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ATTACK OPTIMIZATION AT MODERATE FORCE LEVELS

Gregory H. Canavan

Optimal offensive missile allocations for moderate offensive and
defensive forces are derived and used to study their sensitivity to force structure
parameters. levels. It is shown that the first strike cost is a product of the number
of missiles and a function of the optimum allocation. Thus, the conditions under
which the number of missiles should increase or decrease in time is also
determined by this allocation.

This note derives optimal offensive missile allocations between missiles and value forces
for moderate offensive and defensive forces. Exchanges are modeled probabalistically, and their
results are converted into first and second strike costs through approximations to the value target
sets held at risk. The stability index is taken to be their ratio, although minimization of first strike
costs is the principal concern. For vulnerable missiles it is possible to analytically derive the
value of the allocation that minimizes the first strike cost for any given attack preference, number
of weapons per missile, and kill probability. For moderate forces, these allocations, which agree
well with numerical optimizations vary strongly with attack preference for few weapons per
missile. They fall more slowly for larger numbers. Adding survivable missiles in equal numbers
decreases the allocation to missiles by about a factor of two, in agreement with numerical
optimizations. Adding defenses increases allocations to missiles.

For moderate forces, the derivative of the first strike cost with respect to the number of
missiles is a function of the optimal allocation. Thus, these optima can be used to examine the
variation of costs. For vulnerable missiles, the derivative is positive for small numbers of
weapons per missile and attack preferences, which means the attacker should reduce the number
of missiles and weapons to reduce first strike costs. The derivative is negative for large numbers
of weapons per missile and attack preferences, which means he should increase the number of
missiles and weapons. Unfortunately, the transition occurs at roughly the current number of
weapons per missile and at roughly the attack preferences used in current analyses.

Survivable missiles shift make the derivative positive for all values of weapons per
missile for small attack preferences, although still negative for large values. The transition occurs
at the attack preference where the first striker gives roughly equal priority to inflicting damage
on the other and preventing damage to himself. To apply these results it is necessary to have a
good estimate of the opponent's preference, on which the transition depends strongly. Of course,
the other's preference cannot be known with certainty. Defenses make the derivative smaller as
defenses increase. There is a transitional region in which the derivative—and hence incentive for
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missile growth—is small for all values of defenses. However, it occurs at a smaller value of
attack preference than that in the absence of defenses.

Review of earlier results. It is possible to model exchanges between symmetric missiles
forces in terms of the first, F, and second, S, strikes that they could deliver. For a force of M
vulnerable missiles with m weapons each and N invulnerable missiles with n weapons each, of
which a fraction f is directed at the opponent's missiles, the first strike on value targets is

F=(1-f)(mM +nN). (1)
The average number of weapons delivered on each opponent vulnerable missile is

r = f(mM + nN)/M. 2
For r large, the average probability of survival is approximatelyl

Q=4 ?3)

where g = 1 - p, and p is the attacking missile's single shot probability of kill, which is taken to
be the same for all missiles. The second strike is

S =mMQ + nN = mMqT + nN. @
S is delivered on value targets as missiles remaining at the end of the exchange have no value.

Costs and stability index. These first and second strike magnitudes can be converted
into the costs of striking first and second through exponential approximations to the fraction of
the value targets destroyed. The cost of damage to self and of incomplete damage to the other fall
on different parties; thus, they are incommensurate. A conventional approximation is to take their
weighted sum2

C1=(1-ekS + LekFy(1 +L), (5)
where k = 0.001 is a constant roughly equal to the inverse of the size of the value target sets held
at risk3 and L is a constant that represents the attacker's relative preference for inflicting damage
on the other and preventing damage to self. L. small means the first striker is primarily concerned
about denying damage; L large means he is more concerned about inflicting damage on the other.
It is generally assumed L < 1, although there is no fundamental reason. The construction of C1 as
a weighted averages of the cost to self and other is plausible but not unique.4 The normalized
second strike costs cost to for the second striker, who must ride out the first strike F, is

Co=(1-ekF 4+ LekSy/(1+L), (6)
which uses the same constant L used above, an assumption that is explored elsewhere.d There is
additional arbitrariness in converting C1 and C2 into stability indices.6 The ratio of costs Ci/lC2
is used below based on simple arguments. If the cost of striking first, C1, is large, the first striker
should be deterred from initiating an exchange. Similarly, if the cost of striking second, C2, is
small, both sides should see little penalty in riding out a crisis. The ratio C1/C2 captures both of
these effects in a single stability index

I=C1/C2=(1-ekS + Le'KF)/(1 - e KF + LekS) ¢)




v T - Ty e R e - 5 o T
LA S M A 0 A 516 B N S U LNECRLE S (AR ACRE 4 I D S 3 S i N ) SO RO 7S M R S LR R e O AP EEIRES

Vulnerable missiles. The optimizations for vulnerable missiles, mixes, and defenses are
presented sequentially to simplify the discussion. For vulnerable missiles, Egs. (1) - (4) reduce to

F=(1-fmM, (8)

r = f{(mM)/M = fm, )]

Q=~qr=qfm, (10)

S =mMQ = mMqL. (11)
The attacker wishes to minimize the first strike cost C1, which for moderate forces F, S << 1/mk
reduces to '

Ci=[L+k@S-LBJA+L)={L+ k[mMgfm - L(1 - HimM}/(1 + L), (12)

whose minimum can be found by differentiation with respect to f and setting the result to zero.
That produces the analytic allocation

fa = In(-L/m Inq) / (m 1nq), (13)
which depends inversely on m, but depends only logarithmically on L and g. Figure 1 shows the
optimal allocations of vulnerable one and three warhead missiles. The curve for three warheads
falls gradually from 1 to = 0.15 as L increases from L = 0.1 to L = 1.7. The curve for the single
warhead missile is limited to unity below L = 0.4 and to zero for L > 0.9, i.e., all weapons are
allocated to missiles at small L and none are at large L.

Figure 2 compares fy from Eq. (13) with the result of iterative, numerical solution used in
earlier reports. The agreement is nearly exact to m = 2. The discrepancy increases to about 10%
by m =5 and 25% by m = 9. The first corresponds to mM = 200 weapons, where the assumption
that mM < 1/k = 1,000 is satisfied. The second corresponds to kmM = 0.5, so some error is
expected. The third corresponds to kmM = 0.9, so it is surprising that the analytic optimization is
so accurate. Results for other values suggest that the analytic optimization is sufficiently accurate
for most forces of interest in large reductions.

The optimal f3 of Eq. (13) can be substituted into Eq. (12) to determine the value of C1
corresponding to that value of m, which can be rewritten as

C1 = {L + kmM[gfm - L(1 - £)]}/(1 + L), (14)
in which the term L/(1 + L) is a function of L only and the second term is a product of kmM and
a function of m, L, and q. For a given L, the derivative of C1 with respect to M is

9C1/0(kM) = mfqfm - L(1 - HJ/(1 + L), 15)
which is shown in Fig. 3. For m = 1, single weapon missiles, the derivative is about 0.4 for all L
from 0.1 to 0.5. The derivative falls with L~—the more rapidly at greater L. For L. = 0.5, 0.3, and
0.1 it reaches zero at m = 3, 4, and 5, respectively. It falls rapidly for large L.

For positive values of the derivative, the first striker should minimize first strike costs by
reducing the number of his missiles and warheads, as the product (dM)dC1/0M would then be
negative, which would reduce Ci. For negative values, the first striker should minimize costs by




increasing the number of his missiles and warheads, as the product (dM)dC1/0M would be

negative, which would again reduce C], Thus, the combination of parameters for which the
derivative is zero defines the boundary between temporal growth or decay of offensive forces
seen in companion studies.’

Mixes. For survivable missiles, Egs. (1) - (4) can be used directly. Using W = mM + nN
for the total number of weapons and repeating the derivation of Eq. (13) leads to

fa = In(-L/m Inq) M/ (W Inq), (16)
which reduces to Eq. (13) for N = 0 and W = mM. The analytic and numerical optimal
allocations are shown in Fig. 4 for N = M =50 and n = m. The agreement is very good to m = 4-
5.; it is about 10% at m = 9. The allocation is reduced by about a factor of M/(M + N) = 1/2 from
that of Eq. 2 for vulnerable missiles. Repeating the derivation of Eq. (15) produces

0C1/0(kM) =m[qT - 2L(1 - f)}/(1 + L), an
which is shown as a function of m and L in Fig. 5 for M = N. For m = 1, the derivatives vary
from = 1 to -0.5 for L = 1/3 to 5/3. For L = 1/3, the derivative increases throughout. For L = 2/3,
it first increases and then falls slowly. For L = 4/3 and 5/3, the derivatives fall strongly
throughout. For L = 1, the derivative increases slightly through two weapon missiles and then
falls, passing through zero at m = 4. For initial configurations from m = 1 to 4, the optimal
strategy would be for the attacker to reduce the number of weapons and missiles. For larger m,
the optimal strategy would be to increase them. In this decision, a key parameter is the relative
attack preference L, as a small variation could shift the decision from decrease to increase. In that
decision it is necessary to estimate the opponent's value of L, which cannot be known precisely.

Defenses. For D random subtractive defenses, Egs. (1) becomes

F=(1-f)(mM + nN)[1 - D/M + N)], 13)
where 1 - D/(M + N) is the fraction of the missiles that penetrate the defenses.8 While the
optimization can be carried through for arbitrary parameters, the essential results are illustrated
for m = n, for which F simplifies to .

F=(1-)mM +N-D), (19)
i.e., the first strike is equal to the number of missiles that penetrate the subtractive defense times
the number of weapons carried by each and the fraction allocated to value. The average number
of weapons delivered on each vulnerable missile is

r=f(mM + nN)[1 - D/M + N)/M = fm(M + N - D)/M, (20)
Q = qf = gfm(M+N-D)/M, 21
S = (mMQ +nN)[1 - D/(MQ + N)] = m(Mg! + N - D), (22)
C1={L +k[m(Mqf+N-D)-L(1-f)m(M + N -D)}/(1 +L). 23)
Differentiating as before leads to
fa =In(-L/m Inq)(M/m) / (M + N - D) Inq, 249
4
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which reduces to the previous results for D = (. Figure 6 compares the optimal allocation from fp
with the numerical iterations used earlier. The agreement is good over the range shown.
However, for larger D, the second strike can fall to zero, i.e., Mgl + N < D, in which case the
first term in Eq. (23) falls to zero, and the second term in C1, is minimized by the choice f =0, as
in the earlier analytic treatments.?

Figure 7 shows the variation of the derivative dC1/0(kM) with respect to D and L. The
values of the derivative vary from = 2 to -1 for L small, but converge for large L, where they
range from about 0.25 to -0.75. The values for L = (.25 and 0.5 are positive throughout, which
suggests that the attacker should reduce his weapons for advantage. The values forL =1 and
1.25 are negative throughout, which suggests that the attacker should increase the number of
weapons. For L = 0.75, the value stays close to zero, which indicates that missiles could persist at
any given level for some period of time. These trends are altered for large numbers of defenses,
as discussed in earlier reports.

Summary and conclusions. This note derives optimal offensive missile allocations
between missiles and value forces for moderate offensive and defensive force levels and
compares them to previous numerical solutions. The analytic solutions are generally seen to be
sufficiently accurate to be used in studies of significant force reductions.

The exchanges are modeled probabalistically, and the results are converted into first and
second strike costs through approximations to the value target sets held at risk. The stability
index is taken to be their ratio, although the minimization of the first strike cost is the principal
concern. For vulnerable missiles it is possible to analytically derive the value of the allocation
that minimizes the first strike cost for any given attack preference, number of weapons per
missile, and kill probability. For moderate forces, these allocations vary strongly with attack
preference for few weapons per missile, but fall more slowly for larger numbers, in agreement
with numerical optimizations. The addition of survivable missiles in equal numbers decreases the
allocation to missiles by about a factor of two, in agreement with earlier numerical optimizations.
Defenses increase the allocation to missiles because they degrade the effectiveness of attacks.

For moderate forces, the derivative of the first strike cost with respect to the number of
missiles is a function of the optimal allocation. Thus, the above optima can be used to examine
the variation of that derivative with the number of weapons per missile and attack preference. For
vulnerable missiles, the derivative is positive for small numbers of weapons per missile and
attack preferences, so the attacker should reduce the number of missiles and weapons to reduce
the first strike cost. The derivative is negative for large numbers of weapons per missile and
attack preferences, so the attacker should increase the number of missiles and weapons.
Unfortunately, the transition occurs at roughly the current number of weapons per missile and the
attack preferences used in current analyses.
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The addition of survivable missiles shifts the derivative so that it is positive for all values
of weapons per missile for small attack preferences, although it is still negative for large values.
The transition occurs at roughly the attack preference where the first striker gives equal priority
to inflicting damage on the other and preventing damage to self. However, to apply these results
it is necessary to have a good estimate of the opponent's preference, on which the transition '
depends strongly. The addition of defenses causes the derivatives to become smaller for
moderate levels of defenses. There is again a transitional region in which the derivative—and
hence incentive for missile growth—is small for all values of defenses, but that transition occurs
at a somewhat smaller value of the attack preference than that encountered in the absence of
defenses.
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