
« # 

UCRL-84785 
PREPRINT 

COflF-fc*^" 5 , 

Wavepacket Theory of Collisional 
Dissociation in Molecules 

Kenneth Kulander 

Nuclear Physics A 
9th International Conference on 

the Few Body Problem 
Eugene-, Oregon 

August 17-23, 1980 

Thta ii a •retrial of a taper ktaiei for pubbcitkM la a joomal or proceedings. Since 
chantes nay be aaae before |wUkitioii, rtiB pretrial is ratae available with the IM-
ientfilnf Hut it will tot be ciui or reiro«Ked witkwc tbe pemission of tke author. 

fjgnuctWf Vf t m DOCUKKHT a m m r r ^ 



WAVEPACKET THEORY OF COLDSIONAL DISSOCIATION IN MOLECULES1' 

Kenneth C. Kulander 

University of California, Lawrence Livermoro National Laboratory 
Theoretical Atomic and Molecular Physics Group, livermore, CA 91550 

Abstract: An expl ic i t integration scheme is used to solve the time dependent 
Sehrodinger equation for wavepackets which model collisions in the collinear 
H + tb system. A realist ic LEPS-type potential energy 'jrface is used. 
Collision energies considered are above the dissociatio; threshold and proba­
b i l i t i es for coll ision induced dissociation are reported Also quantum mechan­
ical state-to-state transition probabilities are generated. These results 
are compared to extensive classical trajectory calculations performed on this 
same system. We study the time evolution of the wavepacke densities to 
understand the dynamics of the collinear collisional dissociation process. 

1. Introduction 

Collisional dissociation of molecules plays an important part in the kinetics 
of high temperature systems such as in gas lasers and flames and i r molecular beam 
and shock tube experiments. Traditional time independent methods o investigating 
chemically reactive systems fa i l when the col l ision energy exceeds • ie dissociation 
threshold. Solution of the time dependent Schrodinger equation,f 

h Hf, (D 
using wavepacket methods, however, does provide a means of obtaining a detailed 
understanding of the collision-induced dissociation (CID) process. He have 
utilized this approach to study the collinear H + H 2 system for a range of colli­
sion energies which includes the dissociative continuum and for three different 
initial vibrational levels of the diatomic. The main advantage of the wavepacket 
approach is that the wavefunction remains localized in configuration space whether 
the products include states with three free particles or not. An additional bene­
fit results from the fact that the wavepacket consists of a linear combination of 
energy states so that for a particular choice of initial states, it is possible 
to obtain state-to-state transition probabilities for a range of collision energies 
from a single wavepacket calculation. The major drawback of time dependent methods 
is that they require the solution of Eq. (1) for the evolution of the wavefunction 
over a period corresponding to the entire collision time. In general this is more 
expensive in computational effort than solving the time independent equations 
many times for the different energies required. However, for systems in which 
both reaction (rearrangement) and dissociation are possible the time dependent 
approach seems to be required, finally the recent emergence of fast, large com­
puters has made these calculations feasible, 

In the next section the model collinear system is briefly described, the 
equations to be solved are derived and our method of integrating the Schrodinger 
equation is presented. The following section contains the results of our calcula­
tions which include probabilities for reaction and dissociation along with state-
to-state vibrational transition probabilities. 1/e also compare our results to 
quasiclassical probabilities generated from extensive trajectory calculations on 
this same system. Our concluding remarks regarding future efforts using these 
methods appear in the final section. 

Work performed under the auspices of the U. S. Department of Energy by the 
Lawrence Livermore national Laboratory under contract Number W-7405-EHG-18. 
fAlomic units, 1, are used unless otherwise noted. 
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2. Calculations 

•We have chosen the collinear, reactive H + H2 system as a model for study of 
CID. This s^tem has received the most attention of theoretical dynamicists as 
the test case for a l l new coll ision theories. Assuming the validity of the Born 
Oppenheimer approximation we calculate the wavefunctions only for the nuclear 
motion on a single adiabatic potential energy surface. The three nuclei, which 
we label A for the incident atom and B and C for the nuclei of the diatomic, are 
constrained to l i e on a line which we identify as the x-axis. The positions of 
the three nuclei are given by x, , x,, and XQ and their masses by n^, nig and n^. 
Defining mass weighted interna* coordinates 

q 1 = x f l - (mB \ * \ \)l{\ + \) (2aJ 

and 
2 . 1/2 

q 2 = [mB nif- M/(mB + mc) mA] (x f i - x c) (2b) 

and removing the center of mass motion, we can write the Hamiltonian in the 
convenient form 

H * - ! • 2u 

where y = m̂ (mg + nyO/M and t! is the total mass. The potential energy surface, 
V, given by a LEPS function with parameters chosen by Kellerhalls et. al^) is 
shown in f i g . 1. Asymptotically the surface 

Fig. 1. Potential energy surface for collinear H + Hg 

becomes a Horse diatomic interaction with a dissociation energy of 4.7466 eV. In 
the interaction region there is a saddle point whose height is approximately 
0.4 eV. The in i t i a l arrangement is shown schematically in f i g . 1 with an arrow 
indicating the collisional motion into the interaction region. The repulsive 
waTls of the surface have been truncated at about 10 eV above the asymptotic l im i t . 

We solve eq. (1) by setting up an in i t ia l wavepacket which corresponds to a 
single vibrational state of the diatomic and a range of collision energies. The 
wavepacket is a product of a Morse oscil lator in the coordinate qj and a Gaussian 
distribution centered in the asymptotic region in the scattering coordinate q). 
The wavepacket is given an in i t i a l relative momentum k0 in the direction of the 
interaction region. The operation of the flamiltonian on the wavefunction is evalu­
ated using f in i te difference methods. The wavepacket is defined on a two dimen­
sional grid with 100-200 points in each direction. The second derivatives are 
generated using a 5-point formula. Thus, knowing the right-hand-side of eq. (1), 

2 2 V(q,. q2) (3) 



we have a (complex) f irst-order differential equation t in time) to solve. A 
f i f th-order Adams-Bashforth predictor corrector (PC) is used to perform the 
time integration. Further details of this method can be found in ref. c. A 
similar method was originally developed by McCullough and Hyatt-5) to study this 
system but at much lower coll ision r.eroies. The coll ision times are found to 
be 100-500 atomic time units (2.42 x lO" ' 7 sec) and for the col l is ion energies 
considered approximately 3000 integration steps were necessary. 

Since the wavepacket is a linear combination of different momentum states, 
i t tends to spread during evolution through a col l is ion. I t is necessary to have 
a suff ic ient ly large grid that the wavepacfcet does not reach the boundary. After 
the wavepacket has returned to the asymptotic region, where the motion is separable, 
we can project onto final states to obtain probabilities for venerating particular 
products. The wavefunction in the in i t ia l arrangement channel, for example becomes 

T(q, q 2 t ) -. { 2 „ } - 1 / Z I f dk a n(k) e 1 ' ^ x n (q 2 ) e ' V (4) 
n » 

2 
where x n is a bound or scattering Horse wavefunction and E l l (, = c n + k /2M. The 
square of the expansion coefficient a n(k) gives the probability for that part i ­
cular state in the final wavefunction. In the in i t i a l wavepacket, each total 
energy corresponds to a unique in i t ia l state. This is true only because the 
chosen molecular vibrational state is an eigenfunction. Knowing the probability 
of an energy component in the in i t i a l wavepacket and the probability of a f inal 
state of the same energy is sufficient to d.fine the state-to-state transition 
probability. An expression similar to thac in eq. (1) can be used in the rearrange­
ment channel to obtain state-to-state reactive probabil it ies. I f we project our 
f inal wavefunction onto al l possible bound final states (there is only a f in i te 
number for a fixed total energy) we can obtain the dissociation probability front 
the formula 

PD(E) = 1 - 1 Pj[E) - I PJ{E) (5) 
n n 

v R where Pf, and P n are the probabilities of populating vibrational state n in the 
non-reactive and reactive arrangements respectively. In principle it would also 
be possible to calculate probabilities for specific dissociating states although 
we have not done so here. Therefore it is possible from a single calculation to 
obtain transition probabilities to all energetically accessible final states from 
a particular initial vibrational level of the diatomic for a range of collision 
energies. 

A second sort of information is available from time dependent calculations. 
He can follow the evolution of the wavepacket through the collision and gain some 
insight into the dynamics of the CID process. We can see what regions of config­
uration space are explored by the wavepacket. Also it is possible to investigate 
systematically which features of the potential energy surface can cause the wave-
packet to fragment or to spread rapidly or to behave unexpectedly. In the next 
section we present results of both kinds, wavepacket densities and transition 
probabilities for the H + H 2 system. 

3, Results 
lie have ctudied the collision between an H atom and an H2 molecule for a 

range of collision energies (1-12 el/) and for three different initial vibrational 
levels of the Molecule v = 0, 1, 4. The three nuclei are constrained to lie on 
a line. In all cases we found that the wavepacket after collision returned to 
the region of configuration space corresponding to the initial arrangement. In 
figs. 2 we show snapshots.of the wavepacket densities at different times during the 
evolution for a v = 1, k. = 25a 0

_l case. The two peaks in the initial wavepacket 
result from the node in the vibrational wavefunction. In the final wavepacket the 



T = 0 T = 80 

T = 160 T = 240 

Fig. 2. Time dependent densities for the n. = l, f. =25 a"1 wavepacket. 



T = 280 T = 320 

T * 400 T = 480 

Fig. 2. (continued). 



two peaks are still evident indicating that there is a large elastic scattering 
component. An examination of the evolution shows that the wavepacket appears to 
reflect off the repulsive wall at the end of the entrance channel. This behavior 
is contrary to whet one would expect from a classical, billiard ball picture in 
which the rearrangement process is most likely. It should be noted that only for 
this energy range are the non-reactive processes dominant. At lower energies, 
different parts of the surface determine the dynamics and the reactive probability 
becomes almost unity. Also for different mass combinations the skew angle of the 
surface will be different and the product distributions could be changed dramati­
cally. 

This sort of qualitative information can produce an understanding of the 
dynamics of particular C1D processes, but a<. indicated above we obtain detailed 
quantitative results also. By projecting the final wavepacket onto separable 
asymptotic eigenfunctions we obtain state-tD-state transition probabilities. 
The detailed results from these calculations will be reported elsewhere4). We 
present some of these results here to illustrate both the behavior of the results 
and the sort of information which is available from these calculations. 

Since this system is only a model our results cannot be compared directly 
to experimental measurement. The collision energy is high enough, however, that 
classical mechanics can be expected to be approximately valid. In order to test 
our results and to assess the extent to which quantal effects are important for 
this system, extensive classical trajectory calculations have been performed'') 
and those results will be presented along with the quantum results. 
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Fig. 3. Normalized final vibrational state distributions for n-j = 4 for two 
different collision energies, E r ei< 



Figs. 3 show vibrational state distributions, Pnlnp' f o r t h e """-reactive 
arrangement channel for two different collision energies and the initial vibra­
tional quantum number, nj, being four. The superscript N indicates these 
probabilities are normalized such that • P[]'n = 1 . The diatomic potential in the 
asymptotic region supports 17 bound stages (0 e n < 16). The final vibrational 
state of a classical trajectory is assigned using the standard quasi-classical 
trajectory histogram method (QCTHp). Two conclusions can be drawn from figs, 3. 
First, the quantum distributions can have a considerable amount of structure and 
second, the classical results reproduce the quantum behavior only in an average 
sense, not in detail. The dependence of these normalized probabilities on colli­
sion energy (E r el) is shown in fig. 4. Again the classical results agree on the 
average with the quantum which show an interesting oscillatory structure. !,'e found 
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Fig. 4. Normalized state-to-state transition probabilities for select final states 
as a function of collision energy, E ,. 

less structure in the cases when the initial vibrational level was less excited. 
An assessment of the accuracy of the calculations can be gained by determining 
whether the probabilities satisfy detailed balance. Probabilities P n n> are 
compared to P n' n for n,n' = 0,1, and 4 from the quantum calculation in fig. 5a 
and from the classical results in fig. 5b. We find excellent agreement quantum 
mechanically but not classically. It is well known that the QCTH method is not 
the best way to extract "quantum" results from classical calculations. Better 
methods'") make use of the lower moments of the final state distributions and 
information theory to quantize the trajectory results. We have tested whether the 
quantum moments can be generated classically. In fig. 6 the second (root mean 
squared) moments are compared for the different initial states. We found in 
general that the lower classical and quantum moments agree quite well but that the 
higher moments can disagree significantly. 
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Fig. 5. Detailed balance. Probabilities for forward and reverse transitions as 
a function of total energy, Ey, from (a) quantum and (b) classical calculations. 

Finally we have obtained reaction and dissociation probabilities for the » 
States studied. We found that within the accuracy of the calculations, the . 
reaction probabilities in this energy range are zero. The classical calculations ) 
also found anti-thresholds for collision energies between 3 or 4 eV and zero 
probabilities above. The dissociation probabilities are plotted in fig. 7. 
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Fig. 6. Second (root mean squared) moments of the quantum and classical final 
vibrational state distributions as a function of collision energy, E r e ^ . 
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Fig. 7. Quantal and classical dissociation probabilities as a function of col 1i-
• sion energy, E r e l . 

He observe t> 'issociation thresholds in the collinear system are displaced 
from the ener s. . thresholds which are 4.48, 3.96 and 2.61 eV for n-| = 0, 1 and 
4 respectively. Only in the case nj = 4 is there an appreciable probability of 
dissociation in the energy range considered. This is due to the more diffuse 
nature of the initial wavepacket in this state so that much more of the potential 
energy surface including parts of the repulsive wall which do not reflect back 
into t'le entrance channel bound states is involved in the collision. For n-| = 0 
and 1 the classical calculations show no dissociation while the quantum results 
rise to around ten percent. 

These calculations provide insight into the process of molecular dissociation 
in the collinear world. In three dimensions the strippin'q mechanism which cannot 
occur in a collinear arrangement has been found to be very important. Future 
calculations which will involve relaxation of the geometric constraints will pro­
duce a more complete understanding of the dissociation process. 



4. Conclusions 

He have investigated the collinear H + H 2 system for collision energies above 
the dissociation threshold by integrating the time dependent Schrodinger equation. 
Reaction, dissociation and vibrational transition probabilities have been obtained 
and compared to classical trajectory calculations on the same system. Ke found 
that in the energy regime where classical mechanics can be expected to be valid 
the classical and quantum results agreed on the average but not in detail. The 
time evolution of the wavepacket densities provided insight into the dynamics of 
the collisional dissociation process. The wavepacket was reflected back into the 
initial arrangement channel and no reaction or rearrangement was found to occur. 
• He are presently adapting these mthods to treat more complicated processes. 

Havepacket methods are best suited for higher energy collision processes in vsich 
the normal spreading during the propagation is minimal. At higher energies in 
real systems additional electronic states will be accessible. Therefore we are 
generalizing these methods to study scattering on two interacting surfaces whether 
they are coupled by the nuclear motion (Born Oppenheimer coupling) or by a strong 
radiation field in case of laser induced chemical reactions. Secondly we have 
been using wavepacket methods to investigate the photodissociation of triatomic 
molecules. In this process a photon is absorbed by the molecule which changes 
the electronic state from an attractive, bound surface to one which is repulsive. 
It is necessary to determine the evolution of a wavepacket on the dissociative 
surface in order to calculate the cross section for the process. It has been 
shown') that the total cross section is determined by the short time behavior of 
the wavepacket but that by following the propagation into the asymptotic region, 
it is possible to completely characterize the product state distributions^). From 
a single wavepacket calculation the total and partial cross sections can be cal­
culated for all photon energies. Systems which dissociate to three-body final 
states have been studied using wavepacket methods"). It would be difficult if 
not impossible to treat these processes using time independent methods. 
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