtain
a complete vector-like amplitude, we must discard half. However, since the discarded piece
contains no naive vertices, it must contain at least one Wilson vertex. As we have already
argued, we can safely discard such a contribution, since that act amounts to choosing a
particular tuning of the coefficients of renormalization counterterms.

At the end of all of these manipulations, the even-parity part of a fermion-loop amplitude
yields a contribution that is half the corresponding contribution in a vector-like theory. The
effective action that one obtains by integrating over the fermion degrees of freedom is,

of course, given by the loop amplitudes, weighted by 1/N,. Therefore, the effect of our
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manipulations is to replace the even-parity part of the contribution to the effective action

by one half the effective action for a vector-like theory. Now, the lattice Dirac operator D,

which is defined by
adza(:v)l)zb(m) = Sy + Snr+ Sw + Swr (5.2)
has the property® that
Dlyg——s = 15D (5.3)
Now, the effective action is given by
Sess = log(det D). (5.4)

Since detys = 1, we see from (5.3) that

2(Sess £ (Sesslrgm—s )] = 2(Sess £ S5 ). (5.5)

That is, the even-parity (odd-parity) part of the effective action is the real (imaginary) part
of the effective action. PFurthermore, (5.4) implies that the real (imaginary) part of the
effective action corresponds to the magnitude (phase) of the fermion determinant.
Therefore, we conclude that our manipulations amount to the prescription that the mag-
nitude of the chiral fermic;n determinant be replaced by the square root of the fermion de-

terminant for a vector-like theory.* This prescription has been discussed previously in the

3This property also holds if one drops the gauging of the Wilson term S on the right side of
(5.2).

“There is no ambiguity in the sign of the square root. We are identifying the square root with the
magnitude of the fermion determinant, so we always take the positive sign. The sign ambiguity
associated with the Witten anomaly [20] is carried by the phase of the determinant. Since the
low-energy spectrum is unchanged by our modifications of the determinant, the Witten anomaly

is unaffected. In particular, the Witten anomaly is absent in this lattice implementation of the

Standard Electroweak Model.
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case of continuum theories [2] and in the case of lattice theories {5,6]; an equivalent formu-
lation involving auxiliary fermion species has also been presented [3,4]. If one adopts this
prescription, then the magnitude of the fermion determinant and, correspondingly, the real
part of the effective action have an exact gauge invariance.

We note that, since these manipulations amount to the addition of renormalization coun-
terterms to the theory, they do not affect unitarity. This is obviou.s at the level of the action,
since, in Minkowski space, it is Hermitian even with the addition of counterterms. It is also
easy to see diagrammatically: a cut of a diagram can never pass through a short-distance loop
(momenta of order the UV cutoff), because the on-shell conditions and energy-momentum
conservation constrain the components of the momenta of the cut lines to have magnitudes
much smaller than the UV cutoff.

Of course, as we have already argued at the diagrammatic level, the manipulations that
we have made do not affect the low-energy behavior of the theory. It is easy to see this
directly from the action. The even-parity part of the effective action generated by a fermion
with left-handed couplings to the gauge field is equal to one half the effective action generated
by two fermions, one with left-handed couplings and one with right-handed couplings. The

continuum limit of the action for such a complement of fermions is given by

lim 3" (2) Dt (w) + F(2)( Dy Woo()]
= ()0 -7 +igh-1)9(=) + $u(2)0 - 1 Pats(w) + Fol2) -1 Potha(a)l,  (5.6)

where 1 = Pri; + Pri,. Here, in taking the continuum limit, we have assumed that the
momenta associated with the Fourier transforms of the fields are all fixed to be much less
than the UV cutoff, so that one can take the “naive” a — 0 limit of operators. We conclude
that the even-parity part of the effective action goes, at low momentum and in the continuum
limit, to one half the effective action generated by a fermion with vector-like couplings to

the gauge field, plus non-interacting degrees of freedom.
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2. The odd-parity part

Now we turn to the terms in the loop amplitude that contain an odd number of vs's,
which we call the odd-parity part. The manipulations of the preceding section, which bring
¥s’s together and use 42 = 1 to eliminate them. can never succeed in converting the odd-
parity parts to a vector-like amplitude: there will always be one -ys left over in the end. Thus,
we must deal in another way with the violations of the gauge symmetry in the odd-parity
parts that persist in the limit a — 0.

Let us specialize, for the moment, to four dimensions. As we have seen in Section V A,
the gauge variations that are nonvanishing as @ — 0 are contained in the fermion-loop
amplitudes involving one A field and four or fewer gauge fields. Then, one can see that
the nonvanishing gauge variations correspond to the ABJ anomaly. An explicit calculation
is presented in Appendix A. Here we give a general argument that the gauge variations
are zero, provided that one chooses a theory in which the complement of physical fermions

satisfles the anomaly-cancellation condition
Tr (To{Ts, T.}) = 0. (5.7)

As we have argued in Section V A, a loop containing a A vertex receives a nonvanishing
contribution in the limit @ — 0 only from the region of integration in which the magnitude of
the loop momentum is of order 7/a. That means that the nonvanishing gauge variations all
have the form of local interactions. In four dimensions, the rotationally invariant, odd-parity,
local operators of dimension four or less involving a A field and gauge fields are of the form
Tr{Appe ApAL Ay As) and Tr[A€upr (8,4,)A,4,], or Tr [A€upo(0.4.)(8,4,)]- These all
vanish if the a.noma.ly-ca,nc;ella.tion condition (5.7) is satisfied. There remains the possibility
that subleading contributions from this region of integration ‘could give rise to violations of
gauge invariance that vanish as powers of a. However, there are no rotationally invariant,
odd-parity, local operators of dimension five involving a A field and gauge fields. Hence, the
violations of gauge invariance from the region of integration in which the magnitude of the

loop momentum is of order 7/a vanish at least as a2 in the limit @ — 0.
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Similar arguments show that, in two dimensions, the gauge variations of the odd-parity
part of 2 loop also vanish as a? in the limit @ — 0, provided that the anomaly is cancelled.
In two dimensions one can achieve cancellation of the anomaly in a non-trivial theory by
introducing left-handed and right-handed fermions such that the sum of Tr(7,T}) for the
left-handed fermions is equal to the sum of Tr(7,T}) for the right-handed fermions.

We emphasize that, in contrast with the modified even-parity loop amplitudes, the odd-
parity loop amplitudes do not possess an exact gauge invariance, even if (5.7) is satisfied.
There are violations of the gauge symmetry that vanish only in the limit @ — 0. We have just
seen that such violations can arise from the region of integration in which the fermion-loop
momentum is of order w/a. In Section V A, we noted that violations of gauge invariance
can also arise from the region of integration in which the magnitude of the fermion-loop
momentum is much less than 7/a, even in UV convergent diagrams. In both of these cases,
the violations of gauge invariance vanish as a? in the limit ¢ — 0.

The odd-parity amplitudes themselves are finite in the limit @ — 0. This follows from the
fact that there are no odd-parity renormalization counterterms involving only gauge fields.
In four dimensions, the rotationally invariant, odd-parity, local operators of dimension four
or less involving gauge fields have the forms Tr [€,up0 AuAvA,As] and Tr [€pp0 (0,40 ) Ap Al
and Tr (€50 (0,4, )(8,A-)]. When one symmetrizes under cyclic permutations of the gauge
fields, the first operator vanishes, and the second and third operators are total derivatives.
It can be seen in a similar fashion that corresponding operators in two-dimensional theories
vanish. Since the gauge variation of an odd-parity amplitude vanishes as a® in the limit
a — 0, we can conclude that the deviation of an odd-parity amplitude from a gauge-invariant
expression also vanishes as aZ.

Finally, we mention that the analysis of the gauge variations of the odd-parity parts of
loops in this Section does not depend on the gauging of the Wilson term. The analysis relies
only on the power-counting rules and the general structure of the local interactions, neither

of which are affected by the presence or absence of (3.10) in the action.
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VI. DYNAMICAL GAUGE FIELDS

We wish to generalize the discussion of Section V to include the possibility that the
gauge fields are dynamical, rather than simply external background fields. The important
distinction is that the gauge field momentum can now contain a loop momentum, so its
magnitude can range up to the lattice cutoff #/a. Now we can have divergent loop integra-
tions involving gauge-field propagators as well as fermion propagators, and the results for
the counting of powers of a must be generalized from those derived in Section V.

The even-parity parts of fermion loops can again be rendered exactly gauge-invariant
by making use of the s trick of Section VB1 to replace the fermion loop by one half the
corresponding loop for a fermion with vector-like interactions with the gauge field. We have
already seen that this replacement does not alter the low-energy behavior of amplitudes.
Therefore, it amounts to a change of UV regulator, which is equivalent to the addition of
counterterms to the theory. In the case of a background gauge field with momentum much
smaller in magnitude than the UV cutoff 7 /a, the required counterterms were those gener-
ated by a single fermion loop. In the present case, counterterms can also be generated by
multi-loop subdiagrams, including loops involving gauge fields. Fortunately, we do not need
to implement these counterterms explicitly: they are provided automatically by modification
of the fermion-loop amplitude.

The case of the odd-parity parts of fermion loops is more complex and requires some

further analysis.

A. Counting powers of a

We wish to study the gauge variations of the odd-parity parts of fermion loops in the
limit @ — 0. That is, we wish to study the behavior of a diagram or a subdiagram containing
exactly one A vertex in that limit. As we argued in Section V, contributions involving a

A vertex are suppressed by at least one power of a in the limit ¢ — 0 unless a momentum
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entering the A vertex has a magnitude of order w/a. Thus, we wish_to study the region of
integration in which the loop momenta have magnitudes of order 7/a. We might as well
take all the loop momenta in a subdiagram to have magnitudes of order w/a, since, we can
always study the case when only a subset of the loop momenta have magnitudes of order
7/a by considering a smaller subdiagram. For purposes of the discussion in this subsection
only, we assume that the gauge field has been fixed to a renormalizable gauge.

Now we use the facts that, in the region in which all momenta have magnitudes of order
7/a, an n-gauge-field-fermion vertex is of order a”™?, a A-n-gauge-field-fermion vertex is of
order a™!, a fermion propagator is of order a, a gauge-field propagator is of order a?, an
n-gauge-field vertex is of order a®*, and each loop integration has a range of order (1/a)?
in d dimensions. From these facts, it is easy to see that a single-particle-irreducible (1PI)
diagram or subdiagram with Ny external fermion legs, Ng exterr.la,l gauge-field legs, and L

loops is of order a~?, where the degree of divergence D is given by®
D=4-N,—3N;+ L(d—4). (6.1)

Any 1PI subdiagram that contains a A vertex and has a nonnegative degree of divergence
can potentially lead to a violation of the gauge symmetry that survives in the limit @ — 0.
As we have already argued, the even-parity parts of fermion loops in such a subdiagram
can be rendered exactly gauge-invariant by replacing the fermion loop with one half the
corresponding loop for a fermion with vector-like interactions with the gauge field. However,
in the case of the odd-parity part of a loop, a A vertex inside a radiative correction can givea
nonvanishing contribution in four dimensions. (An example of such a contribution is shown
in Fig. 1.) Hence, there are violations of the gauge symmetry in four dimensions.

One might hope that it would be possible to restore the gauge symmetry by tuning the
limited number of renormalization counterterms that are associated with divergent radiative

corrections [3-5]. Unfortunately, this turns out not to be the case. For example, in four

5Ghost loops, which appear with certain choices of gauge, do not affect these conclusions.
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dimensions, the diagram of Fig. 2 has an overall degree of divergence D = 2. Thus, the
contribution that arises from the odd-parity parts of the fermion loops yields violations of
the gauge symmetry, even though the individual fermion loops have a negative degree of
divergence. In particular, the diagram generates a gauge-field mass, and so would require a
mass counterterm, even if gauge-field-mass generation has been eliminated at the one-loop
level by modifying the ever.l-pa.rity parts of loops as described in SectionV B 1. On examining
other multi-loop diagrams, one reaches the conclusion that that all possible renormalization

counterterms consistent with the cubic lattice symmetry appear.

B. The double limiting procedure

We would like to restore the gauge invariance of the theory without resorting to the
tuning of counterterms. If we could limit the momenta in loops involving gauge fields to be
much less than the fermion-loop UV cutoff, then the arguments of Section V would apply.
One way to achieve this is to introduce two different lattice spacings, a, for the gauge field
and a; for the fermion field and take the limit a; — 0 with a, fixed before taking the Limit
ag — 0. Such a double limiting procedure is similar in spirit to the UV regulator employed
in proving the anomaly-no-renormalization theorem [21]. A double limiting procedure has
also been discussed previously in the context of lattice theories (6,7,10-13]. The use of a
double limit along with the modification of the magnitude of the fermion determinant has

been discussed previously in Ref. [6,7].

1. Interpolation of the gauge fields: general considerations

In computing the double limit, we assume that the gauge-field links that reside on the
gauge-field lattice U,, are the dynamical variables, i.e., the variables over which one inte-
grates in the path-integral expressions for amplitudes. These are the quantities that appear
in the pure gauge-field action (3.1). The interactions of the gauge fields with fermion fields

are obtained by inserting- gauge-field links U,, which reside on the fermion lattice, into
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the fermion action as in (3.3), (3.4), (3.9), and (3.10). These gauge-field links that reside
on the fermion lattice are not the dynamical variables Uy,. We must obtain them by an
interpolation of the dynamical gauge-field links.

It is often convenient to discuss the interpolation in terms of the gauge fields 4,, which
are related to the plaquettes through (3.2). One can use the Hamilton-Cayley theorem to
express the logarithm of an m X m group matrix (link), as a linear combination of the
unit matrix and the first m — 1 powers of the matrix. The ambiguity in the phase of the
coefficients can be resolved by requiring that matrices that are close to the unit matrix have
logarithms that are close to zero. This is equivalent to the requirement proposed by 't Hooft
[11] that the eigenvalues of a,Ay, and the eigenvalues of ayAy, lie on the interval (—m, ).

For simplicity, we will assume that a,/a; = R is an integer and that the fermion lattice
subdivides the gauge-field lattice, so that they coincide every R sites. For each gauge-
field-lattice site y, there are R fermion-lattice sites z = y + m, where m is vector whose

components are integers satisfying
0<m, <(R—1). (6.2)

We will also assume that, in the interpolation, the fermion-lattice links U, depend only on
the gauge-lattice links Uy, that form the edges of the surrounding hypercube. That is, we
assume that the links U,(y 4+ may) depend only on the links Uy, (y + my(v)a,), where my(v)

is a vector with integer components satisfying

{mgp(u) =0 for p = y;

(6.3)
mgy(¥) =0o0r 1l forps#v.

Similarly, the fermion-lattice fields A,(y+muas+3ay,) depend only on the gauge-field-lattice
fields Ag(y + mg(v)ag + 2ag,).
The Fourier transform of the fermion-lattice field is given by
Aul)= (a7)* 3 Au(z + jag.) exp[—i(z + Jagz,) - ]

= (ag)? ZCXP[*":(y + %a'y#) ALy + %ayn): (6.4)
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where

Ayl y + ag,) = exp(iag, - )R™? > ALy + ma; + 3a5,) exp[—i(ma; + 2az,) -1l (6.5)

m

Note that, if 4,(l,y + la,.) were equal to Ag,(y + ag.), then A,(I) would be equal to

Agu(l), where
‘Zlgu(ll) = (%)dz A“(y =+ %ag#) exp[-—-i(y T %a'g#) : ll] (6-6)
- v
is the Fourier transform of the field on the gauge-field lattice. We express the deviation of

A,(1) from A,,(I) in terms of a “regulating factor” F,(1):

Au(l) = Fu(l)figﬂ(l)- (6.7)

Many different interpolations of the gauge fields are possible. However, if the inter-
polation is to lead to a gauge-invariant theory in the double limit, then certain minimal
requirements must be met: the interpolation must lead to correct tree-level amplitudes in
the continuum limit; the interpolation must provide a UV cutoff of order 7/a, on gauge-
field momenta; the interpolation must relate a gauge transformation of the fields on the
gauge-field lattice to a gauge transformation of the fields on the fermion lattice. We now

enumerate a set of sufficient conditions for meeting these requirements.

a. Locality. The interpolation must be local in the sense that gauge fields on the fermion
lattice cannot depend on gauge fields on the gauge-field lattice that are separated by
an arbitrarily large number of gauge-field-lattice sites. If one were to employ a nonlocal
interpolation, then the gauge-field-fermion interactions would not go to the continuum
(local) form in the limit a; — 0. The interpolation need not be strictly local; it can
depend on gauge fields that are separated by a finite number of gauge-field-lattice
sites. However, a dependence of the interpolation on widely separated gauge-field-
lattice sites would lead to large order a, errors in the limit a, — 0. We have assumed

a local form for the interpolation in (6.3).
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b.

Smoothness. We take as a smoothness requirement the continuity of fields inside
hypercubes on the gauge-field lattice.® That is, we require that, for a given y, the
fields A,(y + aym + jay), differ on adjacent fermion lattice sites by quantities of
order a;. There can, depending on the interpolation, be discontinuities along certain
directions at the boundaries between the gauge-field hypercubes. However, the size of

these discontinuities is independent of a;.

The smoothness requirement leads to a UV cutoff on the gauge-field momentum, since
it guarantees that the Fourier transform (6.4) vanishes as a} if n components of [ are
of order .w/a;. We can see this by making use of the elementary properties of Fourier

transforms. Consider the one-dimensional Fourier transform
A L) =as ) Au(z + Sag,) exp[—i(z, + ja5.)b) (no sum over v). (6.8)

From (6.8) it follows that

oy DIVEAe+dasf = [ S/ sn GhanlBGIE,  (69)
where
VEf(z) = £(1/ag)[f(z £ au) — f(=)] (6.10)

are the forward and backward lattice derivatives. Smoothness requires that the lat-
tice derivative of the field V, A, be of order a,(}, except possibly at gauge-field-lattice
hypercube boundaries, where it may be of order a}l. Since the number of boundaries
does not grow with decreasing ay, the left side of (6.9) is at most order af'. This
implies that, on the right side of (6.9), A,(L,) can be at most of order ay over a range

of I, that is of order 7/ay.

6Such a criterion has been discussed in Refs. [11,13,22].
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Smoother interpolations than we consider here lead to additional suppression of the
Fourier transform of the interpolated field at large momentum. One can derive rela-
tions similar to (6.9), but involving higher derivatives. From these, it can be seen that,
if, along the v direction, the (7 — 1)st derivative of A,(z + >ay,) is continuous and the
rth derivative is continuous except at hypercube boundaries, then leu(l,,) can be at

1

most order a}™" over a range of [, of order w/a;. It should be noted, however, that as

an interpolation becomes smoother, it becomes increasingly less local, involving more
widely separated sites on the gauge-field lattice. Therefore, such interpolations, in

general, increase the size of the order a, errors in the limit a, — 0.

The smoothness requirement, coupled with locality, also guarantees that one recovers

the correct tree-level amplitudes in the continuum limit. That is, it guarantees, that

lim A,(1) = 4,,(1). (6.11)

agl—0

This follows immediately from the fact that, because of continuity,

im A,(l,y + F0gu) = R Z Au(y + aym + %a'f#) (6.12)

agl—0

can differ from Ag.(y + 1ag.) only by a quantity of order Ra; = ay4. Here we are
making use of the fact that the gauge fields associated with the tree amplitudes are

continuous on the gauge-field lattice.

Therefore, we conclude that the smoothness requirement leads to the properties
Fu(l)~a}  if n components of [ are of order 7 /ay, (6.13a)
and

F,()=1 for I << 7/a,. (6.13b)

As we have already mentioned, smoother interpolations result in additional suppres-

sion of F,(I) when components of I are large. For example, if the interpolation of A, is
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“transversely continuous”, i.e., continuous along directions v # p at the boundaries of
the gauge-field-lattice plaguettes, then there is an additional power of a; on the right

side of (6.13a) for each component [, that is of order 7r/af..

c. Gauge Covariance. We require that, for every gauge transformation A’ of the gauge-
field-lattice links U,,, the interpolation of the gauge-transformed links U gA‘: must yield a
set of fermion-lattice links U ﬁ, where A denotes a gauge transformation of the fermion-
lattice links U, [22]. This requirement allows one to infer, from the gauge invariance
of the fermion sector of the theory on the fermion lattice, that the complete theory on

the gauge-field lattice is gauge invariant.

One might imagine that one could meet this gauge invariance requirement by fixing
to a particular gauge before carrying out the interpolation. However, gauge fixing is a

nonlocal procedure and, therefore, violates the requirement that the interpolation be

local.

The interpolations that we will consider have the property that the gauge field A, is
constant along fermion-lattice links U, that lie along gauge-field lattice links Uy,. For these

links, A, is chosen to be equal to Ag,. This implies that

Ugu(y) = H Uu(y + myay) = [Uu(y)]R- (6.14)

In solving (6.14) for U,, we choose the branch cut of the Rth root in accordance with the
definition of the gauge fields discussed earlier in this section. That is, we take the branch
cut such that, if Uy, is near unity, then U, is near unity.

The property (6.14) is compatible with the gauge-covariance requirement. In order to
see that this is so, consider a gauge transformation A’(y) on the gauge-field lattice. Each

link Uy, is transformed according to

Ugu(y) — exp[iA"(y)|Ugu(y) exp[—iA'(y + agu)]- (6.15)

Thus, according to (6.14), the fermion field links change as follows:
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Uuly + myay) = [Ugu(y)]llﬂ - {exp[iA'(y)]Ug“(y) exp[—‘iA'(y + agu)]}llﬂ' (6-16)

A gauge transformation A on the fermion-lattice links that reproduces the right side of (6.16)

can be obtained by the following procedure. First, set

Aly) = A'(y) for all y. (6.17)

Then, each link U,(y +muay) can be brought into agreement with the right side of (6.16)
by suitable choice of A(y + muas + ay,), where the choices can be made by a sequential
algorithm, starting at the first link and working toward the last link. At the last link, the

choice of A(y + muas + a5,) = A(y + ag,) must not conflict with (6.17). However,

H{exp[iA(y + myaz)|Uu(y + myuay) exp[—iA(y + muays + ag,)]}

= expliA(y)] [ [Usu(y + muay)] exp[—iA(y + ag,)], (6.18)

My

so the choice of A(y + ag,) that is. required by (6.14) is

Ay + agu) = Ay + ag,), (6.19)

which agrees with (6.17).

Recently, Shamir [14] has pointed out that there is a potential difficulty in maintaining
the smoothness and the gauge covariance of the interpolation procedure. He has shown that,
if an interpolation is gauge covariant, then large (nonperturbative) gauge transformations on
the gauge-field lattice can introduce a nonzero winding number and topologically nontrivial,
singular configurations on the fermion-field lattice. These difficulties do not appear in an
Abelian theory with a non-compact gauge-field action. They might be avoided by fixing to
a smooth gauge on the gauge-field lattice. However, this issue has yet to be resolved. In the

analyses to follow, we indicate those parts of the arguments that may be affected by these

considerations.
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2. An Abelian interpolation

As an example, let us consider an interpolation that satisfies the required properties in
the case of an Abelian theory. In an Abelian theory, the gauge transformation (6.15) is

equivalent to

Agu(y + a'gp/z) - Ag#('y + a'gu/z) + (1/0'9)[Al(y) - Al(y + a'gu)]- (6°20)

If the interpolation of the A’-dependent part of (6.20) has a vanishing lattice curl, then it
can be written as the lattice gradient of a potential on the fermion lattice. Then (6.20))
is equivalent to a gauge transformation on the fermion-lattice fields (of the same form as
(6.20)). It is easy to see that a simple linear interpolation of the gauge field [22] has this
property. Hence, it is gauge covariant under inﬁnitesimai gauge transformations (although

not under the large gauge transformations of Ref. [14]). To be explicit, one takes

Au(y + 3asu +mag)= Z(J)Agn(y + 3 + Mo()) (6.21)
x 1;[ [(1 —mu/R)(1 — mg.(p)/ R) + (mo/ R)(mg (1) R)].  (8.22)

Clearly, this interpolation satisfies the locality and smoothness requirements. We have for

this interpolation

— in(lasl, R) sin?(1asl, R)
(1 1 = 1,y sin(zesluR) 2 fv 6.23
#( Y + 2(1'9#) Ag#(y + 2ag“)Rsin(%a,flp) E,, R2 sinz(%afl,,) ) ( )
which implies that the regulating factor is given by
sin(3asl, R) sin(1asl,R)
Fu(0) Rsin(layl,) g R?sin®(2dsl,) (6:24)

We see explicitly that the properties (6.13) hold, as expected from our general arguments.

3. A non-Abelian interpolation

In the case of non-Abelian gauge fields, simple linear interpolations of the sort discussed

in the last section do not satisfy the gauge-covariance requirement. However, 't Hooft [11]
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has proposed a more intricate interpolation method that does. Here we discuss a variant of
't Hooft’s method that was suggested by Hernindez and Sundrum [15].

The first step in the method is to fix the interpolation for fermion-lattice links that lie
along gauge-field-lattice links according to (6.14). As we have already shown, this step is
consistent with the gauge-covariance requirement.

The next step is to determine the interpolation for the fields A, that lie on the two-
dimensional surface of an elementary plaquette, where here p is either one of the two direc-
tions that define the plaquette. The interpolation is given by the field configuration that
minimizes the two-dimensional action for a pure gauge-field theory on the fermion lattice,’
subject to the boundary conditions on the fields on the links bounding the plaquette. To ob-
tain a unique solution to the minimization condition, one must fix the gauge. A convenient

choice is the two-dimensional Lorentz gauge
>.Vi4,=0. (6.25)

One can argue that the solution is unique as follows. The minimization condition implies
that the field configurations satisfy the gauge-field equations of motion. If we neglect terms

of higher order in ay, then the equation of motion is
(V. —igA,)F., =0, (6.26)
where
Fo =ViA, — VA, —iglA, A, (6.27)
and we have rescaled the fields by g. In the Lorentz gauge, the equation of motion becomes
VoVEIA, —igV (A, A+ ¢2(i[A,, A])? = 0. (6.28)

If one sets g = 0 in (6.28), then one recovers Laplace’s equation, which, with the given

boundary conditions, has a unique solution. One can obtain a solution to all orders in g by

"This action is given by (3.1), but in two dimensions and on the fermion lattice.
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iteration, treating the order g and order g* terms as source terms and using the solution to
Laplace’s equation as a starting point. Hence, in the continuum limit, the interpolated field
configuration that is continuously connected to the g = 0 solutions is unique.

In order to see that the gauge fields derived through this interpolation procedure satisfy
the smoothness requirement, suppose the opposite: that a gauge field has a discontinuity.
Then, for at least one point «, the first term on the left side of (6.28) is of order a2, whereas
the remaining terms are of order a;l or smaller. (Here we are assuming that the interpolated
gauge field is bounded, which may not be true in the presence of large gauge transformations
on the gauge-field lattice [14].) Therefore, in the case of a discontinuous gauge field, the
equations of motion cannot be satisfied in the continuum limit, and one concludes that the
gauge field does not satisfy minimization criterion in the continuum limit.

In four dimensions, there are two more steps in the interpolation method. The third
step is to determine the fields inside the cubes bounded by the elementary plaquettes. One
does this by seeking a field configuration that minimizes the three-dimensional pure gauge-
field action, subject to the boundary conditions along the elementary plaquettes and the
three-dimensional Lorentz-gauge condition. The last step is to determine the fields inside
the four-dimensional hypercubes bounded by the three-dimensional cubes. One minimizes
the four-dimensional pure gauge-field action, using the fields on the cubes as boundary
conditions and fixing to the four-dimensional Lorentz gauée. Itis éasy to see, by generalizing
the preceding arguments, that these last two steps result in fields that satisfy the smoothness
requirement.

Finally, there is the question of whether this interpolation method satisfies the gauge-
covariance requirement. Suppose that we have obtained a field configuration on the fermion
lattice by the interpolation method. Then suppose that we make a gauge transformation
on the gauge-field lattice. The links bounding the elementary plaquettes will be changed
in value, and a re-application of the interpolation procedure will result in a new field con-
figuration on the fermion lattice. We wish to show that this new field configuration can

be obtained by a gauge transformation on the fermion lattice of the original fermion-lattice
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field configuration. Here, we paraphrase the argument presented in Ref. (15].

We have already shown that there is a gauge transformation that does this for the gauge
fields that lie on the links bounding the elementary plaquettes on the gauge-field lattice.
Such a gauge transformation will not, in general, leave the gauge fields that lie inside the
plaquettes in the two-dimensional Lorentz gauge. However, we can always make a gauge
transformation on the interior of a plaquette that returns the fields to the Lorentz gauge,
without changing the fields on the links that bound the plaquette. Similarly, we can find
a gauge transformation on the interior of a three-dimensional cube that returns the fields
inside the cube to the three-dimensional Lorentz gauge and a gauge transformation on the
interior of a four-dimensional hypercube that returns the fields inside the hypercube to
the four-dimensional Lorentz gauge. Since the pure gauge-field actions are invariant under
these transformations, the resulting configuration still satisfies the minimization criteria.
Hence, it is identical to the field obtained by applying the interpolation method to the

gauge-transformed gauge-field-lattice links. Here we are assuming the uniqueness of the

interpolated field configuration.

4. The Feynman rules

By considering the Fourier transform of the lattice action, one can easily derive the
Feynman rules for the double limiting procedure.

The Feynman rules for'the gauge-field propagators and vertices are the same as those for
a theory with lattice spacing a,. Momenta in propagators and vertices range from —m /a4 to
7 /ag, and momentum is conserved modulo 27 /ag. Hence, pure gauge-field loop integrations
range from —x /a4 to m/a,.

The Feynman rules for fermion-propagators, gauge-field-fermion vertices, and A-fermion
vertices are determined by considering the Fourier transform of the fermionic part of the
action. Momenta in propagators and vertices range from —m/ay to w/ay and momentum

is conserved modulo 27 /a;. Hence, pure fermionic loop integrations range from —7/a; to
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m/ag.

When a gauge-field line attaches to a fermion line, one must consider the effect of the
interpolation in working out the Fourier transform of the gauge field on the fermion lattice,
as in (6.4). The interpolation introduces a regulating factor F,(I) for each connection of a
gauge-field line to a fermion line. The gauge-field momentum I, which appears in the Fourier

transform of the gauge field on the fermion lattice (6.4), can be written as

I=10'+(27/a,)q, (6.29)

where g takes on values from (—R+1)/2 to (R—1)/2 in integer steps and —7w/a, < I' < 7/a,.
We can think of the integration over [ from —n/a; to w/a; as an integration over I’ from
—w/ag to w/ag and a sum over g from (—R + 1)/2 to (R — 1)/2. There is an integration
over I’ and a sum over g for each attachment of a gauge-field or A line to a fermion line.
The quantity I’ may be interpreted as the gauge-field momentum va.ria.ble in the Fourier
transform of the gauge field on the gauge-field lattice (6.6). Only I’ appears in gauge-field
propagators and pure gauge-field vertices; they are insensitive to the value of g because,
as can be seen from (6.6) they are periodic, with period 27 /a,. In a Feynman diagram,
integrations over variables of the type I’ are constrained by the fact that the total of the
gauge-field momentum, including the variables of the type I, is conserved, modulo 2w /ag,
in every propagator and vertex. Thus, the gauge-field-momentum variables, including those
of the type I/, can be re-organized, in the usual way, into independent loop-momenta, which
range from —w/a, to m/a,, and external momenta. In general, the fermion propagators,
gauge-field-fermion vertices and A vertices depend on the value of g, as well as on the value
of I’. The sums over variables of the type g are constrained only by momentum conservation,
modulo 27 /ay, along each fermion line. Aside from this constraint, there is an independent
sum over q for each attachment of a gauge-field line to a fermion line.

Using these Feynman rules and (6.13b), we seexthat, in the hmit a; — 0, for momenta
much less than the cutoff 7/ay, the Feynman rules for the fermion become the continuum

Feynman rules. Therefore, we recover the required low-energy behavior of the tree-level
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amplitudes.

5. Counting powers of ay

In this section we will demonstrate, for an open fermion line or for the odd-parity part
of a closed fermion line, that contributions that arise when gauge-field (or A-field) momenta
of order @/a; enter the line vanish in the limit a; — 0 with a, fixed. We call momenta of
order m/a; “large” momenta. In the arguments to follow, we assume that the even-parity
parts of fermion loops have been modified as in Section VB 1 to render them exactly gauge
invariant. One consequence of this assumption is that all of the gauge variations must arise
from the odd-parity parts of loops. The argument that we present holds in two and four
dimensions. We proceed by counting the powers of a; associated with a contribution in
which large gauge-field (01: A-field) momenta enter a fermion line.

In the initial discussion, we assume that the fermion-loop momentum associated with
a closed fermion line is not large. Since momentum is conserved, modulo 27 /ay, along a
fermion line, if one gauge-field momentum entering a fermion line is large, at least one other
gauge-field momentum entering a fermion line must be large. We assume, initially, that
exactly two gauge-field momenta entering a fermion line are large.

Powers of ay arise from the fermion propagators, gauge-field-fermion vertices, and A ver-
tices through which the large momentum flows. It is easy to see, by making use of the
power-counting rules of Section V A, that the minimum number of factors of a; arises if the
large gauge-field momentum flows through at most one fermion propagator.

Inverse powers of a; can arise from the sum over variables of the type q in (6.29). If
two gauge-field momenta entering a fermion line are large, there is only one independent
sum, the other sum being constrained by momentum conservation. The range of the sum
contributes a factor of order R ~ a}'l for each component of the momentum that is large.

There is a regulator factor F associated with each of the points at which t};e two large

momenta enter the fermion line. From (6.13a), we see that each regulator factor contributes
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a factor ay for each component of the momentum that is large. Hence, the minimum number
of powers of ay is obtained by taking only one component of the momentum to be large.

By way of illustration, let us consider the case in which the large gauge-field momentum
flows through exactly one fermion propagator. As we have already noted, this case gives the
minimum number of powers of ay. The fermion propagator contributes a factor of order a}.
The large momentum also flows through two gauge-field-fermion vertices or a gauge-field-
fermion vertex and a A vertex. The gauge-field-fermion vertices contribute factors of order
a} and the A vertex contributes a factor of order a?l. Hence, the propagators and vertices
contribute a factor of order a} in the amplitude and a$ in the gauge variation. If we take
one component of the gauge-field momentum to be large, the range of the sum over g gives
a,}'l and the regulator factors give a3. We conclude that, in this example, the contribution
to the amplitude from the factors associated with the large gauge-field momenta is of order
a%. The contribution to the gauge variation is larger—of order a}. This is a consequence
of the fact that the large momentum associated with the A field contributes an additional
dimensionful factor of 1/a to the gauge variation. Since the contributions to the amplitude
itself from this momentum region vanish as a%, we can still conclude that the amplitude
differs from a gauge-invariant expression by terms of order a}.

Now let us relax the assumption that only two of the gauge-field momenta entering the
fermion line are large. For each additional large momentum, there is at least one factor ay
for the propagators and vertices through which it flows, a factor a;l for the associated sum
over g, and a factor a; from the associated regulator factor. Hence, contributions involving
more than two large gauge-field momenta are suppressed by at least one additional power
of ay.

We can also relax the assumption that the fermion—lqop momentum associated with a
closed fermion line is not large. Suppose that the loop momentum is large. Then, the entire
contribution of the loop, including the sums over variables of the type g and the regulator
factors, arises from short distances and can be expressed in terms of local operators on the

gauge-field lattice.
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Consider first the case of loops containing gauge variations (A vertices). All of the gauge
variations arise from odd-parity loops. As we have already discussed in SectionV B2, the
rotationally invariant, odd-parity, local operators of dimension d or less imvolving a A field
are of the form of the ABJ anomaly. (In the present case, continuum derivatives must be
replaced by lattice derivatives on the gauge-field lattice, since we are really discussing the
effective theory on the gauge-field lattice.) These all vanish if the anomaly-cancellation
condition (5.7) is satisfied. There are no such operators of dimension d + 1. Hence, the
contributions to the gauge variations from the regions of integration in which both the
gauge-field momenta and the fermion-loop moment are large are of order aj‘;, possibly times
logarithms of a;.

Now consider the odd-parity parts of loop amplitudes. Recalling our arguments of Sec-
tion VB2 (and again replacing continuum derivatives by derivatives on the gauge-field
lattice), we note that the rotationally invariant, local, odd-parity operators of dimension d
or less involving only gauge fields all vanish under Bose symmetrization. Furthermore, there
are no rotationally invariant, odd:parity, local operators of dimension d + 1 involving only
gauge fields. Hence, the contributions to the odd-parity loop amplitudes from the regions of
integration in which both gauge-field momenta and the fermion-loop moment are large are
of order a?, possibly times logarithms of ay.

Finally, we consider the even-parity parts of loop amplitudes. Because the even-parity
parts of loops are exactly gauge invariant, only gauge-invariant local operators can con-
tribute. There s a rotationally invariant, gauge-invariant, Bose-symmetric operator of di-
mension d, namely, the one that renormalizes the gauge-field wavefunction. Hence, there
could, in principle, be contributions, in which large gauge-field momenta flow into the even-
parity parts of loops, that go as a(f’, possibly times logarithms of a;. Of course, we need not
show that such contributions vanish in order to establish the gauge invariance of the double
limiting procedure. Furthermore, their behavior is no worse than that of the even-parity

parts of fermion loops in the absence of large gauge-field momenta, which is also logarithmic

In ay.
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We must also consider the possibility that, in a Feynman diagram, inverse powers of a;
could arise from a fermion loop other than the fermion line under consideration, and thereby
lead to contributions from regions of large gauge-field momenta that are nonvanishing as
a; — 0. We have already seen that such inverse powers of a; cannot arise when gauge-
field momenta entering the loop are large and or when both gauge-field momenta and the
fermion-loop momentum are large. The local-operator argument given for the latter case
also applies when only the fermion-loop moment1.1m is large. Therefore, no inverse powers
of a; can arise from a fermion loop.

Let us summarize these results. We have found that, in the double limit, contributions
in which a large gauge-field momentum enters a fermion loop containing a gauge variation
vanish as ay times logarithms of ay. This result, combined with -the analysis of Section V,
allows us to conclude that the odd-parity parts of fermion loops can be rendered gauge
invariant by taking the double limit and by requiring the fermion to be in a representation
of the gauge group that satisfies the anomaly-cancellation condition. We assume that the
even-parity parts of fermion loops have been rendered exactly gauge invariant by replacing
them with one half the corresponding loop for a fermion with a vector-like coupling to the
gauge field. Therefore, we have achieved our goal of making all the amplitudes in the theory
gauge invariant. We have also found that contributions associated with the odd-parity
parts of loops are finite in the limit ay — 0. This implies that the phase of the fermion
determinant is finite in this limit. Furthermore, we have seen that the contributions in which
a large gauge-field momentum enter the odd-parity part of a fermion loop vanish as aff times
logarithms of a;. This result, together with the analysis of SectionV B 2, implies that the
phase of the fermion determinant differs from a gauge-invariant expression by terms of order
a% times logarithms of a; in the limit a; — 0.

It should be noted that the detailed power-counting rules we have presented in this
subsection are specific to interpolations of the gauge fields that are discontinuous in at least
one direction at the boundaries of the gauge-field hypercubes. One might devise smoother

interpolations in which the gauge fields (or their higher derivatives) are continuous. For such
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interpolations, the regulating factor F,(I), and, hence, the contributions to the amplitudes
and gauge variations, would be suppressed by additional factors of ay when gauge-field-
fermion-loop momenta are of order 7/ay.

It may be useful to contrast our results with those of Ref. (15]. In that work, the authors
make the additional assumption that the interpolation is transversely continuous. (That
assumption is valid for the interpolations that we have presented.) They are then able to
show that the all the contributions in which a large gauge-field momentum enters a fermion
loop are suppressed by powers of a;. Their proof applies to the even-parity parts of loops, as
well as to the odd-parity parts of loops and to loops containing A vertices. They conclude,
as we do, that contributions in which large gauge-field momenta enter the odd-parity parts
of loops vanish as a?. However, they also conclude that gauge variations vanish as a?. This

last result seems to be at odds with our explicit example.

6. Options for computing the determinant

In the last section we demonstrated that there exists a satisfactory procedure for com-
puting the fermion determinant. There are actually several variants of this procedure that
one can employ, and somé may be more efficient than others in practical calculations. We
now discuss some of these computational options.

Once one has replaced the magnitude of the fermion determinant with the square root of
the determinant for a fermion with vector-like couplings to the gauge field, the magnitude
of the fermion determinant has an exact gauge invariance. Therefore, one can evaluate the
modified magnitude of the determinant without employing the double limiting procedure,
and still obtain a gauge-invariant result. That result will be equivalent to the one obtained
through the doubling limiting procedure, since the effective action is unique, aside from gauge
invariant counterterms, which can always be absorbed into a redefinition of the coupling

constant.

There are several advantages in calculating the magnitude of the fermion determinant
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without making use of the double limiting procedure. There is the obvious advantage that
one would not be faced in a numerical simulation with the computational burden of taking
the limit a; — 0 for each gauge-field configuration. Another advantage follows from the fact
that, in four dimensions, the magnitude of the determinant is divergent in the limit a; — 0.
The divergence arises from the diagram with two external gauge fields, which generates the
logarithm of a; that is associated with the gauge-field wavefunction renormalization. In the
double limiting procedure, one would need to add a wavefunction-renormalization countert-
erm, which has the effect of replacing log ay with log a,, to obtain the correct renormalization
of the gauge-field-fermion coupling and to obtain a finite result. This counterterm can be
determined from a one-loop calculation, since radiative corrections to the fermion loop with
two external gauge fields are suppressed in the limit ay — 0. However, it is simpler to bypass
the double limit altogether in the case of the magnitude of the determinant.

One must, of course, make use of the double limiting procedure in computing the phase
of the determinant. Fortunately, in two and four dimensions, the phase is finite in the limit
as — 0, because, as we have seen, there are no odd-parity, Bose-symmetric renormalization
counterterms.

There is one slight advantage in using the double limiting procedure to compute the
magnitude of the determinant. The vector-like gauge sjfmmetrj;r of the magnitude of the
determinant does not preclude the generation of a mass for the fermion field. In general,
the unrenormalized fermion mass will be nonzero. However, it is easy to see that fermion
self-energy diagrams are suppressed in the double limiting procedure. In the absence of the
double limiting procedure, one must tune a counterterm (hopping parameter) to make the
renormalized mass of the fermion with vector-like couplings vanish. Of course, it is well
known, from studies of theories with vector-like interactions, how to accomplish this by
using a meson mass as the tuning criterion.

We note that it is straightforward to reduce the size of the gauge-variant contributions
that arise from the odd-parity parts of fermion loops in the region of integration in which the

fermion-loop momentum and gauge-field momenta all have magnitudes much less than 7/a;.
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These contributions are a consequence of order a; deviations of the tree-level lattice fermion
action from the tree-level continuum fermion action. Such deviations are easily removed by
employing an improved tree-level action [24,25]. To reduce the size of the gauge variations
that arise from the low-momentum region, it is necessary only to 1mprove the Wilson term
in the tree-level action.

Similarly, one can eliminate the leading gauge-variant contributions that arise from the
odd-parity parts of loops in the region of integration in which the gauge-field momenta
entering a loop are large, but the fermion-loop momentum itself is small. As we have seen,
these contributions arise from subdiagrams in which the factors along the fermion line are the
same as In a one-loop fermion self-energy diagram. In particular, the leading contribution
comes from the terms corr.esponding to a fermion-mass renormalization. Mass generation is
precluded if the action is invariant under a constant shift of the fermion field [23]. If we drop
the gauging of the Wilson term (3.10), then the action exhibits this symmetry.® In the case
of the odd-parity parts of loops, all of the arguments in both this section on dynamical gauge
fields and in Section V on background gauge fields are independent of whether the gauging
of the Wilson term (3.10) is retained or not. Hence, we are free to drop the gauging of the
Wilson term in computing the phase of the determinant. (In computing the magnitude of
the determinant, one must retain the gauging of the Wilson term in order to maintain the
vector-like gauge symmetry.)

Unfortunately, the two improvement schemes that we have mentioned aze of no use unless

81t is easy to understand ;ijagramJ;natically why mass generation cannot occur. If the Wilson
term is not gauged, then there are no Wilson vertices, only naive vertices. Each of these contains
a 7 matrix and a factor Py. Consider a fermion-self-energy diagram. A Wilson mass from a
rationalized propagator numerator vanishes when sandwiched between two naive vertices, because
of the projectors Pr. The remaining terms in the propagator numerators yield contributions with

an odd number of ¥ matrices, so they don’t have the form of a mass term.

40



one can also reduce the size of the violations of gauge invariance that arise from the regions
of integration in which both gauge-field momenta and fermion-loop momenta are of order
m/as. This probably would require the use of smoother interpolations, which, as we have
already argued, ultimately require nonlocality and lead to increased errors of order a,.
Although the violations of gauge invariance vanish as powers: of ay, a sufficiently large
gauge transformation could make the coefficient of the gauge variation impractically large
for numerical work. Therefore, it is probably advantageous to fix the interpolating field to
a smooth gauge, such as one of the renormalizable gauges. Then one would at least avoid
the spurious, large, “pure gauge” contributions to the gauge field that are known to arise

from UV divergences.

VII. MATRIX ELEMENTS OF FERMION OPERATORS

Since a chiral-fermion action (for example, the sum of (3.3), (3.4), (3.9), and (3.10)) is
not invariant under gauge transformations, if one computes matrix elements of operators
involving fermion fields straightforwardly using such an action, the result is not, in general,
gauge invariant. In this section, we discuss a method for computing matrix elements of
fermion operators that yields a gauge-invariant result. The method that we present is related,
but not identical, to the approach that we used in computing the fermion determinant.

In analyzing the matrix elements of fermion operators, we assume that any fermions in
the initial and final states have been removed by the LSZ reduction. We also assume that
the total number of ¥’s is equal to the total number of ¥’s, so that the fermion operators

can be Wick contracted to form interacting propagators.

A. General procedure

We begin by employing the s trick of Section VB1 to move all the factors Pr to the
endpoints of the interacting fermion propagators, treating s as if it anticommuted with all

Wilson masses and vertices. If each interacting propagator’s endpoints are separated by a
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fixed amount in configuration space, then there is no fermion-loop UV divergence associated
with the propagator. In f:his case, the rearrangement changes the expression by terms of
order ay and by terms corresponding to the renormalization counterterms associated with
radiative corrections to the propagators and operator vertices. If the interacting propagator’s
endpoints are separated by a distance that vanishes as a — 0, then there is a fermion-loop
UV divergence associated with the propagator. In this case, the rearrangement also changes
the expression by terms corresponding to the renormalization counterterms associated with
the fermion loop. Once we have completed this rearrangement, all of the factors P; are
assoclated with the fermion operators. Of course, P2 = Pr, so there is at most one such
factor associated with the left side and and one such factor associated with the right side of
each operator.

If the operators themselves are independent of the gauge field, then the modified matrix
element is exactly gauge ihvariant;, since the fermion now has only vector-like interactions
with the gauge field along its propagators. Therefore, in this case, we can compute the
modified matrix element without recourse to the double limiting procedure.

If an operator involves gauge fields, for example, through a gauge-covariant derivative,
then, with the modification that we have described, the even-parity part of the expression
associated with that operator is still exactly gauge invariant, but the odd-parity part is not.
Therefore, we can compute the even-parity part without making use of the double limiting
procedure. For the-odd parity part, we must invoke the double-limiting procedure to insure
gauge invariance. If an interacting propagator’s endpoints are separated by a distance that
vanishes as a — 0, then nonvanishing gauge variations can arise from the associated fermion-
loop divergence. In this case, as was discussed in Section V B2, we must also impose the

anomaly-cancellation condition (5.7) in order to insure gauge invariance.?

9Since we have applied the s trick here to the odd-parity part as well as to the even-parity part,

the anomaly takes on a somewhat different form than in Appendix A. However, the conclusion—
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The power-counting arguments that we have given previously also apply to the operator
matrix elements. In particular, we expect the violations of gauge invariance arising from
odd-parity operator loops to vanish as a}, and we expect the deviations of the odd-parity

loops from a gauge-invariant expression to vanish as a.

B. Example: violation of baryon-Number conservation

As an example of the procedure for computing matrix elements of operators involving

fermion fields, let us consider the matrix element of the baryon-number current
~B
Ji(2) =9 (2)1.9° () (7.1)

in the presence of dynamical gauge fields plus an external source of background gauge-field
quanta. We assume that 1® is part of a larger column vector 3 such that the gauge group
of the complete field 9 satisfies the anomaly-cancellation condition (5.7), but the subgroup
associated with 1® does not.

A matrix-element of J f is given by a weighted average over gauge-field configurations of

Fo=> Trv,53 . a(z,z), (7.2)

where SZ, ,(z,z') is the interacting baryon propagator, with configuration-space endpoints
z and z’. The subscript “chiral” indicates that the interactions of the baryons with the gauge
field are left-handed. Now, F, is gauge variant. However, we can modify the definition of
the matrix element so as to render it gauge invariant. We apply the s trick of Section VB 1
to move all of the projectors Pr in SZ, , on the right side of (7.2) to the factor ,. The
terms that we discard in this procedure all vanish in the limit a; — 0 or have the the forms

of renormalization counterterms. The result is that F, is replaced by

that the gauge variations in the presence of a background field can be removed by imposing the

anomaly cancellation condition (5.7)—is unchanged.
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ﬁ'# = Z Tr'YuPLSictor(m"c): (7.3)

where S2 ,__is the interacting propagator for baryons with vector-like couplings to the gauge

field. The expression (7.3) has an exact (vector-like) gauge invariance. Consequently, we
can compute 1t without recourse to the double limiting procedure.

Now F), corresponds to the matrix element of a left-handed baryon current
. —B )
J2(z) = %" (2)1.PL®(z) (7.4)

in a theory in which the baryons have vector-like interactions with the gauge field. As is
well-known, in four dimensions, in a theory with vector-like couplings, J:f 1s not conserved:
its divergence is given by the ABJ anomaly, which is nonzero in the presence of background
gauge fields with nonzero winding number. Thus, we have recovered the familiar result that,
once one has added such renormalization counterterms as are required to render its matrix
elements gauge invariant, the baryon-number current is not conserved [26].

Of course, one could also compute the violation of baryon-number conservation directly,
by examining amplitudes that have unequal numbers of incoming and outgoing baryons.
Such amplitudes can be computed in the standard way by considering the contributions
to the path integral of the zero modes of the Dirac operator [27]. As we have argued in
Section VB1 (see, in particular, (5.6)), the manipulations of the fermion determinant that
we advocate do not affect the low-energy modes in the continuum limit. Therefore, the

lattice and continuum calculations yield the same result.

VIII. BEYOND PERTURBATION THEORY

The analyses that we have presented so far have been given in terms of weak-coupling
perturbation theory. In this section, we will argue that, in the presence of an arbitrary
background gauge field, the perturbation expansions for the fermion determinant and in-
teracting fermion propagators actually determine these quantities completely, except at the

zero modes of the Dirac operator. This is not to imply that one can analyze the complete
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theory through the use of perturbative techniques. The gauge-field sector of the theory, of
course, exhibits effects that are not amenable to a perturbative analysis.

Throughout this section, we will assume that the gauge-field configuration defined on
the gauge-field lattice (and implicitly on the fermion lattice) is bounded. Of course, there is
no universal bound that applies to all of the gauge-field configurations in the path integral.
Therefore our conclusions may not hold when one sums over all configurations. Another
potential loophole arises from the fact that, configuration by configuration, the gauge fields
on the fermion-field lattice may become unbounded in the presence of large gauge transfor-

mations on the gauge-field lattice [14].

A. Finite volume and fixed lattice spacing

In the arguments to follow, the convergence properties of the perturbation series are
crucial. Ultimately, we wish to study these properties in the case of infinite volume and in
the limit ay — 0. However, it is illuminating to consider first the behavior of the perturbation
series for the somewhat simpler case of finite volume and fixed lattice spacing.

We begin by noting that the determinant of the lattice Dirac operator D can be written

as

det D= det[d + (D — 8)] = det 8 det([L + (1/8)(D — 8)]

= det 8 exp{Tr log[l + (1/0)(D - 9)}}, . (8.1)

where § is the free Dirac operator (D evaluated at g = 0). The perturbation expansion for
the effective action log(det D) is obtained by expanding the logarithm in (8.1) in powers of g.
At fixed lattice spacing in a finite volume, D and 0 are just finite matrices, so the expansion
of the logarithm in powers of (D — ) has a finite radius of convergence. Furthermore,
(D—-0) is an analytic function of g through the link variables U. Therefore, the perturbation
series has a finite radius of convergence in g. Consequently, one can determine det D almost

everywhere in the complex g plane by analytic continuation, the exceptions being the branch
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point in the logarithm and its associated cut. Now, the ambiguity at the cut has no effect on
the determinant, since it leads to shifts of the argument of the exponential by 2min, where
n is an integer. The branch point itself corresponds to zero modes of the Dirac operator. As
we have argued in Section VB 1, the procedure that we use to rearrange the determinant
leaves the zero modes unaffected; they are given, in the limit ay — 0, by the zero modes of
the continuum Dirac operator.

Similarly, we can write the interacting propagator as
Dl'=[8+(D-08) =01+ (D-8)(1/8))7*. (8.2)

The expansion of the right side of (8.2) in powers of (D — 8) has a finite radius of conver-
gence. Therefore, the perturbation expansion of D! in powers of g has a finite radius of
convergence. By analytic continuation, the perturbation series determines the interacting

propagator everywhere except at the zero modes of the Dirac operator.

B. Infinite volume and the limit af — 0

Now let us take up the infinite-volume case. Here it is most convenient to examine
the convergence properties of the perturbation series, using the momentum-space Feynman
rules. We are ultimately interested in the limit a; — 0.

In order to demonstrate that our perturbative analyses hold for arbitrary g, we need to
prove two properties: that the perturbation series for the effective action (logarithm of the
fermion determinant) and the interacting fermion propagator have finite radii of convergence,
and that one can take the limit a; — 0 term by term in the perturbation series. To prove the
first property, we need to show only that the perturbation series is absolutely convergent. To
prove the second property, we must show that the perturbation series is uniformly convergent
as ay — 0. We will demonstrate this by showing that the series can be majorized. That is,
we will show that for every ay in a neighborhood of a; = 0, the absolute value of each term

in the perturbation series is bounded by an as-independent series that converges. Thus, the
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proof of uniform convergence of the series also demonstrates the absolute convergence of the
series. We will assume that the first few terms in the perturbation series of order g¢ or less
have been removed, so that we do not have to deal with individual terms in the determinant
that are divergent as a; — 0. Obviously, subtracting a finite number of terms does not
affect the convergence of the series.

First we analyze the region of integration in which all the gauge-field momenta, and
the fermion-loop momentum in the case of the effective action, have magnitudes much less
than w/a;. Consider the contribution to a term of order g™ that contains only single-gauge-
field-fermion vertices V(1). The magnitude of each vertex is bounded by an a;-independent
constant times g. We can obtain a bound on the magnitude each fermion propagator by
dropping the Wilson term and replacing (1/ay)sin(puays) by a finite consta.n{: of order unity
times p,. Thus, the magnitude of each propagator is bounded by an ay independent constant
times 1/|p|. Since we are assuming, in the case of contributions to the effective action, that
the fermion momentum is much less than w/ay, the volume of the integration is an ay-
independent constant. Thus, each such contribution to the interacting fermion propagator
is bounded by C(gA/k)" and each such contribution to the effective action is bounded by
(1/n)C(Ag/k)", where C is an as-independent constant, A is the maximum magnitude
of the gauge field'® region of and k is the minimum of the magnitudes of the gauge-field
momenta. Here, we assume that the momentum of the gauge field is cut off in the infrared by
physical effects or by application of an explicit infrared regulator. We also assume that one

can neglect the regions of integration in which sums of gauge-field momenta nearly vanish

10Here we are assuming that the gauge-field configuration in momentum space is bounded. In
fact, the gauge field may be singular in momentum space. However, if the gauge field is bounded
in configuration space, then these singularities are integrable. Hence, one could eliminate any such
singularities by smearing the momentum-space gauge field over a small fraction of the range of the

gauge-field momentum integration.
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or, in the case of the interacting propagator, sums of gauge-field momenta and the fermion
momentum nearly vanish.!!

Suppose that we include the possibility of multi-gauge-field-fermion vertices. The effect
of these is to replace propagator factors by powers of a;. Therefore, we can bound any
propagator factor by [Cias + (C2/k)], where C; and C, are a;-independent constants. This
implies that the contributions to the interacting propagator are bounded by (Ag)*[Cra; +
(C2/k)|™ and the contributions to the effective action are bounded by (1/n)(Ag)*[Cra; +
(Ca/k)]™. Thus, we see that, for g small enough, these contributions are bounded by the
terms in a convergent geometric series that is independent of afs.

Now consider the region of integration in which some of the gauge-field momenta are of
order 7 /a;. As we have seen in SectionVIB 5, such contributions are suppressed by powers
of as. If a gauge-field momentum of order 7/a; passes through a fermion propagator, then
the propagator is bounded by a constant times a s- Thus, we can again bound the propagator
factors by [Cias + (C>/k)]. There are additional powers of a; from the regulating factors F'
associated with the vertices. Otherwise, the bounds on vertices are unchanged. The powers
of a5 in the regulating factors more than compensate for inverse powers of ay associated with
the ranges of the sums over the gauge-field-momentum variables g in (6.29). Therefore, the
contributions to the interacting propagator and the effective action are again bounded by
(Ag)*[Cras + (Co/k)|™ and (1/n)(Ag)*[Cras + (C,/k)]", tespectively. For g small enough,
these quantities are, in turn, bounded by the terms in a convergent geometric series that is

independent of a;.

1Suppose that we constrain » momentum integrations so that each component of momentum has
a range of size ¢ relative its unconstrained range. There are n!/[(n — r)!r!] ways to do this. The
volume of integration of each of the r momenta is reduced by a factor e?. At most 7 propagators
are enhanced by a factor 1/e. Therefore, the net effect of constraining momenta is to multiply the

bounds we have obtained by (ed=! + 1)™ < C™, where C is an a;-independent constant.
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Finally, we consider contributions to the effective action from the region of integration in
which the fermion-loop momentum is of order =/ay. We see from (5.1) and the surrounding
discussion that, for gauge-field momenta with magnitudes much less than 7/ay, such con-
tributions are bounded by an as-independent constant times (Ag)"a} ¢. The argument of
the preceding paragraph shows that contributions from gauge-field momenta of order 7/ay
do not change this bound. Again, for g small enough, the contributions are bounded by the
terms in an aj-independent, convergent geometric series.

We conclude that the perturbation series for the interacting propagator and the effective
action have finite radii of convergence and are uniformly convergent in the limit ay — 0.
Therefore, the perturbation series determine the propagator and the fermion determinant
by analytic continuation; except at singularities. Furthermore, we can take the limit ay — 0
term by term. In this limit, the singularities correspond to the zero modes of the continuum
Dirac operator.

Therefore, the conclusions that we have reached through a perturbative analysis of the
fermion determinant and interacting propagator apply for arbitrary g. In particular, we
can conclude that, in the continuum limit, the prescriptions we have given for computing
the fermion determinant and the matrix elements of fermion operators give the correct low-

energy amplitudes and yield gauge-invariant expressions.

IX. SUMMARY AND DISCUSSION

We have presented a general procedure for constructing gauge-invariant lattice formula-
tions of theories of chiral fermions interacting with gauge fields. The procedure involves three
key ingredients: (1) the fermions must be in an anomaly-free representation of the gauge
group; (2) one must replace the magnitude of the fermion determinant with the square root
of the determinant for a fermion that has vector-like couplings to the gauge field, but that
is otherwise identical to the original fermion; (3) one must implement the gauge-field action

on a lattice with spacing a, and the interacting fermion-field action on a lattice with spacing
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af, define a suitable interpolation of the gauge field to the fermion-field lattice, and take
the limit ay — 0 before taking the limit a; — 0.!2 In four dimensions, all three of these
conditions are required to insure the gauge invariance of the formulation. In this procedure,
the magnitude of the determinant is exactly gauge invariant. The gauge variations of the
phase of the determinant vanish as a} times logarithms of ay, and the deviations of the
phase of the determinant from a gauge-invariant expression vanish as a} times logarithms
of as. (We note that the result of Ref. [15] for the power behavior of the gauge variations
seems to differ from the one derived in this paper.)

We have also presented a closely related method for defining, in a gauge-invariant fashion,
matrix elements of fermion operators in chiral theories. As was shown in Section VII B, the
application of this method to the baryon-number current leads to the familiar conclusion
that that current is not conserved.

The analysis of these.methods is couched in weak-coupling perturbation theory. In
analyzing the properties of a UV regulator, of which the lattice is an example, we are
concerned with the behavior of the theory near the cutoff. Hence, one might hope, in the
case of asymptotically free theories, that the perturbation expansion would be a reliable
guide to that behavior.

Furthermore, as we have argued in Section VIII, in the presence of a given gauge-field
configuration, the perturbation series defines the interacting fermion propagator and the
fermion determinant everywhere except at zero modes of the Dirac operator. The conver-
gence of the series is uniform in a;, so that one can analyze the continuum limit term by
term. Hence, the methods for computing the determinant and propagator are valid in the
presence of a nonperturbative gauge-field configuration. We have not addressed the issue of

the summation over gauge-field configurations outside of the perturbative analysis.

127 typical fermion action is given by the sum of (3.3), (3.4), (3.9), and (3.10). The corresponding

action for a fermion with vector-like couplings is obtained by setting P = Py = 1.



Shamir [14] has presented an argument that potentially undermines these analyses. He
observes that, if an interpolation of the gauge fields is gauge covariant, then large (non-
perturbative) gauge transformations on gauge-field lattice can produce a nonzero winding
number and topologically nontrivial, singular configurations on the fermion-field lattice.
Such configurations violate the smoothness requirement for gauge fields on the fermion-field
lattice that was used in the power-counting analyses of Section VIB. 5 and also violate the
assumption of the boundedness of the gauge fields that was made in Section VIII. It is pos-
sible that these difficulties might be avoided by fixing to a smooth gauge on the gauge-field
lattice. However, this is an open question.

Putting aside questions of principle, it is not yet clear that th;e procedure presented will
be tractable in practical numerical calculations. The obvious stumbling block is the double
limiting procedure for a; and a,, which could lead to computing requirements that are much
greater than in the case of a single lattice-spacing limit.

In computing the magnitude of the fermion determinant, one has two distinct options.
One can apply the double limiting procedure. Then one must tune a counterterm that
renormalizes the gauge-field wave function in order to keep the magnitude of the determinant
finite in the limit a; — 0 and to obtain the correct renormalization of the gauge-field-fermion
coupling. The coefficient of this counterterm is readily computed in perturbation theory,
since it is generated only by the diagram with a single fermion loop and two external gauge
fields.

On the other hand, the magnitude of the fermion determinant is exactly gauge invariant,
once one has replaced it with the square root of the determinant for a fermion with vector-
like interactions. Therefore, one can compute the magnitude of the determinant by taking
a; = a,. Since a vector-like gauge symmetry does not preclude the generation of a fermion

mass, one must also tune a mass counterterm (hopping parameter), so as to keep the fermion

51




massless.’®* However, it is well-known, from studies of theories of fermions with vector-like
couplings, how to effect such a tuning. In this single limiting procedure, all other renormal-
ization counterterms can be absorbed into a redefinition of the coupling constant. Hence,
only the fermion mass and the coupling constant need be tuned in taking the continuum
limit.

It seems possible that one would need to compute only the magnitude of the fermion
determinant in updating gauge-field links—computing the phase of the determinant as an
expectation value once equilibrated lattices had been generated. If this turns out to be the
case, then the use of a single limiting procedure for the magnitude of the determinant would
result in an even greater relative reduction of the computing time.

In computing the phase of the fermion determinant one must employ the double limiting
procedure. This computation is mitigated somewhat in two and four dimensions by the
fact that, owing to the absence of odd-parity counterterms in an anomaly-free theory, the
phase is actually finite in the limit a; — 0. Therefore, one can carry out a straightforward
extrapolation to obtain the limit.

One source of error in the extrapolation is easily reduced. As we have seen in Section VI,
order af, deviations of the phase of the determinant from a gauge-invariant expression arise
from the region of integration in which the gauge-field momenta and the fermion-loop mo-
mentum associated with a,. given fermion loop are much smaller in magnitude than 7 /a ¢. In
this region, the deviations from the limiting result come from the deviations of the tree-level
lattice action from the tree-level continuum action. The order in ay of these deviations can
readily be increased through the use of improved actions [24,25]. Similarly, one can eliminate
the order afe gauge-variant contributions to the phase of the determinant that arise from the

region of integration in which gauge-field momenta are large and the associated fermion-

13The diagrams that generate fermion masses are suppressed in the double limiting procedure, so

no mass counterterm is required in that case.
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loop momentum is small. One can accomplish this by dropping the gauging of the Wilson
term (3.10) in computing the phase of the fermion determinant (but not the magnitude).
Then there is a symmetry under constant shifts of the fermion field [23] that precludes the
generation of fermion-mass terms, which give the largest gauge-variant contributions.

Unfortunately, such improvement programs are of limited utility, since errors also arise
from the region of integration in both gauge-field momenta and fermion-loop momenta are
of order w/a;. As we showed in Section VIB 5, when one uses an interpolation in which the
gauge field is discontinuous along least one direction at the boundaries of the gauge-field
lattice hypercubes, these errors are of order a}. The use of a smoother interpolation, in
which the gauge fields (or higher derivatives) are continuous, would, in general, suppress
these errors by additional factors of ay. However, such interpolations are necessarily less
local. In general, the order g, errors increase as one increases the distance on the gauge-field
lattice between the sites that enter in the interpolation.

Although gauge-variant contributions ultimately vanish as ay — 0, the presence of large,
“pure gauge” contributions in gauge-field configurations might make the approach to that
limit problematic in numerical work. It is probably sensible, therefore, to fix the interpolating
field to a smooth gauge, such as one of the renormalizable gauges, to insure at least that the
known, spurious, “pure gauge” contributions that arise from UV divergences are absent.

In testing the ideas of this paper in numerical simulations, it would be most efficient,
computationally, to consider two-dimensional theories. - Then, anomaly cancellation can
be achieved by introducing both left- and right-handed fermions, such that the sum of
Tr(T.T;) for the left-handed fermions is equal to the sum of Tr(7,T3) for the right-handed
fermions [28]. Strictly speaking, two-dimensional theories do not require the double limiting
procedure. That is because, as can be seen from (6.1), the only divergent subdiagram is
a fermion loop with exactly two external gauge fields; there are no divergent subdiagrams
containing gauge-field propagators. However, the odd-parity part of a fermion loop with two
external gauge fields is zero by virtue of the anomaly-cancellation condition (5.7). Therefore,

the violations of gauge invariance that arise from the odd-parity parts of fermion loops vanish
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in limit ay = a; — 0. Nevertheless, one could use the two dimensional theories as a testing
ground for methods of extrapolating to the limit a; — 0 with ag fixed. One could check
the gauge invariance of the fermion determinant and also compare the results for various
physical quantities, such as the mass spectrum, with analytic results.

More stringent tests of the methods presented here could be obtained in four dimensions.
Again, one could test the convergence of the extrapolation to a; = 0 and the gauge invariance
of the determinant. Also, in weak coupling, one could compare results for physical quantities
in the Standard Electroweak Model with calculations in weak-coupling perturbation theory.

It is clear that the fermion determinant we have described corresponds to a complex
effective action. This is a general property of chiral gauge theories that would be expected
to hold regardless of the lattice formulation chosen: the effective action receives imaginary
contributions that are independent of the UV regularization from finite odd-parity parts of
fermion loops. It remains an open question as to whether one can devise practical means

for handling such complex actions in numerical simulations.
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APPENDIX A: COMPUTATION OF THE ANOMALY

In this Appendix we present a calculation of the gauge variation of the odd-parity parts

of fermion loops in the presence of a background gauge field in four dimensions [29]. For
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simplicity, we restrict ourselves to the case in which the Wilson term has not been gauged.
If one includes the gauging of the Wilson term (3.10), then one must consider additional
contributions to the gauge variation involving A-gauge-field-fermion vertices.

We will use repeatedly the fact that a trace containing an odd number of ;s is non-
vanishing only if it contains four factors that are linearly independent combinations of the
the matrices 71, 72, Y3, 7a- These linearly independent combinations can come from three
sources: the v matrices associated with naive vertices in the loop, the v matrices associ-
ated with external momenta in propagators, and the v matrices associated with the loop
momentum in propagators.

In order to expose the external momenta, we expand the propagators and vertices in a
Taylor series in the external momenta times the lattice spacing a. We can use the result,
derived in Section V A, that aloop containing a A vertex receives a nonvanishing contribution
in the limit @ — 0 only from the region of integration in which the magnitude of the loop
momentum is of order 7/a. In this region, it is easy to see, from the discussion in Section V A
and the fact that the external momenta are assumed to be much smaller in magnitude than
the cutoff m/a, that the nth term in the Taylor expansion has a relative suppression factor
a™. Thus, for a loop with degree of divergence D, terms in the Taylor expansion containing
more than D factors of the external momenta do not receive a nonvanishing contribution
from the region of large loop momentum in the limit @ — 0. Therefore, we retain only the
first D terms in the Taylor expansion. For these terms, it can be seen, from the discussion in
Section V A, that the region of integration in which the magnitude of the loop momentum
is much less than m/a gives a negligible contribution. Thus, we can extend the range of the
integration to the entire Brillouin zone.

We also note that the.y matrices associated with the loop mozﬁentum can never con-
tribute the required linearly independent factors: if a term contains an odd number of v-
matrix factors associated with the loop momentum, it gives a vanishing contribution because
the integrand is an odd function of the loop momentum; if a term contains an even number

of y-matrix factors associated with the external momentum, these factors can be brought
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together by using the anti-commutation relations and eliminated by using (7 - a)? = a2

Armed with these facts, let us consider in turn the various contributions up to those
containing four external gauge fields.

The contribution involving one A vertex and no external gauge fields vanishes by Abelian
charge-conjugation symmetry.

Next consider the contribution involving one A vertex and one external gauge field. If
the gauge-field vertex is a naive vertex, it can contribute one of the linearly independent «-
matrix factors. The one independent external momentum can contribute another. However,
that is not enough to saturate a trace containing an odd number of ~s’s.

In the contribution involving one A vertex and two external gauge fields, we can have
at most two factors of external momentum in the Taylor expansion and still obtain a non-
vanishing contribution in the limit @ — 0. Then, in order to obtain a nonvanishing trace,
we must take all of the gauge-field-fermion vertices to be of the type V), which involves a
single gauge field, and we must retain terms proportional to the external momentum only in
the Taylor expansions of the propagators. The nonvanishing contribution then comes from
the diagram of Fig. 3(a), whose amplitude we denote by A, plus the diagrams obtained

by permuting the gauge fields. That contribution is given by

Hm [A,(i)(ll, By b 12, v, ¢) + perm(ly, p, b; I3, v, ¢))

=9 [ o {0 | 552 0)] 1+ ,av87o

9 w
l (LN w Lo bl
X [a(apv)SF (P)] 10aV 7 (p) S (P)}Odd + perm(ly, p, b; I, v, c)

= g*IQ) 1,1 (1/2)Tr (To{To, T.}) + perm(ly, g, b; L3, v, ¢). (Ala)

Here, sums over repeated indices are understood. The subscript “odd” on the trace means
that we retain only those terms that contain an odd number of vs’s, and “perm” means
permutations of the symbc;ls separated by semicolons, 7.e., permutations of the gauge fields.
In the last line we have used the fact, which follows from the computation of the trace, that

[‘(‘f)pa is proportional to €,,,,.
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A similar analysis shows that the nonvanishing contribution involving one A vertex and
three external gauge fields is given in the limit @ — 0 by the diagram of Fig. 3(b), whose
amplitude we denote by A®), plus the diagrams obtained by pt;,rmuting the gauge fields.
In this case, D = 1, so we retain only one power of the external momentum in the Taylor

expansion. The result is

]'im [A(s) (lla 2 b lz) v, & l3) P d) + perm(lls 12 b; PR l3: P, d)]

uvp

[

ooy Tr{zTﬂsM(p) [ a(a )s (p)] (b + 1y + I3)ea
x VW (p)SE )V (p)SE (2)VN (p)SF (2)
HIAMESE GV 0) |57y SE @) (G + o
x VN (p)SF (p)V " (p)SE (p)
+iTays M (p)SE (VI (9)SE (2)V™ (p)

[( ) oF (P)] LoV (p)SF (p)} Te (T.TT.Ta)

odd

+Perm(l13 I8 b: l21 v, ¢ l37 P, d)

= g®TC) (I +lp + 1), Tr (TuToTeTa) + perm(ly, p, b; 1z, v, ¢; 13, p, d)

Hypo

= ¢8I, 1o (1/4) T (Te{ T, [Te, Tel}) + Lo (1/4) Tr (T Ty (T3, T.]})

ao(1/2)Tx (Ted T, [Tey T} + Ted Tay [T, Tel} + To{ T2, [ T3, T}

+perm(ly, p, b1z, v, ¢; 1s, p, d). (Alb)

Here, we have used the facts that only the first Dirac trace is nonzero and that it is propor-
tional to €0

It is easily seen that the contribution involving one A vertex and four external gauge
fields is given in the limit @ — 0 by the diagram of Fig. 3(c), whose ampﬁtude we denote by
A4, plus the diagrams obtained by permuting the gauge fields. In this case, D = 0, so we

set the external momenta equal to zero. The result is

lim[A(4) (ll, g, b la, v, ¢, p,d; Ly, 0, €) + perm(ly, g, b; b, v, ¢ 13, p, d; 1s, 0, €)]

pypo

[ 2

= Tr [iTeys M(p)SE (P)VIY () SE (2)VII¥ (p)SE (2) VN (p)SF (p)

LY




x VN (p)SE (p)oaa T (TuToTeTuT.)
+perm(lly H, b; 12; v, G 137 P, d) l4) g, 8)

= [g* 1) (1/8)Tx (To{[Ts, T2, [T, T2}

HY oo

Lperm(ll:#‘)b; lZ)V) G l3:P:di l4)0-7 8)] (AlC)

Again we have used the fact that the Dirac trace is proportional to €,,,,. In fact, direct

computation of the trace shows that
I, =0 (A2)

We see that the odd-parity contributions from the fermion loops all vanish in the limit  — 0
if the anomaly-cancellation condition (5.7) is satisfied.

Now let us sketch a method by which the calculation of I®) and I(® can be completed. If
we drop the color factors in (A1), then the resulting expressions correspond to the calculation
of the gauge variations in an Abelian theory. Since I®®) and I® are symmetric under cyclic
permutations of the gauge fields, we can compute them by considering cyclic permutations
of the Abelian expressions for the gauge variations.

Consider the quantity f‘g’:}u, which is the Abelian amplitude associated with the odd-
parity part of a particular set of diagrams involving a fermion loop, n gauge fields (with
indices apv...), and no A vertices. We include in I'™ the diagram with no multi-gauge-
field-fermion vertices and the diagram with a single two-gauge-field-fermion vertex involving
the gauge fields with indices @ and p. We note the following relation between the Abelian

gauge variation and I'™:

—(i/g)da(k)[f‘((ﬂu...(lh la,l3, ..., 1o 1) + cyclic perm(ly, p; by, v; . . )

= .‘15";:_1)(11, Iy, ..., lao1) + cyclic perm(ly, p; by, v;. . ), (A3)

where the tildes denote the Abelian case,

n—1

k=— i I, (A4)

i=
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and d, is defined in (3.8). This relation follows from the fact that the left side of (A3) is

the gauge variation that one obtains by taking

Au(z + a,/2) — Au(z +a,/2) + (1/ag)[A(z) — Az + a,)), (A5)

which is equivalent to (4.1a) in an Abelian theory, and absorbing the transformation of the
fermion fields (4.1b) into a change of variables in the path integral. (One Fourier transforms
(A5) with respect to the coordinate of the gauge field to obtain the left side of (A3).) At a

graphical level, the relation (A3) is obtained by applying repeatedly the Feynman identity

da(R) VOV (p, k) + VO (p, k)] = ~[iSF (p + k)7 Pr. + Pr[iSF ()]

—(1— Pp)M(p + k) + (1 — Pr)M(p), (A6)

as in textbook demonstrations of gauge invariance at the Feynman graph level. The M
terms, of course, give the A vertices on the right side of (A3). For the inverse propagator
terms, one does not find the simple pair-wise cancellation that occurs in the continuum
theory because the lattice vertices are momentum dependent. It follows from the recursion
relation (3.7) that this momentum dependence is compensatea by the contributions that
one obtains by contracting d,(k) with the two-gauge-field vertices. The result is a complete
cancellation of the inverse propagator terms.'*

Now, T'(™) receives no contributions from the region of integration in which the magnitude
of the loop momentum is of order w/a. This follows from the fact, discussed in Section VIB 5,
that the odd-parity parts of loops have no renormalization counterterms that are invariant

under cyclic permutations of the gauge fields. It can also be seen by expanding '™ in

1f we had gauged the Wilson term in the action, then there would be Wilson vertices in the
amplitudes, as well as naive vertices. The cancellation of the inverse propagator terms would fail in
the presence of the Wilson vertices because they commute rather than anticommute with the vs’s
in the inverse-propagator terms in (A6). Consequently, a more complicated identity than (A3),

involving A-gauge-field-fermion vertices, would be obtained.
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a Taylor series in the external momenta. The first 5 — n terms in the expansion have a
vanishing trace under cyclic permutations of the gauge fields; the remainder in the expansion
is suppressed by powers of a when the magnitude of the loop momentum is of order 7/a.
We conclude that we can evaluate ") (including all permutations of the gauge fields) by

taking the limit @ — 0 in the propagators and vertices. The result is just the continuum

expression. Thus,

‘lzj_r% .—-153,:1)(11, la, ... lnq) + cyclic perm(l, p; o, v;. . )

= —(i/9)ka[TGET (1, by s, . . Lnc) + cyclic perm(hy, g3 ko, v; .. ). (A7)

The right side of (A7) is just the continuum expression for the ABJ anomaly. We can
evaluate it by considering the gauge variation of the continuum action in the presence of a
UV regulator. If we impose a Pauli-Villars regulator, then we obtain expressions that are
identical to those in (Ala) and (A1b), except that there are no color factors, the Wilson
mass M(p) is replaced everywhere by the Pauli-Villars mass, the limit @ — 0 is taken in
the remaining terms in the propagators and vertices, and there is a minus sign because one

subtracts the massive Pauli-Villars-regulator contribution. The results are

I;(xfzzw = —7:/(2471'2)6#,,‘,0., (A8a.)
IS, =i/(487)eups, (A8b)

which, upon continuation to Minkowski space, can be seen to be in agreement with previous
calculations of the gauge (consistent) anomaly [30].

This result is actually independent of the choice of UV regulator. As we have already
mentioned, if one assumes symmetry under cyclic permutations of the gauge fields, then
there are no renormalization counterterms for the odd-parity parts of the orc'l-inary fermion-
loop amplitudes (those associated with diagrams that do not contain A vertices). The
absence of counterterms guarantees that the amplitudes themselves are regulator indepen-
dent. Furthermore, the anomaly can be obtained from the amplitudes by varying the gauge

fields according to (4.1a) and absorbing the transformation of the fermion fields (4.1b) into

60



a change of variables in the path integral, as was discussed explicitly for the Abelian case
in reference to (A3). Therefore, the anomaly is also regulator independent. In particular,
we would have obtained the result (A8) had we chosen to retain the gauging of the Wilson

term in the action.
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FIGURES

FIG. 1. An example of a gauge variation whose odd-parity part is nonvanishing in the contin-
uum limit in four dimensions. The circle represents the fermion loop, the dashed line represents

the A field, and the curly lines represent the gauge fields.

FIG. 2. A contribution to the gauge-field self energy that leads to a violation of the gauge

symmetry in four dimensions. The violation arises from the odd-parity parts of the loops.

FIG. 3. Diagrams that contribute to the ABJ anomaly in four dimensions.
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