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ABSTRACT

Temperature distributions within the rod bundle of a
nuclear reactor is of major importance. in nuclear reactor
design. However temperature information presupposes knowl-
edge of the hydrodynamic behavior of the coolant which is
the most difficult part of the problem due to complexity of
the turbulence phenomena. In the present 'work a. 2-equation
turbulence model - a strong candidate for. analyzing actual
three dimensional turbulent flows - has been used to predict
fully developed flow of iinfinite bare rod bundle of various .
aspect ratios (P/D). TThe model has .been modified to. take

into account'anisotropic effects of eddy viscosity.

Secondary flow calculations have been also performed -
although the model seems to be too rough to predict the
secondary flow correctly. Heat transfer calculations have
been performed to confirm the importance of anisotropic

- viscosity in temperature predictions.

All numerical calculations for flow and heat have been
performed by two computer codes developed in the present work
which were based on .the TEACH code [71]. Also expeirmental
measurements of the distribution of ax@ay\vélocity, turbulent
axial velocity, turbulent kinetic energy and radial Reynolds
- stresses were performed in the developingvand fully developed
regions. A 2-channel Laser Doppler Anemometer working on
the.Reference mode with forward scattering was used. to perform
the measurements in a simulated interior subchannel .of a tri-
angular rod array with P/D=1.124. ' '

_ Comparisons between the analytical results and. the results
of this experiment as well as other experimental data in rod
bundle array available in literature are presented. The pre-
dictions are .in good agreement with the results for the high
Reynolds numbers. ' o -
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CHAPTER 1

' INTRODUCTION

1.1 General

Heat transfeﬁ'withim'the rod bundle of e nuclear reactor -
is of major importance in nuclear reactor de31gn. The tempera-
ture field affects the mechanlcal and physical behavior of the
reactor materials sugb«@s.fuel and-clad, as well as the neutron
physics parameters@ Thus,, the temperature directly or indirectly .
imposes a limit on the thermal powver produced by the fuel ele-
ment. Especially in the LMFBR, the clad temperature is one of
the significant designzlimits. Thus a detailed knowledge of the
temperature w1th1n the fuel element and espec1ally in the clad
‘reglon is very 1mportant However, temperature 1nformat10n pre-
su?poses knowledge of'the;hydrodynamic behavior of the cooiant
which is the most diﬁfi@ult part of the problem due to the com-

plexity of the turbuience phenomena.

1.2 Assessment ofvgg§§tipg>Methodsefor Rod Bundle Analysis

The methode whighvyield thesdetailed'knowiedge of- the hydro-
dyhamicn(and/or thermaiﬁ behavior of the rgdfbundle'are cailed
Distributed Parameter: (DP) Techniques. The DP- techniques with
resgect to- flow, as presently fonmulated,‘are.restricted to

fully‘developed flow and' bare rod bundles whlcn correspond
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to Special cases in a reactor sucn as nearly incomoressible
flow in an 1nterior subchannel far away from dlsturbances.

The advanuages of such a simpllfied case which is 2~

dimensional are ev1dent, i.e., _

1. Low computer time, since the problem is 2~ dimensional
and the solution is limited to a characteristlc
triangle (Fig. 1. l) _

2. 'Modeling of the turbulent quantities is-easier here
than for 3-dimensional problensl |

In addition'such a simplified case is a powerful tool for

understanding<phenomena such as shear strese distfibution and'

heat transfer coefficient varlatlon along the perlphery of
the rod, secondary flow effects and thermal exchange coeffi-

‘ciente'between subchannels. Such information can be used
for improving the solutlon from Lumped Parameter Technlques
(LP) in which the properties are lumped over a characterls—
tic region of the core (subchannel,_bundle, etc.)

It is evident that any attempt to use a DP technique for
analysis of a rod bundle of a reactor will nave to cope -with
‘the following problems:

1. Modeling of the. turbulent flow in 3- dinensions.

2. Very long computer time (which is the most severe
difficulty). - |

With respect to modeling'by existing methods which treat

turbulent flows in 3 dimensions, the turbulence model methods
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a;e the most attractive due to
a)'relative simplicity and flexibility to handle compli-
~cated probléms since the prediction is based on
g 4 - adjustment of constants;

b) use of some turbulenﬁe "informétibn"‘for predicting

flow characteristics in a tﬁrbulent domain.

With respect. to- the long computer time the high comﬁuta-
tional costs will be a persistent difficﬁlty@ Because of
the compﬁter cost a: 3-D DP.techniqﬁe can be most beneficial
in design when it is: applied "locally" at regions where one

is interested in detailed information (e.g., hot spot, block-
age)'with boundary,eandpions éupplied by an LP technique.
o So it is evidenﬁ:from the above discussion that there is
a need for developling. 3-D DP techniques,which can be applied
in a local region of" interest. A stroﬁg candidate technique
.isvthe turbulence- model methods.

'The turbuience models can be distinguished with respéct
to Reynolds shear stress closure as follows:

a. Models usiﬁgnthevconcept of edd? viééosiﬁy

b.. Models.using;transport equations for Reynoldé

stresses. ;

In thié approach the models using the coﬁcept of eddy vis-~ -
cosi#y'are'éonsidered'hecaqse fhey afe simére, widely used for
engineering»problems# and require less computer cost. The
most advanced eddy WEchsity approach is the two eguation tur-

o . . ) . . !
bulence model and therefore, it is used in- the present approach.
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However;.before starting on the analysis of three—dimen-
sional flows, it is better to fully understand the two -D fully

developed flows as predlcted by the turbulence equatlon models.

Therefore, in the present work the follow1ng qoals were

o establlshed

1.3 Obtain, through experimental and analytical work a
lgood predicfion of4the-hydrodynamicAbehauior of the
-channel through a two equatlon turbulence model in
fully developed flow .Utlllze‘thls predlctlon method
to_make'some preliminary calculations of heat trans-
fer performance.

2;l.Extend experimente into the developing region to

' prOvide a-data base for future model development.

1.3 Summéry of Present Work

1.3.1 Experimental work

The experimental task was a continuation of ﬁhe exnerimen— -
tal work initiated by P. Carajllescov [l] in a test section |
designed to simulate a typlcal interior subchannel of a triangu-'
lar array of a bare rod bundle with P/D ratio equal to 1.124.

A two-channel Laser‘Doppler'VeIOClmeter‘used by Y.B. Chen
(84] with 120 mm lens has been used for the measurementé instead
of fhe one-channel approach used in [1]. - |

Measurements of the. hydrodynamic parameter (axial velocity,

turbulent klnetlc energy, Reynolds stresses) were made in the
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fully developea region KL/DH= 113) at Reyﬁeld‘ﬁumbers of 65,000,
26,500 and 9,000.' | |
With respect to the developing region, the above measure-
ments were repeated fku*i/DH = 15 and 46 for Re ='65,000 and
26,000. | ’
Attempts were made to measure the secondary flow at

Re = 65, OOO but were unsuccessful

1.3.2 Analytieél work

- For predictioniof-the flow in the fully déVeloped region,
the two-equation turbulent model using transﬁdft equation for
turbulent kinetic energy and ehergy dissipation have been
" used. A non-isotropiec model of eddy viscosity has been intro-
duced to improye the model.

. Secondary flow effects have been studied using_the Laudef'
‘and Ying [37] model and the Bobkev et al. [ 2] model.

All celeulations have been performed by a coﬁputer program
developed in the present work based on the TEACH code [711].

For the convection terms in the finite difference equatlon
the Up-Wind DerivatiVe pifference Scheme Develéped in the

present work by the author hHas been used.



CHAPTER 2

EXPERIMENTAL WORK

2.1 Introduction ' . T

Experlments on test section 51mulat1ng the infinite

bare rod bundle have been performed by several authors.
These experiments refer mainly to axial velocity measurements
and to a lesser extent wall shear stress distribution. Very
limited measurements exist for parameters such as turbulent
' ,kineticrenergy;‘Reynolds stresses end secondary flow. A A

. Table 2.1, wh_.{ch is based on Table II.l of Ref. 1; sum-
‘marizes the experimental work done in bare rodpbundies.‘
| -The purpose of the present exoerimental work is the

-exten51on of P Carajllescov S work as follows.'

. I. Fully Developed Reglon .

Comparisons of the mean velocity profiles between posi-
tions L/D = 46 and 77 done in Ref. 1 did not conflrm that '
the- flow in pos1tlon L/DF-= 77 was fully developed Measure-
ments are performed at L/D o= 113 by extendlng the test section
length.

. To study the effect of Reynolds Number, measurements
at Re = 9,000 and 65, 000 are performed besides the Re =-27,000
used in Ref. l " The Reynolds stresses are performed by
31multaneous reasurements of both velocity components

utilizing a two-channel Laser Doppler Anemometer (see §2.2.3.)

II. Developing Region
_The4above measurements are also performed for

L/DH = 15 and L/DHv= 46 to examine entrance effects.



24

2.2 Apparatus

2,2.1 Test sectlon ' ‘ - -

‘As~mentloned eaglier, the test section used by P.
Carajilescoy'[l] has beénvused in the'present:work. For
corrosion protection, however, the test section has been
anodized. The cross section is shown in Fig. 2 1 and the
dlmen51ons are given in Table 2.2. |

The test section used in Ref. 1 is composed of three
2-foot long seCtions,‘one of which‘is provided with windows
for the laser llght to pass through the mov1ng fluld The
lnterchange of the three sections permits measurements at

positions L/D = 15, 46, and 77.

In order to examigé whether the data obtained at position

L/DH = 77 represents data in the fully developed reglon, the

follow1nq modlflcatlons have been made in the test sectlon.
I. A new sectlon 28 inches long has been added whlch
permlts measurements at the position L/ ='l;§, '
~II. 1In order to decrease the entrange ‘length’ for the '
flow, an entrance reglon has been inserted between the testA
sectlon and the hydraulic loop Pipe as shown 1n Figures 2.2
and 2.3. The entrance region has been gdded to suppress
the unde51red large—scale turbulence coning from the two—
inch loop pipe. Such turbulence, the_decay.oflwhlchlls
xoughly proportional to the inverse of theAsquare of_the
Weddy'size, increases-the entrance:lenéth, Thus hy killing
:the pipe turbulence, the entrance region reduces the entrance

length.
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Addltlonally,.the entrance region has been added to
prov1de approximately the boundary condltlons of unlform
lamlnar meéan flow at the entrance of the test section useful
for the developlng region measurements. ”

‘This is obtalned by including within the.entrance region
a honeycomb con51st1ng of 2mm coffee straws three 1nches long.
' The flow within each straw has a Reynolds Number below 2,000
in- all cases, so that the flow at the exit of the noneycomb
is. approxlmately lamlnar.
| The overall view of the modified test sectlon 1s shown

in Figure 2.2.

2.2.2 . The loop

Since cﬁr.original purpose was to obtain a.Rejnolds
Number of 100 000 or even hlgher, the following modlflcatlons
have been made in the loop used in Ref. 1.

I. Insertion of a. 5 HP centrlfugal pump in parallel
&ith the already existing 1 HP pump -

'II. Replacement of the one-inch pipihg'system by Qne‘
and a half-inch pipe to decrease the pipe resistance and
keep the cost relatively low

- III. .Additiqn'of a heat exchanger connected with.cold-
ahd/er‘hct water. The reasons for adding the heat exchanger
were:

| a. to cool the water due to pump warm-up

**'Ab. to heat the water to obtain higher Reynolds .

Number by decreasing the viscosity
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- IV. Increase the flowrmetefﬁmaximum capacity frem.
A'3O4GPM to 74 GPM by changing the float |
V. Addition of a putification loop using a fixed
Bed demineralizer te protect the whole loop from corrosion
The whole'hydr&wlicﬁloopzis shown shematically in

Fig. 2.4.

'2;2.3 Laser Dggple;.Velocimeter

For the flow measurements, the two-channel Doppler
Velocimeter operated in a Reference Beam Mode [58] used
by Y. B. Chen [£4] has been used. The details of ‘the system

as used in the present work are as foilows:,

- 2.2.3.1 1Optical arrangement
The Laser light is provided by a SPECTRA-PHYSICS

Laser Model 164.‘ The beam consists of green light of wave-
length 0.5145y and a diameter of 1.5mm as shown in Table 2.2,
and passes through a DISA 55L88 LDA Transducer [56]. o

~Within the transducer, the laser beam is 50% split.
One(of the splitted beéms'is 40 MHZ shifted.through a B:agg
cell acousto-optic modulator which is part‘of LDA trans-
-ducer and then is agaip 50% splitted to form what we call
refe:enée beams. The remaining beam.is theeso-called'SCat-
tefihg beam. 1In othéf words, what has Seen obtained through
the LDA transducer is a set of three parallel‘beams, one
relatlvely strong unshlfted (the scattering beam) and two-

-weak 40 MHZ shifted (the reference beams.)
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The rélative position of,the three beams is4showh in
Fié; 2}5; whereas the geometric distances are given in
Tabie 2;2.. In the present Qork the three beams pass fhiough
a 120mm lens. The use of 120mm focal length instead of 300mm
used in [84] is due tqithe desire to obtain‘relatively small -
épatial resolution: The ﬁhrée bheams intefseét‘at'the point
under considerétion;v A drawing of the intersection'region
is shown'in Fig. 2.6. The dimensions of the intérseétion'
regions are given in Table 2.2. |
The SCattering light genefated within the interséction
region is collected along the directions of the refefence
" beams by two DISA 55L12 Photomultipliers, as‘shbﬁﬁ in
Fig. 2.5 and fig. 2.7. | |

The beat frequence fB of the reference and scattering
perpendicular to the symmetry line aS'shdwn in Fig. 2.6 as

light‘is directly related to the flow velocity éomponent U
.follows:

fPM= 4Q MHZ - £, : '1 h B »(2.1)
where fD is the Dbppler frequency given by the relation [58]

where C the calibration factor given by the felafidn
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C = wmEm g ' (2.2)

where A is the light wavelength;
n is the-fluid ¥Yefractive index;

8 is the intersection angle shown in Fig. 2.6.-

2.2;3.23 Electiohnics

For processing the photomultlpller 51gnal output, a
number of technlques exist with associated advantages and
disadvantages, given by F. bDurst, A. Melling and T. H.
: WhitelaW'ih Ref. 58 Chapter 6.

In the present work the frequency tracking procedure
‘has been used since it was avallable and it was used bv
previdus investicators [i1], [84 ] The<PM tube signal passes
through a frequency. mlker of a preselected frequency fLOso
-that the frequency iker output becomes fLO+ (40 Muz - f .)

The final s1gnal which passes through a frequency
tracker is translatéd to a continuous, voltage 51gnal from

which mean values, ¥ins values and cross co*relatlons are

obtalned by analog electronlcs.
The main advantages of the frequency tracker are its [57]:

I VCapablllty to provide real tlme demodulatlon of the

Doppler sigfial
It. Relatively faﬁid data processing rate
_lIII. Relatlve 1nsen51t1v1tv to varlatlons in partlcle
concentratlon | |

"The maln disadvantages are:



29
.‘I.» Performance detcriorates as. the . signal to-noise
ratio decreases. v
II(‘ Since its output is based on oattering light for
more than one particle simultaneously, a relatively large

broadenlng of the Doppler 51gnal occurs due to random phase

fluctuation_[65] from the many particle system.

2.3 The Measurements

2.3.1 General
- The parameters of interest in the present work are

Vs Voo

] .
',V viviov!

v ‘v
e° Vz? r ] rZz e z

The parameters that are convenient to measure are

(see Fig. 2.8)

vv’ vl v' V [ t
Vgs V15 Vos Vyu Vs Vo, ViV, VIV,

The relations between these two groups of parameters are’

simple and are given in lable 2.4,

'é 3'2 Experimental‘Grid
With resoect to the exper1menta1 grid, points have
been selected which lie on lines parallel to the two-axxs
(see Fig. 2.1) and corresoondlng to ancle dlfferences of
| | 3° for axial velocity

6° for stresses
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‘The distance between:two.adjacent 2-lines 'is takéh as:
0.3mm for axial velocity

(Ss)2 = 0.6mm for stresses

Some stress measurements close to the wallhave been performed:
at (és)‘2 = 0.3mm. '

The detailed grid is given in Appendix C.

2.3.3 Point¥§bsftibning

Due to different;refraction indiCes'betweén’water‘and
~aif,_thé intersection'point displécement méésuréd in the
air has to be corrected to correspond to real dlsplacement

within the water. According to Figure 2.9

(8s) 4 = 0.7474(88)

“water -
where - ‘ ,

(8s)

water s;ands'for the actual d;splacement

(Ss)air is thér:displacement as measured .in the air

2.3.4 Scattéfing-particles
 0ne of the primary concerns was the scatterlng partlclez
size since it affects ‘the 51gnal ‘to-noise ratio [85]. With

‘respect to the partiéle size Yu. N. Dubnitshev, et al [12]
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using”Fourier optics has proved that for small‘sizes_of
particles_and photomultiplier aperture, the optimum sighal
'is obtained by | |

d=(2m + 1) 3£ for differential mode - -(2.3)

d= (2m + 1) %25 for reference mode'

where m is en'integer b.
"_f is the,fooalvdlstance
Zahis_the two-beam_distence at the lens.

L ?resenttgeometryAgivesfor m = l,_an optimum partiele‘size
of .77n. | '

In present work, polystyrene particles.of_sizes 0.5,
0.79, l.O,Aande.O were investigated. The~best,si§ﬁals were
-obtained utilizing 0.79u and 1.00u particles. This result |

supports the correctness of Eq. (2.3.)

2{3.5 'Measurements

-Measurements were performed at the axial p051t10n .
'L/D = 15 46, and 113 and Reynolds Numbers close to 9 000,
26,500, and 65,000, Results are glven in Appendlx C |
and in Flgures 5.1~ 5 18.

The measurements are characterized by good results for

ax1a1 veIOClty and ax1al velocxty fluctuatlons.
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. The measurements in the lateral and radial.direcfions.
are less precise due to, relatively low signal—tofnosie ratio.

The:measurements an&:their errors will be discussed
below. |

Table 2 5 glves the frequenny ranges and the Tracker
used to obtain the results. .

As we can see from Table 2.5, DISA 55L20 tracker has been
used more in the low frequencies due to greater flexibility of .
frequencylranges and freguency bandwidths. Fo:_the care of Re =
'65,000 due to low signal-to-noise ratio, the oniy‘way to get
laterel velocitf measurements is a TSI Tracker éombined with a

TSI (0.6 - 2.0 MHZ) bandbass filter.

- 2.4 Experimental Errors

2.4.1 Axial Velqcity

As usual, we can distinguish betweeﬁ random efrors and sys-
tematic errors. | | | o
| '2.4.1{1 Random errors .

This errof represented<by Gv' is due to the varlous 51gnal
"frequency broadening mechanisms. Whlle these broadenlng mech-
‘anisms cannot be elihinated, their effect on the error can be
compehsated'by adbptiné a large integration tiﬁe_since‘the errer

‘is invérsely proportional to (T)l/2{38], i.e.,

. . . . 2 . .
_ ' F,1/2 -
vy = v, VT (2.0

wherev,z is the rms value of axial velocity

F is the time scale defined as [38]
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(v (t) = V)(v_(t+t) - %)
F'=‘/ 2z Lz Z : 2 (2.4a)
2. S

z

T is,the'integration time

The.integration time has been taken equal to 10s so that
the error has been llmlted for all cases below 0.5%.

Achlevement of thlS range of error has been conflrmed by

the spread of the data output of the digital voltmeter.

2;4.1.2 _Systematic errors

“The sYsteﬁatic errors can be mainly categorized as:
I. Nonuniform velocity errors

iI.” Position errors |

IITI. Frequency Tracker errors

2.4.1.2.1 Nonuniform velocity error—-The veloc1ty

- gradient is a55001ated with the fact that the veloc1ty is

not constant within the control volume. Therefore, what
we take as an output is not the velocxty at the center

p051t10n of the control volume but some average over the

control volume.

An exact analytlcal expression for veloc1ty gradlent'

-broadenlng is very difficult to obtain, Approx1mate

expre531ons have been obtained by many authors [57], [59],

.[60],A[61.] Melling [57] considers Gaussian-intensity

distribution w1th1n the elliptic intersection reglon and

Veloc1ty gradlent only along one of the principal axes of

the elllDth control Vo]ume whose lenqrh is 20l (see Fig.

2.

5.)
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In thié case,
2

s 01‘. d2VZ :
(v,) =V, % . - (2.5)
| Zz'meas z 2 ‘\dyz 0 : ‘ A

where 0 stands for the pque'vglume center point.
~Prelimiﬁary caleculations based on Formula (2.5) show

that the above errer is negligible. .

2,4,1,2,2 'Posigiqn error--The position error is of

‘ prderigf the prbbe'vglume size, i.e.
Ay = 2bo = 0.053mm

~ Since the important velocity change is along the

radial line, we can approximate

v

’zlmgag - VZ' = = Ay —— . . '(2.6)

Taking

—_—— 2 R | L (2.7)

we find finally .

o ,”1»“;;§.%,7 —— T (2.8)



‘It is ev1dent froﬁ above express1ons that above error is
- ' | 51gn1flcant only for the point close to the wall whereas
- Tfor the p01nts far from the wall the error is 1n51gn1f1cant.
For example, for the p01nt (6 =0 7%— = 8, 96) which is.

closer to the wall and Re = 65,000 whlch is the worst case,

.the error.ls calculated to be 1.2% of the max;mum‘veloc;ty.

2.4.1.2.3 Freqguency tracker errors-- Such errors can
be mainly due to dynamic response of the instrument, slew
- rates limitation, and finite'bandwidth of the tracker.

The error 1s taken as 1% full scale deflectlon of the

r

range in use { 1], [75],'1 e. 0 1v for all cases, since the
range in use is always 10 volts.,

Thus for Re = 9,000 (f . = 500 KHZ, lv = 50 HZ,)'the

error is of order 2% of the maximum velocity. For,Re'= 26,500
(i.e. fﬁax =-l$00 KHZ, 1lv ='1SQ HZ) the error is of}orderl

2% of'the maximum velocity, whereas for Re = 65,000

(l}e. £ nax = 5000 HZ, 1lv = 500 HZ,) the error is:of the order

of 3% of thefmaximumhvelocity.
2.4.2 Turbulent axial velocity
' The major ‘errors in obtalnlng rms values of velocities-
in general are due to various frequency signal broadenlngs.
If we could estimate the broadenlng effect, the real
rms valué, assuming Gaussian distributions, is givenlby the

relation



36

P . R /2 (2.9)
\ Co=llv < B -ty © ) S
Va ( z ) MEAS. ( 'z ) BROAD

The breoadening eﬁfécts can be distinguished mainly

as
‘l.‘ Finite tran&iﬁ”time:broadening (GV;)‘ L '
‘ 2.- The non-uniform mean velocity broadéning (sz) G
é 3. .Thewturbulén&‘vglqcity gradient érror»~(6v;) ™

» ' ’
4., legnal_ processing error (Vz) LAM

Broadenings due to ‘particle Gaussian motion, particile
‘size and population fluctuation, Laser linewidth and flow
rate fluctuation have been neglected as small compared to

e
above-mentioned@ broadening effects. The quantity vz2 will

+ vz- LAM

(2.10)

fbeygiven by the relation

'2.4.2.1 Finite :transit time.brogdening‘(év;}L

‘The finite tranéit?broadening is due to the fact that
a particular‘partickedscatters light only for é finite time—
fhe‘timé réquired tovéﬁoss the interséction voluﬁe.' Assuming
“that"ﬁhe aperture of.photomultiplier is sﬁch1that all the
‘Scattered light in thbﬂinterseétion region is heterodyned,’
.the'ﬁrequencyvbroadéﬁingedue.to transit time .effect is

‘expected to be given by ‘a relation [57]

§

i
t
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f(GV;)L:ﬁ,CONST ;3 | (2.11)
where L is the mean partlcle veloc1ty and 2 a length
' scale representlng the finite size of. the probe volume.
It is evident that L will depend malnly on
a. Beam walst at the 1ntersectlon region (probe volume)
b. Veloc1ty vector orlentatlon
c. Angle of.intersection of the_two beans _
" Thus a precxse knowledge of (év ) ie rather difficult to
obtaln. . | |

_George and Lumley [62], assumlng Gaussian intensity

dlstrlbutlon w1th1n the lntersectlon volume and a many

partlcle system arr1v1ng at random times, obtalned

PR A LoV - . (2.12)
(v )., = . , 35— , s
z’L Z/Z%QW‘sing _'2 o B

From the data of Table 2.3 we find'

]
(6vz)L

V.
4

=0.01 . (2.13)
The typlcal error due to flnlte transit. time broadenlng
based on Eq.(2. l3)and a typical value v /v ' 0.05 and

calculated from Eq.(2.9) is of order 4s%.
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2 .4.2.2 Von~un1form mean veloclty broadenlng (Gv )
The nature of the error is descrlbed in §2.4-.1.2.1.

Mellihg [57] nges ‘the following gpprOYlmdte relatlon

for turbulent velocaty @rYor due to non-uniform veloc1ty

| r o 3vz
IR L P SEERCED
. ¥ '
> .

As in the case of theé fean axial valocity, ‘the etror is more

important close to the Wall. As that region

Vo . ut : (2.15)

L N . .
B ST 0V, dg e L. a® o L P
Thus S _ 270G = % 37’275_1- ‘ (2.A1‘6)

The error dﬁe to no “hnlform méan- veloc1ty is hlghet close
. %o the 'wall as seeh 4h Eq.{(2.16- h) CalculatlonS'based on
(2.%66) ‘Show an error ®f tio more than 1t.

2.4.2.3 Turbulent Velocity broadenlng (év )

Due to finite scatterlng volume there 1s A fluctuatlon
of the volumetrzc avera@ed 1nstant neous veleeity which
Lntroduces addltlonal ambagulty (év‘)T:
W. E. Georde ana‘J ‘Lr. Lumley [62], conslderlng Gau551an_

statlstlcs, end up with the fox1ow1ng approximate relatlon

for the velocity broadenlﬁg
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¢ll‘k1,k2,k3)Aexp [ (olkl)

4 ey -

. '2'4‘2 S
-.(azkz) - (o3k3)‘]w dkldkzdk3b_  (2.17)

where ¢11(k1,k2,k3) is the 3-diménsional turbulence speétra;
| | [
, Further, ‘the authors [62] assum:.ng J.SOtrOplC turbulence,'
Pao s [66] forn of energy spectra and o3>>02,c1 (which is
actually our case) obtain Fig. 7 in Ref.-62 which gives

' -
(6v )e s - 93z
- Tvey e

where ¢ is the energy d1551pat10n
' 3 1/4

and 0= E— 'is Rolmogorov's microscale

For the case —;’;E < 0.3

' ‘the ‘authors [62] suggest the simplified reiationA

z'T /—g v : A

In our case we cam use.Flg. 7 directly since the range of
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. . "v
SEEZ of interest is in the region wvhere (sz)T

‘can be roughly taken as a constant equal to l 6. Speczflcally

for our case, using the - deflnltlon of Komogorov s microscale

\

. 0'3V7 _ { ,";’.-: ,J ‘ ‘
TR miees E

. L ) . | . |
and (6VZ)T/ (ve)1/4 1.6 ' . (2.19)
N ! - \. . .
where 263'= 0. 6mm
v =10 x 167% m/s?
| k, = a typi@al‘turbulent kinetic energy level

£ o= Q.2QH = Qmm

and v, = 2n/s (Re = 65,000)

Eq} (2. 19) gives a typlcal error of 3% for Re = 65, 000,
5% for Re = 26,500, and 7% for Re = 9,000. '
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2.4.2.4 :Signai- processing‘broadening:
The electronic,equipment introduces some broadening
due to.instrument noise. The above broadenlng is measured

_in our case as follows. The rms value of the lamlnar flow

(Re = 1500) has been measured by using freauency shift
for each DISA frequency range and each IF bandw1dth of the
Tracker used in present measurements. The rms_values';n'
mV are presented in Table 2.6. > o _— B
Fig. 2 lOshows the (vzz)LAM vs % BW in the range of
1.5 MHZ. (v;)LAM varies llnearly w1tn $ BW, which means
that (v )LAM is a whlte noise’ effec in which thegTracker
acts as a low pass filter. |
" The signal'proceSSing broadening cannct:be»attributed
to transit time broadening since Formula (2 13) glves very
low values compared w1th what have been measured |
More speC1f1cally, for the mean velocity measured _
(100mv)-Eq.(2.13) glves a flnlte tranSLt time broadenlné‘
of lmv- whlch is much smaller than any value glven in Table 2.6.
Slnce the above broadening is measured _t is not
treated as an error but it has been subtracted from the

_measured rms values ,' i. e.
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2 4,2.5 Other exrrors

‘A reading error is introduced also from the DISA 55D35

RMS‘Voltmeter. It ﬁs:faken 2% of the output [76].

2.4.3 Turbulent velocities v!, vl

The main charégteristié.of,these-measurements is the
low signél-to-noiseuratiﬁﬁ therefore the main error comes
from»ﬁhe relativeij’lbw’?erformance of the tracker at low
signal-to*naise ratios. The reason is that the tracker can
-be locked into freguenciés other than the depief-signals'
(ésg. the shifted £requency.) A

With respect to the broadening meéhaniémérmentipne§
in §Z.4.é the only Significant broadening mecﬁahisms seem
to be | | |

a. Turbulent velocity broadening

b.- Slgnal processlng broadenlng
which are taken of the same otder of magnltude as in the

' “
case of vz.'

The overall error based on best judgment is taken of
order ¥ 15%. |

The results are»tabulated in Appendix C.
e
~2.4.4 The Reynﬁlds stresses vryi and vevz

Above stresses; are obtained by measurifig the quantltles
- T

vlyz_, and vz 2 and applylng the relations shown in Table 2 4.
In these—measurementsjagaln the main dlfflculty was the low

s1gnal to noise ratié in the signals vl and vz, eSpec1ally

very close to the waII. We could estimate based on best



judgement an error 15% for ViV,

‘The reSuitsvférvvrv

z

and 100% onr‘vevz

are Shown in APPENDIX C.



CHAPTER 3

. THE ANALYTIE MODEL DEVELOPMENT

3.1 The Equations

uy

' OQur ultimate purpssé is to pé ablé to solve the Reynolds

equations within theé ¢haractéeristic triangle shéwn in Fig.

"1.1. Thé Reynolds éduations are the time-smoothed momentum

équations obtained frém the Navier=Stokes équations. .

eylindrical coordinates the équations are as foliows:

I. Continuity Eduation

VeV = 0

CII. Momentufi Equatichs

r - direction: Vv V # Vf; = = 3(p/p). feﬁ £ T

) - directions: Vrv, Y

-z = direction: Vv V # Vi = = 3plo)
where V -is the veloeify vector; 1i.e.
¥= (s Vg ¥)

V ‘1s the divergence épérdtor; l.e.
. . o . »\; .
7. = 1l 3 .

: o .]i_a_‘_ . ._a;_'
= GFwTorse s

P %s the pressure

In

(3.1)

(3.2)

(3.3)

C(3.4)

(3.5)

- (3.6)
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o 1is the density

I.» Ig s I, are stress ve§tors; i.e.
L (Trrk’ Tro ’_Trz) .
Io = ‘Tpg > Tep Tog) o . — (3.7)
LS = '(Trz » Tgg 2 Tzz)

cdnsisting of a laminar part, the laminar stresses and a

turbulent part, the Reynolds stresses.

g T Tag | tTeg | (mB = T0.0)
 where ‘ A :
,%,(2) = =2v EZE T () . v'2 |
rr _ - 9r° * ‘rr r _
(av, v (t) 2
() ~- 5,6, T = v
Tee - "V|vee f ¢ %% ®
o ov -5 !
L (R) g 2z - ey
T2z i T R = Yy -Ar (3.8)
‘ S G sv.) B
) _ 3 Ve 1 %p () _ =
e - VI [Tar () *rae) o Tre <. Vr's
- faw v ; B
() _ 8 z| (t) _ w—vov
Toz = TV |%z tree) 0 ez - Ve'z
o v v ‘
_ (2; - . .2 r ol (t) Ty !
Trz. . T TV |{T%r Y3z 0 Tre VrVz J

Obviously, in order to be able to sdlve‘Equations (3.1
= 3.4) some khowledge of the Reynolds stress is,reqhired.

,Accufate knowledgé of Reynolds stresses does not exist due to
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the complexity of the turbulence, especially in the shear

flows. Thus, approximate relations, rather crude from the
'scientific point of view, are used, which however are very
useful in solv1ng engineering problems The additional ,

relations used in order to be able to solve Equations (3
‘3 ) consist of the Reynolds stress closure.

'3.2"Reynolds _Stress Closure - Previous WOrk

3.2. 1 General
As was pointed out in the previous section, the diffi-
v'culty of solving the continuity ‘and momentum equations is
.strongly related to the difficulty of  obtaining a Reynolds'
. Stress closure. In this sectlon an attempt has been made of
reviewing the main methods used by other investigators to
obtain a Reynclds clcsure The methods that will be of
interest to the present work will be described in more detailf
We can distinguish three main approaches toward Reynolds
stress ¢losure. . ' | |
1. Analytical ~expresslons (1.e. .Semi empirical eXprésQ
sions not included in the concept of eddy visc051ty)
' 2. The eddy viscosity approach,

3. Transport equations for the Reynolds'stresses.

3.2.1.1 ‘Analytical EXpressions CAlgebraic'relations)
The.simple st way that one could think of studying the

behavior of Reynolds stresses is to try to express them as a
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Yunction of the local and global characteristics of the flow
fhat fits the experimental data. However,‘such an,approach
has disadvantages, such as:
a. Different expressions.are'generaiiy needed for
different geometries,_

b, The larger the numher of independent parameters, the. ~
.more difficdlt it 1s to obtain such analytioal ex-
preSSions. | | |

Therefore, such aﬁ approach seems mbre attractire forjsimple
geometries (e.g. pipe‘flow, flow between parallel plates, .
boundary layer in a flat plate) or the wall'regions'of'more-

complex geometries where parameters.such as friction velocity
U and local Reynolds number y = O are enough to des-

v
| eribe the‘Reyholds stresses. However, in the case of the
.simole geometries it is more logical'to'fihd anaiytical exex
‘pressions directly for the velocity field rather than to go
first into the Reynolds stresses.

Parenthetically'it<is noticed here that in the caselof

pipe flow and flow between parallel plates ‘the shear stress

is. given by the relation (Ref 1 p. 50):

- dv :
- z , r 2 S
- TV ar * r, 'S S “3'9)'

where
v»»is.thelkinematic viscosity
r tisuthe distance from the center line
rd is the diameter of the pipe or the distance between
the parallel plates.
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dv

According to (3.9) an analytical expression for =2 gives

With<réspgct to the normal stresses the_dnly analytical
‘egpressions as far as the gg@hér knows that qre-valid for
closed ducts.of diffepent'fgrm arg‘those obtained by V. P.
Bobkov, M. Ch. Tbragimev apd .G. I. Savelev [2]. We will
mention below their egpyggsions for the nOrﬁal,§tress of a.
c¢ircylar pipe since we will assume in Section 3.3.3 that
these are also approziMaégly valid §OfAr§d}bundl¢s,

' 3 \’A : )
5 Byl -Ap
v‘2 c= A‘v 1l ; e r

a-

2 _ ' _ b o

VV c = A v 1l = g e A"'Z
A - Z !

where A's and B's ape constants with values:

\

DA = 04 B s 108

T Ay = 0.6 By = 1,17 .+ H3.10a)

A = 0.95 B = 1.48
(3.10b)
4, -1s the bulk welecity

‘u, 1s the maximum welocity in the channel
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Equations (3}10) are talid for the_center'region of the
flow up to y = 11. The constants (3.10) fit well the expefie
'mental data in the range of Re = 7.5‘x ldu‘ub:to 2;4 x‘los.
With respect now to using algebreic_expressions into the
Wél; region; limited work has been done'towards this direction.
"One of the reasonshfor this 1s the difficulty of obtainingh
reliable experimental data due to the presence of the wall
 For vrvé we can use again Eq (3.9). We will mention here
- the expressionfgiven by'A. P. Ivanov [3] who claims that it isi*
consistent withnthe experimental data of’Laufer_[G,?}'and“it
is valid'injthe‘outef wall region‘esAwell. IvanOst neiation>

is as,followsi

- h - . 2 ‘
A..v?v .'n A
rz r. ‘ * r - :
—_— = = exp(- —F T ) (3.11)
u¥2 ry _ 1-n r,-r
where ‘ ‘ : .
ng = 6.6 RO © (3.11a)

With fespeCt to the normal stres5~—-very close to the
wall — as far as the author knows, analytical expressions

'exist only for .v'é very close to the wall (y < 5)
H. Eckelman [M] gives

@Eve + (1/2ay" (y

= = 0.24y < 5) (3.12)

@ = 0.3 . - - ';‘_  (3.12a)
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3.2.1.2 Edd& Viseosity Approach

Instead of inventing ahalytical exp?essions:fof éach case,
it seems much more logical and practical tb'tfy to understand
the geﬁeral"behaVior B ‘the Re&hélds stresses — in other words
.to try to build a model for the Reynolds stresses.

Boussinesq [5] was ‘the first to attack the problem by _
ihtreduging thelconcép%'ef eddy viscosity assufiing that the
behaVIor’of the Reynelds shear stresses are similar to the
Viscous:stresses. The -eddy viscosiﬁy concept 15 the most'
widely used in_engineéﬁiﬁg problems. The edd& ﬁiscosipy

concept in its most geéneral form [8] can be expPessed as:

T
(t) - 'y, . -
Tog v ToB 3 LI o | (3.13)
where
aét) : the t@fﬁnleﬁt Reynold stres§
?aéz) : the viI¥esus. Stress |
k : thevtufbuiénﬁ kihetic energy
Vv -t the kimematie viscoSity
QGBT : the eddy vi'scosity
and S
| 0 for w ¥ B o . o
%6 T 1 for, w= g (3.18)

The first térm of the: rﬂght hand ~.ide of Eq. (3.13) expresses
'the analogy betweeﬁ ther Reynolds and the viscous stresses
whePeas. the second temmawas~added to satisfy two additional

- requirements: s
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a. The sum of the normal stresses 1is cqual to tﬁrbﬁlenﬁ
kinetic energy.
b.- In the case of absence of Viscous étreSses, i.e. in
- isotrépic turbulence, the'normal Reynolds sfresses
are équal. '

Such an dpproach could be completely successful if we could

 assume that the introduced eddy viscosity vaBT was constant

like the viscosity wv. Indeed, in some éases, like thrbulent
jets and wakes propagated in an infinite space or turbulence
in a free atmospheré; such an assumption is satisfactory [Ref. 9,

p. 365]. However, in the case of closed ducts with their

~boundary layers, suéh an assumption completelyjfails.

So_in general vaBT is ppsition dependent and, even worse,
is'a_tensorial quantity rather than a SCalar. It is thus |
evident that in order for this approach to become practical
some knOwledge‘of_ vaBT is required. Since ﬁé aré going to
use the same approach in the present work, this topié_will be

examined in more detail in §3.2.2.

3.2;1.3 Transboft Equations
The 1deé here is that the Reynolds stresses, as the other
hydrodynamic,qpantities, obey a tfansbort'eduation of the
foilowing form, whicﬁ can be obtained from the Navier-Stokes

equations [10]
CONVECTION + DIFFUSION + SOURCE + SINK = 0

However, such equations cannot be solved since they are func-
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tions of friple velocity correlations and double pfessure
velocity correlations. Se modeling of th@tvaﬁious terms in
such equatibns seems negessary. Such an effort has been
made by several guthors such as Rotta~[lij2 Davydov [12],
Donalson [13], Daly and Harlow [14], Hanjalic and Launder [15],
‘Naot et al. [16], Launder et al. [17].

In the present werk we will not follow this approach.
Our reason is that application of an eddy visgosity approaéh
to our geometfy should give reasonable're§u1ts with far less

eomputation time than @ transport equation apppggch would

==

require.

3.2.2 Eddy ViscpSity Approach

As we have pointﬁgl@gt, the eddy vis¢o$ity_is generall&
A ﬁot constant, especially in the case_of a duct flow which
the fod‘buhdlé flow resembles. Therefore, detailed knOwledge
of eddy viscosity. within the flow region is negessary. There
are severai approache§'towapds'this direction, The main
a@proaches can be cla§§ified as followse
1. Analytical Expressions (Algébraic.Expnessions)
2. Prandtl Mixing Length Hypothesis |
>3; Van'Karman Similarity Hypothesis
L. Xolmogorov-Prandtl Hypothesis
5

.,; ‘Transport Equations

3.2.2.1 Analytleal Expressions
Efforts to express ‘the eddy viscosity as an analytical

'-function of the local and global characteristics of the flow
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in simple terms have appeared in literature. .Reichardt [18]
.has developed an eddy viscosity expression for the parallel

plate geometry.

<
[}
Wwiw
——
[}
I

' ;1][0f5.+,(§;)2}[1 + EL] u*‘ (3.15)

k = 0.4 - o (3.15a)

Eifler [19,20] has generalized the expfession~for' “Ez. for

round tubes, parallel plates and coﬁcentric anﬁuli.and the
,generalized‘epression'has been applied satiéfactorily,fof :

the rod bundle geometry [217:

'S 2 2. 2K - x(k-1) & '
Vrz = Yo 37170y LOH -2 SR T Y ~_(3‘;6)
X = 1 = —L . . A : (3.168.)
» Vo ~ o
(1 for parallel plates
K = {0 for circular tubes ' 7 (3.16b)

1 + g for flows outside a rod of radius R

(0.407 - for parallel plates or pipe flow

K' = .40.407 + 0.02 y /R for flows outside a (3.16¢c)
| .~ . circular rod | '
0.55 for parallel.piates and pipe flows

b = {(1.8) - 1.3(y /R)[1. + 0.14(log Re, = 5)1°% (3.164)

. for flows outside a circular rod



Yo is.the.radiai distance ‘between the wall and the
zero shear stress ine |
*and
Tqu4;1s=€he"locéﬂi&@yndl&ssnumber'at the peripheral
. posttion considered. - '
wnth.neﬁpect to the @amﬁﬁdizéde'yiscosityu NijSing and
Eifler (21,221 use :an mawverage .of 'ng JOVer‘Uhe‘fadial direc—

&ion -of the iflorm- ;
i

T L | _
Vgg = ¥ u : ‘ (3'17)~.
with

c = ©.3985 . (3.18)

‘Rapler :and Redman {Qﬁﬂ itake

¢ = 0.1 . | 3.y

B.2..2.2 1Pnaﬁdiﬁ¥M&%img LengthéHypothésis

EEffdrts to undérsiand tthe jgeneral ‘behavior of eddy vis-
_&@sity}h&s,beenAcarfi@ﬁfmmt“by‘several‘authoﬁsa The main idea
@ehind'these-effqrts s %haf‘mhe eddy viscosity can be ex-
.@préssedrasra product iof /@ velocity scale U :%imes.a length
ﬁ@alé 2; 1.e.

:1n.anaiogy'with‘the,a@pmbach usedfin modeling laminar Viscqsity.
The veloclty scale U can be associated with representative

‘wvelocity of thevfluiﬁ eddies 1n a'particdlar pbsition. The
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'length;sCale' 2 can bevconsidered as ehe represehtative length
an eddy travels before losing its identlty This is thelbasis
of Prandtl's mixing length *heory [25] In developing‘his
hypothesis, we will refer to the 51mp1est case Qf'parallel
flow. According'to Prandtl | |
| dv

Vi) Nt TZ»Z— e (3.21)

where v'f,vé represent the fluctuation velocities of fluid_
- lumps arriVing at r from the position r + &' and r - L.
A reasonable assumption is to take A
2N v(sl,'2)»l/2

‘where- & . is Prandtl's mixing length. Hence, from Eq. (3.21)
we obtain

U =~ Q—d—z— . L - : (3-22)
inally, Eq. (3.20) becomes
B 2 |

= xl
Vrz ‘ const

(3.23)

& 1s not e'constant but depends generally on the position
under coﬁsideration and is usuaily given by analytical expres-
sions based on experimental data. A more general form for the
mixing length has been gdven by Buleev3[26]:‘

= const. x I ety . o (3.2h)
= : o TQY | o |

where Q denotes the direction

=\

and R(Q) is the distance of the p01nt under con51deration

from the wall in the dlrnct”on Q.



56

Prandtl's similéﬁixy hypothesis hés been succeséfully
‘applied to the study of turbuient motion:along;walls (pipe,
channel; plate) an& in ffee turbulent fiows [see, for example,
Ref. Uk, Chapters XI¥, XX, lX-XI,\ XXIV].

In rod bundles it has been appliedAby’Bender et al. [27,
28]. For & Buleev's formula (3.24) is used; |

However, Prandtl’s similarity hypothesis proved ts be
unéatisfactdry in the Fegion>wheré‘ dvz/dy = 0 since it gives.
Zéro eddy diffusivity, which is in dontrast tb thé expérimenf
tal evidence that give& considerably higher values of eddy

Viscosity.

3.2.2.3 Vdn Karman Similarity Hypothesils

Prandtl's theory does not solve completeiy the problem
of eddy viscosity_beh&vior,since 1t does not.say'anything
about the behavior of - &. A general hypothesis that allows
u8 to eétablish a general connection between the length 2
‘and the mean velocity field was proposed by-Von'Karman (29].
HiS'approach;is called "the local kinematic similarity hybo—
thesis." According to this approach the turbulent fluctua-
tions are similar at élI.points of.the.field. They differ .
from point to point oﬁly by time and length spaies 6rbby
édquivalent length and velocity scales. Quantitétively, such
,én assumption leads to»thexfollowing relatibn for tﬁe velo-
city scale and 1ength»scale: |

dWé

U A ez

dz
(3.25)
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av_/dz o - (3.253)
e . .
a%v_/dz°
z
Consequently the Karman 51milar1ty hypothe51s gives the
follow1ng relations for the shear stress, which is essential-

ly. the same as Eq.:(3.23)

.dv

y ~dv : I : :
T _ 2 | Tz Z ' .
v, = | 2| &2 | - . (.26)
where _ A '
: dv_/dy : : .
d Vz/dy ‘ ‘

and . k 1s called the Von Karman constant and 1is equal to 0.4.
Von Karman S hypothes1s 1mposes excessively rigid constralnts
in the velocity fluctuatlons that do not generally agree with

experimental evidence (30, p. 1071].

3.2.2.4> Kolmogorov - Prandtl Hypothesis

Prandtl's mixing length hypothesis and Von Karman's simi-
larity hypothesis refiect the effort to find a reiation'bet—
- ween eddy viseosity and the characteristics oflthe mean flow.
Other efforts on the same 1ine of approach have been made,
such as Taylor's vorticity t“ansfer theory [21], improved
theories of Prandtl's m1x1ng length hypothesis [44 p. 549],
‘Buleev s theoretical model for turbulent twansfer [26] and its
modification by Ramm‘[32] for the case of rod bundle geometry.

The above models do not directly\take into consideration

statistieal.cheracteristics of turbulence upon which the eddy
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viscosity dépénds; The first attempt to expresé eddy visco-
sity as é function of the turbulent charaétériStics of the
" turbulencée is due to Kolmogorov [33] wﬁo postulated a charac-
teristie turbulent frequency T.

If we assﬁme that tﬁe length scale % and velocity’
~sca1eb U (of Eq. 3.20) are functions of the turbulent kinetic
energy k and the frequency f we can findfiﬁmediately from

_dimensional analysis .that

U A k2 ’ (3.27a)
. kl/é -
Loonvo= ‘ . (3:27b)
‘and consequently Eq. 3.20 bécomes
vl = sonst x % ' A: - (3.28)

.Prandti [3Mj has substituted in Eq. (3;20) only the scale U
giveﬁ by the relation (3;275). In such a case; equation
(3.20) becomes | | |
. vE = éﬁﬁst x k172 x ¢ o (3.29)
where ll is the length scale equivalent to ﬁhe mixing length
used in (3.23). |

'If is evident from thé.abévé diséussion that any Quantity
z which is assumed t6 be a function of k and & only (like
f in.3.27b) can belexﬁﬁe§sed by dimenSional andlysis in the
form of: | . |

RIS (3.30)

Then, one can write v? from Eq. 3.20 as a function of 'k and
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¢ as fbilbws:

T

T = const x 1/2-a/8 1/8

S ©(3.3D)
Eqn._(3.3l) i1s a general relation 6f:éddy viscosity as a
funcﬁion of the statistical characterisﬁics k and z. How-
évef, the utilization of (3.31) reqﬁires the knqwledge of k
“and . Thié-can be .obtained either by semi-empiricidl edua-
'tions or by tranéport equatibns for k and c,.-The'way of
evaluating k .and 4 defihes thé type of the tﬁrbuienCel
model as O—eduation'ﬁodei, leéquationAmodel énd é-equation
mode; where thé.term‘"equationﬂ‘reférs to transport equatipns

. for k,C.

O-Equation Model — In this case k 'and ¢ are prescribed
by seml-empirical equations. This model will be applied in
‘<thié work for comparison with 14 and 2-equation models.

l-Equation Model — InAthisfcase‘a transport équation for

k is used,'wheréas % is described by a semi—empirical rela-
tion. This model has been widely uséd (see references in 35
aﬁd 36). With fespect to the closed channel flowsAaﬁd rod
bundles the l-equation mddel is applied by Launder and Ying
{37] and P. Carajilesdo&.[38](in'square ducts and rod bundles
vresbectively.' '

The tranéport eduatibn for k can be obtained from the
Navier-Stokes equation. The way éf modeling itvis similar to
thaﬁ discuésed in §3.2.1.3 concerning tﬁe Reynolds stresses
themselves although fhé task 1s much easier, as we will see

later.
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2-Equation Model — In this model, transport equations

are required for both k and . 1In thé literature one can
find a variety of t;s &ne uséd by different authors, as we
can see from Table 3;1 taken from [39].

The transport e§uation for ¢ usually is found by dne
of two ways:

1) Derivation. from Navier-Stokes equation. For example,
a transport equation for thé turbulent enérgyAéissipétioﬁ €
can be obtaihed [HO;‘HIj{ Such a procedure, however, is not
easy for all ¢. Thébtefore, the second procédure is sometimes
used. |

2) - Derivation Fr¥om furbulént kinetic ériergy and dimen-
sional andlysis. To be more specific, the turbulént kinetic

energy according to What we have said in §3.2.3 can be written:

-

convection (k) + diffiusion (k) + source (k) #% 5ink (k) = 0

(3.32)
The transport equation for ¢ can be assumed %to be’
convection (z) + diffusion (z) + (const) x %”édurce (k)
+ (comst)?! x £ sink (k) = 0 (3.33)

where the constants have to be determined from experimental data.

From the relatibiis (3.31) and (3.33) it is evident that
such an approach presupposes the adequacy of k and z for
'deécribing the "integPal" behavior of turbulence at particular
points. However, this cannot be trge for nonisotropic turbu-

lence where more than one velocity scale and/orvlength scale
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exists. Monin [9] has proposed the following alternative

relation for the Reynolds strésscs bascd on the fact that the

AReynolds stress is a second order symmetric tensor and the

‘assumption that the Reynolds stress can bevéxpressed as a

linear combination of the mean strains:

. (%) -
2 L 1.,1/2 ig Ba) 5
. 1,1 = & - =
ugug 3 K835 - 5 k‘ | %[zai i P ] (3.3u)
, (L) (%) .
where > ° v is the mean strain and zaB are the length

scales to be-determined. However; such a relation which in-
cludes the unknowns QaB is.rafher difficult to utilize in

solving engineering problems.

- 3.2.2.5 Traneport Equation _ o
A logical thought originating from Eq. (3.31) is toAuse
for. ¢ the eddy viscosity itself, assuminglthat it is iee—
tropic. This idea has been put forward by Nee and Kbvasznay
f42] and is used in the code VARR -II [43]; i.e., a transport
equatlon for vT 1s used, whlch deals with the solutlon of two-

dimensional tran51ent flows.

This anprbach is another alternative based on Kdlmogorov—

Prandtl approach, which makes more dlfflcult the introduntlon

of a non-isotropic eddy viscosity.

3.3 Reynolds Stress Closure — Present Approach

3.3.1 General

As we have pointed out in.the previdus gsection, the eddy
o . . ‘
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viscosity approach will be. used in‘this work for obtaining a’
Reynolds stress closure. From all the eddy»viscoéity approaches,
the Kolmogorov-Prandtl hypothesis is adopted since it relates
eddy. viscosity directly to the turbulence characteristics of
the flow that are the: "natural™ parameters. The most advanced
model based on KolmogbrovnP;andtl hypothesis is the two-equation
model in_which fransp@:t equations for turbulent kinetic energy
'k aﬁd another characteristic: quantity of the turbulence, é,‘
are used. The selection of ¢ varies from qﬁthp# to author. We
select for ¢ the energy, dissipation e which‘is>the most-widely
used. Calculationé with O-equation model and one-equation model
with be performed.foﬁfqompariSOn with two-equation model..

Tt is repeated here: that authors who apply the Kolmogorov-
‘Prandtl hypothesis EOm‘channel flow analzsis" including the rod -
bundle and squére dgct'ﬁlowsh and consider isotropic viséosity

are not consistent.ﬁith;the experimental eyidenée [23,88]. 1In
fact, present analysis: will show (see Chapter 5) that noﬁ—isof
tropic.eddy viscositg gbnsidérablg affects the prediction of
flow and heat in‘rodgbundles. The importahce of anisotrdpic
Qiscosity is fluid'flbwﬂand'heat transfer calculations in a bare
rod bundle has also‘been;conﬁirmeq,bquthep inv¢3tigators [94,
32].A'In this approacﬁg turbulent anisotropf will be introduced
by using more than one: ¥ength scale in modeling-turbuléﬂt,vis—
cosity. | |

3.3.2 Shear stress relations

In the present &poroach, thz shear stresses will be ex-

'pressedAas follows:

o
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VeV - TVrz iﬁ? . o : ‘ (3.35)‘
.: 3V .

] ] - - —_— . . X

VeVz Voz 730 - (3.36)

TV = =yl ‘(rAjL (Zé) + L izzl - (3.37)
r 8 ré ( dr ‘'r” r 3 T

We will furthef assume

T _ .T - | S

Yrog © Vrz L ‘ . (3'38)

for'thevfollowing reasons:

'Vl

_l).vr 8 does not play an importaht role in the creation
of the secondary flow [52] so a very accurate knowledge of

vévé is not necésséry,' In fact, M. Kh. Ibfagimov et al. [53]

and P. Carajilescov [1] neglect vivl in their calculations so

a more accurate knowledge of v seems worthless.

ro
2) v;vé includes vg. fluctuations‘ahd vé is expected
to have a length scale close to vé. '

3.3.2.1 Eddy viscosity for shear stresses

In this approach the eddy viscosities .VEZ and 'vgé will
be expressed és follows: o .

0- or 1—Eduation Model

T . 172 - o R |

V., = ok e, | | : A (3-39)

T . . 1/2 ‘ : | | |

vg, = e k%, o (3.40)

where ‘Cv will be a constant consistent with experimental

evidence.
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2= Equatlon Mode& == For the energy dissipatlon e Eq.
(3. 30) gives for g = ¢
_ i
e = 132 o (3.41)
Based on the relations (3.41), (3. 39) and (3 40)  the eddy

visoosity relations can be put in the following form

sz = eukz/e . ' L (3.42)
Voz = S f; k“7/¢ . | | (3.43)

‘It is evident from thé above formulations that the eddy visco-

'sity ratio is glven by the relation

S R . (3.44)
Vre

Thus,-additionai knowlédgé of wm is needed.

3.3.3 Normal stress relations

For the normal strésses, i.e. ;E? “and - ;ﬁ?, which are
mainly responsible fof the secondary flow t52]; two options
have been introduced i# the present work. The reason for
Selectiﬁg'two options 1§ primarily for comparison, and
secondly because both~@ptions have been used for prediction

~of the secondary flow in Squareée ducts.

First'option — iﬁltﬁis case the normal stress modeling

used by Launder and Ylng and P. Carajilescov [1] has been used.
rThe idea behlnd thlS approach is that the ;z?' and v'2
transport equatlon that can be obtained from the Navier- Stokes
,Equation can be simpTlfied .considerably if one realizes that

1) they are 1lmportant with respect to secondary flow only
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close to the wall region, and

2) the convection and diffusion mechanisms are insignifi-

cant compared with génefation and dissipation mechanisms.

" Under these circumstances the v}? and vé transport

equations are reduced to [Ref. 1, p. 2277:

p' av! o | . . : ;
w5 - (3.45)
oy dvE . - . S . :
S = 5 | | - Gas

Whét remains to be dcne is the modeling‘of'pressufe-velccity
correlations. | |

This has drawn the attention of several investigétors.
‘Here we will adcpt the approach discussed in Ref. [17]. The
veldcity—pfessure correlations are expressed as functions
-of-shear stresses and mean velocity,gradients, which for our

~case,neglecting the secondary flow effects, are expfessed as

follows:
R‘.ﬂ=_il§'(v, _gk)_8c2__2 o [?v,]2
par! 2 k''r 3 11 Vrz|r
" 9c, + 6 BV _\2 . AV N2y -
22 T z T z
~+ 33 {vPZ[ I‘J ¥ Vez[rae] } (3.47a)
p' EZL = - Sl 23 (vi2 - 2 k) - 802 -2 T avz 2
p Td6 2 k Ve 3 IT  VYez|ras
| 9c‘ + 6 (0 (OV 42 IV 2 ' o
-2 T |z T z |
HEEE {\)PZ[M’] ¥ \’ez[rae] } : (3.470)

where ¢ ahd"c2 are constants. Combining Egs. (3.46) and

(3.47) we find finally
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6)

2 = .2_ - : ] e li T ___Z2
v 3 (1. = L./cydk # 3367 el “rzlaw
v. 1 2(8c, = 2) v
T 242 2 k T 7,2 :
+ ”ez(F§§) ] - 1lc, € vrz(iﬁr) (3.47a)
- 2(9¢., + 6) 3v
2 = 2 (1 -1/ 72 Tk |T " Tzy2
Vg =3 (1 -1./cydk + 530, [vrz AP
v, " 2(8c, - 2) .. . AV, N
T Zy2| 2 kT 2.2 e
* Vo (gp) ] 1o, ¢ “oz'Fe) (3-470)

The constants cy

s €4 have to be

Launder et al. [17] suggest

¢
€

Second option -

(3.10)-will be used.

3.3.4 The length

i~

1.5

1’

0.4

In this case the

scales

Viscosity ratios

are given in the

found by experiment.

(3.48)

analytical expressions

literature, especially

for the fully developed flow condition .in fod bundles, from

authors who do not uSG$Kdlmog0fdv—Pfandti's appﬁoach, e.g.

Nijsing and Fifler [22]. However, such a ratio is strongly

related to -the models

for v¢ and

0.z

vT
Vg

adopted which ar-

"different"from oﬁr approach. Here we will Ery ﬁo estimate lr‘

and '29-,fromfempir1@a1 relations based on experimental ob-

servations.
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3.3.4.1 »The_iength iQP

We w1ll'restriéf our discussion to the regioh y+‘i 30
“since 1t repreéents the‘region where the calculatipns are:to
bg performed. It 1s called the outer region of the flow.

The region y' < 30 which is very close to the wall 1s char-
 acter1zed by sharp velocity gradients and strongly ahisotropic
turbulent kihetiq energy distribution.‘ In this fegion a model
bééed on a Kolmogorov-Prandtl hypothesls would not seem useful
althoughAefoptsAtowardé.this direcéion_haveAbeen'made by
some authofs [50, 52]. Even worse,bthe caiéuiatidn offhydfo_
dynamic characteristics within the wall region directly from-
the set of eqﬁatioﬁs needs felatively high computational'
effort due tb.the large number of points needed for_thé
numerical calculations.

"However, things can be simplified considerably in the
case of moderate acceleraﬁidn or deceleration dueAto the fact
" that the'hydrodynamic characteristics are satisfactorily
described by -u¥ and  y+ only. Returning to the outer region
(i.e. ”y+:i 30) let us review the iength scales taken By some
authors. _ | ‘
| Launder and Ying [37] for the case of rectangular duct
flow usé»BulééV's.fOrmulation, Eq. (3.2b),

4 2m - S
B . (3.9
. 0 .
Such a relation gives & proportional ﬁo fhe wall distance

for points very close to the wall.
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D. Naot et al. [54] for the case of rectangular duct flow
used

L o=y ~y £ 0.54 0Dy o »
- . o .. . (350
R = 0.135D; 0.135D; < ¥ < 3§ S

where y iS‘the‘disténce from the wall and DH is the hydrau-

lic diameter of the flow.
P. Carajilescov [1] for the case of rod bundles developed

?
the following relation

g =y for y < 0.44y. )
L = O.MQy f 0.066y sin 5738 (9 fuu)l | : (3.51)
for 'y > 0.44y | |

where .y is the radial distance of the centerliné‘froﬁ the
wall at a particular angle 6. | |
| Relations (3.46), (3. M7) and (3.48) agree that close to
the wall
.2 -

ih this'approach we will distinguish three'suﬁregions.within' .
the oufer fegion: | o ‘ -

A. -The dynamic equilibrium subregion"

B. The central-s&brégionA |

C. The subregion in between.

373'H‘1 I The . dynamlc equillbrlum subregion — The

vdynamic equilib ium subregion is the region closer to the wall

and has the following characteristlcs
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a) The di“fu31on and convective mechanisms of turbulent
kinetic energy transport are small compared with source and
dissipation mechanisms. In this region turbulent kinetic
energy has 1its highest-values whereas the turbulent kinetic
energy gradients are relatively small. In”other words, if
8k 'is the cbange of kinetic energy within -this region and iko
1s a representative value of the turbulent kinetic energy ;
‘level, the following relation holds
o
Thus, in;such_a case we can approximate

k = ko tf | L N , (3.52)

b) ‘Thevsnear‘stress 'v;V; is approx1mately constant

A good approximation consistent with the experimental evidence

is that

viv

vy ois = uy # (1) | : o o :(3-53)

If we want to put viv, 1in the form of (3.37) using the
relation (3.41), Eq. (3.53) leads to the.following relation .
for 4_: ‘ |
' Iv u* u’ ‘ ' ‘ :
b ® - TTI77 &v.7ar S (3.5%)
: v,ko. Tz o S

Since ko 1s mainly a function of u

éL- 32/2 = const -

v k

o
In order to have tbelsame_order of magnitude for the constants
with other investigators who take lr =y we 'wlll define the

above constant as follows.
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Within dynamic equilibrium region the logarithmic law

is expécted to be valid, i.e.

' dvZ uF ' : ' '
aF T wy : | S »(3-55)

when « is the Von Karman constant, i.e.
k = 0.4

So we take

1w (3.56)
c 172 =~ « :
"V ko
Thus, from Eq. (3.54)
| S _ 1 _uf ' : - -
Y T Sw e | | (3.57)

3,33M.1.2 The:central”région — The central fegion is
‘characferized by small or zero veldcityAehergy gradients.
The selection of % constant and proportional to the distance
between fhe.wall and the zero .shear stress line gives satis-
factéryAresults; i;e,
b= ooy - (3.58)
 The &aiue of_ cy, has ito be found ffom'thg-expgriﬁental data.
A quick eétimation,cépibé ﬁomﬂdg howeyer;‘frOmﬁxhe éimple

:geometries as pipe flow

. for ,C\) = 0.2 i - L | (3.59a)
k1/2 : - R
‘ = . = 0.9 '(See Ref. 2) - ‘ (3.590)
u’ ly=y . : - ' :
“Ez = ‘®,07 ut A (See Ref. 94) - ~; (3.6O)A
Ty | ~ : S
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‘Substituting Equations (3.58), (3.59), and (3.60) into Eq.

(3.39) gives

. * ' . '
0.07.w§ = 0.2(0.9 u’) c ¥  (3:61)

or

'cL.<?e 0.4

which-is.ih good agreement with P. Carajilescov [1] who takes

hat zero shear stress line ¢, = 0.374 and higher values for

L

points'outsidelthevzero shear stress line.

3 3. 4 1.3 The .intermediate suhregion - The bigqer'subregion

in the outer flow reglon is the 1ntermed1ate reglon which hasA

neither the nropertles of the dynamlc equlllbrlum region nor

| the propertles of the central reglon. « Taking 1nto<con51dera-

tion equatlons (3. 57) and (3. 58), 1t\1s reasonable: to assume

‘for thls reglon that ‘the

dvz/dr

1, = function ( T ¥ T, ) - (3.62)

A loglcal approx1mat10n for the functlon can be the follow1ng. '

. dv /dar. o
( Y= u*, )%+ (3%?)?,¢ o T (3.63)
r : '

where o is a real number to be determined from_the'experi—
ments. .The‘characteristic behavior of Eq. (3.63) ishthat_in
the v1c1n1ty of the central region the first term of the right
hand side is negllglble compared to the. second term. ,Thus.
(3. 63) reduces to Eq. (3.58).
- On the other hand, in the vicinity of the wall the fitst

term dominates in Eq. (3.63), which then reduces to Eq. (3.57).
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With respect to. the constant é, one expects ‘o to be.
-a'function of the Reynolds number, sin§e~the higher the
Reynolds number the larger the central region becomes, i.e.
the larger the o becomes. However, frdm the nature of the
relation (3.63) for large o's (t.e. a > k), large changes
in a have 1itt1e-effectw Fbr'example,‘Qs»Fig. 3.2 shows,
the prediction of velocity, with the l-equation model is not
substantially affecte@ by, taking o = 20 versus. o = 10. The
significance of a 1is fupther diminished in-thﬁjZ—equatiqn
_model*‘as Fig. 3.3 shows., In our case, o is'Qaken as

al = 10 |

Thé~advantagés of introeducing the length: scale of Eq.-
63.63) are the follomﬂqg; .

1. A continuous funetion is given for the~mixing length
which 1s much more aceurate than Bﬁleev'S'lengthrscale.(3,U9)'
which is also continuous:.

2. As we can see from Fig. 3.2, a large o (i.e. a = 10)
givesAresults close to;th05eeobtaihed by using P. Carajilescov's’
mixing length (3.51). |

3. Formula (3\§?)¥ which represents the'ﬁirst ﬁerm of
'Eq.,(3.63); ideptifies the length scale as h@t being a pure
geometrié characteris@%q of the flow. In a sense, it reflects
the distortion of the turbulent kinetic.energyﬁspectrum due
to the presence of the noenuniform Qelocity'field, whiéh is
quite reasonable. Théﬁefofe, it is expected to be a better
formula for length scales where the logarithmic law of velo-

city 1s not valid (e.g. for non-fully developed flows or in



73

the regions very close to the wall. - For example, in'the‘
laminar subléyer, formula (3.57) predicts

lr = v/u® | |
which is the proper length scale; whereas Eq. (3.52) predicts

2 = 0
r .

b, Ex#rapolafion of ‘Eq. (3.57) in the taﬁgehtial'direc—
tion;'as we ﬁill See beibw;_lééds‘to an estimate df the length = ”‘
‘scale lef | |
The'ﬁain disadvantage seems to be that Eq. (3.63) does
- not predict a maximum value within the intermediate region’
for the length.Séale,as the‘relation of P. Canajilescov
predicts. HowéVer,’tHe absence of this peaked portion in the
mixing length prediction has no substantial significance in
flow pfedictions witﬁfthe turﬁulence modéi, eépecialiy in the
2—Equation,mode1. N

3.3.4.2 The length scale %

In order to estimate 26 ‘the-followihg.assumptions'will
be made. \
| 1 -vT = vT in the'centfal'region‘r‘ThisAis'é

’ rz 0z _ :

reasonable assumption, taking into consideration the'fact that

v!2, v'2, v!2 are of the same order of magnitude; i.e.,
r ? 4 Z > .

vé2:v;2:Vf2 = 1.16: 1: ll[2j.

as a second

2.. Neglect the‘effect of dvz/dr on 26

order effect.

3. An expression similar to (3.63) holds for Re;»i.e;



, dv /I‘de o . -
) u CL 6 '

* L B R e e d . . L
where L  1is the "free" tangentlal length scale. Since

dv,/rd6" 1s expected to be sfall, we can appPoximate

| | 2,6 = cLLe ; (3-65)
where ' ‘
c; = 0.4
as given by (3.61) , *

The length scalé Patic (or the éddy viscoeity ratio) 1is
given by the relation

Ip1’11 T [ : q‘ _

“re

A.A '” ) ) . i
av./dr lal= = 4
2o ] @ (3:662)

o 2l
L u*/erd

In Fig. 3.1 ¢_ 1§ compared with eXperiféhtal data taken
By A. Quarmby and R. @uifk1[68j} Thése’éxpéﬁiﬁéﬁtai data are
obtairied by measuring £he mass and Heat diffusivities (Sc = 0.77,
Pr = 0,71) in the fully devéloped region of a plain tube.

For the utilizatish 6f (3:.66) in the casé& 6f plain tubes,

take L:sL2= ro,-dvé/d§‘95ﬁ¥/xy, and 4 = i, ég'io respectively, -

yielding

(3:66Db)

Equation (3;66b) suggests that Y should not. vary signifi-
¢antly for o 2 2. THfs behaviod is confirmed by the data of
QUarmbj [68] as illustrated in Fig. 3.1. AlSG 6f evén more.

'impOrtance is the coﬁsi§ténc§ of the data with the prediction
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of Eg. (3.66b). Note that while the measurementéia;e heat
and mass transférvresults,‘since the Schmidf Number and

Prandtl numberé_were close tofunity (0r77 and 0.71, respec-

_Vtively),'wm is effectively equal to v and ..

With respect to'the<proper_selection of'\pn for the

case of rod bundles, we have tested the‘fOIIOWing'possible

cases:

a) Isotropy of the eddy viscosity along the zero

. * -
stress line, i.e., Le = vy

b) Isotropy of the eddy viscosity at y =A§ﬁéxr'
] B . . , .
i.ee, Ly = Yo 5 Lo

i

In Figure 3.3, the quantity vz/vé is plotted vs. y/y at

‘ | 0
6=0. The fitting of data hy taking Ly = y_

Ymax conslderably

improves the data prediction.

It mﬁst be pointed out here that experimental data ob—‘

“tained by K. Rehme in a side subchannel4of a rod bundle [88]

indicate isotfopyic eddy viscosity in the qentral-chahnel.fe-‘;
gion togethef with nonisofrOpy in the gap region,Awhich'is con;
sistent with case (b).

.H;,Ramm and K Johannsen {327, working.with an approach
based on Buleev's theoretical model [26] have'also~tested'
isotfopy along the.zero shear stress line versus isdtropyﬂat

the point y=y but- with fespect to length scales, not the:

-~max .

reddy viscosity. Although'the length scales used in [32] have

similar physical meaning compared with the present léngth

scales, they are defined differently due to the different
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overall épproach. Therefqre, the length scale rétio in [32]
is hotAedual to the eddy viscosity ratio in the'present
approach. The above authors have chosen a method of calcuia—
‘tion similar tQ casei(a) on the ground that it gives more
conser#étive heat trgﬁsfer-rgsults with their model.

Frbm ‘Figﬁng 3.3 the importance of introducing the
eddy viscosity aﬁisotfopy is very clear. The imp?oveﬁent of,
the'métch'betweenldata and turbulence model éredictions'using 

the above introduced length scalés has been considerable.

3.3.5 The final_fopmpof the eQuapions

3.3.5.1 The differential equations

3.3.5.1.1 General form — In the above discussion, 1t has

been made clear that the equations to be solved are those of
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cdntinuity and momenta conservation anditransport equationé |
for tprbulent kinetic enérgy and ehérgy dissipation.;

The mémentum and Eransport éqﬁétiohs can be put in the

geneéral form

'[<;e—ConV¢ctioﬁ——4+?——Diffusion—a4+@—-Sourcé——>|
VeV .+ VT¢ =S¢ +,s$ ]
-T¢ = (T¢r, T¢0)
S¢ = (Sér, S¢6) . )

where ¢ stands for V,s V., Vg, k and € as shown in Table

3.2a. The separation of the diffusion term into a T¢ term
and an S¢‘ term which is treated as a source term is made
on the ground that T¢ includes only the terms that depend

explicitly dn ¢.

3.3.5.1;2 -Momehta_equatiéns~—~ The momenta equations are.
6btained from the momeﬁta Reynolds Equatioﬁs gi&en in §3.1.1
and'the'Reynolds-stfess selections giVen'ih'§3.3.1.. Momehtum-
equations can be put in the general fgfm<(3.67).‘ Each indi-

v

~vidual termAis'given in Table 3.2a.

3.3.5.1.3 Turbulent kiretic enérgyuéquation — The tfans—
port equation for k can be obtaingd &j‘ﬁg}tiplying Navier—'
Stokés equatiohs for Vs Vgs Vo with'véiocity‘flﬁctuations
Vé,'vé, vé -and taking the time averagé. The exact férm of
the k-equatidﬁ for our particular geometry haS'been given by
'vP.'Carajilescov'[Ref; 1, Eq: B-6, » 221-222]. Using’the pre-

sent shear stress relations, it can be reduced to EQ} (3.67)'
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which, neglecting the time and z-dependent terms, can be

rewritten as follows:

le——=— Convection =——=»
1 35 ]
& ar TVpX * 530 )
< A < Diffusion— >l
- et : e .
U P IS N S v U <l 9 ok - TR
rL'ar r[Var LA 'p"'] MY ) {”rae S Vek
r—f;—SQqnce——ﬂj
’ ,
= _S'< - € (3-68)
vhere
5 3 5 ]
v, v v
= - '2 -Y_r [RTAL ___e ] ] ____Z
S { [ r 3 * VeV 37t Vr¥z B ]
v . —_— aV oV
TYE k4 oyt2 9 "ot 2
* [Vevr 556 " Ve~ tae t VeV r‘e]}
vile  [vlle  (avr)2 o |
~ : r r)oooler) | H(3.69)
. r'r——'—av 2 r-_—ra,V”2 r——}v‘,"\2. .
+ —L * .—e + ——Z
skr J (I f)’eJ‘v Lrae'} 4
(Ao T) > (R (35 T) 2]
Al M 2 . §av&'2 N vy 2
L\ 'ZJ :?a}z‘ J_/ . \ Z ), JJ
12 7t 2 TR RN
. Z? t vy . 2:v' ave - avr
r r rae 8 ro6 ]

Equatton (3.68) is modelled as follows.

ot
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Diffusion term — The diffusion term is put in a typical

diffusion form,in accordance with several authofs:

T 3
\j 1
T o+ oEe . _ lrz 3k
P o, or S '
‘ ‘ ‘ - { (3.70)
T : .
. v'p' . V) X X .
_ 8 A z dk
] ] . : ~ - —— —
vek +..p A = ~

where o  is a constant Of}ordef 1.0 [67].

Source term‘—- Term S, representing'turbulence genera—

tion, can be reduced by neglecting mean radlal and tangential

velocity terms -as negligibly small and substituting the shear

stress relations as follows:

T (BVZ)Q T BVZ 2

S = +'y + Vg, (535) S  _' ; (3.71)

K ~ rz " 3dr
Term <€ 1s defined as the energy dissipétion.
With these steps the turbulent kinetic energy equation
cah_be'put in the general form (3.67) where each term is shown

in Table 3.Z2a.

3 3.5. 1 4 Energy Dissipation — The equation for energy

dissipation :e is obtained as suggested by Lauder [67] and

based on the philosophy of "Eq. (3.33), i.e.

i———-Convection-——-eW
9 ... 9
3¢ TVr¢ t rag Ve©

1
r
F-‘ — Diffusion

% T € : ; o (3.72)
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- where Sk is given from Eg. (3.71) and .ie’ Gq» G are
. cpnstantS~determined ﬂhomAexperiment.
From the decay of turbulence behind a grid.thé value
of ¢, 1is 3qggested to be 1.8 — 2.0 [67].
A relation Setweem v%19.%2;-a€ is obtalhed from near to
the wall turbulence [67] using Ed. (3.69) and ﬁhe near wall

relations

oY)

e

= wis
&

*® <%

5, 4

)

(3.73)

>

~
H
<
*

-

A

Neglecting diffusion and ‘tangential contributions and taking

into cdnsideration that

§¥§ << 1 and 5 << 1

TZ
Eq.‘(3.73)‘reduces_to
) sz d€ T € . o
3y ["_J ir T Bk%k T %k® - (3.74): .

If further the tangential component of S, in Eq. (3.71) is

negiected, the near wall relations of'Eq.,(3.73) are used and

sz is represented by Eq. (3.42), we further obtain

Slad)- s
dy (° dy 'y’) keye
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By performing the derivatives we end up with
: K

o, /*"

"Launder (67] suggests that

(3.75)

Ceo™ Cei

[

cel’ 1. 144 Cep® 1.92 and ¢ 1.3
3.3.5.2 -The.Solution Domain
- The equations are to be solved within the charaeteristie
triangle -of the infinite rod bundle -as shown in Fig. 1.1.

The-secondary flow quantities (i.e., v ve, p/p) are

r?
going to be solved in the whole flow-area of the characteristie
: triangle, whereasAthe' v, ‘momentum equation and the' k, € |
'.transport equations are going to be solved only in the outer

'fegion of the- flow (i.e., yB = 25 30). As p01nted out in
"~ Ref. 1 (p. 56) the exclu81on of the wall reglon 1s made due
- to the follow1nv reasons
a) The sharp gradients of the hydrodynamlc quantltles
within the wall region need a relatively hlgh number
of points to descrlbe the hydrodynamlc field suf-
ficiently well
b) The strongly anisotropic turbulent klnetlc equation
makes a turbulent model based on "the Kolmogorov—'
Prandtl hypothesis questloneble However,,on the
- other hand, the prescription'of the quantities
fthemselves'within the wall region is relatively not
difficult since the main parameters of depehdence are

- the wall shear stress, the distance from theswall'and
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the flulad viseosity.
The approach of excluding the wall reglon from the domain
of solution has been used by several authorS~(seé; e.g., [37,

54]) and in the efforts preceding this work at MIT [1].

3.3.5.2.1 Wall Layer Thickness Prescription — The wall

layer thickness 1is defined from the relation

g u* A A : -
B_ ~ 30 to 60 : - (3.76)
v ‘ 2
Where u* 1is the avePage friction velocity, 1i-.e.
p 'avg

1s the wall laye? thickness

us =

y‘B
and v 1s the fluid Kinematie visecosity.
The exact value of relation (3.76) is left as pPoblem-dependent,
and its selection should take into consideration that

1) The Qigher the value of yBﬁ*/v' is, the fewer points

are necessary to obtain the numerical solution; and |
2) The closer to 30 the valué of yBE*/v is, the more
" valld Eq. (3:52) 4s.
In case the bulk velbcity Vg is given instead of t*,

we useé the friction factor relation

o= /R e

For the'friction ?é@tor.estimatioh we will use. Ibragimov's
.}eipreésicn; which haS also been used in Ref. {i]; This ex-

pression 1s-.as follows:



: "

= = (0.58 + 0.42 )[1 +.o.1(%¥)”/3] |
where L 5
- o BAAN (Loh2 peney
‘ y /3 y SR
y = F yrdrd® = 5 (—=— 5= 1) D '
Al | e w3 P -

A is the flow area within‘the characteristic triangle

and v
£, = 0.046 Re™"? (3.79)
. 1s the friction factor for circular pipe.
3,3.5.3 Bohndary Conditions — The boundary conditions

are,giveh in Table. 3.2b. The nature of the boundary conditions
at the éymmetry lines is prOfound, We will discuss below the
boundary‘conditions at the near wélluboundary'(i;e., at the

position yB).

3.3.5.3.1 Near Wall Boundary Conditions —

Axial velocity — Along the circumferen-

| | | B -
tial line we will make the widely used assumption of logarith-

mic profile,:i;e.
| | %#(8)y o
_ u%(8) 4 B
_Vz(yB’e) = ——~MWME ——F5— (3.80)
where «k and E are consténtsﬂ
According to Ref. [1], x = 0.419, E = 9.8.
| .The velocity profile in the region' 0 <Ly hR'AY needed

for calculation of the bulk velocity is taken as'follows:'



8y

0 ey uwk(e)y |
W— .= 'T—X | for u—vl _<_ 5_ (3-818.)
v_(¥,8)" | s . - u¥(8)y

EA*‘ e = o + anu*(a\e))y . fOI‘ 5 i u*\()e)y i 3 "B

| (3.81b)

where
v (yB,e)/u*(Q)w; 5 - ' ' L
B T ygur(e) | o BB
Zn Méﬁ ’
: 5y ux(6) '
a = % [v (yB,e)/u*(e) + 5 --Bln-—j%y———-] S (3.81d)

e T e \ \

i

The'expressions.for Gy B cofie from the velocity continutty

' condition at the pointé

yju*(e) ‘= '5 ‘ and M .=‘ 45 : (§.82) .

\Y ‘ \Y

3.3.5.3.2 TurbulenﬁmKinetiC.Energy and Energy Dissipation

— As we have pointed eut inr§3.3-l.l the near wall
bOundary'lies within the dynamic equilibrium subregion wnere
the’importance-of theﬁdonVection and diffusien meehanismgére
1 minor

Thus' the transport equation for k can bé<reduced to

g WO pY

= eg | : - (3.83)
wﬁere eg 1s the enef'gy’ dissipation at y=yg-
On the otheér hand’ the axial momentum equation neglecting

the 1atera1 gradient as small compared with. the radia1 gradient
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(3.81)

, 22
1 T, N
= (r'vIvl) - v = = (u%)
r ar rzt ar2 DH
where D.. 1s the hydraulic diameter and u¥% 1is the average

H
friction velocity.

Intggrating Eq. (3.80) over yg and neglecting the

friction effect at yg e obtain
o | 2 2
: r : s Py =T .
1 2 2 1 -2
(- viv!'y = == [ux(8)]” - 2 (ux)
r z y—yB r2 - P2DH ,
where
rl = D/2
r, = D/? + Vg
Since |
[BVz] u*(9)
or y=y K¥g
aﬁd
k% [ov, L
= | - (- vy
o ®B y=yp | y=Yg
we find finally
es s o %(9)
€. = (= viv') _ urlv/)
B r z'y=yg : K¥yg
1 U
k = — (- v'V')y
B _ q r z'B

(3.85)

(3.86)

(3.87)
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3.3.5.4 'ReynoldQJNumber-vs.'Mean Wall Shear Stress —
Since ﬁe are<gding to salvé the problems for the fully devel-
oped flow, some information on flow level is.needed. This
-has»béen done by two methods:

a) Specify‘the average wall shear stress (Tw/p)avg
which appears in the source term of mean velocity equation
(See Table 3.2a). .

b) Specify the Reynolds numbeg or equivalently the buik.
velocity. |

Both approacnes are mathematically well défined. Howéver,
there is é difference when the problem isvsolved numerically.'
| In the second case, since there is an integral type of
restriection and the problem has to be solved iteratively,
Some normalization of velocities is needed per iteration or
péf’nﬁmber'of iterations. Since eaéh numerical technique
- has a different effect per 1teration, due to finite number
of points, the answer will depend not 6n1y on the number of
. points but from the numerical method used'astwell.

“This 1s illustrated in Figf'B.U‘where the shear stress
aistribufibn is plottéd for a GRID 30x16,_P/D,= 1.12&, Re =
é?,OOO, using a O-equation?model fof simplicity;

The solution has been QbﬁainedAfor a Reynolds number
' 1nput‘by 1ihe iterafEOh {'See Chapter 4) exbiuding secondary
flow and é;ccéssive relaxation method with and;without

secondary flow. The @ffect of the numerical method is clear.

4
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It is wqrthpointing out here that the solution of the
no secondary flow'pfoblem wlth line iteration teghnique'
(curve 1) énd the solution of the secondary flow prbblem
with successive relation‘(curQG 2) leads to the cohclusién
that the secondary flow increasés the non-uniformity of
wall shear stress distribution -- which is WRONG!

Therefore, in the present work the inpgt df évérage

wall shear stress is used. .
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CHAPTER 4

NUMERICAL WORK

4.1 Grid

We have tried to make the grid space asluniform'aé'pos-

-slble. The reason is that although grid nonuniformity cén

improve the accuracy of the problem in some cases, 1t usually
has a negative effect on rate of convergence and stability
[70]. . On the other hand, a uniform gfid makes the numerical
equaﬁions easier to handle. SoAin the 6 direction a uniform

spacing 486 1s used, i.e.

' - : - 6 o= : m . l
88 =% -8y = sow oD - (48.1).
where JN is the number of mesh points in the 6-direction.

With respect to the r-direction, (i.e., 8 = 0)

P D ’ o
ry =ry, = [ 5= {5+ yg )4]/ (M - 2); 1< M

M= IN - (IN - 1)  (4.2a3)
where ‘

M is the number of points along 0 = G line

IN is the number of ‘points along © = 30° line, and
.szis the wall benhdary thickneSs.'
.For 1 > M the spacing cannot be uniform since it is de-

fined from the zero shear strass line as showh'in Fig.buul.



In this case

r,_ L= P P s | 1 '
1=Mbj-1 " g - 5 s M <1 <IN (4.2b)

The grid 1s shown in Fig. L1,

}So'by the_above”procedure the mesh points (i,J)Ihave_i
been defined. -Hewever at these points only the scalarlpara—
meters k, €, and p the axial veloc%Fy‘vZ end aukiiiary quan-
titieé (e.g., eddy viscosities, miiing.lengﬁh) will be calcula-
ted. The parameters v_(1,]) and vg(1,3) will be aefined'in'l
a slightiy different position as shown in Fig. H.3.',This

procedure is similar to that adopted in the TEACH code [T71].

4,2 The Finite Difference Equations

4,2.1 Momenta and Transport Equetions

The finite difference equatlons are obréined by inte—
‘gration of Eq (3.67) over the. control volume. Tne control
Avolume surrounding the point under consideration is shown in

its general form in Fig. 4,2,

After integration over the contrcl volume and taking into

consideration the Divergence Theorem Eq. (3.67).becomes

§¢vnde+ §T ndl= §S ndg+ ffS¥ dA (4.3)
c3 cs ® . cs ¢ . eV ¢

where by S/ we denote the integration over the boundary of’ the
ev

control volume, and n 1s the unit vector pernendicular to the

surface boundary as shown in Fig. 4.2, Let.
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= length (ne, se)

Ae
A, = length (nw, sw)
Ah = léngth (ne; nw)
"As = length (seé, sw)
VP = area (ne, éé, sSw, hw, ne) A o (4,8)% .

The value cf above guantities for the various angles ¢

are given in Table 4.2. Equation (4.3) can be written

AePevre = Au®uVew * An nVn T Ag%5Ves t Torefe -
= Torwtu * Toon™n - L¢63A$ = Sprefe = Serwiu +
. ) - S . A ; * ) .
¥ S¢9nAn. S¢esAs * S¢§VP (4.5)

In Eq. (4.5) thée following approximation has been made

JI S3AA n S.BVs ‘ o ©(4.6)
oy : |
where
S4F 1s the value of S* at point P

-V, is the contfol volume surface

The contlnuity equation glves after intégration over the
¢control volume

'Aé;re~- AWer‘+ Aﬁven - Asves =0 ' ‘ (4'7)

In Eq. (4.5) we can distingulsh between the Convection
term, the Diffusion term and the Source term as follows:

n - T¢GsAs, ' (4.8a)

A+ T

PT = Tyrete = Towwlu * Toonh

{%¥) the nomenclature uséd in Fig. 4.2 is aimost the same as
that used in Ref. 36. '
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Convection term:

. = v
CT Ae re

»_ - A

Vo4 AV g (4.8b)

nen'n . Asves

¢

S

Source term:

- 4V_ : - “*
ST‘ 'S¢reAe S¢rwAw * S¢6nven S¢esves * S¢PVP. (4.80)'
Thus Eq. (4.5) can be written |
DT + CT = ST ' (4.84)

4.2.1.1 Diffussion Term

4,2.1.1.1 Scalar_Quantities k, € and -the Axial Velocity VZ

From the Table 3.9a'we have

- eff
Top = = Vrz ¢
' _ cg P o
fr
' o rof :
¢A 6
We can make the following abproXimations
- . eff eff)]  6p _ 0
T . = —-b%z JE ¥ E%z ]P E- P
d)I‘e - 20 ’ - V,
"o E P :
. s ' , (4.10a)
., _eff eff ¢, _ ¢ .
T¢rw = | rz W o+ [urz ]P P W
2o Vo = Vy ‘J
eff . eff ¢y~ ¢ |
Toon = - [Vez n*t [Vez J p N 7P
20'¢ VRAG : :
+  (4,10pD)
Toos = ~ 102 s + Yoz P
Tl . - . 4 ‘ /{,} +
- Thus Eq. (4.8a) belcomes v
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DT = (DE+DW+DN+DS)¢P'— DN . ¢N— DS -¢S- DE -¢E- DW '¢W*.

{ where ¢ equals k, ¢ ar v,

where | | ' | (4.11)
_BE |[. erf) [ erf |
DE = 5 [vrze lJ + {Vrze ] (4.12a)
¢ T U o |
BW J'V eff] '; ’v eff'”i
DW = ——= rz- i, “rz - |P . - : (u.l2b)
c, L w oo\ P
_ BN - eff. |y eff o
DN = 6z In + |02 p (4.12¢)
¢ L‘ \ - ' )
. ( o 3 . ]
: ' eff eff : . .
DS = gf [vez ]S ¥ [vez ]P. | | (4.12d)
. . * J
BE = 2t -1y B (4.13a)
. Aw } : . ' ' : .
WS EE, T  (4.13p)
- : W .
BN = . AZe (4.13¢)
o .
' As : : o _
BS'= 27 1% : SR O (s.130)
p - A :

‘The values of DE, DW; DN, DS, BE, BW, BS are given in Table
.u.z.. ) . . ’ .



'4.2.1.1.2 The Velocity v,

" From Table 3.2a we see that

. 2
T¢r = - 2V

- ‘eff
T¢e = \Y

We make the

1’0

v

T

or

v,

rae

following approximations

r

T¢re =_f 2V
\
4
T¢rW = - 2v
_ eff
T¢en = = Vrzn
; ~ eff
T¢es + - Yres
Thus the diffusion

VeE T Vpp

Vep = Vrw
(v - v
1 rn
L |
} |
vrP - v

§

/

[N

/
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b (4.14)

k¢ (4.15)

)

term (4.8a) for v becomes finally

DT = (DE+DW+DN+DS)’VrP —DN'Vr

N

—DS-.Vr

~DW vy 1(4.16)

where

DE = BE

DW = BW -
DN =-BN

DS = BS

(4.17a)
(4.17b)

(4.17¢)

(4.174)



BW. = —

‘The values of DE, DW, DN, DS, BE, DW, BS are given in

- Table 4.2.

]

'4.2.1.1.3 The Velocity v,

From Table I we have

T§6=-2\)——_

S 1
¢re rfe " w L’ FE~' rp |

T

(4.182)

(4.18b)

(4.18c)

(4.192a)

(4.190)

14.20) -
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. ] . :
: v
T . ==2v.|_6N.~ "oP
o eom — 85|
= ooy 28R Tes |- - (4.20)
¢6s . 1 A9 J '
. | | |

Thus Eq. (U.Ba)’fof've becomes

: . T ' .
= ‘o E _w - . - o - ‘o‘ _ '- .
DT = (DN+DS+DE ‘;;+Dwrp) v p ~DE"Vgp=DW-vgy-DN Ven-DS*Vog
' (4.21)
where
(- v )
DE = BE [vggf] + - vigf vigf + [vigfi
nkE sE S | ;nJ' g
‘ | o (n22)
DW = BW [vigf] +'[v§gf} + [vigf] T+ [vigf]:
| VT e sW s ' In
DN = DW = BN + v S 1
_ | o
r’  he
BE = S o
7 frglrg - rp) o
T Aw ' o :
BW = 17 (rp - ;) |
o W P W
. ne = 2An
BN = BS .- 36 )

. The values of DE, DW, DN, DS, BE, BW, BS are given in

- Table 4.23.
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4,2.4,2 The Convection Term

Recall that the c¢onvection term 1is given by the Eq.
(u.8) i.e.’

CT = A

e¥ree ~ BaVrw®w ¥ AnVon®n ‘.Asves¢s (8.8b)
where

6 1s given in Table 3.2a

From Eq. (4.8b) 1t 13 éVidént‘thatithe common éubstiﬁﬁtion
gt dp
¢ = — 3 |
etc.,; can produce a finite ﬁifference equation with negative
¢oefficients which @an produce nOnéonvergence in the solution..
Since our ultiﬁate purpose 1s to obtain a finite difference
&quation with positive Goefficients and on the other hand as
| much accuracy as vossible we use thé Upwind Depivative Dif-

ference Scheme (UDDS)\@?oposed in Appendix A.

Let
L (30) . |
% = ¢p * ~5’5’]1-, (rg - rp)
,’aq;)
. = ¢, *+ 157 L A8
n =% " (30]p %
L (4. 20)

- 3¢ |
% = 9p ~5?JP (rp'= )

- (36) 48
¢ = $p - 36)p 2
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- Substitutihg’Eqs. (4L.9) into (L4.86) and taking into ccnsid-

eration continuity Eq. (L.7) we end up with

L | — | a .
et _'[Aevre(re - Tp) = varw(rp'rw)} [’5%]1? -

In Eq. (4.25) we have taken into qonsideratioh the. fact that4i
A=A . | |

n s , _

We fﬁrthér-appr@ximate

(b0 ' P |
rp - Tp if Aevre(re"rP>-+var’w(rP-'rw.)'.-i 0
{Lfb] =
r; : . 4 : o
g ig;lfﬂ otherwise : o (4.26)
P w o : : . S
by - .
"N P
. ‘ ——Kg—f if veP <0
[?i] = | -
36 P
' R : : ‘ _ '
L—Ezg—é otherwise S ‘ (4.27)

Under these circumstances the convection term can be written

CT= (CE+CW+CN+ CS)CbP -CE"‘- ¢E"- CW * ¢y - CN ¢y = CS = ¢g (u._2-8)

1
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where
CE = “A\feu'—r )*A v (r -1 )|
= A v (r -rp) = AV ., (Tp-T )}/’rE—r’P) (4.29a)
CW = {|A s ‘(re-—r J+A v (ro-r )|
+ Aevré(re-snP)-ﬁvarw(rp-arw)k///rpﬁﬁrw) (A-29b)
CN = A .l 6n Vésl " Ven ~ Ves - ‘ (4 é9 )
" n : u o E . C
v +v | +v + v
cs = o, —28 esy:&;w@? SL (4.292)

The Value for CE, CW, CN, CS aﬁ a particular point (i,j). and
for ¢==k €, &Z,:vfare given in Table b, 3 ' |

| The convectlon term for the component ve itself is
slightly dlfferent (+) than Eq. GM.28) as in the éase of the:

_dlfo.SlOI'l term’ l.z.ee 3

(. Tp r .
CT = |CE £ + 6W L + CN + CS|v_ P
» T F o~
P o : |

- The valués of CE, CW, CS for Vg are given. in Table'UQ3.

%) I . '
.( )Equation (4.28 is valid for rvy instead of vy as Table
3.2a shows. g
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4.2.1.3 Source Term

Recall that the SOurce term is giveh-by Eq. (4.8¢)
i.e.,

ystv. (4.8¢c)

: = A 3 A -
ST S s s

- A+ A -8
pre e D¢rw W S¢en n $0s
The form of the sourge term for each quantity iS'different

in character so we ekamine ST for each quantity separately.

4.2.1.3.1 Axial Velocity vy,

From Table : we see that
_ X oy Tyl o K
ST = Spr = IH (?T)avg \Y : o o (Uﬁ30)
where
Ty .
(Tr)avg is the avgrageAshear stress, and

DH;is the hydraulic diameter,.

4,2.1.3.2 Kinetic Energzy k
From Table (3.2a)
‘ . . v, )2 dv,)2 '
* T Z T Z : A
=S V_= -] + — - .
ST=35p"p [(“rz>P[ar»]P (”ez)p[raeJ .EP]VP (4.31)
For reasons of numerical stability the energy dissipa-

tion term is calculated from Eq. (3.42) i.e.,

(4.32)

Thus

st = [ o3, fa—\ii] 2 () [EV—ZJE\}VPfSP-kP 3



where

Since

" Then

where

4.2.3.1.3.3 Energy Dissipation e

From Table (3.2a)

E

=M

ST

SP -

b.2.

T

1.

3.

oV

4y Rad%%%mleoQity Ve

"From Table (3;2a) we have

e 2b s

S

or

Z

(
l;“g

R

100

(4.34)

2
= (4.35)
(4.36)
(4.37)
(4.38)
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Thus Eq.,(u.86)_becomeé'

e
ST = A‘-N{VI'W + (p/p)w} - Ae[vﬁr—g + (p/p)e]

('v'2).

5 . o
Yoo : | (4.30)

P

The ST value for the point (i,j) is given in Table 4.4,

.4.2.1.375 Velocity Vo

From Table (3.2a) we have°

eff ov

S, = =v r , Lo (4.41)

¢I‘ ro 36 . ‘ .

Sge = 29, = rve’ - r(ve® + By | (4.42)
N . P S

Thus Eq. (Q.SC) can be approximated

v dv

_. ,eff r - eff
ST= Nl se (TRT)e he - Vrow (36 )
+ rpAnl:(v—'e—g)s+(p/p)sf(;;_2—)n— <p/p>n} EERCRED

The ST value for the point (i,j) is given in Tablélu.u.

1

4.,2.1.4° General Form of FDE

Y

. \
The general form of the differenﬁial equations of all

the quantities under consideration, has as .follcws.

\



102
(AP SP)g, =AE i $AN - g # AW 6 +AS.c ¢ +SU  (4.4ba)

whereé -

AE £ CE + DE : N

AW = CW + DW
| AN =.CN + DN | b (4.4bp)
$  AS = C3 + D§

SU = ST + SP%'¢P 'f ).

_ : ’
r v r r
| £ CE-+'E DE+ -2 cw+ Y DWw+ AN# AS for v
o ag E TP Tw Tp ®
AP = 4 . (4.4ke)
' AE + AW ¥ AN + AS otherwise

whereé CE; CW, CN, CS DE Dw DN, DS, SU, SP are ‘given 11

Tablétuié,‘4.3 and h:l.

'4,2.1.5 The Bundary Conditions

b 2.1.5.1 Quantltles k, €, Vg

4,2.1.5.1.1 Boundary I and II (Fig 4.1)

According to Table 3:2b

(28

36°1,11 = O | | B ~ (4.u5)

Where

¢ = k, € or V&

Numéricaily Eq;'(u.uu) is translated td

¢i,J+i fér Bounda?y I . -
(4.46) )

¢1;j=1$ forvBoundary II~ CooA
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4.2.1.5.1.2 Boundary III-

From Table.(3.2a)'we have

. (Bn)III =0 (H.47)

Integrating over thé trianguiar control volume shown in
"Fig. 4.4 and taking into consideration Eq. (4.47) we end up
A~with A

Pt = [} Y 2 ' 3\
(AP +SP")0p = AW * ¢ + AN 41 + SU
AW = DW + CW' - ‘
: - . (4.48)
AN = DN + CN'
AP = AW + AN R

Where DW;.DN are given from Table 4.2 and 4.3 respectivelyb

A .
CNt. | AN(ve)1 J+1/2 |
CW' = Ay
(v )i,J
sﬁv'= SU YBL ,’. * - ‘ (4.49)
: v - A 4 .
P ’ :
v
SP' = SP vgl ‘
P : ' J

~and A, An; Vp are given from Table 4.1.“SU,_SP_are'given
from Table 4.4, |

VP' is the area of the triangular control voiume under
consideration, i.e.,

ritriy .
(Vpid = (ri+l-+r ) sin AB-—(P try )Ae g (4.50).
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"It is evident from Eq. (4.49) that we have substituted for

s * %

% = /3

and similarly for ¢w? ¢n, Qsi

4.2.1.5.1,3 Wall Region

Axial Velocifx

At the yg line we will ‘demand continuity of the velocity
and the velocity gradient. -
The velocity gradient can be calculated numerically with

accuracy 0( r2) from the relation

')._ dr ) 2.’“]- (r3 - P2)(r‘u —I’3) ‘ VA 3,j - (ru - r2)(ru - r‘3) VZ u,j

' ru-+r3C*2F2 S | |
T rymTy)iry =Ty) (v)a,; - » (4.51a)
since - | |
(v = wmE-E (4.51b)
and.

d w |

(-VZ] u. . - - |
dr = o ’ » » (4.51c)

dr j, 5 kg | R

’ ' s * .
we can solve Eq. (4.51) for uj; and (v,), j numerically.
. b4 . . )

Turbulent Kinetic Energy and Energy Dissipation

kQIj and €5 are calculated erm the aigebraic relations

: >J
given in Table 3.2b..

'y
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4.2.1.5.2 Vr Velocity

Boundary I and II (Fig. 1.1

According to Table 3.2b
Bvr o ‘ :
(5glr,1r = ° o (B.522)

" thus numerically Eq. (4.52a) is translated

(vr i;j’= (Vr)i,j+1 for Boundary I‘ I
. o , (4.52b)
_'(Yr?i,j 3 (Vr)i,j—l for thndary'II‘J' |
Boﬁndary'III (Fig. 1.1) | |
From Table 3.2b we have
Veec 0 =0 4 . (4.53)

‘Numerically Eq. (4.53) can be expressed as we can see from

Fig. U4.4b. _
(B)s a1 (vpdy g = Ay 1 Vg)y 5 (4.54)
where A and A are given in Table 4.3,
Wall
From Table 3.2b we have
(Vr)13j =0 o |  (“.55)

" from the cbntinuity equation, since

ave ' A
38 = 0 at the wall

1t is
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which gives . _
(vedy g =0 v L (bs8)
as well

1

- 4,2.1.5.3 V9 Velocity

Boundaries I and IIT

From Table 3.2b we have
(VG)I 11 -0 o : (4.57)
Numerically we can approximate* (Wluh accuracy of O( ))

(Vg)y,2 =

, (4.58)
(vg)y w =

‘where'N is the maximum number of points for v, along the

tangential direction.

Bpundary'IIi

From Table 3.2b

—3— =0 ' . - (4.59)
This relation 1eads'to:&see Ref. 1)

B(rv ) oV : : , o
are' = 3% | (4.60),

Numericelly Eq. (4.59) as we can see from Fig,‘h.u6 can be
expressed
1(Ve)1,J_' i- 1(” Ji- -1,J ='(Vr)i,j"‘v )1,3- -1 (4.61)
r. =T 4 - A8

1

P

¥More accurate schemes for Eq. (4.57) have led to instabilities.
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Wall

: From Table 3 2b

(ve)l,J = 0 | . O (h.62)

'4,2.2 ‘Pressore‘Equation

Up to now we have obtained Finite Difference Equations
for the quantities vy, vy, vg, k and e.‘ What remains is an
equatioh for pressure which has té6 come from.the continuity
_equetion. ' - >

Here we wiii follow the procedure foiloWed by A.D. Gosman
[67}71] and Patankar and Spalding.[72].

o The ideé is ﬁhat the previously obtained‘equations for
Avr and've do noﬁ necessarily'satisfy the continoity euquatiohs;
.Thus pressure connections will lead to veloc1ty connections

' so that the oontlnulty equation is obeyed

Thus in order to obtaln a finite dlfference eqoation
for p/p~et<a particulér point P (see Fig. 4 2) the pressures
Pps Ppo> pw,.pN, Pg most change so that the- cont;nulty‘equat;on

is obeyed. Let the new pressures and velocities be

* ' ‘ )
= + - TN -
Pp = Pp¥Pp | |

p*=p +p' vE = v +vy!
E 7E E_ re re .'re
P; - pw'fpﬁ V;w - erffvéw ,4 &. - (U.63)
p§'=ApN.+p&' | 'V;n ; vrn.ero
p§»= ps-fpé | V;S ='Vrs«+v;s J
The continoity equation is
Aevréj-AWVf AV, - A veq‘= SMP. ‘ (U.6Ua)
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\
and

* * - ® _ ‘ :
Aevre"varw’+Ap!Qp:’A§V65 = 0 | . | (4.64p)

SMP is not necessarily zero. |
From the generéi-ﬁq,»(a,ﬁu) and Eq,.(4.40) we can see

- that the equation for v is (see Fig. 4.2).

re

(AP) Ve = length(n,s) * pp/p = length(nE,sE)  pg/p

+ other terms - (h.65)
o ; # ’
for Vre and Pg> Pp for'pE? pw~andv

By Substituting Ve

neglecting any efféct from the other terns we end up with

. r
* — P e 1 _ . ! : ~
Ae(vre Vre) = DPE 75 pP/p DPE pE/pv (4-.66)

vahd

DPE = length(nk, sE) A » . ) (4.67)

.(AP)g:” - €

WQrkipg'similarly‘wiph the other velocities,'sgbstituting
 the resultant equations into Eq. (4.64a) and taking into

 consideration Continuity Eq. (4.64b), we end up with

r

o -
DPE =L + DPW =L + DPN + DPS pl/p
- I‘E ?w ) P

' ' | o
=-pPE*£pE/petDBw pw/p'kDPva&/p-+DPS !pé/p
- SMP - o R (L4.68)
Tge'exp:eésion'for DPE, DPW, DPN;'DPS.at.the,particﬁlar point
(1,3) are given in Table 4.5. Equation (4.68) is the FDE for

pressure correction and has exactly the same form as EqQ (b.bby
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which-is valid for the other quantities. If we write -

(AP+SP)bé/p= AE » pp/p + AW+ p /o + AN = py/p + AS * pg/p +SU (4.69)

" where

AE = DPE )

AW = DPW

AN = DPN

. : ' rP I’P o o . (_’-l_.70 ‘
AS = AE —=+ AW ——+ AN+ AS ' S R
- E Tw o,

SU = -SMP

SP = 0 J

4,3 Numerical Solution

4.3.1 General
Recall that the finite difference equtions to be solved

are of the fdrm

(AP) ‘(AE) + (AW) (AN)

J i,Jd i+1 j 5 J 1 -1-j i ,J+1

+ (A?) i,] l,J+1 + SU, 1,3

AP51m+Aw+AN+AS |

AP, AE, AN, AS > O f » (4.71)
-where ¢»staﬁds for | | |

- v, the axial velocity;
vr'thé radial velocity;

the the tangential velocity
p'/P thé pressure correction

k turbulent kinetic energy, and

- € energy dissipation
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~ Equation (U.?l) is a non-linear equation since its
coefficients are function of the unkonwh quantities.

The behavior of a corresponding lihear quation of form
(4.71) is well known and a number of numerical techniques
exist that guaranteé ddnvergence. However in the actual
nonlinear problem,‘éhé applicability of such techniquesvis
not known. In the présent work our original purpose was to
‘use the numerical technique used in TEACH [71), which here
is dailed line iteration fechnique (LI). Actually LI gives
a relativel& good rate of convergence in the case where the
secondary flow is suspéndéd. However in the caée where
‘secondary flow is fetaihed we have difficulties due to the’
very‘low rate of convérgence, Therefore the secondary flows
solutions have been worked by using thé well known successive
relaxation technique [74]1. Both techniques as applied in

our case are describéd below:

4.3.2 Line Iteration Teﬁhnigue:£7lj'
In order to minimize the negative effect with respect
to convergence that the ron-linearity introduces, an under-

relaxation factor is introduced as follows:

- (n-1)

*¥(n)
®1,3

(n) - (1-uREL) L

[N + UREL. ¢

(4.72)

where

n is the number of iteration

UREL the underielaxation factor, and
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SN
o (n) is
1,7 -

as follows

given by a relation based on Eq. (4.71)

oy (n=1) ¥(n) _ e yn-1,(n) mi(n-l) (ﬁ)
(apy T3 el [ = e Tye g T

1,3 i,j ' n+l,] i-1,J
. - (n=-1) (h—l)' (n=1)  (n) kn-l)
T (AN)ixi  ¢1’3+1'+(AS) ¢i,j—1’fsi,J

Taking into consideration Eq. (4.73), Eq. (4.72) can be

‘written in vector form as

L (m) C(n=1) , r g e(n) L
[AJJQJ '+[B]j¢j+l +[C]j¢j_l 0
Where .
Qj = vector {¢i,j} |
’[Bjj.= diagonal {(AN)i’j}
.[C]j = diagongl {(As)i,j}
[s]. = diagqnal {Si’j-+l6%%%£f (AP)ij }_ |
- .v \\\\\\\\\\ :
[A]J = (Aw)i,j —(AP)i’j/UREL (AE)i,j

(4,73)

(4.74)

(4.7ha)
(b4.7hDp)
“(4,74c)

(L. 74d)

- (4.7ke)
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From Eq. (4.74) we obtain

(n-1)
=j+1

(n)
_+[C]j®j-l

93==-[A]5 {[BJ ¢ +ESJ“'1} | (4.75)

The inver51on of matrix A is made bJ using the matrix

factorization technlque [76]

.H.3.3 Succesaiye.Relaxation and Successive Under-~

“relaxation Technique

This'technique is a point iteration technique The

underrelaxation factor is again used here.

(n-1)

o{m) o (1 UREL) ¢, "

453 + UREL * ¢1(?) 4 O (4.76)

where ¢i(n) is now given by the relation.
3

1 =1 1 1
(AP)‘“ %9 (g) (AE)‘“ Jolns j-+<Aw>“ oi%1 5
(n-l) (n-1) (n) (n-1)
+ a7 oM s (as) (D) glne )

4,3.4 Line Iteration vs, Ecint Iteration

' The application of Line Iteration Technique in cases -
without secondary leWAcreates no problem with respect to
gonvergence. Trylng to solve the secondary flow w1th Line
Iteration Technlque had led to 1nstab111ties. The insta-
bility can be removedkby using underrelaxation factors
below o 5. From running the first 1000 rterations, it was’
,clear that an extremely high number of 1terat10ns is needed

to ob ain the solutlon It was also ev1dent that the

underrelaxatlon faCLor reduces the.rate of . convergence.



For illustration we have taken the 51mp1e llnear

problem of the lamlnar flow with P =57.5mm P/D==l.l2u
and T _/p=2.7 x 1072 an underrelaxation factor of 1.0 to
0.5 has been studied. In Fig. 4.5 the CPU tlme requlred
in a IBM 360 computer as a functlon of the underrelaxatlon
factor is clotted: A grid of 29 x 16 points has been used.
An accuracy:of.vZ(I= 5, J=5) up to 3 decimal points has
been usedAes'a convergence criterion. From Fig. H.S we .
‘can see that an UREL =.0.9 increases the number of iterations
for solution 15 times! Figure 4.5 snows also that the Line
vIteration Technlque combined with an underrelaxatlon factor
0.7 requires more time for the solution than the point
iteration technique with underrelaxation factor equalvto
unity. |

The above'example iilustrates that a relatiVely fest
technique (like Line Iteration Technique) combined with
an underrelaxation factor probably is not the recommended
technique to get fast solution. Some slower technlque |
(like succe351ve relaxation) with better underrelaxation
may be preferrable. A |

That is exactly the case with secondary flow where-
solution of secondary flow has beed"obteined faster with
successive relaxation,teChnique (UREL =1.0).

Thus in the present problem recommended'technlque for
the problems wlth oecondary flow suoprossed is the Line
iteratlon Whereas for the secondary flow solution the

Successive relaxation technique is recommended.
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4.3.5 The Convergénce Criteria

.~ 4.3.5.1 Convergence criteria in TEACH [71]
In TEACH the following quzntity related to convergence

criteria 1s defined:

_[ o (m) o (n=1) (n) ..
Yo = [12,3 l(AE‘)'i,;J; ®iar,y t ALY Py

(:.n;).; (n-1) b’ (n) (n-1) .
+ (AN)kx% 5 g% Y (AS) 5y L3-1 (4-78)

x (S¢)§?3 - (AP)(n) ¢§n Pt }

where
n  is the numbers of lterations,
% is a normalization constant
AE, AW, AN, AS, S are the coefficients of the
finite difference equation for the.quantity ¢,
The criterion: for terminating the iteration’is
| X, < € | | (4=79)
where € 1s a specified sufficiently small number.
An additional ecriterion is related to the7continuity
equatibn»andxis expressed as; follows
ﬁ ﬁ. B 7 v d(vol)
iij control volume at (i,]) — | < e (4.80)
) : ' .

=0 Dy

where QM is again, a normalization constant

v 1is the velocity vector.
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Although the above criteria seem to pré?ide a cofrect
plcture of‘convergence, ﬁhey make selectlion of ¢ rela-
tively difficult, since it is determined by the coeffi-
cients of thé diffefence equation of ¢ rather than the
¢ itself. In'the present work, the convergencé'cfiteria
have been selected to be easier and simpler than the TEACH
apprpach aﬁd-to take 1into consideration the»pecuiiarities

of the present problem. ,

jh.3.5.2 Present convergence criteria

In the presént.work fwo criteria bavé been established.
First,
(n). _ ,(n=1)

91,5 = %13 , -
A nax < 1.0 x 107°

(4.81)

%
~where ¢ is also,a normalization constant reflecting the
size of:A¢.

¢ stands for v,, k, € and v,

QIHhas:been selected as follows:

Axial velocity: ¢ = ﬁb

Turbulent kinetic energy: ¢ = ('rw/p.)avg

. = 3/2 '
Energy dissipation: @ “,(Tw/p)avg/DH |

v, velocity: ¢& = 0.1 u

. Ve b

. For relatively fast converging problems, which is
usually the case for problems where the secondary flow 1s.

neglected, criterion (4.81) gives sufficiently accurate
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results. For some slowly convergént caseé, however, which
includes the secondary flow cases, the above'cfiterion'cannot
be met although the solution is accurate within .1%.

For such cases an alternative criterion based on more

than‘one iteration, the following formula is used:

(R+ND) _ _(n). |

: lv'zl,“iS,JS ‘ Z,iS)JS ..<_ 1,0x10-3 . '(4.82) ‘
" where
ND = 60 for the: line iteration scheme
ND = 500 fop-ﬁhe successive relaxation scheme

(is,jé) 1s a preselected point A
Criteria (4.81) and (4.82) have been found to gﬁaranteé
"~ accurate enoughbsbluﬁtqns (i.e. within .1%) for all
convergent cases. | |

" The convergence and the accuracy is also'tested by
successive print outs of the quanﬁities at g parpicu1ar

point. This is alse done in TEACH code.

h.y Computer Program |

Té.bbtainAthé solution of the Fiﬁite Difference Equations‘
a computer,pfogram has: been written. Its maih structure 1is
based on the TEACH;code wﬁére subrbutines-caleulating the
grig, tﬁe wall thicknéss, and the average velocity are
modifiéd'versions Qf the code used 1n Ref. i. -The code

structure and listingﬂare'described in detail in Appendix E.



CHAPTER 5
RESULTS AND CONCLUSIONS
5.1 Experimental Results

5.1.1 'Data-eraluation

All the measurements performed for the estimation of
the ouantities vz and vz were characterized by good signal
to noise ratio and therefore the results were satisfactory

- The lateral measurements (1.e. ,» measurements involving
Vs and v]_components) are characterized by relatively low
signal to noise ratio. ince the Derformance of the Fre-
quency Tracker deteriorates with the decrease of signal to
noise ratio, lateral measurements are characterized by rela-

tively large errors as pointed out in Chapter 2. 'The reason
| for the low-tofsignal ratio 1s attributed to the rather
complicated geometry of the test section which for'theSe
particular directions can bring the signal below the satis-
factory level. For measurenent of the vV, component in the
gap region particularly, the measuring voiumeliies relatively
close to the wall. This is because the largest dimension
(0.66 mm)'of_the beam intersection volume lies across the
gap reglon which is only half the thickness 3.175 mm. The
close proximity of the measuring volume to the wall degrades
the signal due to actual intersection and reflections of
'beams from the wall into. the measuring volume.
Under'these circumstances one can‘summarize'the data

evaluation performed in the lateral direction as follows:
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'Quantities v;; Véi Although’their size level seems

»to be'reasonable,ithEy give erroneous results for quanti—-
ties like vJ/v' and ?;2~V£2. Specifically at some points

v /v' is greater than one whiéh is wrong. As a consequence
of the relat ively large errors, entrance effects cannot

be distinguished i

! L
Quantities vrvz, VGVZ For the quantity vrv' the

results seem reasonably good, close to the gap up to a
distarnce of l.2 mm frém the wall. The results of measurements

closer to the wall give unacceptably low values for v'vé-
The reason is attributed to the low signal-to-noise ratio and

| to failure_of the turbulent processor to respond to the
‘:“bursty" nature of turbulence closevto the uall. Actually -
final measurements fér points closer to the wall have not
been performed.‘ |

One positive characteristic, however, of the cross-—
'correlation measurements was that the noise carried by each
signal 1s highly uncorrelated.. To be more~specific, the
Values forvvgvg along the zero shear stress line were close
'to zero which means that»the ncise present ln the signals
vl; v, and v, 1s almog&t uncéorrelated. ThiS'suppcrts the'
Suggestion (871 that results based on continuous Doopler
Signal are best cbtaiﬁéd»by collecting the signal in two

‘different“directions and correlating the outputs.
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With respect to the quantity VeV, due to 1tq relatlvely

small size and the greater deoendenCL on v2 components, ‘the

results are characLerlzed as rather 1nconc1usive.

5.1.2 Fully Developed Region

'One of the questions raised in [l] was whether the data

taken at L/DH’=_77 corresponded to fully developed flow.

Figure 5.1 shows the velocity v, normalized by the cor-

reSponding'maXimum channel velocity, at positions 6=0, 12°

‘and 30° as predicted by P. Carajilescov [1] at L/Dy = 77 and

in the'present vork. at positions L/DH = 77 and 113.
Figure 5.1 shows that results taken in [i]_were.actuaily

in the developing region. Also Figure 5.1 shows the positive

- effect -of the entrance section fabricated and used only in

this etudy versus [1l] to reduce the entrance length.

With respect now to the question whether the position
L/DH = ll3,lies‘in the developing region, one can distinguish
in Figure 5.l4that there is a flow development from L/DH = 77
to L/DH = 115 which is, however, of the order of the-experi—
mental error. Therefore, we accept the data at L/Dy = 113 as
data correspondlng to fully developed flow w1th1n ererlmental
error,» |

"All the data taken are tabulated in APPENDIX C.

Experimental results for axial vealocity v, and tﬁrbulent

axial veloeity Vz ir the fully developed flow (L/DH = 113)
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are given in Figs. 5.2a=5.5¢ for Re=26,500 and 65,000 and
in thélFigs. 5.13 aﬁd 5,14 fqr Re=G,000 at ¢=0°, 12° and
300, " | | |

Experimental resuits for radialvReynolds stress and
turbulent kinetic edergy are given in Figs. 5.6a-5.9¢c for
Re=26,500 and Re=65,000 and in the Figs. 5.15 and 5.16 at
8=0°, 12° and 24°. |

Attempts also have been made to estimate wall shear
gtress from thevlogarithmi¢ law (vz=g* ln(Ey*); k=0, 42,
E=9.8) using'tﬁé measured axial velbgity at points closest
ﬁo the wall. The logarithmic léw.as applied in §3.3.5.3.1
was used to calculate the bulk velocity. Average shear
streés'and“bulk-veléciﬁy data are given in Table 5.1. Wall
shear Stress distribution is given in Figs. 5.10, 5.11,
5.12 for Re=26;500, 55,000 and ¢,000 respectively.
5.1.3. Déve10ping Region

'Thé entranbe effects on the axial velocity-ahd its rms
Va;ue is clear as we eén see in Figs. 5.2a-5.5c where data
“are presented at positions L/Dy=15, 46 and 113. To 1llus-
‘traﬁe'the combined effect of flow development and flow
split, all quantities are normalized by'the.maximum
velocity at L/DH=113 for each RéYnolds Number. |

It,ié clear from the aiial velocity resﬁlts that

a) a flow split éffect is préSent, i.e., higher flow
rates for higher L/DH becaﬁse side subchénnels experlence

lower flow rates than the interior subchannels. Fig. 2.1
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.shows that the present test section consists of twenty (20)

characteristic triangles of the type of Figure 1.1, four (4)
of whlch are side trlanalew.

The flow spllt effect also can be- seen in Table 5.2

where the bulk.veloc;tles are given.

b) ‘Flatter velocity ptofiles 0ccur'for emaller'L/DH
-as expected'

c) The turbulept axialeelocity is also developing as
Figﬁfes 5.4a-5.5c show. However, the difference in
turbulent ax1al velocity 1evels between L/D .46
and 113 seems to be ;mall.

For the other measured quantities itYis'ratﬁer difficult

to make<anY'definite conclusion based on the experimental‘re-

sulte regarding development effects. One can seevthis from k

srixr ¥

and VeV, data plotted in F‘:Lquree 5.6a-5.9cC.

Comparlson between all experimental data obtalned in the
present work at_pos1tlons I_,/DH = 46 and 113 show that the quan-~
tity mostly affected by'the‘ehtrance length is the mean velo-
city. This Suggeets thenmean velodity profile‘as the most re-
liable criterion of the onset of fully developed flow.

'4With respeCt~t6 the wali shear stress distribution, we ap-

plied the logarithmic law as we did for the fully developed

‘flow. The results are shown in Figures 5.19 and 5.11 for

$3=26,500 and 65,000, respectively. Of coucsé, use of the

logarithmic law to descriite the velocity distribution in the



122

| developing region 1u not strictly correct.l However'it was

'_done to explore the behavior of wall shear in the develop-'

ing region sinceInanv experimenters ‘may have inadvertently

applied this approach to data in the developing region.‘

a) In the position L/DH-HQ the wall shear stress
o distribution 1s. pretty much devnloped

b) In po;itLon L/DH 15 a dip 1ls observed towards
ithe position 8:=309 for Re=26,500. For Re=65,000 there
.is a dip tendency between 18 and 240 but reversal of the

dip occurred at @: 30O _ These" results raise the question

tlwhether the shear stress distribution d*ps that appear

f‘:ein the literature, representing Iully developed conditions

-actually are associated with developing effects.~

- 5 1 3 1 Flow Split ‘ |
As is mentioned in the previous section and we also

:can see from Table 5 2 and Fig.;5 J7 there Is a flow

'difference in the flow befween side and central subchannels‘

in tbe test section.". .
: The values for the ratio ub/u for the position o

: L/DH¢113 were 1.13 and 1.08 for. Re=26 »500 and 65 000

'crespectively..f :

The above value are close to the values suggested ,

by the equal pressure split which 1s of order i.36 to 1,40
‘;for turbulent flow shown in APPEMDIX D, | |

¢ g

.‘ .
. A o e oo
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5.1.4 Secondary Flow

An attempt was made to measure the secondary flow
~in Re=65,000 but with no success. |

| The first negative result came from Vg Vvelocity .
measurements along the gap (6=0) which yielded values of
order 2% of the maximum velocity instead of the theoretical
.zero value. |

Such resuLts are attributed mainiy to |

a) Frequency Tracker Error which;is:of order 3%
of the maximumjvelocity.

b) Low;signal'tojnoise ratio.

'e) fest'seetion inclination errors. Actually snch |
errors coﬁld»not be higher than O.Solwh1Ch introduces
aimaximum»error.of'0.9%. |

All iateral velocit& data used were below 3%

l.e. within'experimental.error. It is evident from
Figure 5.18 that data are 1inconclusive with respe¢t to
secondary flow. '

| The'present data have been obtained with higher:
errors than those.in [1]{ (4% vs. 0.67%). The reason

is that P. Carajilescov probably had a better signal to;
noise ratio which‘ailowed the use of relatively small

' freqqencylrange (500KHZ vs. 5.0 MHZ for the'present case)
The difference in signal to noise ratio can occur |
due to different Laser Beam arrangements. In this case
the measurements in [1] were performed by a Dual Beam
Mode instead of Reference Beam Mode used in the present

approach.
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5.2 Ahalytical Preéietions

5.2.1 The Turbulence Models |

Before entering 1ht6 any discussion on turbulence
model prediction thé duthor wants to make clear that the
turbulence models are not thé~tools for‘uﬁdérstanding the
turbulence phenomené'Which dre terribly cdmplicated but
are engineering tools for predicting useful hydfodynamic
quantities. Thereforé ohe has to examine their drawbacks
and merits from this point of views

The most attractivé fe tures of turbulence models as
pointed out in Chaptef 1 are the following:

a) The ability‘ﬁb use- turbulence parameteré (e.g.,

"turbulent kinetic energy, energy dissipation for -
ﬁhis_pérticuiér case as part of thé model).

' b) The relativé sifplicity and flexibility to handle
complicatéd problems since the prediétions are based
on constant adjustments. | |

-Such an approachréf course has some disadvantages.

a) 1In reality for any given'problem of npn-homogeneous

| turbulence, the constants are hot constants but
parameters-@hahging.with position and flow charac-
‘teristics. Thé seleétion of the constants is made
by best fit to data. The author's experience from
this work is #hat 1t is very difficult to reduce the
error made ih the predictions below 3% for mean veléci-
ties and 5410% foér other turbuient quantities. The au-

thor's opinioh 1is that such error 1évels are due to the .
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_change of constants with position aﬁo
flow characteristics which can be affeoted
'i'little by moré Soohisticated'modeling of the
turbulent oquations at least for oddy #1soosity
'mooels'(i.e.,up'to 2-equation models). |
The constants are not universal but depend
in‘general on the problem under consideration.
Such a orawback can be enhanced by errors
introduced inimodeling of the various terms
in theAtransport equation of some tﬁrbolento
quantity-due to oversimplicity of the
turbulence phenoména.
More than one set of constants fit the data
of any pafticular-problem. An 111gstrative'
example is shown in Figure 5. 19 where'pre-m
dictions are obtained for the geometry of this
thesis by using the constants of Launder et al. (95)

and Hoffman (96) which are as follows '

Launder et al, | Hoffman

e, = 0.09 Cy = 0.09
& = 0.b2 ' : k = 0.41
cy = 1.44 ey = 1.81
o = 1.0 A | gk = 2.0

g

¢ =13 %= 3.0
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Both sets of constants look reasonable and '

yield identical results.

However, on. the positive side if for some
fparticular experimental set you have a number
of constant sets, you can single out a set
that fits the experimental sets "acceptably"
well. At this point two questions can be posed
1) Is that set of.constants "universal"?
11) Is: that set of constants physically
ICerect for that particular family
of experimental sets?
With respect,to first question the answer is
"not necessarily" for the reasons discussed in

(a) and (b).

With respect to the second'question the answer'
1s again "not necessarily" for the simple reason‘
~that even 1f something is modeled wrong1§ or
'indadequately two or more wrong constants can

‘have offsetting effects yielding the right, answer.

fJHowever there is a’'third consequence of the

ffrelatively high number of constants. There is a }

“"4ﬂdanger that one can come out with a particular
set of constants that fits only one particular

, experimental set adequately.‘ .f_h" - T PR S

,-_,_“ . A " .

. fﬂ The immediate question which arises from the abovelfQ';~i:?&'h

discussion is
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How useful are the turbulence models with above
advantages and disadvantages for prediction of flow in
areas of Nuclear Engineering and especially 1n rod bundle
flow prediction?,

In developing the turbulent model of this thesis
the following guidelines have been adopted;‘ '

| a) ~ Accepting that the constants cannot be universal
'there is a need to define the family of problems for‘which
'a particular set,of_constants can give satisfactory results.
v We will consider at least the flow‘through-a rod bundle,
" the duct flowuand“the flow along a cylinder as belonging‘

to the»same.family on‘the grounds that.they'have one.main
direction of the flow This decision leads us to -look |
for experimental constants that fit simple one-dimensional
flows belonging to above family (i.e., plain tube, circular
pipe).' At this stage we are obliged to pick something
already existing in the literature. Ve will accept the
Launder et al. constants on the ground that probably they
are the nostiextensivelv tested.

Parenthetically it is noticed here that more systematic
work 1s needed by analyzing a number of simple,geometries
at various Reynolds numbers and by ildentifying if:possible
all sets of constants applying to a particular case.' |

b) _In Chapter 3 and in Figure 5.19 it has been made
clear that utilization of an 1sotropic eddy viscosity model
does not yleld good predictions. ' 4 g ' '

Therefore the anisotropic eddy viscosity model intro-
“duced 1h-Chaptep 3 will be used in the remainder of this

chapter tc predict the data.
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~c)‘ The geometric peculiarities of the rod bundles
will be reflected in the eddy viscosity model, e.g., the

constant cL in Eq. (3.63)»can be expressed as a function

of P/D ratio.

5.2.2 Seccndary'Fio%‘

For the'seCOndary flow calculations a 30 x 16 grid
has been used. The geométrical characteristics cf the
'experimental set has been used witn~an input acerage wall
shear sﬁress (Tw/p)an s 4 x 1073 m2/52.(Re=26,000).
For normal stresses the models mentioned in §3.3.3 are
used, 1;e.:

a) Launder and Ying model as expressed bylthe
Equations (3.47a) and (3.U7b). |

b) Bobkov et al. modél as expressed by the
Equation (3.10). |

In Figure 5.20 the velocity vy at y=yB is plotted for the
above two cases which shows that case (a) gives a 3 loop (!)
system~and caseA(b) a 2.loop system. The latter is in
egreement with P. Carédilesccv's [1] predictions. Figure
5.21 shows the prediction of ve velocity along the 6=24°
radial line for both cases. o

Figures 5.20 and 5,21 show clearly the significance ,
of the normal shear stress modeling in prediction of secondary

flow independent of how well the rest of modeling has been

done. -
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However both predictions have in common'ainegative
loop close to the vicinity of 6=0 which is smaller in
strength compared with the positive one at larger 6

However we cannot consider such predictions as
conclusive for the following reasons:

a) The 2- eq-model (as well as the 1-eq model)
as pointed out in the previous section, due to.over-
simplification’of the description *of turbulence, is
a relatively rough engineering tool for predicting flow'
characteristics.(i.e.,mean’velocity, Reynolds stresses,
‘turbulent kinetic energy). It is therefore very unrealistic
to use suCh a model to predict some detailed features as
secondary flow which is purely a turbulence phenomenon
(there.is.no secondary flow in laminarlflow) and is of
ordele% (or oelow for some regions) of the mean velocitv;'

b) The 30 x l6lgrid used for theApresent calculations
is rather inadequate due to the existence of sharp v

3]
especially at 8=30°:(Fig. 5.20) and at the wall (Fig. 5.21).

gradients

However increase o& the grid requires more computer storage
and exceedingly high computer cost. The solutions presented
-here already required 4 000 iterations and 90 min computer
time on a IBM 360/65.

¢) __The small magnitude of the calculated secondary
flow can be affected by computer round-off error_although both

cases are run with double precision.
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In spite of above negative conclusions, one question
still remains - | ‘

Is the secondary flow as predicted by-the-2sequation
turbulent model important in prediction of other hydro-
dynamic quantities and especlally of the mean velocity
which is the most important parameter? Or at least how
important is secondary flow compared with anisotropic
eddy viscosity as introduced in the present work° These
factors are compared in Fig. 5 22 which shows v /u along
the 8=0 radlal line.

The anlsotropy is much more significant than the
"secondary flow effect Under these circumstances further
;investigation of secondary flow has been deferred Such
‘decision haslalsovbeen:prompted by the high computer cost
due'to.the very low convergence rate. Ail subsequent data :
predictions are made with secondary flow suppressed
‘5.2, 3 Data Predictions

As mentioned before all the predictions presented
'below are made with the 2-equation model and the aniso-
tropic eddy viscosity as. Introduced in Chapter 3.

_5 2 3.1 Numerical Grid ‘

‘ The-adequacy_oﬂ‘the numerical grid is tested by examina;'
tion'of*the ratio of calculated average shear”stress to
input average wall shear stress. The correct value of course
~is7unitv uhich is expected to be met with an 1nfinite grid
However due to use of a finite grid the rat*o 1s always

less than one.
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* There are two wéys to 1mprové that ratio:
i) Grid point increase
11) yB 1ncrease.
 How yB affects the shear stress ratio is 1llustrated 1in
Figure 5.40 where the above ratio is plotted vs yB for a
j30 x 16 grid. | |
| In present calculations a 56 x 21 grid 1is used. The
y; parameter has'beeh éelected_basgd on the folibwing cri-
teria: |
a) To be as close to the wall as possible.
'b) To glve a wall shear stress ratio_around30.95 (1.e.,
a calculation error' for shear stress of order'S%). The
selection of above ratio has been on the féllowing'grounds:
1) Quantities like v,/u are affected very little
}by the above ratio. _ : ' ,
'_11) Quantities 1like vrvé/u k/ug which are affected
the most by the above rafio are not measured‘betterséhan-
5% in present measurements. |
1i1) A finer grid than 56 x 21 is ﬁeeded to increase
' the abdve'wail shear stress ratio which means highef computer
‘cost. |
| . The values of y;,uSed in the present‘analysié aré given
1n Table 5.3. All solutions are obtained by a Line Iteration

scheme.

5.2.3.2 Present Data Prediction

‘The present model has been tested against the present
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fully developed data (P/D:®1.124, Re=65,000, 26,500 and 9,000)
and with mean axial Velécity predictions by Eifler [19]

(P/D=1.08, Re=52, UC@Q-:TPupp [(80] (P/D=1.20, 1.35, with Re=

49,000 and 60, 000 réspectively) and ngllstrom [82] (P/D—
' 1.217, Re=149,000):

The above data Are Pepresentative of a Variety of P/D

‘ratios (1.08 to 1.3%) ahd Reynolds numbers (9,000 to 150,000).

?igurés 5.20-5.34 $how tean axial velocity, Radial Reynolds

' stress, Turbulent kinetie energy and wall sh@ar stress distribu=

‘tion predictions céompaPed to the present experimental results

(i.e., P/D=l.l2u, Ré=65§©005 26,500 and 9,000).
Figﬁres 5.35~5-39 8how fiean velocity predictions of
Eifler's data, Trupp"s data and Kjellstrom's data.
~The above résul%é Buggest that for P/D 5 1.20 a value

for cL around 0.4 wheéreas for P/D < 1. 20)°L has to be

increased. This actually is 4n agreement with the experimental

data obtained by Rehiwe t@@] in a 'side éubbhaﬁﬁel with P/D=1.07
which suggest an eddy viscosity along the zePd shear stress
line of

T _ 10 = 0 1#

v, = (0.10 = 0.16) u#}
Using this ekpressidh Tor ¢ in relations (3:39), (3.58) and
(3.50), we find .

ey, = 0.55 to 0:9 |
A relation for C, consistent with above evidence satisfactorily

fitting the above data (P/D > 1.08) is the following

cy = 1.62 exp (-17 -(P/D-1)) +0.4



133

All data predictions shown in Figures 5.23-5.38 were made with
above relation. It is worth pointing out here that'althougn
cL=0;M gives less accurate resuits, it gilves more'conservative
heat transfer resnlts as shown in Figure. 5.39.

The~degree of success of the analytic predictions 1s a
function of the Reynolds number range. |

a) - High Reynolds Number Predictions (Re226i500)

The mean axial veloécity and the wall shear stress dis—
tribution predlctions are satisfectory. The predictions for
_;V; end k'seem reasonably good although more accurate measure-
ments are needed for more ‘definite conclusions. |

b) Low Reynolds Number Predictions (Re=9,000)

The predictions for v_ and k are not as satisfactory

z
as for the High Reynolds Number. The predictions for vivy

r'z
and 'l’w/(‘l’w ave

for Re=9,000 support the approach of modifying the'2-equation

are reasonably good. The present predictions

turbulence model to take into account Low Reynolds Number
effects already initiated by other investigators [e g., Ref.
97]. For example Jones and Launder [97] introduce some posi-

tion dependents of the constants close to the wall.
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‘5.2.Uu-Heat Transfer Calculations
Two region (clad + ooolent) heat*tranefer calculations}
have been performed tOfexahine the effect of enrsotropic
viscosity as 1ntrodu@ed:1n the present work versus isotropic
yiscosity working\with"fhel2aeouation turbulence model.

' The calculations“have ‘been performed with the following

.parameters A
Coolant : : | Sodium
: Clad ; , _ .Stainless‘steel
Pitch ratio © p/pel.10
Rod, Diameter ‘ ' D=0.25"
Inner Clad Diameter Dy=0.22" _
Average Wall Shear<Stress %¥_7 =0.325 —; (Re=86,000)
avg s
Linear Heat Generation Rate q'=15 &

-%11 material properties=were‘taken at 1000°F. For the numer-
- 1cal solution a grid of 30 x 16 points has been used. The
Finite Difference Equations used are described in Appendixll‘
B. A ratio of heat dinusivity to eddy viscosity equal
to one for both radial and tangential directions was used.

* Phe numerical calbuletions have been performed by the
:jCOmputer Code deuelopeﬁ in the present work ehdtdescribed
in Appendix E. ' | -
In.Figure»S.hO‘%%e;non—dimensional‘quaiity Ac'--,————--r-—-—
is plotted versus angleswhere T 1S»the~1ocal outside clad
’temperature, T&o is the average outside clad temperature and'
ic 1s the coolant heat conductivity.

Eigure 5.39 shows the strong effect of anisotropic
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max_T

shows a dif-
cn co

eddy viscosiﬁy4where the Qalue of T
ference almost 2 to i. Figure 5.39 shows clearly the impor-
tance of anisqtropic model ofleddy viscosity~iﬁ turbulence
models for heat transfer calculafioﬁ as demonstrated earlier
by other 1nvestigators [9&], [32].A
' 5.3 Conclusions |

From the present work the following.éonclusidhs can be
drawn. . | |

On the Analytical VWork

1. The'2-equation turbulence model as presently formu-
lated can be‘éléatisfactory engineering tool for_pfedicting |
dseful hydrodynamic quahtities (i.e., mean axial veloéity,
Reynolds stresses, sheaf stress) in a rod bundle at;high
Reynolds numbers (presently, it has been tested satisfac-
torily with Reynolds numbers above 26,500). The model does
ﬁot seem to be a‘sufficient tool for prediéting secondafy )
flows in rod buﬁdies. | .

- 2. The model haé been used to successfully‘predict
the data obtained in this study and published rod.bundle
data (principaliy axlal velocity) utilizing one*chsigtént
set of constants for l-dimensional flowlfrom the literaﬁure.

.3.' The introduction of eddy viscosity anisotropy through
length scale ratios, while keeping the model éimple, also
makes-the-model.inherently extendable to 3 dimensions. |
(One can foliow the‘samé logic¢and:1ntroduce a length scale
1- similar to 1, for axial diffusion.)

z |
4. The strong effect of the anisotropy in eddy viscosity
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on heat transfer calculations shown by other investigators
is also confirmed in the present work by the present model.

On Numerical Work

-1, . For fully de?eloped flows solved numerically using
average velocity inpot instead of average shear etrees input,
the answer 1is a fuocpion of the numerical techniquelused due
to the finite number of points. 'Therefore, use of an average
velocity input is not recommended. |

2. A relatively fast numerical teohnique (like the line 
Iteration Scheme used in TEACH code) eoﬁbined with an under-
‘relaXation factor 1s not necessarily recommended over a com-—
., mon point iteration technique without under-relaxation.

On Experimental Work

1. Experimentalvdata on mean axial velocity v, and the
aesociated rms value vé‘in the test seotion used show clearly
the presenoe of a developing flow-region.

2. The flow split model based on equal oressure drop
and. fully developed flow predicts higher flow rates for the
interior subchannels close to those measured (within 10%).

3. The data'é_ugg;est that the safest criterion of fully
developed flew occurrence is the mean velocity profile.

y, Calculations of wall shear stress-distribution using -
the experimental data of the axial velocities at the points

closest to the‘wall.and applying'the logarithmic lew indicate
| that dips observed in the Vicinity of 6=30° may be aseociated
with the developing reglon of the flow rather than vith the

fully'developed region.
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CHAPTER 6 |
RECOMMENDATIONS FOR FUTURE WORK

From the experience drawn from present wcfk the fol-

lowing recommendations for future work cén be madé. 

On_Turbulence Models and Flow Predictions

1. In the preéent work the representative constahts
for l-dimensionalAflow are taken from Launder et al. [67].
which are.based on ﬁbest fits" of cgses representing oné
~and multidimensibnal flows. . Re-examination of the 2-equation
turﬁulenée.model prediction in l-dimensional flows‘(plane,

_ tube, circular'pipe, annulus) and identification of all -

reasonable constant sefs that. fit the data seemsjnedessary.
Reynbids-number effects on-constants.need to be studied
especiall&Aat low Reynolds numbérs.
2. A neﬁ radial scale has been infroduced for the
wall régipn which seems to be reasonable for the non-logarith-
mic region very close to the wall. One hés to examine how
this can improve predictions in the hydrodynaﬁic-quanfities
1w1thin»ﬁhat region since-this thesis has been focused ou€4 .
side this region. | ‘ |
3. The eddy viscosity gnisotropy'introduced in the
" present work has significant effect on flow predictions
and 1s consistent withlexperimental evidence. ‘All pre-i
- dilctions done in 2-dimensibna1 or 3-dimensional flows using
1sbtropic viscosity turbulence models (likg recirculating-

]

flows) could profitably be re-examined with the present
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anisotropic model.

b, AThe present model as fofmulated is easily extend-

able to three dimensions. It can be used ‘to predict pre-

'sent<eXperimenta1 data in the developing'region of the test

.section used.

On Numérical York

1:. The Up;Wind+Derivative Diffefence Séheme'(UDDS)'
used in present work 1is superiér‘to,Upwind-Différehce-»
Scheme (UDS) since it is one-order highef in accuracy.
Existing codes using UDS can be modified to use the ﬁDDS
scheme. | .

2. 'Pfesent célculations show that 1in order for the
wall shear stress (or equivalently‘the‘axial velocity
gradients) to be calculated to better than 5% of the true
value, a large number of ¢rid points (larger than 56 x 21)
is recommended. Tﬁis poses a drawback to'the'finite dif-
ference schemes. Otheriﬁethods like Finite‘Eiement methods
need to be examined for similar floh céléulations; |

A3. The computer program developed in the présent
work works withlpreSSure and velocity-(instead of vorti-
city and stream fundtion) and therefore can be félatively

easily extended in three dimensions.

On _Heat Transfer Calculations
In the present work some heat transfer calculations
were performed to sﬁudy the anisotroplc eddy viscosity

effect .in heat transfer calculations. More extenslve
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- studies aré'needed to'aétﬁally predict heat‘trénSfer in

the fully developed flow.

On Experiments‘

The méésurements In this thesis wefe perfbrmed by a
' 2=channel LﬁAAworking bn Reference Mcde usihg-ffgquency'
Tracking Techniques. i | |
Charaéteristicléf the above measurements wéfe-Doppler-
ambiguities, instrument noisé, low performance of the
" turbulent processor near the'wall,’and low performanQe‘of-‘
4the Tracker at low signal-to-noise ratio. |
Using thie same LDA'equipﬁent the.fpllowing improvements_v
can be made. ’ |
. 1. Substitute for,ﬁhe tracking technique at leést
" in one channei other techniques which have a be#ter per-
formahceAaf léw signal to noise ratic (e.g., by spectrum
'anaiysis or individual particle techniques. ‘
| 2. Look for bettér wéys of turbulenée signal prdées-

sing.

On Secondary Fles
| 1. Direct Meésurement
-Measurement of the secondary flow is»é raﬁher difficult
task. The‘obiious reasoﬁs are that the mean values of |
secondary.vélccitieé are much smalier than ﬁheif rms values.
‘Apprpximafe\calculatioﬁs of the rétio‘of secondary flow .
rms value'ﬁg mean Valﬁé assuming

V4 = u* = 0.05 v, (6-})
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: ! | 5 for v, = 0,01 v '
: 9 _ 6 * b ’ .
o 0 10 for v_ =

6 0.005 LY

Thﬁs.an experimentalist heeds an instrument that will
‘reépond properly at 1nstanténeous Qelocities at least
t3vg (1.e., +.15 to 30 V) and will measure at the samef
time correctly the'meaﬁ‘vélociﬁy A/ itself.

quélly thewwider the range of the 1nstrument;'thg
less‘gccurate is the‘méasuremeht of small quéntities.
ABesides the above drawback the relaxivé large magnitude of
vé requirés high'inﬁegpation time which poses éaditionai
demands on test section cdimensions and mean axial velo-
,city magnitude as follows.
- Recall that the error made due to finite 1ntegration

time assuming a Gaussian Distributioﬁ is given by the

relation (Eq. 2.4).

. _ N .:_': l. ‘-_ - -» o~ . ,. 'A
%o MEas Vo _ ‘_’_ifz‘(g) 172 6.3
. v SOV T . ' o °

8 . » .
where F is ‘the time’scale of the turbulence. Taking
v (v 5 -V, S
L 10 and —2 MEAS -a~=10.2 (1.e., 20%)
v v
Eq. (6.3) gives

F = T/5000

Taking further T = 100 sec, |
| | F = 0.02 sec | T (6.4)
Recall that:

Fo- Test section dimension
) . v'

8
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For - . F =20.02 sec

and . Vg = O’.OS’Vb

we find that
vy 2 1000 (Test section dimension)/sec’

This result represents the required v necessary for a

b
given test section dimension to keep the error within 20%
- and the measuring time equal to or less than 100 sec.
| For Test section dimension 5 mm: vy > 5m/ss |

~ For Test section dimension 10°mm: vy 2 10m/s.

- The above preliminary calculations suggest use of a
test section as‘small as possible and use of air as}a
wcrking fluid to more easily achieve}this'minimum required
velocity. | | |

Future attempts to measure secondary flow in rod bundles

have to take into consideration above restrictions.

2. Incdirect Measurement and/or Predictions
In case direct measurements of secondary floﬁ is not
possible, a mixed‘scheme of experimental results and analyti-
: cal calculations can be used as described below.
1. Measure mean velocities and Reynolds stresses.
-11. Fit the above data with analytic expressicns
sensitive eriough to give confidence that first and second
derivations can be extracted. ﬁote that both tne data
and the analjtic expressions must be sensitive enougn.
111. Utilize the above analytic expressions .in

the ccrresponding Reynolds equaticns by performing the neces-
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sary differentiations to obtain the analytical expressions
for the secondary flow.

The author's deep belief is that no existing turbulence
model can confidently predict secondary flows which are

of the bulk velocity.

On Methods for Reactor Design
1.‘ The present model 1is easlly extendable in three
dimensionsw It can be used in reactor design for flow and
heat prédictions in Iocal reglions of special interest
(e.g., hot spot, blockage) by isélating them and applying

boundary_conditions‘from a Lﬁmped Parameter Teéhhique.
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Table 2.1 Summary Table of Measurements in Rod Bundles (Taken from Ref. 1)

' # ' -3 Velocit Turb. Cross= T
Investigator . P/D L/DH Re x 10 y Intensity |Correlations | "w Techniques
[ . L . . T :
‘ Axial | Second. zlr]® v'v viv! v
: S reden 1.05 139 | 15, 30,50 v/ ' o
Eif%;r,7§§jsing 1.10 90 15, 30, 50 v/ Pitot tube
» 152 1.15 65.- | 15, 30, 50 v/ :
Eifler [19] 1.08 | 137 10-152 v/ Pitot tube
1.05 154 18.8-81 Y Y/
: Subbot%?;]et al. 1.10° 100 18.8-81 J/ / Pitot tubgﬁ
1.20 72 18.8-81 V. / | Preston tube
e : ‘ A ) " Hot Wire
Kjellstrom [82] 1.217 81 149-373 ./ 4 AR ARS v v Preston tube
Hall & fgg‘;g“-‘-‘-ngsm 1.217 | 81 270 Y v Hot Wire
R 1.20 51 12-84 _a Viviv / / | Hot Wire
Trupp & Azad [80] 1.35 30 12-84 A YIV|V v " Pitot Tube
1.50 20 12-84 o VvV v Preston Tube
1.25% | 85t | - s0-200 v/ v
: 1.11* 117 50-200: v v
Rowe [81] - 1.25% 90 50-200 | v /1. LDA
1.25** | 105 50-200 4 a5
1.25 | 138 50-200 24 v
Carajilescov [1] 1.123 77 27 v a LDA

# All data for triangular array except where mentioned otherwise
*% Square and triangular channels in same test section
t Based on cross section hydraulic diameter instead of subchannel

% ‘Square Array.
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Table 2.2

'TEST SECTION GEOMETRICAL CHARACTERISTICS

Parameter | Symbol | Size

Rod diameter < | D 51.15
Gap - o K- 6.35
Pitch/Diameter ‘ P/D - 1.124
~Unit cell hydraulic B, 20.12"
diameter ‘ A ' :
.{Cross ‘'section hydraulic Dy 16.375
- diameter '
‘Onit c¢ll area o 6,132 % LO-S

. . ‘Total cross sectiohwaﬁga) 1.346 x ;ﬂf

152

Units

PRI,
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| Table 2.3
' LDA OPTICAL PARAMETERS
Parameter : '~ Symbol Value ~ Units

‘1. Refractiée Indices

A;r - 1 o n,2  1.00
Water o ny, - 1l.33
Plexiglas n, ~ 1.50

2. Lase? |
Wavelength ' A 0.5145 > u
Beam Diameter | Do | 1.5 ,'f ‘mmi

3. Optical Unit .
Focal'Length . . 120 .

Beam Separation R 2a 40 ,ﬁmm
E Half-Ahgle between Beaﬁs |
in air :. ' 0/2 - 6.64 degrees
in ﬁaﬁei - ‘ ‘. B/2  4.99 degrees
' 4. Beam Intéisection (Fig. 1) o )
| Diameter of the Beam aﬁ | 2b. 0.053 '_mﬁ‘A
Waist 4 o o ' '
 width o 20, 0.053 mm ;
" Height o 26,  0.053  mm:
Length B 20,  0.610 - mm
5.. Calibrgtién factor o
cm—2 | c . 2.224  ws/EZ

Zﬁgsin g
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) ' ' ' : VI UnS V'V‘ ‘.
Re Vz. ’vz yl vln v2 v2 vi 10 vw v' 2,zv'
‘ ' ‘ : 1l z 2 p 4
FREQ RANGE | 4 5 9.5 |0.5 |0.5 |0.5 {0.5 | 5.0 | 0.5 [0.5 |s5.0
- (MHZ) - : )
o ann | SHIFT 0.25] 1.0 | 0.05 |0.25| 1.0
' 9'000 (rmz) Q. 05 Qo 05 0025 0025 0.25 » Y - - .
| TRACKER | DISA [DISA |DISA | DISA | DISA| DISA| TSI ‘| DIsA |prsa | DIsa
FREQ RANGE | 1.5 |1.5 |322/]22/ 5.0 [ 5.0 [ 5.0 [ 1.5 [5.0 5.0
' 1o, 7 07 — ’ =
26,500 | SHIFT 0.15 0.15 |2 2l 1.3 1 1.3 [ 4.0 | 0.15 [o0.15 .0
TRACKER | DISA |DISA |pIsa |prsa|Tsr | Tsr | Tst | pIsa | prsa | rst
FREQ RANGE { 5.0 5.0 5.0 5.0 5.0 5.0 5.0 | 5.0 5.0 5.0
. 0. . . . . . Y . b -
65,000 | SHIFT o Jo.o (1.3 1.3 [1.3 [1.3 |1.0) 0.4 [2.0 |o0.4
TRACKER TSI TSI TSI_ TSI TSI TSI TSI DISA ATSI DISA

Tab1e12.5v Frequency Tracking Arrangement
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TABLE 2.6

“(v',) ay (in mV) FOR VARIOUS FREQUENCY RANGES

Frequency |
Range.

Tracker | 1.F BANDWIDTH

(ﬁﬁg) S Y § 43 8% TSI

3 0 | .

; 0.5 b« 60 20 80

i pIsa ,gwmem“,d . h» ng,
? | L.5 f 22 36 56 81

: >-0 - a - -

=
T

TST 5.0 | | | T




Table 3.1 Parameter [ (Taken from Ref.

39)
Author L - & Turbulent Viscocity
Name Definition - .
' 1/2
: . T k 2
Kolmogorov [3] Frequency f=c kz} Y ;E=k1/ L
Rotta [45] Length-energy L= kA Duct Flow
A product . :
Rodi & Spalding Length-energy L = k2 ol 1/2 % Pree shear flow -
[46] product ‘
: !
Ng & Spalding _Length-energy - 10 T_.1/2 :
[(67] product L = k& v =k 2 Boundary Layers
Wolfshtein [48] Length-energy L = k2% \)T='0.22 kl/2 I One-dimensional flows
product
1 9 \)T=a2k1/.2 : Ii'igh turbulence version of a
Glushko [44] Length squared .| A = 7 L - : low turbulence model applied to
‘ 0.2<0<0.8 trans. flat plate boundary layer
Harlow & Naicayama T k2 1/2
: T Dissipation € =0.2 —=1.41 k L
[41] € '
: . T2 High turbulence version of a .
Jones & Launder Dissipation € \)T= 0.09 k- low turbulencé model applied to
[50] : € L
_ 4 _ '1aminari.z_1ng boundary layer
Wilcox & Alber Vorticit 2 T k 1/2 < .
[51] square_dy Q vV =g= k L Boundary layers

LST



Table 3.2a The Differential Equations
henérdl Forms VoV + AT, = VS, + Sjt'
Genéral Form V¢l A’? ) S 6 o

T .
Tor 1 Tee | Ser | See -

A Pl »é (2
o, or |~ o 1 | o T ' Vrz

| | 7 I ' | TR N A S

eff : ef f ‘ ' Cerk |Vedor | T Y

v : 4 . . )
o or . g 96

gsT




Table 3.2b Boundary Conditions

PARAMETER I I1 III NEAR WALL REGION
4 ov ov ov av .
—=Z = —£ - —2-—Z% tg0 Logarithmic Profile:
Yy rdb rab 3r rog &Y g ‘
Vr VT Ve T ne Vsec =0 Vr |wail =0
aVSE(.‘.
Ve Ve~ Ve~ m 0
SN ) SN OSSN | S
re6 = | a6 or ~ rag &
J€ o€ Je 0
€ b rab ar tgh -

dr raf

68T
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TABLE 4.1 Control Volume Lengths and Surface
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TABLE 4.2: THE DIFFUSIdN COEFFICIENTS

$= k,E,Vz Ve
r, .+r : 4r (r,+r, )3
BE 0.25 rﬂ‘ll—ri 08 T, . -r, . 46 321‘ - (11"-"1 -r
14171 14177 4-1 141 14
+ N3
BW 0.25 At B! A8 (rytryy)
Tt P PP 321’1_1(1’1-1'1_1)
BN 0,25 AL Ta-1 _ T 141”41
BS ' ry 48 2(ri+r1_l) I AB
e | (455°).,, 7 (468"
DE | =E [veff] +{veff] BE + v i e
g
"¢ rz i+1,j re i3 +“[\)eff] . {veff}
' ) rd 1,] 1 r6 1,]
BW (v:;f] | [\)e;f}
1-1,] ™ Ji-1,5-1
BW'
o | o | [ ) Wy ety
0 141,] 1,3 : + ["re } + [Vre ]
1,j-1 i,
[ effy effy
. : e .["re ] g {Vre ] . :
o » - LV sk 1,5 .
[eff eff _ A :
DN R [Vez ) [vrz ] BN = v
¢ i,3+1 i,]

ff £ff '
* [_"59 }1-1,‘;[\)56 ]1-1,34-1}

191



PABLF. 4:2: THE DIFFUSION COEFFICIENTS (Continued)-
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I Ny Y £ A 2 § NI “DE ~DW - “_ DN « - o
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TABLE 4.3: THE CONVECTION COEFFICIENTS

Coeff ¢=k,€,vz,1‘c ‘P""r . ¢:v8_
[(r1+r1+1)('1+1'r1)("r)1+1,j {’1(’1"1—1) E" 141 ey j] {(‘1f’1+1')(t1+1 )[(" diw1, 57V 41, 3- 1]
ST RACALTS LALLM j] "1-1“1“'1-1)[(%). 1t )1 j_l} *rgry 1)(‘{’1-_1)](";)1 770 4,541 }
. Ae L] —A—e L] A_e
kD 4 16
'y 1-1"
= (vg), ...*t(vy) C -
_ (r,,,-r, ) . 8 874,i+1 Y7871-1,j+1 r r,._
1+417F4-1 L : Ti+1 T4
7 0 e [(" >1,j+("')1+1] : Ty T 16 [Ve)i,j+l+2(v8)i y*vedy 4 1]
* (Ve)i,j+(ve)1—1,j] ;
' Ti41 ,
CE (lay1-8)/xpyymep) (la 1= )/(r1+1 -V (ay1-2) Tyt |
: i
o INETSIETR (a1 +4))/ G-t ) (a1 +a) 2L |
(Ial+a)/crp-r, ) L DA LR L COE T
CN ’ (lAZI_Az) |A2|’A AIAZI-AZ
" cs |A2|‘+A2.A Ayl +a, &, +4,
g - 0 0 1
Convection term CT = | CE| i ]c+cw[ it ']0+C\‘+c's ¢, . -CE T ~CNG, L, - €SO .
| onvgc on te i +1 R RS | ¢1+1,j i-1,j j+1 i,j-1-

€91



TABLE 4.

L s TP R R TN

4: SOURCE TERMS
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TABLE 4.4: SOURCE TERMS (Coritinued)

su sP
. eff eff. eff eff. . .
Ore 241,57 Vre i1, 5-17 Ve V1,5 A R AL ) )
- ' 7 5 Velisl j Ve, g1
eff. - eff. . eff L eff. i , 4
g 4on, 5700 Va-1,4-17 Ve Vi, 517 Ve 5,5 Tt |'(v') ) o
- —— — V1,57 Ve 150
r (r D) s —.‘
1417501 2 2
+ CE |:(ve 1,j-1 (p/o) ~(vg )1,3' (P/D)i,j]
A ']
Source Term' ST = SU - SP ¢, '

T



ATABLEfH.S

Pressure Coefficients. (Eq.
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4.68)

Q.U’ANT/ITi |

| DEFINITION

COMMENTS )

DPE,

is

> 1s

given 1n

referred

Table U l )

thvelociﬁy

e

DEW |,

is

is

gi?eh in:

referred

f&%leru.i

to velocity v

I+ pEn

is

giveh in

reférred;

Téblebu}l

to melocity

DPS'

is

is

giﬁen‘in

referred

Table .1

to.velocity
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 TABLE 5.1

CHARACTERISTICS OF THE FULLY DEVELOPED FLOW.

Nominal Re 65,000 26,500 9,000
Actual Re | 64,810 26,549 | 8.924
. B 'A
4 : Q&*)« o E -1
Bulk velocity b (m/s) 1.975 1.103. 3.67x16 .
N . ) " .
| 2 _ _ o
|Wall shear stress 7}[97 1.04x1072 | 4.12x1073 | 6.56x107%
»

(#calculated from the logarithmic law (k = 0.42 E = 98)

' (*,;The wall region represented by the 1og'arithxﬁic law"



. 'BULK VELOCITIES (m/s) IN

TABLE 5,2

THE DEVELOPING REGION
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I ™>™L/pH
JRe N\

O (Theg:

retical)

15

46 .

e i

e —
55,000 1,829 1,.830 1.95 1.975



TABLE. 5.3

y; SELECTION FOR THE NUMERICAL CALCULATIONS

169

149,000 : ; 100

Author P/D Re | "yg
Presen£ 1.124 65,000 . 60
Present 1.124 26,500 45
‘Present 1.124 9,000 20
Eifler 1.08 52,400 60
 TrupPand Azad 1.20 ‘ 49,000 60
Trupgand Azad 1.35 60,000 - 60
lKje:llstrom N . 1.217 |
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{T1iI

Fig. l.LCharactéfistic triangle for thekstudy of
' fully developed flow in an 1nf nité
trianguldr drtay of bare rods



171

‘Fig 2.1, Cross Section of the Test Section [1]



Fig 2.2 Ovérall View of the Test Section
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Fig. 5.3b. Axial Velocity (Re=65,000, 8=12°)

|
Symbol L/DH
o 13 °o
=S 46 yel - ©
- ©
15 O A
e _’ °
o ©
©
o . ® @
- ° °
¢ o
- ® Typical
0] : '
- . Error
©
: Band -
o ]
o PY
<
~ o) ®
©
° | y/y
0,0 0.5

O

56T



| symbgl  L/DH | L o
o 113 L | |
- T

o
9

: Z.P , - - . . R | . {O : - ' . .y ‘{.yl .
@ Typlcal
_—l' o 4 I - ' . Error

Band

| , | y7y

. ol

.@
D

G61

0.0 | R | 0.5

. Fig. 5.3c¢. Hormalizod Axial Veloclty (#es65,005, ¢=30")



I 'Symbol  L/DH - Ty
8 v!
o) 113 I =z
. u
o 46 o
° 15 -16.10
; 'T'yp‘icl:'ail, -10.68
L Error
¢ 8. Band
® .8. =15 0
s 8 |
® e B ge-o
® @
-1G.42
b
0.5 4 | y/§ .oy
: . . . : G000
Fig. 5.b4a. Turbulent Axial Velocity (Rez26,500, 0=0°) ’



o a

~ Symbol . L/DH
© 113
e . Wb
) © 185

$o

8 ®© | ’ Brror

@1
¢5-
@x

QQSII

Typical

& : | - Band

y/§

h=-al
o

1.0 s,

Fig. 5.4b.. Turbulent Axial Velocity (Rez26,500,

0=12°)

951



‘ : S £
L/DH S - - I Yo
113 . A
46 —0.10
.15
: Typlcal
Error
Band ..Ofpa
° 4.8. —10.06

o
@ .

o 8 - o.on

0.5 vy 1.0

— — 0.29
Fig. 5 l4c. Turbulent Axial Velocity (Rez26,500, 0=30°)

661



o ey -

" Syiibel . L/DH

0.0 | E d.}s"r

o 123
=N U6
9 15

BE e ekt
Efpor

Bahd

® $o
¢ ¢
¢ @

v/

&

Fip. 5.5a. Turbulent Axial Velocity (Re=(5,000, ¢=0°)

S

LU

o
)

002



l .
. ) L
Symbol L/DH 15
0 113 | Yo.
© 46 - —.10
® 15 .
Typicél 1. .
' , —$.08

Error .

A Band
fo) o e} o (o)
' © e o)
© .06
® © | < © o o
° ® * o € o
, ° o

e o = o o o

© & S °o

o -

o -

.02
0.51 = y/y 1.0} b 0o

Fig. 5.5b. Turbulent Axial Velocity (Re=65)000, 0=12°)

ol

102



L/DH

113
e
15

0. 5]1

' "F-‘I'yfpi(:a"l .f

Ervor

Band

/¥

® $o

I PRSP
My

Pig. 5.5c. Turbulent Axial Velocity (Re=65,000, 6=30°)

<
Cyv

) Ol

(]
rn

0 G3

coc



Fig
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APPENDIX A

THE FINITE DIFFERENCE moRM oF
THE CONVECTION TERM IN FLUID ®Low

ALl  Introduction

It ié known that & feéneral wav of snlvine for any
sﬁecific'ouantitv ¢ defified within o mdvin# fluid is to
obtain a finite differehce ecuation from the corresnonding
differgfitial eoustion and solve it numéricallyv. ﬁéuallv
the tifie<independ&fit finite difference ecudation has the

form

¢1:jik N cl+j-3.] :k ¢i+1,,1 sk ¥ ci,j-}-l,}:"bi"j}l"k ¥ R
$3d5k+1 %45 i+ “1-1,9,k ®1-1,9,¢ ¥

/ ) : \ - (A.1)
T SO U T R L P Py i,k-1 ¥

The syétém of B6. (a.1) 1s often elliptic and has to
beAsolved 1terétiVéiy. On the other hand, the system is
noniinear in'most €a%es sinéé the coef‘f‘ici':en’?tsAcij can-
change from iteration %b Iteration. |

Of course thz waj

Or c¢onncern is %o use‘ﬁdmericalAtech-
niques which unéoh@i%ﬁ%ﬁallv guarantée tﬁe gonvergence of
En;'(ﬁ.l). Howevéﬁglﬁﬁé te the comnlexi#v (<2 ﬁhe non?linear
éffectslsuch nume #1631 %ecﬁnioues are ﬁif5icult to find.

e

One wav to a®bPeach the nrohlem is to tre £5 suaran—
e 0 awi am is b " Eo pruaran
tec the converrense &% Tq. (0.1), assurine 4% is linear

and then find wavs tH eone with the mon=1irearity, Tn

- Such 2 case the £irst Wuestion to bhe astad is "Ts the

.



2u7
syster ¢ lincar QUH“1]OP\ corrasnandine to Feo (A1)
'c'criver*.r.r.ent'?""~ This, of course, denends on.the tme of
coefficients the cij}s are,
Mne idea widely used 36 1s that ir the'c, ,

obew the condition
Cial, 1,0l ley qur ol # ey g el # ey 1,1 0]
ey sl +ley i -1

then convereence is cuaranteed hv = numker of iteration

technicues [737.

i]

‘he only term in eauations of the twpe (A.l) thaﬁ
create dif?icx7 ,eé-within the restriation (A.z)*afé the
convection terms. |
in,thé remainder of this Anpendix dchusslon vill
be limited to thp convective term: ahnroximptions.
Conoider an orthoponal svstem of coordinates. (xi,.

X.5 X ) and a ’luid with densitv stendv with time.

Yithout loss of generality we will 1imit'ouf discussion

to the narticular direction, e.;., the x, direction.
Interrating over the control volume shown 1in Fig& A1

the convection tearm {~T) in X4 directioﬁ éf a ph?sical

oﬁantifv,-é, is eiven by

(CT) = (_ol\)e Vie %% —'(oé)w Vj?'¢.

“where A is the flow mer unit veloecity.
v, is the velocitvy 2lone the Airroctinn i,

The natural wav of anproxipatinge by .nd'éw as we

(A.2)

(A.3)



b+
i 4 o)
e 5= + 0(A o) |
and ‘ . A o (a.l)
% 4p 2 | |
¢w = = # Oe(AX‘_,)
This is the central dif“‘m"enc° scbeme (CD ). Tt can be
easily shoun that sueh a scheme does not alwavs obéy

condition (A.2). It has heen found that such an a2onroxima-

tion has led to Instabilities ’[801_. [o0].

3

o) _rorlde for an aporoximation ohev*nv condition (£.2)
the - uo—"*nd d*’”e"ence scheme" (UD]) h=s been in u”OﬁUCPd
PSS AN Sl

FlTJ and has been widelv used, e.e., 3], rguy  ry? ™n

this case

. ¢p ) =) when Vie > Q
€. A¥ : ‘ . ,
¢ + 0(*?3{_ when v, <0

and similarly for @wd
quch an annrox*mat1on 2lthough it ohevs condition (2,2)
is less accurate than the CDS by one degrese of acquracv.

This means that obwiously a higher number of npoints will

02 reauired to g2t accurate enougzh results. - ”owevev ‘in
Some cases the fel@timeTv low degree (lst order) of ac—»'
curacy in the UDS might lpad to fnpocurate results [91].
.One wav to owan@ome tbese.drawbacks of‘the akove
.two'séhemes is tosune some mixed %chnme of cénﬁra dif-

foerencine and uPW1nH ﬂ1’f?r

.

ncina., The code= ooLa fa2]
and YARR-TT [43] Imtroduce an input raramater such that

OAs a < 1



. e = 9 the central difference scheme is nged
wthen

o 1l the unwind difference schare is used.

Thé code TEACH}[?I] used the followine m*xed scheme. 1In

- case the diffusion is the dominant mechanism, use the
’ central difference scheme, whereas in case the convection
'mecﬁanism'is domihéht,‘use the unwind diffsréncepschemé.
‘Even wiﬁh these imnrovementé‘there rerain caseéhwhére'
UDS has to be used.'
In our worlk we héve introdnced the Unwiﬁd Derivati&e
Difference Scheme (UDb?) which is second ordervécéurate
‘and obeys condition (8.2).
1.2 The Ubwind Derivative Difference Scheme
. o ,_The.seqohd order aoproximation of 4 and ¢  can be

written as follows

-t
Il

. 24 : ' e«
¢y + (x=—)p == + 0(—=) _
e P 5§E'P 2 I (A.6)

A ) 0 P w
P (aii)P —— + (=)
then
T = f a 1 - AY -
(C‘)i ¥o ‘o‘)efie (o T
' (AT)
o - ' 3¢
+ (pA)eVieAxe_+ (pA)wVi‘AX (BX )P

The contribution of the first term in the richt hand

|

side of Ea. (A.7) is zero due to “he continuity conditian.
Thus the net contrirution of the convection term in the

i direction is




(CT1); = (o8) Vo X
- \ . ._\T

let -

then
ve further annroxifaté

ol by

Undnr anmrox1mati

(c

F; @?AT) ¢D -

pan]

(CT')E
where

CE

h A v\‘..’w‘
&

Ay N F £

C e, % B

X . l 1 ':.... et .m»::.j:... .
cw = 0.5 .
: - By
and CE, C¥ are pos1t*vo num

B

(A:18) 4

-3

hus, Eas:

and are second ordéw ﬁ@ﬁuré

to

. . . e mgei s o
nrahleéms | Aur exreFIAHER N

+~

inTinite triaroulsP

ran=e of canverrend®

=S

5 tn

: ; 24
* (o?) Viwmxw ‘(af_)P (r.3)
i
(A.9)
(4.10)
(X ) 19 A s oa

(Ah11)

l_lc
e

Ea. (A.10) can bé‘written’as

CEé, - CVo,, (n.12)

'(A.13)

obev condition (£.2)

o

t&. and therefore sunerior
hoint of view. ith re

LA G

worl in secondawer.

shaw that the |

b, he minaor,
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. ABPENDIX B
HEAT TRANSFER CALCULATIONS
B.1l ‘Génera&AEquatiéﬁg
B.1.1 The Coelant Réaléﬁ
The time smoothed HB&E ¥ ‘“ﬁsfer}equatidh 1 ] assuming .

sy »

time-independent préPettids can also be put ifi the general -

form of Eq: (3.67) ix®:

AV T_ + DG = S* | (B.1)
VT + b, = st .
Where f"i% tHe cool#ht tekpsr ature
V is the velocity V&8ter
"\ n, L
dc = (qcr' qce) : ' (B.2a)
" BTé e |
= - 2 :!.{;"Es - . .
Ger oy 57 T FeVg _ . ) (B.2Db)
n . AT, e
9c6 T T %°H 90 (B.2c)
Oy is the heat’
‘Q .
S = - <l: bé‘ (B.3)

is the coolan

& is the coolant‘?ﬁé@«ilc heat

P
qg is the average'ﬁﬁﬁﬁ flux in the ocutside surface of
‘the clad given by th& ¥&lation
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% = 75 B - e (B.4)

-

and q' isrthe Linear Heat Generation ratio (heat generation

rate per unit length).

,Tévé and_Tévé are the turbulent diffusion terms.
. A.widely used approximation for modeling the turbulent
diffusion terms. is to treat them similarly to the turbulent

momentum diffusion terms. Thus in our case we have

: 3T o
TV = - L2 _C (B.5a)
cr UT ol :
T . : . .
: \Y T . 1
Ay =__£6_ - C \/
TcVe 5., I8 (B.5b)

'
&

where O is the heat difoSitivity to momentum diffusivity'g

ratio and in general can be a function of position and flow{

W

characteristics.

. o \ \ -

.B.1.2 The Clad Region . 1 ;
The clad heat transfer equation‘also can be put in the

‘ ' 2 X! "

general form of Equation (3.67) with only the diffusion

term as a non zero term i.e.- i

Vg, =0 ST | | (B.6)

LA

>



n aTc‘l
L aT ‘}f),
n _ c
qcge AerTa6 “?'7")
°
an%7kcz is the clad heat conductivity. , :
B
B.@%B The Boundary Conditions . ' P
o o ' : : - o
't 'The boundary conditions for all the symmetry llne§ are
written as . . | " A
To. 3Tq, ' ' '
1 el 'an = 0 for all symmetry lines (B.8)

s
; .

)
i
3

(n is the unit vector perpendicular to a Symmetry line)
The boundary conditions differ at the walls where temper-=.
ature gradients are developed due to heét generation in the

, i
fuel.

/

B.L;3.i Outside Clad}Sp;fage

In this case the obvious boundary conditions are {

. temperature and heat flux continuity i.e. Aé
a ¢
ﬂ Tc = Tczx ?3‘9)
1 yf
i H
A JT AT _ |
J el = = e R ’ T :
T ey BT ‘e TX . ' ' (?.10)
where 1, 1s the thermal conductivity of the cecoolant. .
; ; 3
$
i !
A w8 '§ ‘ N A » fal
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B.1l.3.2 Ihside Clad Surface

For the inside clad region we assume heat flux -uni-.

formities i.e.

= const = FSL ; . (B;ll)

where Di is the inside clad diameter

B.1.3.3 Temperature Level~ R
Since the boundary conditions fof this»problem are

tempe;ature gradient conditions, the resultant solution

will yield the relative temperature distribution between 4‘

points but not the absolute temperature levels. To obtain v,

the absolute eemperature levels, a copstant temperature |

is algebraically subtracted from the #emperature of every

point in the field. This constant temperature is obtained

as the difference between the calculated temperature and a

prescribed temperature at a given p01nt, the prescrlbed o

temperature being known from physical con51derat10ns.

B.2 The Flnlte leference Equatlohs
Since Equatlons (B. 1) and (B. 6) have the general form
of Equation (3.67) the procedure of obtalnlng finite .
difference equations for cooiant and elaé temperature is
quite similar to that of flow calchlatiops, v
The control Volume.of Figure 4.2 is aleo used here and

it is identical with that used for the axial velocity v,.



The equations have also the form (4.8d) i.e.
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(B.12)

DT + CT = ST 1

where DT is. the diffusion term given by the relation Y

» " v , -
PT = drefe B UwPw ¥ 9onPn ~ dgsPs 8143)
Lo

| CT is the convection term given by the relation

v , . .

'AeVreTce vaercw * AnvenTcn , AsvesTcs for Tc

CT = : .

1
o

H

-~

and ST is the source term given bv the relation

1l 4 w 1 '
pcp DH o ub VA" C .
ST = :
0 - for T
. “cl

"Ae' Aw’ An’ AS are given in Table 4.1.

.

B.2.1 The Diffusion Term

B.2.1.1 Coblant Regidn

¢!

. Taking equations (B.2), finite-differencing them
applying them to Equation (B.l13) we end up with

‘DT = (DE + DW + DN + DS)T - DE ° T

"c,i,3 cpi+l,j -

-DN T = Dbs " T

c,i,j+1 c,ijj-1

el

& L

e
3
(o))
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where f?of.
: ( Y-
DE = BE § “2a, '+ éL-’”{vz;] + [vié] + (B.17a).
L . ] '
' W
DW = BW § 204 + o (Vrz]. s [Vrz].,~ . l +  (B.1l7b)
b l i,] i-1,3 o
\ J
( | ’ ~
1 T (T ) -
DN = BN { 20, + = [v ] + [v ] + (B.l7¢c) -
. H oT | 0z i,j Gz i+1,3
L ‘ J
( ‘ 1
| - ms | 10T ) T
. ' DS = BS ZqH + 3 [Vez]. . + (Vez]. _ | + (B.174) -
i,] i,j-1
. . /

'BE, BW, BN, BS are given from Table 4.2.

B.2.i.2' Clad Region

Working as in the previous section and taking into

consideration Equations (B.7) we find finally

DT = (DE + DW + DN + DS)T - DE °

Cz,i,j Tcl,i“’l’j

= DWIop,i-1,5 ~ PN ° Top,i,j+1 = PSTer,i,j-1-
: (B.18)

where Sy !

- )

DE = 2BE Ay

; DW = 2 - BW A ~

Tl (B.19)

DN = 2 - BN A_,

‘DS = 2 ° BS A
: cl
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where

&

. BE, BW, BN, BS are given in Table 4.2.

'B.2.2 'The Convection Term
; . , | R
i For the clad temperature there is no convection term.

0

, For the coolant temperature the convection term is

A
i

identical in form with that for axial velocity v, i.e.

Q ‘ , | : !

; = [C + ;oL = TT . :

} CT jcg *+CW+CN+CS] T, ; 5~ CE" To,i+1, ]

: |

i ,

b T Te,ia1,3 TN T TeLi,54 T O T T 4,51

; . . (B.20)
where s

" CE, CW, CN, CS are given by Table 4.3.

B.2.3 The Source Term

For the clad temperature there is no source term:

For the coolant tempeiature the source term is given
’ : "

B Y
by (B.15). i ,
'5;2-4 General Form of FDE d
ﬁ ‘ - ' N - T ‘ z
ﬁ Equation (B.12) can be written taking into i
5 . i
génsideration Equations (B.16), (B.17), (B.18), (B.1l9),
b : I ‘
and (B.20) as ¥
¥ o 4
ﬂ AP .3¢P = AE - QE + AN¢NW+ AS¢S + AS¢S + Sp (B.2})
; . ) .
{
s
' (% PEUNY
Y e
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where | S - [ &

'AE = CE + DE

AW = DW + DW :
. - (B.22)
AN .

DN + DN
AS = CS + DS
For clad temperature CE = CW'= CN = CS = ST = 0
For the coolant temperature CE CW CN, CS DE, DW,
DN; DM,.ST»are.glven from ‘Table 4.3 and Equations (B.17),
(B.19), and (B.15). | |
'For.the clad temperature bE, Dw; DN, DS are given by

‘Equation (B.19).

B.2.5 Numerical Solution

It is evident that chation,(B.Zz) has the same form
as the general FDE for flow calculations (4.44). Thus
we can apply the same numerical techniques_we applied for
flow:calculations i.e. the Line Iterations scheme (>;4.32)
_ or'the succeesime relaxation method (§ 4.3.3). Although the

computer code bullt in the present worklun;both optlons

present calculatlons are performed w1th Line Iteratlon

4
>

Technlqueﬂ

e’
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-7, D gl - < N [ .. ST B Sl = 5 - R

APPENDIX C
EXPERIMENTAL DATA
In this appendix the exﬁerimental grid and the quantities

ired are tabulated.
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I= 13 14 15 (g XY : .
J
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3 0.0 C.C 040 . 6.CuUE JC
¢ 2.0 [} 0.9 3.LCC0E CC
L 2.2 (] R el
RE YNOLLS NULMHER= : 26,500 , 65,000
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[med
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‘ §.9055-01 8.319E-01 H.652E<D1 65926E-01 To201E~01 T,396E-C1 T+570E-01 1.723E-0) T, 7636701 T.8586-00 2.0 . el
¢ 14 15 TETA N ’ St .
© 9.028E~01 ‘9.122€-01 9,167E=01 3.000F 01
5 B.890F-01 8,753E-01 ‘8o BT6E-01 24400E 01
& B.3ITSE~01 B.4T4E-01 0.0 1« 8CGE O1
3 8.191€-01 0.0 0.0 1.2G0€ 01
2 0.0 0.0 0.0 6,000E 00
1 0.0 Cc.0 0.0 0.0
) -
REYNDLOS, NUMBER= 60125,
LENGTH/HYDRAUL IC DIAMETER= 15
~ & c e
ﬁv . - - -
P

wle



'o-o-t-o-o-c-t-‘c...:o.o-‘-t-o-"-o-c-a-o-'o- ) JURB “AXIAL VELOCITY/MAX VELCCITY -o-a-o-o-q-t-o-o-c-o-o-t-o-‘i-o-o-&-o-o-"'

C1s ] 2 £ I 4 5 6 T .8 9 - 10 o1 Y TETA
6 0.0 5.505E=02 5.024€~02 5.024E-02 4.830€-02 4.635E-02 4.,439E-02 &.340E-22 4.091E-02 4.782E-02 3.687E-02 3.37BE-02 30.003
5 0.0 "6 +454E-02 6.359E~02 6.123E~02 5.981E-02 S5.744E-02 5.505E-02 5,266E-02 5.121€-02 5.024E-02 4,537E-02 6.340€-22 24.00;
4. 0.0 6.454E<02 6.454E-02 6.218E-02 6.2656~-02 5.981E-02 5.5056-02 S5.410E-02 5.024E-C2 4.830E-C2 4.439E-(2 ¢.291E-22 13.0))
3 0.0 5.981E-02 S.T9LE-G2 S.TILE=02 5.649E=02 5.362€~02 5.121E-02 4.782E~D2 4.439E-02 4.041E-02 3.7893-02 3.585€-02 12.002
2 0.0 5.T44E-G2 5,505E-02 5.266E~02 5.314E-02 5.217E-02 5.024E-C2 4.T33E-02 4.241E-02 3.789€-02 3,4B2£-02 3,273E-02 6.000
1 0.0 5.601E=02 5.505E-02 5.457E=02 5.217€-02 5.,0264E-02 4.5375-(2 4,291&-02 3.789E~02 3,533E-02 3.273E-02 J.0 2.
I= 13 14 15 - TETA : : i
J

6 3.482E-N02 3.167€~-02 3.061E-02 3,006€ O}

S 4,141F-02 3,7896-02 3,738E~02 2.,4UCE Ol

4 3.890FE-02 3.789E-02 0.0 1. BUOE 01

3 3.378€E-02 0.0 0.0 1.200€ 91

2 0.0 0.0 0.0 6.0C0E 00

1 0.0 0.0 0.0 0.0

A\ J
REYNOLDS NUMBER= 66125,

LENGVI/HYDRAULIC OIAMETER= 1%

gle



o.ﬂt-o-;-o-a.-t-‘—o-‘o—o-‘-t-tyt~t-0-0-vo-t- ‘TURB AXIAL VELOCLTY/MAX VELOCITY : '-"‘-t-‘-t—.-‘-‘-t-O-t-.-.-.-.-t-o-‘ -t
2 3 . S 6 4 8 .9 10 11 S T 3 TETA

5.505E-02 5.024€~02 5.024E-02 4.830€-02 4e6I5E-02 4.439E-02 4.340E-22 4.091E-02 4.782€-02 3.6875-02 3.378E-02 30.00)
6.454E-02 6.359E-02 6.123E-02 5.981E-02 5.744E~02 5.505t-02 5.266E-02 5.121E-02 5.,024E-02 #.537E-02 4.340€-22 24,005
 6.454E=02 6.454E-02 6.218E-02 6.265E-02 5.981FE-02 5.505E-02 5,410E-02 5.Q24E-02 6.830{-02 4,039E-02 4.,291€-22 18.33)
54981602 S.791E~ 02 5, 791E-02 5.649E-02 5.302€-02 S.lZlE-OZ 4. 782E-02 4.6439E-02 4.041E-02 3. 7895-02-3.585€-02 12,000

5 T4AE<C2 02 5.266€-02 5,314E=02 5.,2176-02 5.02 4nT33E=02 402416=02 3.789E-02 3.482E-02 3.273E-02 6,000
'8, 601 E=02: 5. 45TE<02 502 1E-02 5.024E-02 44537602 4¢291E~02 3,789E-02 3.533E=02 3,273E=02 20 0 Jed
1 . TETA,
& 3.482E=02 3.167€-02 3.061E-02 3,00CGE O}
5 4.161F-02 3, 789€-02 3.T368E-02 2.4LCE OL
4 3.,890€-02 3.789E-02 0.0 1. 80OE - 01
3 3.378€-02 0.0 0.0 1.200E 01
2 0.0 0.0 0.0 6.000€ 00
1 0.0 . - 0.0 Q.0 ooo
REYNOLDS NUMBER= 60125,

-LENGTH/HYDRAUL IC DIAMETER= 15

N L R

9L2




—_—wSs VO N OO

-~
—

>
N WdS VMO ND OO

«“ &9 . oo N
$=0-0-0-0-0-0-0-0-0=8-0-0-8-0-0-0-0~ AXIAL
| 2 3 4 H 6
0.0 9.186E-01 9,351E~01 9.458E-01 9.575E-01 9.T41E-01
0.0 8.,797€-01 8,939E-01 9,104E-01 9,222€-01 9.363€-01
0.0  8.56LE-01 8.726E-01 8,939E-01 8.,986E-01 9.127€-01
0.0 7.995€-01 8.278E-01 8.526E~01 8.675€-01 8.833E-01"
0.0 7.264E-01 T7.818E-01 8.137E-01 B8.349€E-01 8.467€-01
0.0 6.840€-01 7.571€-01 7.925€-01 8.160E~01 8.337€-01
0.0 §.495E-01 6.863E-01 7.500€-01 7.7956-01 8,014€E-01
0.0 5.8736-01 6.934E-01 7,429E-01 7.783E-01 7.958€-01
0.0 4,788€E-01 6.321E-01 7.075€6-01 7.500E-01 7.T736E-01
0.0 6.014E-01 6.840E-01 7.323E-01 7,623E-01 T.863E-01
0.0 6.014E~01 6.B16E-01 7.311E-01 T.642E-01 7.858E~01
13 14 15 TETA
9.991E-01 1.001E 00 1.CCOE CO 3.000€ 01
9.8356-01 9.858E-01 9.858€E-01 2.700E 01}
9.658E-01 9.670€-01 0.0 2.400E Ol
9.287€-01 9.399E-01 0.0 _24100E 01
9.175€6-01 9.151€-01 0.0 1.800E 01
8.915€-01 0.0 0.0 1.500€ O}
8.679€E~-01 0.0 0.0 1.200€ 01
0.0 0.0 0.0 9.000€ 00
0.0 0.0 0.0 6.C00E 0O
0.0 0.0 0.0 3.000€ QO
0.0 0.0 0.0 0.0
REYNOLDS NUMBER= 8924,

LENGTH/HYDRAULIC DIAMETER= {‘3

9.811€~-01
9.434E-01
9.257€-01
8.962€-01
8.703€~01
0.476€-01
8,233E-01
8,090E-01
7.906€E-01
1.972€-01
T.948E-01

VELOCITY/MAX VELOCETY.
] 8

9.797€E-01
9.528€-01
9.316c~01
9.080E-01
8. T74E~01
8.573E-01
8.335€-01
8,208E-01
8.050€E-01
8.054€-01
8.019€-01

SEPUIPUPULPULPPALPSIPYIPIPUIPURDYIP S S S et 0 P}

9

9.894€-01
9.599€-01
9,387E-01
9,127€-01
8.872%€-01
8.703E-01
08.455€6-01
8.318E~01
8.177€E-01
8.,125E-01
8.113€-01

10

9.906€-01
9.642€-01
9.514€-01
9,245€-01
8.986E-01
8.797€~-01
8.538€-01
8.389E-01
8.,224€-01
8.165€E-01
8.151€E-01

L1

9.953€-01
9.741E-01
9.5115'0‘
9.340€-01
9.080E-01
B.844E-01
B.618E-01
8.6420€E-01
8.243€-01
8.196E-01
8.137€-01

12

9.976€E-01
9.788E-01
9.592E-01

9.328E-01

9.127€-01
8.892E-01
8.660E-01
8,439E~0)
8.278E-01
0.0

0.0

TETA

30.000
27.000
24.000
21.000
18.000
15,030
12.000
9.000
6.000
3.000
0.0

LLz



PYRPOEPpIPaR e S Sy BY RS BN T RE 2R I 28 D1 Dl ol od

R ry EY T T BX EA L DL DS 24 .-.-.-.-.-.-‘-.—.-. .

TURS AXIAL VELOCITY/MAX VELOCIVY
1= 1 2 3 & 5 6 7 . 9 10 ‘1n 12 TETA
J ‘ o .
41.040  7.364E=02 6.880E=02 6.396E-02 6.052E-02 5.167E-02 S.414E-02 4.919E=02 4.919E-02 4.670E-02 4.419E-02 4.166E-02 30,000
10 0.0 8. 088E-02 7.,606E-02 6.880E-02 6,63TE-02 .6.637E~02 6.150-02 5.414E-02 5.537€-02 5, G14E~02 5.068E~02 %.794E-02 27.000
9 B.569E-02 7.606E<02 T.364E-02 6.880E-02 6.637€=02 .6.150£-02 5.906E-02 5.611E-02 5.414E-02 5.192€-02 4.919€-02 24.000
8 L 00LE-O1 B.569E-02 7.847€=02 7.364E-02 7.1226-02 -6,63TE=02 6,028E-02 5.783E-02 .5.811E-02.5. 217€-02 5.167E-02 21.000
7 1.2156-01 1.068E-01 9.049€-02 7.847€-02 7.606E-02 6.880€-02 .6.394E-02 5.953E-02 5. 660E-02 5.365E-02 5. 2175 oz 118,000
3 - T1.2156-01 1.048E-01 9,049€-02 0.088E-02 7.122€=02 '6.880E-02 6.028E-02 S.759E=02 5.414E=02 :5.217€-02 15,000
5 ;x;a:we-ox ’se-m 9T6NED2 B569E~02 T.B8TE=02 T BOSE~02 6.028E-02 5,734E=02 5.5) 5 06BE=02 4 12, ooo
. BE-02.B0B8E~02 T,AR2E~02 6., 028E-, 2 54 709E-02 S PIVED2 S “919E ,‘9“ )¢
ED1 B SHIE~02 TSESE~O2 b IISED2 B.660E702 5.365E02 'y 10 000
TNBSE-02 (6.RARED2 5,B60E~02 B5,266E~02 . BEIEO2 Pustry N 13,: -090
809E-02 T/606E=02 6, LORE=02 5, 709E02 5.291E<02 & .157&5.@2 s 4b9E %oz A S19E-02 (00 060
TETA
11 4 166E-02 ¢.166E-02 4.039E~02 3.000E .01
10 4.670E-02 4.545E-02 4. 745602 2.700€ 01
. 9 4.869E=02 4.919E-02:0.0 2.400E 01
8 5.C43E~02 4.919E-02 0.0 2.°1COE +01
7 5.043E-02 {5.018€-02 0.0 1.800E ‘01
6 4.994E~02 0.0 040 1J500E <01
5 4.919€-02 0.0 0.0 :1.200€ 01 b
4 0.0 040 - 0.0 9.:000E /00 -
3°0.0 0.0 ° 0.0 +6.000E 00
2 0.0 0.0 0.0 "3.,000€ .00
1 040 ..050 0.0 040
_EREVNOLDS NUMBERS e

menctumwawm,c ,nstst;m- Mo

8lz’ |




'MEASURED TURBULENT QUANTITIES

279

. : ‘ a 5 o 9 o 2 3 v!lv! 4.
6 y/§  vlu (x107) .vlfu (x10°)  k/u_(x10”) rzz(xlo )
0.055
0.150 _
: 0.244 3.66 4,04 7.23
o 9-339 4.12 5.08 6.02 -
0.433 4.04 4.14 4.56 9.21
0.622 3.70 4.43 3.30 10.79.
- 0.811 3.66 3.84 2.50 . 4.12
1.000 . 3.53 ° 3.74 2.30 © 0.95
0.095 ,
0.186 .
0.276 . 3.40 - 4,13 6.68 .
6 0.367 - 3.92 4.33 3.37. 11.70
. 0.457 4.04 4.23 4.60 8.76 -
0.638 3.66 4.23 3.17 5.82
0.819 3.71 4.04 2.71 2.99
1.000 3.72 4.23 2.62 " 0.63
0.197
0.277 '
0.357 - 4.21 5.04 5.83
1, 0.438 4.48 5.56 5.62 13.61
0.518 4,42 5.36 5.09 9.11
0.679 . 3.68 4.12 3.17 6.19
0.839 4.03 3.75 . 2.80 4,16
1.000 3.96 4.94 3.22 1.41.
0.322 4.86 5.37 6.72
£ 0.390 . 4.46 4.85 5.25
_ 0.458 4.91 4.82 5.26
18 ©0.526 - . 4.86 5.37 - 4.99 10.73
0.593 4.69 4.87 4.33 8.71
0.729 4.37 5.01 . 3.82 5.67
0.864 4.48 5.02 3.62 3.34
1.000 4.26 4.58 3.21 1.86
0.443 4.86 .
0.499 4,47 5.35 5.05
0.554 4,91 4.83 4.57
4 0-610 4.86 5.48 4.62 4.13
0.666 4.69 5.16 4,22 8.22
0.777 4.37 4.91 3.72 4.83
0.899 4,48 4.12 - 3.03 2.966
1.000 4.25 4.08 2.95 2.039
RE = 9,000 .
L/DH = 113 -



280

- MEASURED TORBULENT QUANTITIES

P e T s Lo . . PR LY R

- o v'v!
v;/uo(x1023 vl /e _{x10%) k/ui(x103) - I 10%)
ud .,

4.27
4.45 . ~ {
4.60" 4.06 4.28 8.07
4.32 3.67 3.76 7.94
3.93 4.06: 3.16 4.78
3.57 3.67 2.30 2.69.
3.41 3.41 1:92 0.83
4:42
4.47 ,
4.59 3.24 4.77 6.4
4.31 3:55 3:73 3.1
3.93 3.93 3.3% 2.61
3.75 3:67 2.56 . 0.93
3.79 _ 3:02 .2:07

4.91 3.86 5.43
4:74 3.77 4.66
4.65 3.47 4.48
4.60 3.47 4.13 8.68
4.42 3.77 3:92 7.48
4.30 3.95 3.49 4.41
4.08 3.89 2.84 3.14
3.89 3.05 2.22 1.44°
4.78 4,37 5.08
4.76 3.92 4.60
4.57 3.89 4.34
4.62 3.89 4.12 7.84
4.36 3.63 3.63 7.06
4.83 4:34 3.59 4.38
4.15 3:86 2.78 3.56
3.86 3.22 2.30 1;§2
4.63 3.98 4.36
4.62 3.78 4.04

- 4.36 3.62 3.70
4.49 4.15 3.74 7.214
4.45 4.04 3.50 " 6.680
4,54 4.06 3.16 4.638
4.05 3.64 2.47 3.008
3.83 ' 3.39 2.21 1.429

AT A KRS IS ¢




' MEASURED TURBULENT QUANTITIES

281

——
| . .

0 'y/§‘ v'/u (x102\ vi/u (2102) ‘ k/uz(x103) - vrvz(x 104)
r o T ¢ 0" o™ o 2
. ' ’ uO

0.055 :
0.150 4.76 ~4.75 5.7
0.244 4.08 4,65 4.5

0 0.339 3.54 4,07 3.56 4.41
0.433 3.59 3.46 3.15 4,52
0.622 - 3.46 3.59 2.6 4.04
0.811 2.92 - 3.33 1.88 1.61
1.000 2.62 3.59 1.71 -0.03
0.095
0.186. 4.54 4.76 5.02
0.276 3.84 4.19 3.95 .

6 0.367 - 3.73 4.96 4.10 3.3
0.457 3.59 3.59 3.21 3.42
0.638 3.07 . 3.95 2.85 2.55
0.819 L 2.79 4.41 2.42 -1.36
1.000 3.22 4.85 2.50 -0.027
0.197 .
0.277 - 4.77 5.17 5.15
.0.357 4.21 4.42 4.32

12 0.438 4.23 4.84 4.33 3.67
0.518 4.20 4.31 3.85 3.34
0.679 ©3.23 3.83 2.85 3.86
0.839 - 3.17 4,04 2.50 2.25
1.000 3.61 3.95 2.34 0.64
0,322
0.390 4.59 5.03 4.74
0.458 4.43 4.53 4.26 o

18 0.526 4.38 4,92 4.21. 2.86
0.593 4.35 4.72 3.86 3.08
0.729 - 3.51 4.74. 3.13 3.43
0.864 3.12 4,51 2.63 2.91
1.000 3.21 4.31 2.40 0.96
0.443 : .
0.499 4.71 - 5.35 4.63
0.554 4.431 4.87 4,02

2 0.610 4.54 4.54 3.77 1.96

7 0.666 4.30 5.11 3.66 2.46
0.777 3.38 4.26 2.65 3.43
0.899 3,27 4.22 2.33 2.57
1.000 3.23 3.83 2.10 0.98

RE = 26,500 .
L/DH = 46



282

MEASURED TURBULENT QUANTITIES /

O O P o - Py e =

8 T&/? . v;/uo(xldzj vé/uatxldz) .k/ug(i103) - LZ(x10 ?.

e et e TR e — —— PPN T

6.055
0.150
0.244
0.339
0433
s 0.622
I ols11

~1.000

Lol SR A i O )
. P
00~ 00 OO
NSNS

()]

W

(=}
NWWHsSeo

“ o e

N O NN WO
B~ O\~ 00- N L1 0O
w
o
~4

-0.095
0.186
0.276
0.367
0.457
0.638
0.819
~1.000

OV, I S N N
0.0~ 00O W
N00ON N N0

0,197

5.47 A o
0.277 5.27 4.88 4.67
0.357 4.98 . 5.18 4.44
1p 0.438 5.37 4:99 4.63. 6.94
0.518 5.16 5.67 3.92 4.34
0.679 4.67 5.06 3.32 ¢ 2.5
.0.839 - 5.07 4.98 3.22 2,00
1.000 5.18 5.19 3.36 0.41
:  msecens o o . . .
0.322 5.42 -
0.390 5.22 6.28. 5.26
. 0.458 5.11 5.36 4.45 .
18 0-526 5.50 5.50' 4.52 4:56
. 0.593 6.16 5.84. 5.99° 2.88
0.729 4:94 5.5% 3.76 1.69
.. 0.864 5.04 5. 54 3.43 1.25
Q 1.000 ~ 5.16 . 5.27 3.37. 0.13

. 0.443
.0.499
0.554
0,610
'0;666
0.777
0.899
1.000

O OO W N W
EWRPNWOF

2.06.

1.38

0.71
-0.27
-0.97.

24

TmeaEsrULUV SOV

R RV RV RV RV T
L]
WL OWWWN

O 00 .o
Wwws s

eSS

O S NN
{ oo womwrwY

6,500

RE = 2 o B -
=15 S o . -

L/DH .
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MEASURED- TURBULENT QUANTITIES

283

o y/§ v 10D vi/u (oD kb aaod - I Zgach
S r o : 8" o o 2
. uo-
0.055 A
+0.150 3.34.
. 0.244 3.59 '
o 0:339 3.85 2.98 2.80 17.26
- 0.433 3.49 "3.23 2.67 7.20
0.622 3.39 2.87 2,24 3.82
0.811. 3.02 2.92 1.78 1.84
1.000 2.92 2.70 1.50 0.12
0.095 t
0.136 3.42
0.276 3.42
g 0-367 3.69 3.29 3.12 6.04
0.457 3.39 3.39 2.83 5.67
0.638 3.38 3.08 2.53 2.65
0.819 2.92 2.76 1.88 1.95
1.000 - 2.97 3.54 1.60 -0.025
0.197 - 3.16 ;
0.277 3.37
0.357 3.27
12 0-438 3.67 3.16 3.36 7.68
. 0.518 3.43 3.15 3.12 6.68
10.679 3.47 3.10 2.70 . 3.06
- 0.839 - 3.07 2.87 2.07 2.69
1.000 3.06 2.72 1.85 0.298
0.322 3.32
- 0.390 3.41 2.67 3.43 .
0.458 3.45 3.03 3.40 :

18 0-526 3.54 3.04 3.27 7.20
0.593 3.37 3.16 2.96 5.95
0.729 3.51 3.17 2.63 3.33 '
0.864 §3.145 2.80 2.07 2.37
1.000 2.96 2.83 1.87 0.66
0.443 3.33 ~
0.499 3.47 2.87 3.35
0.554 3.42 3.11 3.16

,, 0-610 3,45 3.03 2.86 6.21

“7.0.666 3.29 2.87 2.60 5.41
0.777 3.37 3.06 2.24 3.08 0
0.899 3.17 2.84 1.94 2.77
1.000 3.07 2.56 11.80 10.672

RE = 65,000
L/DH = 113



MEASURED TUKBULENT QUANTITIES 284

.. R ) . s vlvl .
8 . y/& v;/hé(x102§ vé/uo(xloz) k/ug(x103) - rzz (k104).
: : Uol
0.055
0.150 3.84
0. 244 . 4.11 ' ) )
0 0.335 3.79 4:11 3.21 4.37
0.433 4.32 4.06 3.29 3.98
0.622 3.95 3.4 2.64 2,61 -
0.811 3.23 3.57 2.07 0.80
1.000 3.23 | 3.51 1.83 " -0.312
- 0.095 »
0.186 3.87
0.276 4.00 3.79 3.11.
, 0.367 4.06 4.32 3.46 4.06
6 0.457 4.21 3.95 3.33 3.91
0:638 4.10 3.74 3.08 2.70
0.819 3.52 3.78 2.76 1.13
1.000 3.51 3.73 3.26 - <0.07
0.197 :
0.277 4.12 E
0.357 4.32 4.17 3.76.
s 0:438 4.20 3.81 - 3.51 4.02
12 .58 4.00 3.82 3.43 3.63
0.679 4.04 3.75 2.85 3.70
0.839 3.79 3.79 - 2,46 - 2.66
1.000 3.53 3.88 2.33 1.16
0.322
0.390 4.27 4.27 3.94 '
'0.458 4.30 4.08 3.75
- 0.526 4.14 3.92 3.47 4.24
18 5.593 4.37 4.10 3.39 3.61
0.729 3.78 3.69 2.6 3.30
- 0.864 4.03 3.82 2.54 3.07
"1.000 3:51 3:%2 2.21 1.38
T 0.443 S : g
0.499 4.27 - 3.84 3.62
0.554 °  4.30 4.11 3.47 .
) 0.610 414 . 3.79 . 3.02 . 4.24
24 4.666 A ' 4.10 3.1 3.62
0.777 3.78 3.88 2,62 3.29
0.899 4.03 3.72 2.39 3.075
1.000 3.52. © 3,73 2.20 - 1:.375

oy



MEASURED TURBULENT QUANTITIES -
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'vl

6 v/3 v!fu (x10%) Yé/uo(xloz)" K/l (x10%) - - 2 (x10%)
. u o
0.055 , ,
0.150 4.42 4.63 3.64
0.244 - 4.16 4.58 3.45 _
0 0.339 - 4.22 4.84 3.57 5.65
0.433 4.05 4,42 3.18 6.67
0.622 3.89 . 4.63 2.87 4,23
0.811 3.78 3.84 . 2.21 . 1.33
.'1.000 3.50 3.57 1.80 -0.025
0.095
0.186 4.16 - , :
0.276 4.06 4.58 3.28 ‘
6 0.367 3.91 4.57 3.24 4.26
© 0.457 3.85 4.52 3.14 4.71
0.638 3.52 4.21 2.68 3.43
0.819 3.41 4.05 2.13 1.6
'1.000- 3.57 3.78 1.92 0.23
0.197
- 0.277 4.17 4.56 3.66
0.357 4.06 4.50 3.36 o
12 0.438 3.90 3.90 - 2.97 4,08
0.518 4,04 3.80 2.87 4,05
0.679 3.70 4.19 2.56 2.96
0.839 3.61 4,44 2.37. 1.76
1.000 3.63 3.78 1.95 0.636
0.322
0.390 3.87 4.53 3.73
0.458 4.06 4.82 3.66 o
18 0526 4.65 4.87 3.78 3.0
0.593 3.58 4.48 3.13 - B:51
-~ 0.729 3.61 4.35 2.78 . 42,31
- 0.864 3.50 4.29 2.47 /% #0.96
1.000 3.55 4,24 2.26 -0.148
10.443 .
0.449 3.83 ,
0.554 . 3.80 4.20 3.15 /
4  0.610 - 3.74 4.77 2.82 1.83
0.666 3.84 3.06 2.89 1.84
0.777 3.42 4.94 2.41 1.08
.0.899 3.30 3.78 2,13 -0.32
1.000 3.19 3.67 1.90 -1.02
RE = 65,000
L/DH = 15
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APPENDIX D

FLOW SPLIT-EQUAL PRESSURE DROP TEST
Let us take the well known formula of pressure drop
L L PY
Ap = f w2
DHv 2

- :Assuming equal pressure drops for all the subchannels
and aﬁplying above relation for the central cﬁaracteri§tic
.ﬁrianglé and the total test section’ ﬁe'find'finaily
whereiDg-is the test section hydraulié diaaetériand £ 1s
the test section friction factor. .

Assumihg

T

: - i - 1 »-m
£ - Re™™, T « (reT)

‘We end up with the relation
l¢m

T
Dy

u

|
]

u

o3

‘From Table 2.2 Dy=20.12 mni and Di=16.375 mm.

For m=0.20 ' ‘ —_ E;EQT
o | | Uy ‘

Ebr‘m=0;25 - D a%.= 1.158
o T u, L
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APPENDIX E

COMPUTER PROGRAMS,

In order to solve the finite difference equations for heat énd
flow two ;ompufer codes were written. | |

The ﬁéin symbols used in the above cOdeg are explained in Table El.

The compdter'program structure for flow calculation is shown.in
Tables D2 and D3. |

T s .

The structure of ;hé computer programs for heat transfer calculations

is shown in Table D4. |

Listings of both computer codes are given at the end of this

appendix.
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TABLE E1

SYMBOLS FOR COMPUTER CODES

Symbol Explénation

XLﬁéR, Linear heat generation rate (q')

Ck Vo Karman constant
- CMU Constant c,

éAl Constént cy

CA2 ; ' Constant c, - o

C1 Conistant .1 |

c2 Constant c_,

CONDC Coolant heat COnducEiVity (Ac)

€oNcL Clad heat conductiv1ty (Ack)

GCSH Coolant specific heat (Cp)

DENSIT Co6lant density (p)

DI Clad Inner diameté¥ ;)

ﬁiA Rod Diameter (D)

‘DH Hy&rguliq'Diaméter (ﬁE§

ED Energy dissipation

™ Nd;‘of radial pointé'iﬁ fhe clad

iMAX Number of radial pdihts in the coolant
iN Totadl nuaber of radidl points in the |

¢66lant

(TM%N,JMDN)‘ Point for detailed print out

' (per iteération)

(IkEF,JREF)._ Point where pressure is preset t6<zero
IN o No. of tangential p@iﬁfs

MAXIT Maximum‘number of iterations

PIT Piten

PITR Pitch ratio



. PSI
m’ .

TE

TWAVE, TALAV

TT
U

USTAR
\28
V2

VB, VAVG

X2

289

l/oT
Reynolds number
Turbulent kinetic energy (k)

Average shear stress

Temperature

-Axial velocity v,

Friction velocity u*
Underre}axation factorl(UREL)4
Rédial velocity (vr)
Tangential velocity (ve)'
Bulk velocity |

Radial spacing

Tangential spacingsl

+ .
A . | . L
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TABLE E2

_.COMPUTER PROGRAM STRUCTURE FOR FLOW CALCULATIONS

MAIN PROGRAM

SUBROUTINES  EXPLANATION

INPUT DATA

GRID

- wallct

INITIAL CONDITIONS

»
-

—

~ —

e

}
ITERATION LOOP

PRINT OUTPUT

STRESS CALCULATION

H{GALCED ]

[t

A iﬁNORMALIZATION

{Sotvi]
| ["SoLv2 ]

—V

. PRINT

Define Vg

Establish grid

-

Initial conditions
Calculate averagé velocity

Bobkov's normal stresses and |}
turbulent kinetic energy

Mixing Length
Calculate various ggggvfactérs

Secondary flow agcogdigg to
Nijsing & Eifler
Viscosity calculations
Coefficients for v, quatiqps
Coefficients forvve equations

Coefficients for p'
p calculations:

equation and

Coefficient for vz'eqqa;ion

Coefficierits for k equation and Launder

and Ying normal stresses
| j
Coefficients for ¢ ggggtion

Line iteration scheme

-

Successive relaxation ‘

Print

- Normalize



Es 2

TABLE E3

ITERATION LOOP FOR EPOW CALCULATIONS

ISEC=0 //EZ:TZ;ZE\\\ISEC=1 SECIN

. v

Inner Loop

CALCTE

IPROB=4 , N\ .IPROB< 3

L

Update Properties
PROPS

- MIXLEN
PR TURBK

>

291

Outer Loop



TABLE E4

292

. COMPUTER PROGRAM STRUCTURE FOR THERMAL CALCULATIONS

g -

' S
MAIN PROGRAM

Program for.

2 INPUT DATA

Hydraulic
iQalculations

SUBROUTINES

INITIAL OPERATION

CLAD

APSI

SOLV1

COEFFICIENTS FOR' FDE

SOLV2

- ITERATION LOOP

. PRINT

PRINT OUTPUT

AVERAGE QUANTITIES
AN? NORMALIZATION

AVGl

AVG2

§  —tre—

1 ave

' EXPLANATION

g@éefficients for

Clad FDE

I /vH

V:
Wz rz

Line Iteration Scheme

Successive Relaxation

~Bulk Temperaturé

In-clad and out-clad
average. temperature

In-clad and out-clad
average heat flux

Bgik temperature

.

Tyl »*



IPILE=0
IPILE=1

ISFEC=0;
ISEC=1;
ISEC=2;

ITURB=1
ITURB=2

IPR=1
IPR=2

TLEN=1
ILEN=2

ICONV=0
ICONV=1

0(1(10(3(30(7()ﬁ¢1()ﬂ(3()n<ﬁ(1h¢1()ﬁt1()ﬁ(3()ﬂ(ﬁ(i

IMPLICIT REAL*8 (A-H,0-2), INTEGER (I-N)
DIMENSION V1P(30,16),V2P (30,16),V3P (30,16),T23(30,16),T13 (30,16)
COMHON/HD/HEDU (9) ,HEDV1(9) , HEDV2 (9) , HEDP (9) , HEDK (9) , HEDD (9) , .

1 HEDH (9) ,HEDL (9) ,HEDN (9) ,HEDPR (9) , H?DV1P(9) HEDV2P (9) ,HEDV3P (9) ,

- IPROB.
IPROB.
IPROB.
I PROB.
IPROB.

INSTRUCTTIONS

COMPUTER PROGRAM FOR PLOW CALCULATIONS

REYNOLDS NO INPUT

AVG WALL SHEAR

STRESS INPUT

EQ.1: LAMINAR FLOW

GT.1: TURBULENT
EQ.3; O-EQUATION
EQ.4; 1-EQUATION
FQ.5; 2-~BQUATION

FLOW

MODEL
MODEL
MODEL

NO SECONDARY FLOW

NIJSING-EIFLER SECONDARY FLOW

SECONDARY FLOW

NORMAL STRESSES FROM BOBKOV MODEL
NORMAL STRESSES PROM LAUNDER YING MODEL

#tt#*t**#v##*##**$********t**#*#*#**##**tt****#**tt#tt#*##*t*t#***#t##t

ISOTROPIC VIbCOCITY
NON-ISOTROPIC VISCOSITY

CARAJILESCOV RADIAL LENGTH

"PRESENT RADIAL

UDDS SCHEME
'UDS SCHEHME

2 HEDT13(9) ,HEDT23 (9)

COMMON/ALEN/CL,RL,IPR,ILEN

LENGTH

0001
0002
0003
0004

0005
0006

0007

0008
0009

0010

001

0012
0013
0014
0015
0016
0017

0018
0019

0020
0021
0022
0023
0024

0025 .

0026

0027

0028
0029
0030
0031

0032 .

0033
0034
0035

0036

£6¢



CORBON/BB/IS
coﬁuou/saa/NVIs
~ COMMON/ATURB/DVS(30,16), cn CA1,CA2,CB,ITURB
COMMON/GEOMC/RM (30) , ARE(30) ARW(30) ARN(30),ABP(30) DXl(30),
/ ANG. (16) ,ANGM (16), VBP(16) '
comnou/rEOMD/Dv1E(30) DV 1¥ (30) ,DV1IN(30) ,CVIE(30) ,CVIN{30)
COMMON/GEOME/DV2E (30), szu(30) sDV2N (30), cvzz(ao),cvzw(30) ARPN (30)
COMMNON ,
1/UVEL/URFU,RESU, NSHWPU
1/VIVEL/URPV1,RESV1,NSWPV1
1/V2VEL/URFV2,RESV2,NSHPV2
1/PCOR/RFRSORM ,URFP,RFESPP, NSHPP,IPKEF, JPREP
1/TFN/URFM-PPSK NSWPK

\ { 3
¥ ED(BO 16),AL(3© 16) VIS(30 16),GPN(30 16),9RUT430 46)
1/ALL/IT,JT,IN,JN,TNH,INM,IL,ILP,IPROB,IGRID, IHAX(16) IND,IMIN(30),
2 ISEC,IPILE,JJi,ICONV, NSOLU iNue,JL, JLP
1/AGRID/R(30) x1(30) x2(16)
’ 1/3TRESS/T11(3O 16), 122(30 16)
. 1/GEOM/BE (30), BN(30),BW(30) BS (30) ,VP (30), vP1(30)
1/GEOMA/DPE (30, 16) ,DPW (30,96) ,DPN (30, 16) , DPS (30, 16)
1/FLUPR/URFVIS, vlscoq DENSIT,PIT,DIA,DH,ATOT,RE,VAVG,VB
‘1/TURB/CD,CMU,C3,C2,CK,E,CVIS,CDIS,PRTE,PRED )
1/WALLF/TALAV,USAV,RTAL (16) ,USTAR (16) ,PR,YB,TWAVE
1/COEF/AP (30,16) , AN (30,16) ,AS (30,16) ,AR(30,16) ,AW (30,16) ,SU(30,16)
EQUIVALENCE (T11(1) V19(1)),(T22(1) v2p (1)), (DPE(1),V3P (1)),

1 (DPW41;,T13(1)),(DPN41),T23(19)
LOGICAL INCALU,TNCALL,INCALP,INORO,INCALK,INCALD,INCALN,
‘ 1 A INCLV1,INCLV2,ICLTI, ICLT22 ICLT13 ICLT23,ICLT33
(o
Cc#**+ PROBLEM DEFINITION

.. READ (5,700) IPILE,IPROB,ISEC,ILEN,IPR,ITURB.
C#**GRID _
READ (5,700) IN,JIN,IT,JT ' y : .
READ (5,701)YB o '

0037

0038
0039
0040
0041
0042
0043
oouu
0045
0046
o0o47
0048
0049
0.050
0051
00573
0054
0055
0056
0057
0058
N059
0060
0061
0062
0063
0064

0065

0066
0067
0068
0069
0070
0071
0072

h62



Cxxx NUMERICAL PROCEDURE
: READ (5,700) NSOLU,ITR,NSWPV1,NSWPV2, NSWPP NSHPU Nswpx Nswpn
Cx*x PROBLEM DATA
: IF(IPILE.EQ.0) READ(5,701) PIT,DIA,VISCOS,RE
IF(IPILE.EQ.1) READ(S5,701) PIT,DIA,VISCOS, THAVE
C**% NO ITERATIONS AND PRINT-OUT INFORHATION
READ (5, 700) MAXIT,INDPRI, ISTRES,INORM
C***TITLES
READ (5,010)HFDU,HEDV1,HEDV2,HEDP,HEDK,HEDD, HEDL,
1 HEDN,HEDPR,HEDV1P, HEDVZP HEDV3P HEDT23 HEDT13
IF(IPROB. EQ.1) ISEC=0
IFP(IPROB.EQ. 1) ISTRES=0 -
IF(IPROB.EQ.1) YB=0.0
"IF(IPROB.EQ.2) IPR=3 -
IF(IFEROB.EQ.3) ITURB=1
C*%x PRINT INPUT DATA
" WRITE(6,700) IPILE,IPROB,ISEC,ILEN,IPR,ITURB
WRITF (6,700) IN,JN,IT,JT
WRITE (6,701) ¥YB
WRITE(6,700) NSOLU,ITR, Nswpv1 NSWPV2, NSNPP NSWPU, NswpK NSWPD
IP(IPILE.EQ.0) WRITE(6, 701)PIT DIA,VISCOS,RE
IP(IPILE.FQ.1) WRITF(6,701)PIT,DIA,VISCOS,TWAVE “
wRITE(6,700)MAXIT,INDPRI,ISTRES,INORH
WRITE(6,010) HEDU,HFDV1,HEDV2,HEDP,HEDK,HEDD,HEDL,
1 HEDN,HEDPR,HEDV1P, HEDVZP HEDV 3P, HFDT23 HEDT13
PITR= PIT/DIA
‘C**% INITIAL OPERATIONS

INUM=0

IVIS=1

IF (IPROB. EQ.Z) IVIS=2
ICONV=0

JiL=1

RAT=1.0

NVIS=2

INOR=1

NITER=0

0073
0074
0075

0076 -

0077

0078
0079

0080

0081

0082
0083
0084
nes8s

- 0086

0087
0088
0089

0090

C0391
0092
0093
009y
0095
0096
0097
0098
0099
0100

0101

0102

0103

0104
0105
0106
0107
0108

662



FHb=1
RESB=0.0

 RES%=0.0

RESE=0.0 - -
RESV1=0.0

' 'RESV2=0.0

Ch*+

RESPP=0.0
RESORM=0.0

URFV2=1.0
URFV1=1.0

URFP=1.0

URFU=1.0

IF(NSOLU EQ. 0) ND=60

INM=IN-1
JINM=JN~1
1L=2

-IF(1PROB.EQ. 1) IEL=1

FLP=IL+1)

TURBULENT CONSTANTS
CMU=0.09 :
CK=0.42

. E= 9 8

' c2’1 92

CA1=1.5
CA2=0.4

CL=0. 4+DEXP (-17. *(PITR 1.))*1.62

RL=10.0
PRTE=1.0

CVIsS=0.13

0109
0110
0111

0112
0113

0Ty
0115

0116
0117

0118
0119
0120

0121
o122

9723

0124

0125
0¥26

0127
0128
0129
0130

0131
0132
0133
0134

0135

0136
0137

0138

01139

0140 -
0141
0142
0143
0144

968i



c
c
CH%x

CDIS=0.38 :
IP(IPROB.EQ.4) CMU=CVIS*CDIS

PRED=CK*CK /7 {C2-C1) /(CMU*=%_5)

CA=2.% (2.-8.%CA2) /11./CA1
CB=2.% (9.%CA2+46. )/CA1/33.
IMON=5
JMON=5
IREF=2
JREF=2

HYDRAULIC PARAMETERS OF THE FLOH

C***x COMPUTE CHANNEL AREA

ATOT=PIT*PIT/8. /DSQRT (3.0D0)-DIA*DTIA*3, 1“159/08

C¥%* WETTED PERIMETER

PH=DIA*3.14159/12.

C#%%* HYDRAULIC DIAMETER

D=4 .*ATOT/PW

C*%x%x AVFRAGF VELOCITY.

Co&x

C-—--.-

IF(IPILE.EQ.0)VAVG=VISCOS*RE/DH

INITIAL VALUES POR SHEAR STRESS

CALL SHEAR

GRID ’ _

CALL GRID (RAT) ‘, 4
DEPENDENT VARIABLE SELEFECTION _ -
INCALU=.TRUE.

INCLV1=.TRUE.

INCLV2=. TRUE. .

INCALK=.TRUE.

INCALD=.TRUE.

INCALL=.TRUE.

INCALP=.TRUE.

INCALM=.TRUE.

INPRO=.TRUE.

ICLT11=. FALSE.

ICLT22=.FALSF.,

0145
0146
0147 .

0148
0149
0150
0151
0152

0153 -
0154 -

0155
0156
0157

0158

0159
0160
0161
0162
0163
0164
0165

JNRG

0i1e7
0168
0169
0170
0171
0172

01713

0174

0175

0176

0177

0178
0179
0180

L62



C*x%% SET" VALUES IN STORE TO ZERO

" ED(TI,J)= 0.0

ECETNI=u PALSE:
ICLT13—.PALSBHQN
. ICETD23=. PALSE. -
IF(ISEC.EQ.0) INCLV1=,FALSE.
IP (ISEC. EQ.0) INCLV2=, PALSE,
IF (ISEC.LE.T) INCALP=.FALSE..
1F (IPROB.EQ. 1) INCALL=.PALSE.
IP(IPROB.EQ. 1) INPRO=. FALSE.
IFP(IPROB.LE.4) INCALD=.FALSE.
IF (IPROB,LE. 2)i INCALK=.FALSE.,,
IF(I'STRES.EQ.0) GO TO: 49

IF (IPROB.EQ.2) GO TO 9

ECL&h%—”ﬁRwE»
FCET i

CO"NuTg‘IJ NJJ Ea
.ICET 13=. TRUE.

ICLT23=.TRUE.
'CONTINUE

INIT‘IAL OP FRATEONS

e ———,

CALCULATE ‘GEOMETRICAL QUANTITIES AND SBT- VhRIABI.ES TO ZERO.

DO 30" J=1,JT
DO 30 I=1,IT

U(E,J)=0. 0.

V1 (T g 9= 05,00
V.2 (E, J&)f-—o ¢ )
pxl,a);o,0~
PP (I,J)=0.0 -
TE(I,3)=0.0

AL(I,Jd)=0.0 "

VIS (I,J)=VISCOS

PRUT (I,J)=1..0

0181
0182
0.183:

o184 -

0185: -
0186 -

0187%
0188
01189
0 19.0¢
0191
0192
0193
O i
31995

0i196r

097
0198
0199
0200
0207
0202
0203
0204
0205
0206
0207
0208
0209
0210

0211

0212
02713
0214
0215
0216

862



30

77
129

- e - =i

T11(I,J)=0.0
T22(1,J)=0.0
DPE (I,J)=0.0
DPW (1,J)=0.0
DPN (I,J)=0.0
DPS(I,J)=0.0
DVS (I,J)=0.0
CONTINUE

'IP(IPROB.GT. 1) CALL .INIT

JF(IPROB.GT.1) GO TO 129
DO 77 J=1,IN . o

IH=IMAX (J) -

DO 77 I=2,IH -
U(I,J)=VB -
CONTINUE »

IF (IPROB.GT. 1) CALL PROPS(IVIS)
CALL BGEOM - :

IND=0 .

IF (IPROB.GT.2) CALL TURBK

INITIAL OUTPUT

WRITE (6,210)

IF(IPILE.EQ.0) WRITE(6,220) VAVG
I1F(IPILE.EQ.0) WRITE(6,230) RE

IF (IPILE.EQ.1) WRITE(6,270) TWAVE .
WRITE (6,250) VISCOS

WRITE (6,240) PITR

IF (INCLV2) CALL PRINT(1,1,V2,HEDV2)
IP(INCLV1) CALL PRINT(1,1,V1,HEDVY)
IF(INCALP)'CALL'PRINT(j,J,P,HEDP)
IF (INCALU) CALL PRINT(1,1,U,HEDU)

-IP(INCALK) CALL PRINT(1,1,TF,HEDK) o

IF(INCALD) CALL PRINT(1,1,ED,HEDD)

IF(INCALL) CALL PRINT(1,1,AL,HEDL)

IF (IPROB.GT. 1) CALL PRINT(1,1,VIS,HEDN)
IF(IPROP.GT.1) CALL PRINT(1,1,PRUT,HEDPR)

IF (IPILE.FQ.0) WRITE(6,100) PR, TALAV, DH, VAVG, VB

0217 .
0218

0219
0220
0221
0222
0223
0224

0225

0226
0227
0228

0229

n230
0231
N232
0233
0234
0235
0236
0237

0238

0239
0240
0241
0242
0243
024y
0245

0246

0247
0248
0249
0250

- 0251

0252

<



’f?@K?EEE¢E@aﬁ$ Rﬁ@ﬁ@épﬁ@&ﬁ PR, ¥5, TAVE, TAEEV

"WRLTE (6,200)=

23

@
CheR

CHAPTER:

po 23 J=1,JN
XST= x1(IL)*USTAR(J)/VISCOS
WRITE (6,313) J,RTAL(J),USTAR({J),XST

~CONTINUE

UNORM=VR
TENORM=TWAVE.

ENORM=4. O*TFNORH*THAVE**(O '5D0) /DH
V2NORM=0.1%VB

N11=0

UT=U (IMGN,IMON)

ITERATEOR LOOP

WRLTE (64 370y LHON,FHON

- NITER=NITER+1

UPDATE MAIN DEPENDENT VARIABLES
IF (ISEC.EQ.0) GO TO U6

" IF(RSEC.EQ.1) E€RLL SECIN

.36

Cmm===

IF(ISFEC.EQ.1) GO TO U6

po 6 N=1,ITR

CALL CALCV?2

CALL CALCV1

CALL CALCP ..

CONTINHE

CONTLNUE.

CALEL CRECY.

1F (FPROB.LE. 3} GO To 36

CALL CALCTE

IF (IPROB.RQ.5) CALL CALCED
CONTINUE -
UPDATE—FLUID»PROPERITIES o
IF (IPROB.EQ.3) CALL TURBK
IF(IPROB.GT.3.AND.ISEC.EQ.2) CALL TURBK

:IF(ILFN GE.2) CALL MIXLEN

F ¥ 3 32 03 2 3 fTBEATK@w Eoo? 3 3

3‘%

3

3 3

3

c 0265

3 3

0253

0254
0255
0256

0257
0258

0259

0260

0261
0262
0263
0264

0266
0267

0268

0269

0270

0271
0272
0273
0274
0275
0276
6277
0273
0279
0280
0281
0282
0283
0284

, 0285

- 0286

0287
0288

00£ "



C-——--
1
1
33
301
C -----

IP (INPRO) CALL PROPS(IVIS)
INTERMEDIATE OUTPUT ~
RESU=RESU/UNORM
RESK=RESK/TENORMH.
RESE=RESE/ENORM - . - -
IF(ISEC.GT.0) RESV2= Rrsvz/vzuoau
IF(ISEC.GT.0) RESVI=RESV1/V2NORH .

WRITE(6,311) NITER,RESU,RESV1,RRSV2,RESORM,RESK,RESE

,U (IMON, JHON) , V1 (IMON, JHON) , vz(Inou Jnow) ,

P (IMON,JMON) , TE (IMON, JMON) , ED (IMON, JHON}
~“IF-(HOD (NITER,INDPRI) .NE.0) GO TO 301 :

IF(INGLV2) CALL PRINT(1,1,V2,HEDV2)
IF(INCLV1{)-.CALL PRINT(1,1,V1,HEDVY)
IF (INCALP) CALL PRINT(1,1,P,HEDP)
IF(INCALU) -CALL PRINT(1,1,U,HEDU)
IF(INCALK) -CALL PRINT(1,1,TF,HEDK)
IF(INCALD).. CALL- PRINT(1,1,ED,HEDD)

IF (IPTLE.EQ.0) WRITE(6,100) FR, TALAV,DH, VAVG, VB
IF (IPILF.EQ.1) WRITE(6,106) FR,VB,TWAVE, TALAV

HRITE (6,200)
DO 33 J=1,JN
XST=X1(IL)*USTAR(J)/VISCOS

WRITE (6,313) J,RTAL(J), USTAR(J) XST

CONTINUE .
WRITE (6, 310) IMON, JHON
CONTINUE

-~TERMINATION TESTS

IF(NITER.FQ.MAXIT) GO TO 302

. ‘ERR=DMAX 1(RESU, RESK, RESE, RESV2)~
" “IF(ERR.GT.CC) GO TO 300

302

IF ((NITER-N11).LT.ND) GO TO 300
N11=NITER

RSU= (U (IMON, JHON) U1) /0 (1HON, JHON)
U1=U (IMON, JMON)

IF(RSU.LT.1.0E-03) GO T0 300
CONTINUF 4

e .

0289
0290

- 0291

0292
0293
0294
0295
0296
0297
0298
0239
0300

c301 -

0302

‘0303
0304

0305
0306
0307
0308
0309
310
0311
0312
0313

0314
0315
0316

0317

0318

0319

0320

0321..
0322

0323
0324
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i
Chex
C

63
67

51

"PINAL OUTPOT

IF (INCLV2)
IP(INCLVI)
" IF (INCALP)
IF(INCALU)
IF (INCALK)
IF(INCALD)
"IF(INCALL)

IFP (IPROB.GT.1)  CALL PRINT(1,1,VIS,HEDN)
1P (IPROB.GT. 1) CALL PRINT(T,1,PRUT, nrnpny

CALL
CALL

‘CALL

CALL
CALL
CALL
CALL

<

PRINT(1,1,V2,HEDV2)
PRINT(1,1,V1,HEDVY) -

PRINT(1,1,P HBDP)
PRINT(1,1,U,HEDU)
PRINT(1,1,TE,HEDK)
PRINT(1,1,ED,HEDD)
PRINT(1,1,AL,HEDL)

ﬁ$«ﬁ$T@ESmE@‘@9 GO 'TO %5

ifqtpm@m,

TR (3)

DO 51 I=2,IH

H1=1.0
H2=1.0

) w2 CALL TORBEK
wb B3 29500

IF¢I.EQ.2) H2=0.0
GO TO 63

IFYTI.EQ. IN)

DUI= ((U (I+13)=0(T,J))*H1* (U (I,d)- U(I 1 J))*HZ)/((R(I+J) R(I))*HI

/ *+(R{I)~- 3(1‘1)3*52)

GO TO 67

DU1= (U(I,Jd)-04I-1,J))/(R(I)-R(I- 1)

CONTINUR

T13 {I,J) = +(VIS{I,J) v15c05)*901

VIP{L,J) =2. #TE(T4d) ~T19YL,3) ~722 (T,)

CONTINUE

DO 6%t J=1,J0N

IH=IMAX (J)

DO 61 I=2,1IH

T23(I,J)= 0.

0-

IF(J.EQ. 1.0R.J. EQ.JN) GO TO 61

H1=1.0
H2=1.0.

01325
0326

0327.
'0328

0329
0330
0331
0332
0333

0334

0335
0336
9337
0338
0339
340
034 1
0342
0343
034l

0345

0346
0347

- D348

0349

#0350

0351

0352

0353
0354
0355
0356

0357

0358
0359
0360

208



61
Cxex

52

45

13

CExxx

64

IF(I.EQ.IH) H2=0.0

DU2= ((U(I,J+1)-U(I,3))*H1+ (U (I,J)-U(I,d- 1))*H2)/X2(2)/(H20H1)
 T23(I,J)=+(VIS(I,J)-VISCOS)/PRUT (I, J)*DU2 o

CONTINUE"
RMS VALUES

DO 52 J=1,JN

IH=IMAX (J)

DO 52 I=IL,IH

V1P (I,J) =DSQRT(T11(I,J))

V2P(I,J)=DSQRT(T22(I,Jd))

V3P (I,J) =DSQRT (V3P (I,J))

CONTINUE

IF(ICLT11) CALL PRINT(2,1,V1P,HEDV1P)
IF(ICLT22) CALL PRINT(2,1,V2P,HEDV2P)
IF(ICLT33) CALL PRINT(2,1,V3P,HEDV3P)
1F(ICLT13) CALL'PRINT(2,1,T13,HEDT13)
IF(ICLT23) CALL PRINT(2,1,T23,HZDT23)

CONTINUE

IF(IPILR.EQ.0) WRITE(6,100)
IF(IPILF.EQ.1) WRITF(6,106) PR,VE, TWAVE,TALAV

IF(IPILE.EQ.1) RE=VB*DH/VISCOS

WRITE (6,230) RE
WRITE (6,200)
DO 13 J=1,JN

XST=X1(IL)*USTAR(J) /VISCOS

WRITE (6,313) J,RTAL(J),USTAR(J) ,XST

CONTINUE
IF(INORM.EQ.0) GO TO 47
NORMALIZE

WRITE (6,499)

DO 64 J=1,JN

IH=IMAX (J)
DO 64 I=1,IH

‘AL (I,Jd)= AL(I J)/X1(IH)

CONTINUE

UO=U (IN,JN)

FR,TALAV,DH,VAVG, VB

0361 -

0362

0363

0364

0365

0366

- 0367

0368

- 0369

0370

0371

0372
0373

0374
0375
0375
10377

0378
0379
0389

0381

01352

0393 -

0384

0385.
0386
0387
0388

0389
0390

0391
0392

0393
0394
0395
0396
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- 270

‘USAW“T&BAV**@.S

72

Go ®0 (71,72,73,74) ,INORM

FPV=1.,/00

WRITE(6,504)

CALL ANORM (1,INORH, ISTRES,ICURVE PV)
GO TO 47

FV=1./VB

"WRITE (6,500)

- 13

CALL ANORM(T,IMQRH¢ISTRES,ICURVE)FV)

S GO TO 47

FV=1./USAV
WRITE{64501)

CALL ANGRN(2,INOEM,2STRES, ICURVE,PY)

6O TO 47

701

210 FORMAT (1HO,47X,5SIHKASE TT FPULLY DEVFLOPED PLOW IN A BARE ROD BUNDL

T
220
230
240
250

310

EW‘F.

WRITE (6,502)

CALL ANORHM (3,INORN,ISTRES,ICURVE,FYV)
CONTINUE

CONTINUER

FORMAT STATEMENTS

FORMAT (1H1,20X, % ****%*+++*x+NORMALIZED
FORMAT (1H1,20X," ##*%%sx+:xNORMALIZED
FORMAT (1H1,20X,* **x*%%%x&x**NORMALIZED
FORMAT (1H1,20X,* *#*¥k%%x*«xNORMALIZED
FORMAT (1H1,20X, ¥ ®%&&s%xk%%*NORMALIZED
FORMAT (9AU) .

FORMAT {H0T5)
FORMAT{8D:T0. 33

E ,//77)

MIXING LENGTH  *#&&xsx&?)
RESULTS BY MAX VEL #*#%x!)
RESULTS BY VB. **kkskix?)
RESULTS BY USAVE#xkknsky)
RESULTS BY USTAR (J)*%*%7)

FORMAT (//110,15X,21H BULK FLUID VELOCITY ,T60,1H=,3X,1PD11.3)
PORMAT (1HO, 15X, 16HREYNOLDS NUMBER ,T60,1H=,3X,1PD11. 3)

FORMAT (THO, 15X, 1SHPTTCH

" RATIO ,T60, 1H=, 3X 1PD11 3) - -

FORMAT (140, 15X, 18HLAMINAR VISCOSITY ,T60, 1H- 3X,1PD11.3)

- FORMAT.(//1H0, 15X 21H AVE SHEAR STRESS/RO ,T60 1H- 3X 1PD11\3)

FORMAT(1HO,4HITER,4X, 1OGHI--~-—'---f‘ ABSOLUTE RFSIDUAL SOURCE SUM

0397

0398

0399
0400
0407
ou02
0403
040y
0405
0406
0407
0408
OU0%
0&1&-

.@Q11

w12
0013
0414
0415
o416
oury
0418
2419
0420
ou21,
o422
0423
o424
0425
0u26
0427
ou28

0429
0430

0431
0432

noE.



1S=—=mm e Imm————— PIELD VALUES AT MONITORING LOCATION,
2 18 (,12,14,,12,1H) ,9H-~—--—== 1/2X,2HNO,6X,URUMON, 6X, 4HV 1M0,6X,
34HV2M40,6X, 4RNASS, 6X, YHTKIN,6X,4HDISP, 10X, 1HU, 9K, 2HV1, 8X, 2HV2, 8X, 1H
4P,9%,1HK,9X, 1HD)

311 FOBHAT(1H ,13,4X, 1P6D10.3,3X,1P6D10.3)

402 FORMAT(///5X;1HI,7X,SHXU(I),6X,10HS.S.COEPF.)

403 FORMAT(/5X,I2,3X,2(1PD11.3)) A

100 FORMAT (31HOFLOW INFORMATION CALCULATED IS//

110X,50HFkK, FRICTION FACTOR.c.ceccsacacescassscncaneea=, 1PD15.6/
210X, S0fITALAV, AVERAGE WALL SHFAR STRESS/ROREPccaaccease=,1PD15.6/
31Cx,50HDH, " HYDRAULIC DIAMPTERcccecsccsaccasssccccese=,1PD15.6/
410X,50HVAVG, BULK VEBLOCITY.cvceeacesacacascscsacnsncsase=, 1PD15.6/
510X,50HVB, COMPUTED BULK VELOCITYeeesoacsccacsccacsea=,1PD15,.6)
106 FORMAT (31HOPLOW INFORMATION CALCULATED IS//
110X,50HFR, FRICTION FACTOR:ccaeceacescscsvcncccsscacs=,1PD15.6/
410X,50HVB BULK VELOCITY..ueeeaaccosaccanccccnscasceaa=,1PD15,.6/

210X,50HTWAVE, AVERAGE WALIL SHEAR STRESS/ROREFaccccaaecsa=,1DD15/6/"
510X,50HTALAV, COMPUTED AVE SHEAR STRESS/ROBREF..ceccess.=,1PD15.6)
200 FORMAT (1H130X,35HDISTRIBUTION OF WALL SHEAR STRESSES///
/5%, 13, 10X, 9HTAL/TALAV,10X,5HUSTAR//)
313 FORMAT (4X,12,8X,D11.4,6X,1PD11.3,6X,1PD11,.3))
STOP ' *
FND ' ' '
_ SUBROUTINE SHEAR
INPLICIT REAL*8(A-H,0-2), INTEGER (I-N)
. COMMON
1/ALL/1T,JT,IN,JN,INM,IJNM,IL,ILP,IPROB,IGRID IHAX(16) IND JHIN(30),
2 1SEC, IPILE JJL,ICONYV, NSOLU INOM,JL,JLP
1/AGRID/R(30) X1(30), X2(16)
1/WALLF/TALAV,USAV, RTAL(16),USTAR(16) PR, YB, THAVE
1/FLUPR/URFVIS,VISCOS,DENSIT,PIT,DIA,DH, ATOT RE, VAVG,VB
C“‘******#**********#*#****#*********************‘##********
C SUBROUTINE FOR COMPUTATION OF WALL FRICTION BY IBRAGIMOV METHOD
c*******‘*****#*********#**#**#******************#*'*******‘***‘********
C - . .
IF (IPRO".EQ.1) GO TO 10

0433
ou3y
0435
0436
0437
ou3s
0439
0440

oun1
. 0uy2

0443
ouuy
0445
0uus
0447
ouus
0449

ouso

0451
0us2

0453

ousn
0455
0456

0457

0458
0459
0460
0461
0462
ou63

ousy

0465

0466

0467
ou68
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G¥%t COMBUTE YAV | |

A ¥A¥=0. 5% (3. /3.%&1&$BiTtﬂtﬁﬁ¢3-Dﬁ) m)

- C#%% COMBYBF FRICTION FACTOR, FR
X=ATOT/YAV*%2 '
XK=X*%0.25%PIT*(1./DSQRT (3.D0) =0.5) /YAV
XX==0.021%XK**3 '
RPR= (.58+.U2%DEXP (XX)) *(1.+. 1*(2.FYAV/DIA*1 ) ** (4, /3.))
IF(IPILE.EQ.1) GO TO 2 _
FCIR=0.0U46*RE** (-.2)

FR=RPR*FCIR

C**% COMPUTE DISTRIBOUTION OF TAL AND USTAR
TALAV=0.5%FR¥VAVG**2
TWAVE=TALAV

: @e 79 3 .

2 REP=1. /1.8 -
§%§ BRAVEX ( ﬂﬁﬂ@sal¥k¥lsees**f-@ 2} ) /RBR/0. 023
V.AVG=BASH%REP
RE=VAVG*DH/VISCOS
FCIR=0.046%RE%% (-.2)

FE=RFR*FCIR )
TALAV=TWAVE

3 CONTINUE

AC=3.85%PIT/ (X%%0.8%YAV)

CC=(AC/2.) **0.5%3.1416/6.

€=1.-6./3. 1416*03.1u16/2 /AC)**O S*DEXP(-AC)*DERP(CC)
c=1.,C _
B=7.7/(%**0.8%YAV)

CC=3,1416/6.% (0, 25%B*PIT)2%0,5

coﬁqo &&&*(PI%»DIAh
. CI1=6./(3.14159%B*PIT) **0. 5*DEXP(CD) *DERF (€C)
c=1./{1.-C1)

DTETA=3.1416/6./DFLOAT (JNN)

DO 1 J=1,JN

TETA=DTETA*DFLOAT (J- 1) e

YT=0. 5*(PIT/DCOS(TETA)-DIA)

‘BY=-B*YT

Ll

0469 .

0470
o471

0472
0473

047l
0475
0476
0477
0478
0479
0480
0481
0482

© 0483

0484
o485
08806
0487
ou8s
0489
0490
Nu9T
0492
0u93
0494
0495

0496

0437
0498
0499
0500
0501
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0503
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RTAL (J)=C* (1.-DEXP (BY)) .
USTAR (J) = (TALAV*RTAL (J)) **0.5

1 CONTINUE
RETURN

10 CONTINUE
IF(IPILE.EQ.1) GO 10 30
FR=16/RE

TALAV=0.5%FR*VAVG¥*2
TWAVE=TALAV
GO TO 40
30 TALAV=TWAVE
 RE=TWAVE* (DH/VISCOS) **2/8.
VAVG=RE*VISCOS/DH
FR=16./RF
40 CONTINUF
po 20 J=1,JN
RTAL (J)=1.0
20  USTAR(J)=DSQRT (TALAV)
VB=VAVG
RETURN
END : :
END , .
~  SUBROUTINE GRID (RAT) ‘
. IMPLICIT REAL*8 (A-l,0-Z), INTEGER (I-N)
COHMON :
1/ALL/IT,JT,IN,JN,INN,INM,IL,ILP,IPROB, IGRID, INAX (16) ,IND,JNIN (30),
2 ISFC,IPILE,JJL,ICONV,NSOLU,INUM,JL,JLP .
/AuRID/R(JO),X1(30),X2(16)
1/FLUPR/URFYIS,VISCOS,DENSIT,PIT,DIA,DH,ATOT,RE,VAVG,VB
" 1/WALLF/TALAV,USAV, RTAL(16) USTAR (16) ,FR,YB,TWAVE .
C*#****#*****#*#*****t##*#***#*##*t*******#*##**##*#t****#t#

C SUBROUTINE TO COMPUTE THE GRID COORDINATES

4C**###***#**#**#********##**#*##***###******#*#*#*#*t*******

C.

‘C#%% CIRCUMFERENTIAL COORCINATES, X2 (J)

‘DTETA=3.14159/6./DFLOAT(JNM)

0505
0506
0507
0508
0509
0510
0511
0512

0513
‘0514

0515
N516
0517
0518
0519
0520
0521
0522
0523
0524
0525

0526

0527
0528
0529
0530
0531
0532
0533

0534 -

0535
0536
0537
0538
0539
0540
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xz(aa-‘;
, DO % 022 ‘
1 X2 (I} EX2 (J-1)+DTETA" .
C*%* RADIAL COORDINATES, x1(1)
CX1(1)=0.0_ :

GAP=0.5% (PIT-DIA)
M=IN-JIN+JJL
o MN=M-1 : ,
C#%* ESTIMATE WALL SUBLAYER THICKNESS
XB= YB*VISCOS/DSQRT (TALAV)
X1(IL)=XB" 4
x1(n) cAP,

20 Ty,

JJP JJL+1 ;

DO '3 J=JJP4JN

TETA=X2 (J) ' :
3 X1{M+J-JJIL)= plf/z /DCOS {TETA) 2 DIA/Z.

C*** RADIAL DISTANCES, R(I)
Do 4 I=1, IN _
4 R{I) =0. 5*DIA+X1(i)
' bo 5 J=1,JN ,
IMAX(J)—M*J-JJL v
"IF(J.LE.JJL) IMAX(J)-H
5 ~ CONTINU®

DO 7. I=1,H
7 JMIN(I)-1

Mp= M+1
_ . DO 8 IL=nP, IN: _
8 JMIN (I)=JIMIN(I-1)+1

C#*** PRINT OUT COORDINATES, .
WRITE(6,101)™ (X1(T) ,I=1,1IN)
WRITE (6,102) (X2 (J) 4J=1,IN)
WRITE({6, “03) (IMAX(J),3=1,JN)

0541

0542

05473
0544
0545
0546
0547
0548
0549
0550
0551
0552

0553
055

0555
0555
05%7
05%8
0559
0560
0561
05862
0563
0564

0565

‘0566

0567

0568
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0570
0571
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0573
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‘0575 w-
0576 &



101
102
103
104

il e L T

WRITE (6,104) (JMIN(I),I=1,IN) _
PORMAT (25HODISTANCES IN DIRECTION-1/(1H 4D25.8))
'FORMAT (25HODISTANCES IN DIRECTION-2/(1H 4D25.8)) -

FORMAT (25HOVALUES OF IMAX . . /(18 414)).
PORMAT (25HO0VALUES OP JMIN /(1H 414))
RETURN

END

SUBROUTINE INIT o , :
IMPLICIT REAL*8(A-H,0-2), INTEGER (I-N)

COMMNON/ALEN/CL,RL,IPR,ILEN A

COMMON , ‘ o :
1/VAR/U(30,16),V1(30,16),V2(30,16),P(30,16),PP(30,16),TE(30;16),

2 -ED(30,16),AL(30,16),VIS(30,16) ,GEN (30,16) ,PRUT (30, 16) _
1/ALL/IT,JT,IN,JN,INM,INM,IL,ILP,IPROB, IGRID, IMAX (16),IND,JNIN (30),
2 ISEC,IPILE,JJL,ICONV,NSOLU,INUM,JL,JLP '
1/AGRID/R (30) ,X1(30) ,X2 (16)

~

‘1/FLUPR/URFVIS,VISCOS,DENSIT,PIT,DIA,DH,ATOT,RE,VAVG;VB

1/STRESS/T11(30,16) ,T22 (30,16) _
1/WALLP/TALAV,USAV,RTAL (16) ,0STAR (16) , PR, YB, TNAVE
1/TURB/CD,CMU,C1,C2,CK,E,CVIS,CDIS,PRTE, PRED

C***##***#*##**#**#$#***#**##*****##***#****t***##******##*#

Cc

SUBROUTINE -FOR COMPUTATION OF INITIAL CONDITIONS -

C****#*#**##*****##**###*#**##**#**f#*#****##**##**##*#*#*##

. C

C*** INITIAL CONDITIONS FOR AXIALAVELOCITY

u0=14.7

DO 3 J=1,JN

IH=IMAX (J)

BK=0.387*(1.40.05%R (IH) /R(1))

TT= DEXP(—1.26*DSQRT(R(IH)/R(1)))*10.' . ‘
vC=uS.*(1.#0.30*45./14.7+0.039*(QS./1Q.7)**2)-DLOG(MSaODO)/BK
Do 3 I=2,1Hd , ' ' ' : '
XS=USTAR (J)*X1(I)/VISCOS

IP(XS.GT.45.0) GO TO 4 - o ,
US=XS*(1.-0.34%XS/14.7+0.039% (XS/14.7) #*2)
GO TO 3 4 '
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4 ¥y=x 1(I£/X1(IH
o ELTE T
, U(I,J) =USTAR(J)*US
Ceex CORﬁECT VALUES
CALL REYNU
VB=VAVG
C*¥* CONPUTE MIXING LENGTH‘
CALL MIXLEN
C##% INITIAL CONDITIONS FOR TKE ASSUMING BOBKQV'S CORRELATION
CALL TURBK '
IF (IPROB.EQ.5) GO TO 60
GO TO 'S0
60 DO 20 J=1

, '{ﬂ EE ]
i Al
RN

RETU
END

SUBROUTINE TURBE

IMPLICIT REAL¥8 (A-H,0-2), INTEGER (I- u) B
DIMENSTION FP{30,16),FT (30,16),FP2 (30, 16) e
CQMHON/ALURB/BV§(3O 16), ch,cal, CA2,CB,ITURB

COMMON/GEOHC/RH (30) , ARE (30) , ARW(30) ARN (30) ,ARP (30) , DX1(30),
/ ANG (16) ,ANGM(18) ,VBP.(16)

COMMON

}j .
HE TNV

‘C’Dt‘f“"‘“ -
‘prihgia

T%H&a

mnm

’ QMH

1/VAR/1 (30,16) ,V1(30,16), v2 (30, 16) ,P(30,16) ,BP (30,16) ,TE (30,16) ,

2 ED(30,16),AL(30,16), VIS (30,16), GEN(10,1§1533UT(30,16)
1/A§L/I$,J£,IN Jugium JnacTL ILP IBBGB,I

TSEC,1PLLE,JIL, IGONY, NSOL, INON, IL, IL
1/AGRID/R (30) ,X1 (30) , X2(16)

- 1/STRFESS/T11(30,16) ,T22 (30, 16)
1/FLUPR/URFVIS,VISCOS,DENSIT,PIT, DIA, DH, ATOT,RE, VAVG, VB
1/WALLF/TALAVFUSAV, RTAL (16) ,USTAR (16)', FR,YB, THAVE - o

C .
C*** TURBULENT KINETIC ENERGY AND NORMAL STRESS CALCULATIONS

(K&)lﬂ%tﬁt@é@@l@%i(?-sgi/2 /(4-3(€3n9,?¥4€,aﬂatiﬁoa/8«

IGRID, THAX {16} , IND,ININ {30) ,
P
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10
15

20

45

FV=1.-VAVG/U (IN,JN)
IF(IND.EQ.1) GO TO 1
GO TO (15,45) ,ITURB
"CONTINUE

DO 10 J=1,JN
IH=TMAX (J)

DO 10 I=IL,IH
ETA=X1(I)/X1(IH)

 YZ2=-1.48%ETA

YT=~1.17*ETA
YR=~0.77*ETA :
FP(I,J)=0.40%DEXP (YR)
FT(I,J)=0.60%DEXP{YT)

Fz (1,J)=0. 95*DEXP(YZ)

CONTINUE

CONTINUER

DG 20 J=1,JN

IH=IMAX (J)

po 20 I=IL,IH ,

T11(I,J)=(FP(I,J) *PV*U (I,J)) **2

T22(1,J)=(PT(I,J) *PV*U(I,J)) **2

IF(IND.EQ.O0.AND.IPROB.NE.3) GO TO 20

T33 =(FZ (I,J)*PV*U (I,J))*%*2

TE(I,J)=0.5%(T11(I, J)+T22(I,J)+T33)
CONTINUE

RETURN

CONTINUE

CALL MODSTR

RETURN

END

" SUBROUTINE HVXLEN

IMNPLICIT REAL*8 (A-H,0-2) , INTEGER (- N)
CCMYON/ALEN/CL, RL IPR,ILEN
COMMON

1/VAR/U (39,16),V1(30,16),V2(30, 16) p(3o,15) 99(30 16) TE(3O 16),

0649
0650

. 0651
0652
0653
0654
0655

0656

0657
0658
0659

0660
0661

0662
0663

0664
0665
0666
0667

0668

0665
0670
0671
0672

0673

0674
0675
0676

0677

0678

0679 .

0680

0681
. 0682

0683

068y

T1¢



é’z ‘Eﬂ [(’3 04, 1!6}?’) 9" A¥L l‘ :3‘-0’" 51‘.6‘) [ 2 w‘I’f<S“'3 0,;' 71‘6) KA G‘EN ( 30& I’ 6r) Y2 P R 031(3 0¢' 1 6)

7%1&/1? %740 00, TN, 0%A T, 11 I?ﬁba,icnmn THAX{Y6) ,TND, JHIN(30),7

2 ¥sEC,IPILE,JJL, ICONV NSOLU,INUM,JL,JLP
1/AGRID/R(30) X1(30) , X2 (16)

1/WALLF/TALAV,USAV,RTAL (16) ,USTAR (16), ER,YB, THAVE
1/TURB/CD,CMU,C1, c2,CK,E, CVIS,CDIS,PRTE, PRED L
17PLUPR JURFVIS, VISCOS, DENSIT,PIT, ITA, DH,ATOT, RE, VAVG, VB

C 3 %k 0 ok e sk Aok o o ool o o o K ok K ok e ok kR KR kR R KR KR KR R

- C

‘'SUBROUTINE TO COMPUTE THE MIXING L¥i4GTH

LCREREA R kK k ******##*******#*#****#***** 4—*************’#*#****

15

20

DO 10 J=1,3N
 1H=IMAY (J)
Do 10 I=2,IH

- PN ) (6o B 2D

mwwmwmmmv :
3] ’ﬂh@~#0)$GO‘T0 15
mimi By=%15dy
GO TO 10
CT=3.14159/. 38%{(ETA-0.44)
AL (I,J) .= (0.44%0.066*DSIN(CT);)*X1 (IH)
GO PO 10 :
CONTINUE o ' - ‘ -
TF (I.EQ.2) GO''ED 11
IF(I.EQ.IH) GO {0 12
H1= (R(I~1) Rum/m@mn "R 1))

C“H2=1./H1

DUN=((U(I#+1,d)-U (I, J))*H1f(U(I J)~UJI Y. J))*ﬂZ)/((R(If1) R(I))*H1+
/ (Re(I) =R AT=1),} *H:2)

GO ¥To 7‘»’1»3 :

DUT= (U(T,T) -U (I~ “ ﬁ))/(R(I) R(I 1))
GO TO 13

DU1= (U (3,J)-U(2, J))/(R(3) R(2))
CONTINUE

IFP (ILEN. EQ.2) AL (I, J)-(DUI/USTAR(J)*CK)**RL + (1. /CL/Xl(IH))**RL
‘AR=1./RL -
AL (I,J)=1./AL(1,J)**AR

-

- 0685

0686
0687
0688
0689
0690
0691
0692
0693
0694
D695
0656
0€97
EOCE
0699
V70,0
OO
G702
0703
0704
0705
0706
0707
0708
07109
£05710

R CAREE
0712

0713
0714
0715
0716
0717
0718
6719
0720

eTe



10 .

CONTINUE

RETURN

END

SUBROUTINE SECIN

IMPLICIT REAL#*8 (A-H,0-2), INTEGER (I-N)

COMMON/GEOMC/RM (30) ,ARE(30) ,ARW(30), ARN(30), ARP(30) Dx1(30),
/ ANG (16) ,ANGM (16) ,VBP (16)

COMMON

"1/VAR/U (30,16) ,V1(30,16),V2(30,16) ,P(30,16), PP (30, 16) , TE(30 16) ,

2 ED(39,16), AL(30 16),VIS(30,16), GEN(JO 16) , PROT (30,16)
1/ALL/IT,JT,IN,JN,INM,JNM,IL,ILP, IPROB,IGRID, IHAX(16) IND, JHIN(BO),
2 ISEC,IPILE,JJL, ICONV,NSOLU,INUM,JL, JLP

1/AGRID/R(30) X1(30), X7(16)
1/FLUPR/URPVIS,VISCOS,DENSIT,PIT,DIA,DH,ATOT,RE,VAVG, VB
1/WALLF/TALAV,USAV, RTAL(IG),USTAR(16),FR YB, THAVE =~

C#**##***#****t******####***#***#**#*#*#***#*t**t#**#******#

C

SUBROUTINE TO COMPUTE STREAM FUNCTION USING NIJSING APPROXIMATION

C#***#*#*****#******#*******#*t*****##****#********?****#***"

Cxx%

100
CHx*

101
102

PI=3. 14159

V2-VELOCITY

DO 100 J=3,JINH

IH=TMAX (J) -1 .
U= (USTAR(J) ~-USTAR(J-1))/X2(2) ‘

DO 10¢ I=2,IK '

ANGLE=PI*2. #*X1(I)/(X1(IH)+X1(IH-1))

v2(I,J)=0.628+DU*DCOS (ANGLE)

V1-VELOCITY

DO 102 3=2,JNM

IH=IMAX (J) -1

po 101 I=2,IH

V1(I+1, J)—(ARW(I)*V1(I J)+ARN(I)t(v2(I J)-v2(1, J+1)))/ARE(I)

CONTINOE :

CALL MODV1

RETURN

END

SUBROUTINE REYNU

-

0721

0722
0723

0724

0725

- 0726

0727
0728

0729

0730
0731
0732

0733
0734
0735

0736
0737

0738
0739
0740
0741
0742
0743
0744
0745

0746

0747
0748
0749

0750 .

0751
0752
0753

0754
. 0755
0756

W
w



C

40

10

iﬁg G
éomﬁﬁn

LICIT REAL#*8 {A-f;0-7) ; INTEGER (I-N)

1/VaR70 (30,16)7,71(30,16), v2(30,16),P(30,16), PP (30, 16) , TE (30,16} ,

2. ED(30,16),AL(30,16),VIS(30,16) ,GEN (30, 16) , PRUT (30, 16)
1/ALL/IT,JdT,IN,JN,INM,INH,IL,ILP,IPROB,IGRID, IHAX(16) IND,JMIN(30),
2 ISEC,IPILE,JJL,ICONV,NSOLU,INOM,JL,JLP _
1/AGRID/R (30) +X1(30) , X2 (16)
" 1/FLUPR/URFVIS,VISCOS,DENSIT,PIT,DIA,DH,ATOT,RE,VAVG;VB
. 1/WALLF/TALAV,USAV,RTAL (16), USTAR(16) PR;YB, TWAVE
C***#**###******#***********#********************#*#*******

SUBROUTINE FOR COMPUTATION OF BULK VELOCITY, VB

TAV=0.0
IH=TMAX (J)
IP (IPROB.EQ.1) ﬁo T0 40
TAVE vxqcos*(n(1§*25 /2.+125. *VISCOS/USTAR(J)/3 )
A1=0(IL, J)/USTAR«J) -5. - _

A2=1 (1L, J)/USTR

r(J) +5.

YS=X1(IL)*USTARYJ) /VISCOS
A1=A1/DLOG (YS/530D0)
A2=(A2-A1%DLOG (5. ODO*YS))/Z..
A2* (YS- )+m1*(ys*(DLOG(YS) 1.¥-5. *dDLOG(S«ODO) 1.

A 1=
MW

ALZE R :
,0D0) -0.5) /2.)

o Y

(SR D= 29ﬂ)/2. *R&*w&s&*zta

Ct**t*#*#***#**#*#*#*###***#*##*****###*##*******#*#t**###* N -

ﬁmoewxsmaagsyye¢aaéwﬁwfphocﬁs.'

TAV=TAV+VISCOS* (AI1*R (1) +VISCOS/USTAR (J) *A12) .

CONTINUE
Lo 1¢ I=iLP,IH

DAV= (R (I)*U(I,J)

TAV=TAV+DAV
TAV= TAV*K2(2)

AR (I-1)*U(I-1,J)

) # (R (I) =R (I-1)) /2.

0757

- 0758

0759
0760

0761

0762
0763
0764
0765
0766
0767
0768

0769

0770
@771

@772
&?ﬁs
0774
0775
0776
0777
0778
0779

0780
o701
0782

0783

: ;078'4

0785
0786
0787
0788

0789

0790
0791
0792

e



20

IP(J.EQ.1.0R.J.EQ.IN) TAV=0.5%TAV
AV=AV+TAV

C**% CALCULATE BULK VELOCITY

VB=AV/ATOT
IF (VB.EQ.0.0) VB=VAVG
IF(IPILE.EQ.1.ANT.IND.RQ.0) GO TO 35

C*** NORMALIZE VELOCITY DISTRIBUTION

39
35

C

~

F=VAVG/VB.
DO 39 J=1,JN
IH;IMAX(J)

DO 39 I=2,IH
U(l,J)=F*U(I,J)
CONTINUE -
RETURN

END

SUBROUTINE BGEOM
IMPLICIT REAL*8 (A-H,0-2), INTEGER (I-N)

CONKON/GROMC/RM (30) ,ARE (30) ,ARW (30) ,ARN (30), ARP(30) DX1(30),
/ ANG (16) ,ANGM (16) ,VBP (16)
COMMON/GPOHD/DVIF(BO),DV1W(30) PVIN (30) ,CV1E(30) ,CVIW (30)
COHMON/GEOMB/DV2E (30), DV2W(30),DV2V(30) CV2E(30), CV?W(30) ARPN (30)

COMMON

1/ALL/IT,JT,IN,IN,INNM,INM,IL,ILP,IPROB, IGRID, INAX
2 ISEC,IPILF,JJL,ICONV,NSOLU,INUHM, JL,JLP

1/AGRID/R(30) x1(30) X2(16)

1/GPQM/ev(30),BN(30),ew(30) BS (30),VP(30),VP1(30)
C****#***t‘***####****#****#*****************************t#**

SUBROUTINE FOR CALCULATION OF GEOM FACTORS
CR AR Ak ok AR Ok ok R kR kR R KRR Rk kR R X Rk Rk Rk R Rk Rk kK ok

DTETA=X2 (2)

C*%x*% COMPUTE BE,BW,BN,BS AND VP

VP (IN)= DTETA*R(IN)*(R(IN) R(INH))/Z
DX1(1)=X1(2)

RM(1)=0.5% (R (2) +R (1))

DO 21 I=2,INM

BE(I)~.25*DTFTA*(R(I+1)+R(I))/(R(I+1)-R(I))

(16) , 1IND, JMIN(30),

0793
0794
0795

0796

0797
0798
0799

0800

0801

- 0802
0803

0804
0805
0806
0807
0808
0609
0810
0811

0812

N813
NH 1
0319
08i¢
0817
0818
0819
0820
0821
0822

0823
. 0824

0825
0826
6827
0828

G1E



......

21

22

A TE S e a2

BW {1)=. 25¢DTETA% (R (I=1) +R(I))/ (R (I) =R (I- )
ﬁﬁ%§3é27§¥iﬁiiiii#ﬁii=ih)ﬁéixyy§TETa

BS (1) =BN(I)

vpi{I) =(R(I)**2-R(I-1)**2)*DTETAy2.

VP (I)=DTETA% (R(I+1)-R(I-1))* R(I)/2."
“RM(I)=0.5% (R(I)+R{I+1))

. ARE (I) =RM(T) *DTETA

ARW (I)=RM (I=1) *DTETA

ARN(I)=0.5% (R(I+1) -R(I-1))

ARP (I)=R (I)*DTETA

DX1 (I)=R (I+1)-R(I)

DV1E (I)=2.*ARP {I) /ARN (I)

DV IN (I)=2. *(R(I)-R(I—l))/(R(I)+R(I 1))/DTETA
EVIE (L) EDx 1 /u:/aRN(Ia

#R {1

(i
* (R

[P

D3N (1) sy, *R(I)*BN(I)
CV2E (I)=R(I+1)74./DX1(I)

CV2W (I)=R(I-1)}/4./DX1(1-1)

IP(I:EQ.2) GO TO 21

Dv1w(1) =2.*ARP (1< 1)/ARN(1 1) C

€v¥1u (I)= nx1(1—$9 h./ARN(IZ1) _ : : »
CONTINUE : _ o : .

ANG (1)=0.0

Do 22 J=2,JN
I=IMAX(J)
ANP(J)—DTAN(X2(J))

Anre

VB?KJ)-((R(I+1)+1(1))*DS

- /)) /8.

CONTINUE

VBP (1) =0.0 . ‘
VBP(JN)—RM(INM)*(R(IN)*DSIN(XZ(2)/2 )-RM(INM)*”?(Z)/z )
VP (IN)=VEP (JN)

RETURN

et ’ 2 -5.’;"—' P . I S O AU

ote



C

CH%xx

C

A\
C %k &

13 7

16

17

Cam——

‘<’e’%r

Y

END . o
SUBROUTINE PROPS(IVIS) i N
IMPLICIT REAL*8(A-H,0-Z), INTEGER (I-N)
COMMON : -

1/VAR/U(30,16),V1(30,16),V2(30,16),P(30,16),PP (30,16) ,TE (30, 16) ,

2 ED(30,16),AL(30,16),VIS(30,16) ,GEN (30, 16) ,PRUT (30, 16)

1/ALL/IT,JT,IN,JN,INM,JNM,IL,ILP,IPROB,IGRID,IHAX(16),IND,JHIN(30),

2 1ISEC,IPILE,JJL,ICONV,NSOLU,INUM,JL,JLP
1/AGRID/R (30) ,X1(30),X2(16) : :
1/FLUPR/URFVIS,VISCOS, DENSIT,PIT, DIA, DH,ATOT,RE, VAVG, VB
1/TURB/CD,CMO,C1,C2,CK,E,CVIS,CDIS,PRTE, PRED
1/WALLF/TALAV,USAV,RTAL(16),USTAR (16) ,PR, YB, THAVE
CCMMON/ALEN/CL,RL, IPR, ILEN -

-

VISCOCITY AND VISCOCITY RATIO CALCULATIONS
VISCOCITY RATIO s

IF (IND.EQ.0) GO TO 11 1

CTAN=0. 154 :

-6o TO (13,15,17),IPR

L

CONTINUE
DO 14 J=1,JN

IH=IMAX (J)

DO 14 T=1,IH

PRUT (I,J)=1.0

GO TO 11,

CONTINUR

DO 16 J=1,JN

IH=IMAX (J)

DO 16 I=1,IH

PRUT (I,J)=AL (I,J* /AL (IN,JN)
GO TO 11

CONTINUE

DO. 10 J=1,JN

IH=IMAX (J)

AK=1.+X1(IH) /R(1)

e

0865
0866

0867 .

0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879

0880

0881
n88?2
0883
0884
088"
0886
0887
0883
0889
0890
0891
0692
0593
0694
0895
0896
0897
0898
0899
0900

L1E



.10 -
1

CHak

102

=0.407+0.02%X 1 (TH) /R (1)

?-3@ﬁ%%a.~@;3w&3®b/amﬁa«@tmaswaa@-m m.vjmwﬁa-mnocqs@,@negymx

B=(1.82- 1. 3*X1(IH) /R(1)) /(1. +0.14* (DLOG10 (RE) -5.))

DO 90 I=IL,IH .
Y= 1.—x1(1)/x1(15)
Ad= (2. *AK-Y* (AK-1.)) /(AK-Y* (AK-1.)) /(BK+1.)

PRUT (I,J) =AK* (B+Y#%52) % (1.~Y#%2)*R2/2./(1.+B) /CTAN"

CONTINUE
CONTINUE

RADTAL VISCOSITY
CONTINUE

@@ Jeb &= @qam

ﬂmmx ().

.Do oD =1L, TH

W:zrfs(o LiD=VIS (T, ,,QJJ) ‘

IF(IPROB LT.5)ED (I, J)-CDIS*TE«I JY)F%, SJALJI J)
IF (ET (I,J) . EQ.Ps») GO TO 102 ,

VIS(I,Jd)= o TE(I J)**2*CMU/ED(I J4+VIS€OS
Ge To 101

VIS(I,J)=VISCOS$

‘C-=-==-—UNDER-RELAX VIS@@SITY

101
100

200

Vis{(1,Jd)= URFVIS?VIS(I J)+(1.~URFVIS\*VISOLD :
CONTINUE .
RETURN

CONTINUE
Do’ 200 J=9,, IN

IH=THAYH S

DO 200 I=IL,IH

VIS (I,Jd)= CTAN*PRUT(I J) #X1(IH) *0STAR (J)
RETURN

END -

w

- SUBROUTINE "CALCYV1

- IMPLICIT REAL¥S(A-H,0-Z), INTEGER (I- N)

.

0901
0902
0903
0904
0905
0906 -

0907

0903.

.0909

0910
0911
0912
0913
D914
0905
DB H-
©9n7
0918
04919
0920
0621
0922
£$923
0924
0925
026
0527
0¢28
0929
09390
0931
0932
0933
0934
0935 w
0936 %



< -

c ,
COMNON/GEOHC/RH(BO) ARE (30) ,ARW (30), ARN(30) ABP(30) Dx1(30),
/ ANG (16) ,ANGM(16), VBP(16)
COMMON/GEOHD/DV]E(30) DV 1W-(30) ,DVIN(30) ,CVIE(30) ,CV1HW (30)
COHMON/ATURB/DVS(30,16),CA,CA1,CA2,CB,ITURB
COMMON
1/VIVEL/URFV1,RESV1,NSWPV 1
1/PCOR/RESORM,URFP, RFSPP,NSWPP IP:%P,JPREF
1/VAR/U (30,16) ,V1(30,16),V2(30,16) 9(30 16) ,PP (30,16) , TE(30 16),
2 ED(30,16),AL(30,16),VIS(30,16),FFV(30 16) ,PRUT (30, 16)
1/ALL/IT,JT,IN,JIN,INM,INM,IL,ILP, IPROB,IGRID, IHAX(16) IND,JMIN (30),
2 ISEC, IPILE,JJL ICONV,NSOLU,INUH,JL,JLP
1/AGRID/R(30) X1(30) ,X2(16)
1/GEQﬂ{BE(30),BN(30),BH(30),BS(30),VP(30),VP1(30) 4
1/FPLUPR/URPVIS,VISCOS,DENSIT,PIT, "IA, DH, ATOT,RE,VAVG, VB
1/WALLF/TALAV,USAV,RTAL (16),USTAR (16) ,PR,YB, TWAVE
1/TURB/CD,CMU,C1,C2,CK,F,CVIS,CDIS, PPTE,PRED
1/SmRFS§/T11(3O 16) ., T22 (30, 16)
1/GEOMA/DEE (30,16) ,DPW (30,16) ,DPil (30,16) ,DPS (30, 16)
1/COEF/AP (30,16) ,AN(30,16) ,AS(39,1¢),AE(30,16) ,AW {30,16) ,SU(30,16)
C : ,
C**%Y1 VELOCITY .
C -
DTETA=X2(2)
VISE=VISCOS
VISWH=VISCOS
N0 100 J=2,JINH
IH=IMAX (J)
DD 101 I=3,IH
C-----CALCULATE DIFFUSION COEPFICIENTS

IF{I.EQ.IH) VIS (I,Jd-1)=VIS(I,J)

VISN= (VIS(I,J)+VIS(I,J+1)¢VIS(I~1,J+1) #+VIS(I-1 J))*O 25
VISS= (VIS(I,J)+VIS(I,J-1)+VIS (I-1,3-1) +v15(1 1,J).) 0. 25
DE=VISE#DV1E (I) .

DH=VISW*DV 14 (I)

DN=VISN*DV 1N (T)

0937 -

n93s
09139
0940
0941
09u2
0943

0944,
0945
0946

0947
ogug
09u9

0950

0951

0952

Nasi
0954
0955
0956
09357

nana

04959

0960

0961
0962

0963
0964

0965 -

0966
0967
0968
0969

0970.

0971

0972

6TE



DS=VISS*DV 1N (I) : | | | ; . 0973

C---- CALCULATE CONVECTION COEP?ICIENTS 0974
V1E-(V1(I wanx1(1) S +V1(I+1, J)*DX1(I 1))/ (DX 1 (I)+DX1(I-1) . 0975

/) 0976

Viu= (v1(1 J)*DX1(I 2)+v1(1 1,J) *DX1(I- 1))/(Dx1(1 2)+nv1(1 1y _ 0977

V2N= (V2(T,J+1) +V2(I-1,3+1)) /2. : j 0978
y2s=(V2 (I,J) +V2(I-1,3))/2. : . ' - 0979
CE=ARP(I)*V1E 0980

CW= ARP (I-1)*V1IW A , 0981
CN=DYX1(I~-1)*V2N ' _ 0982
CS=DX1(I-1)*V2s ' , 3 0983
SMP=CN-CS+CE~CHW : _ : 0984

C--=-- ASSEMBLE MAIN COEFPICIEMTS A 0985
IP{ICONV.E0. V) GO 16 2% : , ‘ 098¢
RI=CE+CH : ' _ 0587
CE={DABS{AY) -ﬁfi*cviﬂﬁli - - - 0988

CW= (@135(Af)oa1)*evfwt1) ) o . 0989

A2P= (CN+CS) /2. S E 0590

CN= (DABS (A2P)=A2P) /2. : - 0991

CS= (DABS (A2P) ¢A2P) /2. _ 0992

GO T0 22 0993

21 CE=0.5% (DABS (CE) ~-CE) A : 0994
: CHW=0.5% (DABS (CH}+CW) _ ' i 0995
CN=0.5% (DABS (CH}—CN) ‘ 0996
CS=0.5% (DABS (CSy +CS)y _ 0997

22 CONTINUE : ‘ : B ©998
AE (I,J) =CE+DE _ o . 9999

AW (I o) =CH +DW ' _ S e ' 1000

AN {1 ,»3)=CR+ DN 4 o : e 1001

AS (I,J)=CS#+DS ' ' : R 1002

: AP (I,J)=AE(I,J) +AW (I, J)+AN(I J)+AS(I J) . ‘ . 1003
C--==- CALCULATE SOURCE TERMS 1004
TIP= (T22 (I,J)+T22(I-1,J))/2. ' 1005
S1=TTP*VP1(I)/RM (I-1)p ‘ S 1006
S2=ARR(I-1)*(T11(I-1,J)+P(I-1,J))-~ ARP(I)*(T11(I J)+P(I J)) o 1007

S31= VISN*RM (I-1) , *(VZ(I J+1) /R (1) -V2(I-1,J+1) /R (I- 1)) 1008

0ct



101

104
100

301

1302
300

350
C

$32=- VISS#RM (I-1)

SU(I,J)=S1+¢52+531+4532
CONTINUE
I=Ti+1

AP (I,J)=1.0
AE (I,d)=0.0
AW(I,J)=0.0

"AN(I,J)=0.0

AS(I,J)=0.0.
IF(J.EQ.JNM) GO TO 104

SU (I,J) =ARN (I-1)*V2 (I-1 J)/ARE(I 1)
GO TO 100

SU(I,J)=0.0

CONTINUE

‘DO 300 J=2,JNM

IH=IMAX (J) -1

DO 301 I=2,IH

DPE(I,J) ARP(I+1)/AP(I+1,J)
DPE (I,J) =DPE (I,J) *URFV 1

-CONTINUE

IH=IMAX (J)
DO 302 I=3,IH

DPW (T,J)=ARP (I-1) /AP (I,J)
DPW (I,3) =DPU (I, J) *URFV1
CONTINUE

CONTINUR

DO 350 J=2,JNM
TU=TMAX (J) +1

DO 350 I=3,IH

AP (I,J)=AP (I,J) /URPV1

SU(I,J)=SU(I,J)+(1. -Uapvi)*np(l J) #V1(1,J)
4CONTINUE

C‘**SOLUTION OF THE DIFPERENCE EQUATION

C

RESV1=0.0

*(V2(1,3) /R (1) ~V2(I-1,3) /R (I-1))

1009
1010
1011
1012

1013

1014

1015

1016
1017

1018

1019
1020
1021
1022
1023
1024
1025

1026

1027
1028
1029
1030

1031

1032

1033

1034

1035

1036

1037
1038
1039

1040

1041

1042

1043
1044

Ll



400

C
C*%
C

DO) HOQY Ne=WpNSWRWY
1‘9.«-’@@3'?61:1'1“. FG. 6) CATL SOCEV'(3, 7, INW, ¥, V1%, FES)

IFP (NSOLU.EQ. 1) CALL soLv2(3,2,JN4,1,V1,RES) ;
IF (RES.GT. RESV1) RESVI=RES

CALL MODV1

CONTINUE

RETURN

END

SUBROUTINE CALCV2 _ . -

IMPLICIT REAL*8/(A-H,0-2), INTEGER (I-N) .
COMMON/GEOHC/RMW3O),ARE(30),ARW(BO),ARN(3D),ABP(EO?,DX1{30),
/ ANG.(16) ,ANGM (16) ,VBP (16) :
GOMMON/GFOME/DV2E (30). ,I

EEWFO RN THRBDVISS (307 16 C RN A2 CHY ETURB?
P ,
BARVEL ARG RESV2,NSWPVE

1/ FCOR  BFSORN, URED ;RESPPNSWEB TP TEF, JPREF = .
1/VAR/U(30,16),yJ(30,16),v2750i1€f;p(3o,f6ffpgj§p,16)frp(yoffsﬁ,

2" £p'(30,16) , L3I0, 16) , VIS (30,,16) ,GEN (30, 16) ;PRUT (30, 16) ,
1/ALL/IT,JT,IN}&@,INM,QNM,Lhﬁﬁﬁ?)IPROB,IGRID,IHAX(16),IND,JHIN(BG?,
2 1SEC,IPILE,JJL,ICONV,NSOLO,INU,JL,JLP . -
1/AGRID/R (30) ,X1(30) , X2 (T6) o .

1/GEOM /BF (30) ,BNIE30) , BW (30) ,BS(30) , VP (30)',VP1(30)

1/GEOMA/DPE (30, T6) , DPW (307, 16) ,DPN (30,16) , DPS (30,16)

1/FLUPR /URPVIS, WESCOS%DENSIT ;PIT,CLA, DH, ATOT, RE;VAVG, VB

1/WALLF/TALAV,USAV,RTAL (16),USTAR (76).FR,¥YB; TWAVE "

1/TURB/Cﬁ,CMU,C1&C2,CK,E,CVIS,CDfSpPﬁTE,PRED’

1/ STRESSYTE (305 T6)1 #2222 (307216 )

1/COEF/RP (30 , Y6)}, AN (F016)} R0 18 RE (G, AE A (GO TER ST (FO6)
V2 VELOCITY

DTETA=X2 (2)
VISN=VISCOS
VISS=VISCOS
VISP=VISCOS.

ﬁDwQW(aox,ovik(gppfcvzg(aoy,cvzw(yoyfnapﬁ(sby"

1045

1046

1047

1048
1049
1050

1051,

1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
16062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080

443



DO 100 J=3,JNN
TH=IMAX (J) -1
DO 101 1=2,1IH

-~CALCULATE DIFPUSION COEFFICIENTS
 IP(I1.EQ.TH) VIS (I+1,J-1)=VIS (I+1,J)

fVISE={VIS(Iﬁl,J)%VIS(IfJiJ-l)*VIS(I,J{JY+VIS}I,JL)/Q.'

VISW=(VIS(I-1,J) +VIS(I~1,d=1)+VIS(I,Jd-1)+4VIS (I,J)) /4.

"DE=DV2E(I)*VISE f

DH=DV2W (I) *VISW
DN=DV2N {I) *VISN

DS=DV2N (I) *VISS

CALCULATE CONVECTION COEFFICIENTS
VIE= (V1 (I+1,3-1) + VI1(I+1,J))/2.
VIW=(VI(I,J)+V1(1,J-1))/2.

TF(ISNESIN) NRN=(V2HT, T) #V2T, T+ 1)) 72.

IF(J.EQ.JIN) V2N=0.0

V2s= (V2 (I,J)+V2(1,3-1))/2.
IF(J.FQ.2) V25=0.0

CE=ARE (I)*V1E

CW=AQW (I)*V1H

CN=ARN (I)*V2N

CS=ARN (I) ¥V25S

c_--_

SMP=CN-CS+CE-CW

"ASSFMB,E MAIN COEFFICIEMTS

IF(ICONV.FQ.1) GO. TO 21
R1=CE%DX1(I)+CW*DX1(I-1)
CE=(DABS (A1) -A1) *CV2E(I)
CW=(DABS (A1) +A1) *CV2W (I)
A2=CHN+CS ’

" CN= (DABS (K2)-A2) *R (I} /4.

21

CS= (DABS (A2) +A2) ¥R (1) /U.
GO TO 22 :

.CE=0. 5% (DABS (CE) —~CE) *R (I-+1)

t,Cw=0‘5*(DABS(CW)+CW)*R(I‘1)f.1

CN=0.5% (DABS (CN)-CN)*R (I)

-C5=0.5% (DABS (CS) +CS) *R (I) -

1081
1082

1083

1084
1085

10846

1087

1088

1089
1090
1091
1092
1093

1094
1095

1096.
1097
1098
1099
1100
1101
1102
1103
1104

1105

1106
1107
1108
1109
1110

11m
1112

1113
1114

R ERLIY
1116w



22

101

104

100

CONTINDE
AE (E;J) =CE+DE

AW (£,3)=Cu+DW

AN (I,J)=CN¢DN

IF(J.EQ.JN) AN(I,Jd)=0.0

AS (I,J)=CS+DS"
1F(J.FQ.2) AS(I,J)=0.0
AP (I,J)= (DE*R (I+1) +DW*R (I~

/  +AN(I,J)+AS(I,J)

1)) /R (I) +B (I) * (CE/R (T41) +CH/B (I-1})

1P (J.EQ.2) AP(I,J)=AP(I, J) +2. % (CS+DS)
' IP(J.EQ.JIN)AP(I,J)=AP(I,J)+2.% (CN+DN)
. g--=- CALCULATE SOURCE TERMS

$.3==AKRPN (L}
§I=VESHRRY (ER %

*(TZZ(I .J) #P CE,»&)-TZZ (I J-1)-= P’(I J 4})4
(V1 (T43,35 V1 (061,800} B _

377 U (B 0y =0 § (L, 3= 13} SUESHFRE (X=1)

SU ;95 = 51463
CONTINUE
I=TIR+1

AP (I,J)=1.0
AE (14J)=0.0
AN (£,3)=0.0
AS(1,3)= =0.0

IF(J EQ.JNM. ORaJ’ LE.JJL) GO TO 104

SU (I,J)=DX1(I-¥p*(VI(I,J)=
AV (I,J)=R(I- 1)/3(1)

GO TO 100

AW (I,J)=0.0

SU ‘f,_I‘i:tjﬁ =20 O

CONTIRGE

JNMM=JN=2 .
DO 300 J=2,JNMM
I=IMAX (J)

po 300 1=2,IH

DPN (L,J) = ARPN(I)/AP(I J*1)'

DPN(I J) =DPN (I, J) #URFV2

Vl(I J- 1))/33?(1)

- 1134

1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
£¥32
LR X k]

1135
1136
1137
1138
1139 |
1140
1141
#142
143



300.

301

350
C

C

400

CONTINUE

po 301 J=3,JNH

IH=THMAX (J)-1"

po 301 I=2,IH

. DPS(I,J) = ARPN(I)/AP(I1,J)

. DPS (I,J)=DPS (I,J) *URFV2

CONTINUE A

DO 350  J=3,JNM '

IH=IMAX (J)
. DO 350 I=2,IH

AP(I,J)=AP(I,J) /URFV2 S
SU(I,J)=SU(I,J) ¢ (1.-URFV2)*AP(I,J)*V2(I,J)

. CONTINUE

C*#*SOLUTION OF THE DIFFERENCE EQUATION

RESV2=0.0
DO 400 N=1,NSWPV2 :
IF(NSOLU.EQ.0) CALL SOLV1(2,3,J¥4,-1,V2,RES)"
IF (NSOLU.GE. 1) CALL soLv2(2,3,JNi,-1,V2,RES)
IF (RES.GT.RESV2) RESV2=RES °
CALL MODV2 ‘
CONTINUE
RETURN
END
SUBROUTINE CALCP
IMPLICIT REAL%*8 (A-H,0-2), INTEGER (I-N)
CCMMON/GEOMC /RM (30) ,ARE(30) ,ARW (30),ARN (30) ,ARP (30),DX1(30),
/ ANG (16) ,ANGM (16) ,VBP {16) : . ~ ~
COMMON
1/PCOR/RESORM,URFPP,RESPP, NSWHPP,IPREF, JPREF
1/VAR/U (30,16),V1(30,16),V2(30,16),P(30,16) ,PP (30,16) ,TE (30,16),
2 ED(30,16),AL(30,16),VIS(30,16) ,GEN(30,16) ,PRUT (30, 16)

1/ALL/IT,JT ,IN,JN,INM,JNM,IL,ILP,IPROB,IGRID, INAX (16) ,IND,JHIN(30),

2 ISEC,IPILE,JJL,ICCNV,NSOLU,INUH,JL,JLP

1/AGRID/R(30) ,X1(30) ,X2(16)

1153

1154
1155

1156
1157

1158 .

1159
1160
1161
1162

1163

1164

“1165 -

1166
1167
1168
1169
1170
1171
1172
1173
1171

1175

1176
11177
1178
1179
1180

1181
1182
1183

1184
1185
1186
1187
1188

Gz€



WLMPB/U;RTWI:S,W.‘I‘SCOS DENSIT,PIT, PIA,DH,ATOT,RE,VAVG,VD 1189

1/GEO4/BE (30) , BN (30) , BW {30) ,BS (30) , VP{30) ,VP1{30) 1190
1/WALLP/TALAV,USAV, RTAL(16) USTAR (16) , PR, YB THAVE o . 1191
1/TURB/CD,CMU,C1,C2,CK, E,CVIS,CDIS,PRTE, paan . : 1192
. 1/COEF/AP (30, 16) AN(30 16) ,A5(30,16) ,AR(30,16), AW(Bo,ts) SuU(30,16) 1193
s : '4/STRESS/T1%(30, 16),T22(30 16) ‘ 1194
- /l1/GEOnA/DPE(30 16),Dpw(30 16),DPN(30 16) n95(3o :6) S oo : . 1195
1197 .-
T B L1 S AT
. '_-_';\A‘ ) . . »,t . ) 1 19 9,1 ;-‘5, .-
? fﬂ?vai’ ,
. DO 10 T o o S - - 1203
‘IB'IHNX(J) _*'~ L : ' ' 1204
poO 101 I=2,IH ' o ' 1205
C--- CALCULATE COEPFICIBNTS : T 1206
AE(I,J)=ARE(I)*DPE(I,J) - 1207
AW (I,J)=ARW (I)*DPW(I,J) . : 1208
AN(I,J)=ARN(I)*DPN(I,J) _ 1209
AS (I,J) =ARN(TI) *DPS (I,J) 1210
AP (I,J)=AE(I,J)*R(I) /R (I+1)+AW (I, J)*R(I)/R(I-1)+AN(I J)+AS(I J) , 1211
Ct*% COMPUTE SOURCE TERMS 4 1212
CN= V2(I,J+1)*ARNYT) . . 1213
CS= V2(I,J) *ARN(I) 41214
CE= V1{I+1,J)*ARE(I) ‘ 1215
CW=  WAYT,J)*ARW (L) . 1216
SHP=CN~CS+CE-CH , 1217
SU(I,J)=-SMP _ ' 1218
. IP(I.EBQ.IH) SU(I,J)=CW-CN 1219
C--~- 'COMPUTE SUM OF ABSOLUTE MASS SOURCES 1220
RESORM=RESORM+DABS (SMP) 1221
101 CONTINUE - o LT 1222
100 CONTINUE - : 1223
C--- SOLUTION OF THE DIFFERENCE EQUATIONS ‘ 1226 B
. . (@)}



400

C—-- '

500 -

-501
Cmmm

503

502

DO 400 N=1,NSWPP |
IP(NSOLU.EQ.0) CALL SOLV1(2,2,JNN,0,PP,RES)
IF (NSOLU.FQ.1) CALL SOLV2(2,2,JNM,0,PP,RES)
IF (RES.GT.RESPP) RESPP=RES

CALL MODP

CONTINUE

CORRECT VELOCITIES

DO 500 J=2,JNM

IH=TIMAX (J)

DO 500 I=3,IH

Vi(I,J)= v1(1 J) +DPW (1,J) * (PP (1-1,3)~ R(I)/R(I 1)*99(1 J))
DO 501 J=2,JN

IH= IHAX(J)-1

DO 501 1I=2,1IH

V2(1,J)= V2(I J) +DPS (I,J) *(PP(I,J-1)~ PP(I J))
PRESSURES WITH PROVISION OF UNDER RELAXATION
PPREF=PP (IPREP, JPREF) ‘

po 502 J=1,JN

IH=IMAX (J)

Do %03 I=2,IH

P(I,J)=P (I,J)+URFP* (PP (I,J)-PPREF)
PP(I,J)=0.0

CONTINUE

CONTINUE =

RETURN

END

SUBROUTINE CALCU

IMPLICIT REAL*8(A-H,0-2), INTEGER (I- N)

COMMON/GEOMC/RM (30) ,ARE (30) , ARW (30), BRN(30) ARP (30), Dx1(30),

/ ANG.(16) ,ANGM(16), VBE (16)

COMMON N
1/UVEL/URFU,RESU, NSHPU

1/PCOR/RESORM, URFP, RESPP, NSWPP,IPREF,JPREF

1/VAR/U (30,16) ,V1(30,16), V2 (30, 16),P (30, 16) ,PP (30,16) ,TE (30,16),

1225
1226
1227
1228

1229
1230

1231

1232
1233

1234
1235
1236
1237
1238
1239
1240
1241

1242

1243
1244
1245
1246
1247

1248
1249

1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260

L2t



1

1
1

-8

/khLyIT jr,IN,JN,INK,INH,TL,ILP, IPROB, IGRTD, THAY
I8¥C, IPILF JJL,ICONV, NSOLU INUM,JL,JLP :

/AGRID/R(BO),X1(30) 12(16)

/GEOM/BE (30) ,BN(30) ,BW{(30),BS5(30), vp(ae) VP1(30)

@ ﬁ%ﬂ3@#7ﬁﬁ&&£«$@%ﬁ%§¢ﬂﬁ$(309164,G%N«%Gzﬂ%éxB DT {305
¥

1/FLOPR/URPVIS,VISCOS,DENSIT, PIT,TiA,DH,ATOT;, RE,VAVG, VB

1
i

/HALLF/TALAVWUSAV RTAL(16) USTAR(IG),PR YB: TWAVE
/TURB/CD,CMO,CY,C2,CK,B,CVIS,CDIS, PRTE; PBED

1/CORF/AP (30, 16) 4 ANT30,16) ,AS (30, 15) , AE (30, 16) , Aw(3o~16) sﬁ(3o 16)

C
CH**
C

AXIAL VELOCITY

DER T%«K&ﬂ&é

&ﬁ‘@&@
ey

cs= 0 0

cpP=0.0 ,

DO 100 J=2,JNA

IH=IMAX (J)

po M1 I=1LP,TH

CALCULATE DIFPUSEON ‘COEFFHCIENTS
TF{1.E0.IA.AND.&§uLE.JJL) GO TO 103

- DW= (VIS (I,J) VIS (I-1,J))*BW (I)
‘DN={VIS{(I,J)/PRIT (I, 3)*v15(1 J¥19/PRUT(I J*1))*%N(I)
IF{I.FQ.IH) GO TO 104 :

104

105

DE= (VIS{I,J) +VIS(I+1,J)) *BE{(I)

DS= (WIS (o) /RO il 5:3) #VTS (T3~ ﬂmVPWquiqﬂ*ﬂ§3*£SﬁI»
o o 195 ,

DE=0.0

'DS=0.0
'CONTINUE

IP (ISEC.EQ.0) GO TO 150
VIE=V1(I+1,J)

-VIW=V1(I,J)

V2N=V2(TI,J+1)

i\

1261

1262

1263
1264
1265
1266
1267
1268
1269
1270

1271

1272
1273

725

4295
427%
4277
1278
1279
1280
1281
1282

- 1233

1284
1285
1986
1287

. 1288

1289
1290
1291
1292
1293
1294
1295
1296

=

885{



21

.24

23

150

v25=V2(I,J)

CE=ARE(I)*V1E
CW=ARW (I) *V1¥
CN=ARN (I) *V2N
CS=ARN (I) #V2S

SMP=CN-CS+CFE-CW
ASSEMBLE MAIN COEFFPICIENTS
IF(ICONV.EQ.1) GO TG 21
IF(I.EQ.IH) GO TO 23
A1=CE#DX1(I)+CH*DX1(I-1)

CE= (DABS (A1) -A1) /DX1 (I) /4.
CW= (DABS (A1) +A1) /DX 1(I-1) /4.

A2=CN+CS

CN= (DABS (A2)-A2) /b.
CS= (DABS (A2) +A2) /.

GO TO 150

' CN=0.5% (DABS (CN)-CN)
CW=0.5% (DABS (CW) +CH)
IF(I.EQ.IH) GO TO 24
CF 0.5% (DABS (CE)-CE)

=0. J*(DABS(CS)+CS)

so TO 150
CE=0.0

cs=0.0 _

GO TO 150
CE=0.0 '
C$=0.0
CW=CHW/2.
CN=-CN/2.
CONTINUE

AE (I,J)=CE+DE
AW (I,J)=CH+DW
AN (I,J)=CN+DN
AS (I,J)=CS+DS

AP (I,J)=AE(I,J) +AW (I,J) +AN(I,J)+AS(I, J)
AP (X,J)= (AP (I, J)+CP)/URFU

1297

1298
1299

1300 .

1301

1302

1303

1364

1305
1306
1307
1308

1309
1310,

1311
1312
1313
1314
1315
1316
1317
- 1318
-1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329

1330

S1331
1332

625



© 101
103

8Y (Lg3) = =l *THAVE*VP (I) /DH

f?(Isﬁﬁ THy SO (T, 5?'&.*TﬁAV§¥VBﬁ(j)/Dﬁ
su(t;d)= SU(I J)+CP*U(I J)+(1.-URPU)*AP(I J)*U(I,J)
CONTINUR ,

Go To 100

CONTINUE

TETA=X2 (J). ' :

CC=ANG (J) * (R (IH)-R (IH-1))/R{IH) /DTETA
AE (11,J)=0.0 _ :
AN (1H,J)=CC/(1.#CC)

AW (IH,J)=1./ (1. +€C)

AS (IH,J)=0.0

AP (IH;J)=1.0 ,

§ﬂ€i?ﬁ3)'©e@ -

100 caNTINON

@x

‘o

400

c**$§6iﬁff6ﬁ 6% Tiit DEFFERENCE EOUATION

RESU=0.0

DO 400 N=1,NSWPU

CALL REYNU : ‘

ISTART=3 : : , ' .
1P (IPROB.EQ. 1) £§TART=2 ‘

IF (NSOLU.EQ.0) CALL SOLV1(ISTART,2,JNN,0;0, RES)

IF (NSOLU.GE. 1) CGALL SOLV2{ISTART,2,JNN, o,n , RES)

1F (RES.GT.RESU) RESU=RES =

CALL MODEG _

- CONTEINUE

RETOTN -

ERD

SUBROUTINE CALCTE

IMPLICIT REAL*8(A-H,0-2), INTEGER {I- N)

COMMON/GEOMC/RM (30) ,ARE(30) , ARH(BO) ARN(30),ARP(30) DX1(30),

/ ANG (16) ,ANGM (16) ; VBP (16)
COMMON/ATURB/DVS (30, 16) , CA,CA1,CA2, CB,ITURB
COMMON

1333
1334

.1335

1336
1337
1338

1339
1340

1341
1342
1343
1344
1345

1346

i3u7
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360

1361

1362
1363
1364

1365

1366

1367.

1368

e



CH*x
C

—

104

105

1/TEN/URPK, RESK, NSWPK

1/PCOR/RESORM,URFP, RESPP, NSWPP,IPREF, JPREP

1/VAR/U(30,16) ,V1(30,16),V2(30,16), p(30,16) ,PP (30, 16) ,TE (30,16),
2" ED(30,16),AL(30,16),VIS(30,16) ,GEN(30,16) ,PRUT (30, 16)

1/ALL/IT,JT,IN,JIN,INM,INM,IL,ILP,IPROB,IGRID, IHAX(16) IND,JMIN(30),

2 1SEc,IPILE,JJL,ICONV,NSOLU,INUM,JL,JLP

1/AGRID/R (30) "X1(30; , %2 (16)

1/STRESS/T11(30,16) ,T22(30,16)

1/GEOM/RE (3 0) BN(30),BW(BO),BS(30),VP(30),VP1(30)
1/FLUPR/URFVIS,VISCOS,DENSIT,PIT, 1A, DH,ATOT,RE,VAVG, VB
1/WALLF/TALAV,USAV,RTAL (16), USTAR (:6) , PR, 1B, TWAVE
1/TURB/CD,CHU,CY, c2 CK,E,CVIS,CDIS, PRTE PRED

1/CORF/AP (30, 16) 2 AN (30, 16) , AS(BO 16),AE(30 16) ,aW (30, 16) , 50(30 16)

TURBULENT KINETIC ENERGY

DTETA=X2(2)
CE=0.0
CN=0.0

Cx=0.0
CcSs=0.0
CP=0.0
$50 100 J=2,JNM
IHZTIHAX (T) -
Do 101 I=ILP,IH

-CALCULATE DIFFUSION COEPFICIENTS

IF(I.EQ. IH.AND.J.LE.JJL) GO TO 103 .

DW= (VIS (I,J) +VIS(I-1,J)) *BW (I) /PRTE

D= (VIS (1,J) /PRUT(I,J) +VIS(I,J+1) /PRUT(I, J+1))*BN(I)/PRTB
IF(I.EQ.IH) GO TO 104

DE= (VIS (I,J) +VIS (I+1,J)) *BE(I) /PRTE ,
DS= (VIS(I,J)/PRUT(I,J)+VIS(I J- 1) JPRUT (I, J-1))*BS(I)/PQTE
GO TO 105 .
DE=0.0

DS=0.0

CONTINUE

1369
1370

1371
1372
1373
1374

1375

1376
1377
1378

1379 -

1380
1381
1382
1383
1384
1385
1386

1387
1388
1389

1390
1391
1352

1393 -
. 1394
1395

1396

1397 -
.1-398
. 1399
1400
1401

1402
1403

1400

i



 3F (FSPE.EQs0) 6O 10 tse

viﬁ—??(f+f Jy
viwsvi(,da)y
V2N=V2 (I,J+1)
V25=V2(I,d)

CE=ARE(I)*V1E

CCW=ARW (I)*V14

21

24

23

CN=ARN (I)*V2N

CS=ARN (I)*V2S
SMP=CN-CS+CE- cH :
ASSEMBLE MAIN COEFPICIENTS
IF (ICONV,EQ.T1) GO TO 21
IF(I.EQ.IH) GO TO 23
&iscx*9ﬁ1éfi#€ﬁﬁﬁifé}-f)
C*d{ngaéé&?i &1i/§xicii/&
Cu= (Preg (h iy #ufy 708 1 (I<15 /4.
A2=CN+C§

CN= (DABS (A2)-A2) /4.
CS= (DABS (A2) +AZJ s4.

GO ‘TO 150

CN=0:5% (LABS (CN} -CN)

cW=0. 5*(DABS(cwﬂocw)
1F(I.EQ.1H) GO 16 24

CE=0.5% (DABS (CE) =CE)

€S=0.5% (DABS (CS} +CS)

GO TO 150

CE=0.0

- €S=0s0 .
. Go *0 150

CE=0.0
€sS=0.0

. CH=CHW/2.

150

CN=-CN/2.
CONTINUE o
AE (I,J)=CE+DE -
AW {I,J)=CW+DW

1405

- 1806

1407

1408

1409
1410

1411

1412
1413
1414
1415
1416

1417

1418
tu419

F430

14571

fuzz

1423
1424
1425
1426

1427
1428

1429
1430

1431
1432
‘1433

1434

1435

1436

1437

1438
1439

1640 -

zgs‘v



160
170

AN (I,J)=DN+CN
AS (I,J)=DS+#CS
SP =  -CD*CMU*TE (I,J)*VP(I)/VIS(I,J)

. IF(I.EQ.IH) SP =SP *VBP (J) /VP (I)

AP (I,J)=AN (I,J) +AS (I,J)+AE (I,J) +AW (I,J)~-SP
AP (I,J)= (AP (I,J)+CP) JURPK

——SOURCE TERMS

IF (I.EQ.IH) GO TO 160 ,

H1=(R(I-1) -R(1)) /(R (I+1)-R (I))

H2=1./H1

DU1= ( (U (I+1,d) =0 (I,3)) *H1+ (U (I,J)-0(I-1 J))*Hz)/(n(1+1)-a(1 1))
DU2= (U(T,Jd+1)-U(I,J-1))/R(I)/DTETA/2. .
GO TO 170

- DU1= (U (L,J)-U(I-1,3))/ (R (I)-R(I-1))

DU2= (U (1,3+1)-U(I,J))/R(I) /DTETA

" CONTINUE

GEN (I,J)=(VIS(I,J) *DU1*%24VIS (I,J) /PRUT(I,J) *DU2%*%2)
SU(I,J)=GEN(I,J) VP (I)

IF(I.FQ.IH) SO (I,J)=SU(I,J)*VBP(J)/VP(I)

. Su'(I,J)=SU(I,J) +CP*TE(I1,J)+(1.-0URPK)*AP (I, J)*TE(I J)

IF (ITURB.EQ.1) GO TO 101

T1i(L,Jd)=TE(I,J)*(2.%(1.=1./CA1) /3.+ (CB*GEN (I,J)+CA%VIS (I,J) *DU1#*x*
/2)/ED(1,J))

22 (I,J)=TE(I,J) *(2.%(1.-1./CA1) /3. ¢+ (CB*GEN (I, J)+CA*VIS(I J) *DU2 %%
/2/PRUT(I,J)) /ED(I,d))

101 CONTINUPRE,

103

GO TO 100

CONTINDE

TETA=X2 (J) .

CC=ANG (J) # (R (IH)-R(IH-1)) /R (IH) /DTETA
AE (IH,J)=0.0 S ;

- AN (XH,J)=CC/ (1. +CC)

AW (IH,J)=1./(1.+CC)

AS (IH,J)=0.0 :
Su(IH,J)=0.0

AP (IH,J) =AN (IH, J)+AH(IH J)

1441

1442

1443

R

1445
1446
1447
1448

1449
1450

1451
1452
1453
1454
1455
1456
1457

1458

1459
1460
1461
1462
1463
tu6n
1465

1466 .

1467

1468
1469
1470
1471,

1472

1473

1474
1475
1476

€ee



-100

C

C

198

C.
Chex
C

4

%% gﬂéﬁdﬁgu(iﬂﬁé 39 100
€O

J) *T17 (IH,J+1) +AW (TH, ag*maa(iﬁ-a 3)
IH,J)=AN (IH,J) *T22 (IH,J+1) +AW (IH,J) *T22 (I18-1,J)
INUER

i
2
NT

C**%SOLUTION OF THE DIFFERENCE EQUATION

RESK=0.0

DO 400 N=1,NSWPK

IF (NSOLU. BQ 0) * CALL SOLV1(3 2,JN:,0,TE,RES)
IF (NSOLU.EQ. 1) CALL SOLV2(3,2, JN!,O,TE RES)
IF(RES.GT.RESK) RESK=RES

CALL MOPTE ’

‘f8§¢{H’F
hTQ§§

g BROUTINE GALGED
IMPLICIT REAL®¥§ (A-H,0-2), INTEGER (I=N)
comnou/GEOMC/Rg(30),ARE(30) ARW (30) ,ARN (30, 939(30) DX1(30),
/ ANG(16) ,ANGH(]f) (VBR(16)

COMPON :

1/TPIS/URFE,RESE, NSWED A
17PCOR/RESORM, URFP, RESPP, NSWPP, IPREF, JPREF

1/VAR/U (30,16) ,¥1(30,16),Y2(30,16), P (30, 16) , PP (30,16) , TE (30,16) ,
2 ED(30, 16),AL(30 16) ,VIS(30,16) ,GEN(30,16) ,PBUT (30,16)

'1/ALL/IT JT,IN,JN, lnw,JNH, IL ILP,IPROB,IGRID,IMAX (16) ,IND,JMIN (30},

2 ISEC,IPILE,JJL,ICCNV, NSOLU INUM,JL JLP
1/Acu1n/g 30), x1530) ;2%16)

1/GEOM/8P§;0> F3N (10) LB (30) (DS £30) L¥P (30) ,¥P1.(30)
1/FLUPR/ORFVIS, VISC0S, DENSTIE, BIT, DIA, Dil, AROT, RE, VAVG, VB
1/WALLF/TALAV,USAV, RTAL (16) , ISTAR (16) , FR, YB, THAVE
1/TURB/CD,CMU,C1,C2,CK, E, CVIS,CDIS, PRTE, PRED

71/COPF/AP(10 16) AN (30, 16),AS (30, 16) , AE (30, 16) , A¥ (30, 16) , SU (30, 16)

i

ENERGY DISSIPATION

1477
1478
1479
1480
1481
1482
1483
1484

1485

1486
1487

-1488

1489
1490
1491
1492
1493
1694
1495
1496
1497
1498
10399
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511 w
1512 @



DTETA=X2 (2)

CR=0.0
CW=0.0

bo 100 J=2,JNHM

104
105

IH=TIMAX(J)
DO 101 I=ILP,IH

CALCULATE DIPPUSION COEFPICIENTS
IF(I.?0.IH.AND.J.LE.JJL) GO TO 103
DW= (VIS (I,J) +VIS(I-1,J)) *BW (I) /PRED

DN= (VIS (I,J)/PRUT(I,J) +VIS(I,J+1)/PRUT(IL, J+1))*BN(I\/PRED

IF(I.EQ.IH) GO TO 104

DE= (VIS (I,J)+VIS (I+1,J))*BE(I)/PRED

DS= (VIS (I,J) /PRUT(I,J) +VIS(I,J-1)/PRUT(I,J-1))*BS (I) /PRED
GO TO 105

DE=0..0

DS=0.0

CONTINUE

1F (ISFC.EQ.0) GO TO 150

VIE=V1(I+1,J) - . v

VIW=Vv1(I,Jd)

V2N=V2(1,J+1)

v25=V2(I,J)

CE=ARFE(I)*V1E

CU=ARW (I)*V1IW
CN=ARN(I)*V2N
CS=ARN (I) *V2S
SMP=CN-CS+CP- cu ;
ASSEMBLFE MAIN COEFFICIENTS
IF(ICONV.EQ.1) GO TO 21
IF(I.EQ.IH) GO TO 23 .
A1=CE*DX1(I)+CW*DX1(I-1)
CE= (DABS (A1)-A1) /DX 1(I) /4.
CW= (DABS (A1) +A1) /DX 1(I-1) /4.

1513
1514
1515
1516
1517
1518

1519

1520
1521
1522
1523

1524 . -

1525
1526
1527
1528
1529
1530
1531
1532
1532
1534
1535
1536
1537

1538 -

1539
1540
1541

1542

1543
1544
1545

1546

1547

1548

GEE



21

150

101

103

-SOURCE TERMS
.50 ¢£39
1P

A2ENvES .
cnafnnn§(n3)‘i237h.
CSE QBABS(A2)+A2)/u.
GO TO 150

CN=0.5% (DABS (CN)~CN)

CW=0.5%(DABS (CW) +CH)

IF (1.EQ.IH) GO TO 24
CE=0.5% (DABS (CE) -CE)
CS$=0.5% (DABS (CS) +C5)
GO TO 150

CE=0.0

CONTINUE

AE (I,J)=CE+DE
AW (I,J)=CW+DW
AN(?;J)—DV#CN

AS (1,J)=DS+CS o .
§ = =E2%VP (1) *CHUTE(T,J] /VIS(I,;J)
IF {i.EQ.IH) SP. =SP _ *VBP{J) /VP(I)

AP (1,J)=AN(1,3) ¥AS (I79) +AE(I,J) +AH (1,3) -sP
AP (I,J)= (AP (I,;J)+CP)/URFE

*FE (18] 7 9Es {247)

3

-

)=
1. ¥0: 1H) SQi
Jy*

sy (I,d)=50(I, '””i

V,

CONTINUFE

GO TO 100

CONTINUR

TETA=X2(J) o S
CC=ANG (J) * (R (IH) -R (IH-1)) /R (IH) /DTETA
AE(IH,;J)=0.0 :

9¢E



AN (IH,J) =CC/ (1. +CC)

AW (IH,Jd)=1./(1.+CC)

AS (IH,J)=0.0

SU (IH,J)=0.0 .

AP (IH,J)=AN(IH,J) +AW (IH,J)

100 CONTINUE

Cc

_ Co#+SOLUTION OF THE DIFFERENCE EQUATION .

Cc

400

C

C

RESE=0.0

DO 400 N=1,NSWPD

IF (NSOLU. EQ 0) CALL SoLv1(3,2, JNh 0,ED, RES)
IF(NSOLU.EQ. 1) CALL soLv2(3,2,JNH4,0,ED, RBS)
IF(RES.GT.RESE) RESE=RES:

CALL. MODED

CONTINUE

RETURN

END »

SUBROUTINE SOLV1(ISTART,JSTART,JEND,NSOL,PHI,RES)
IMPLICIT RRAL*8 (A-H,0-2Z), INTEGER (I-N)
DIMENSION PHI(30,16), A(30),B(30) C (30),D (30)
CONMON o ©

1/ALL/IT,JT, IN JN,INM,JUNN,IL, TLP IPROB,IGRID,IMAX (16) ,IND,JMIN(30),

ISEC,IPILE,JJL, ICONV,NSOLU INUM,JL,JLP

1/AGRID/R (30) ,X1(30) ,X2 (16)
1/COEF/AP (30,16) , AN (30, 16) ,AS (30, 16),AE(30 16) , AW (30.16) ,SU (30,16)

C**SOLUTION BY MATRIX-FACTORIZATION ALONG RADIAL-LINE

IS=ISTART-1

A(IS)=0.0

‘RES=0.0

COMMENCE W-E SWEEP

- bOo 100 J=JSTART,JEND

C(1S)=PHI (IS,J) .
IH=IMAX {J)

1585

1586 -

1587
1588
1589

1590

1591
1592

1593

1594
1595
1596

©1597

1598
1599

.1600
1601

1602
1603

1604
1605
1600
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617

1618

1619

1620

LEE



10
19

14

IF(NSOLgBQo!)JBglﬂ*’

DO 101 I=ISTAR?,IH

ASSEMBLE TDMA. COEFFICIENTS
A(I)=AE(I,J) :

B (I)=AW (I,J)

IF (J.EQ.2.AND.NSOL.GE.0) GO TO. 10
IF(J.E0.JNN.AND.NSOL.GE.0) GO TO 11
IP(J.EQ.JIN) GO TO 14 4

IF (J.EQ.1) GO TO 15

C (I)=AN(I,J)*PHI (I,d+1) +AS(I,J)*PHI (I,J-1)+SU(1,J)
D(I)=AP(I,d)

GO TO 12 - -

C(l)=AN(I, J)*PHI(I J+1) o *SU0(1,J)
D{I) =AP {1,d) =AS{L,J) ' ,

G0 TQ 12 o
cfi)= - #AS(1,J)*PHI(T,I-1)+50 (1,d)

D (T)=AP(T,J) ~AN(I,d)
GO TQ 12

C(I)=AS(I,J)*PHI (I, J-1)+SU(T,J)

D(I)=AP (I,J)

GO TG 12

C(I)=AN(I,J)#PHI(I,J+1) +SU(1,J)

D (I)=AP (I,J)

CONTINUE -

CALCULATE COEFFICIENTS OF KRCURRENCE PORMULA

 TERM=1./(D(I)-B(I)*A (I-1))

A (I)=A (I)*TERM
C(1)={C{I) +B(I) *C (I-1)) *TERY

‘CONTINGE
-OBTAIN NEW PHI'S

DO 102 II=ISTART,IH
1=TH-II+ISTART

Z=PHI (I,J)

PHI (1,J) = A(I)*PHI(I+1 J) +C (1)

' RS=DABS (2-PHI(I,J))
. IF(R5.GT.RES) RES=RS

—

1621
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. 1623

1624

1625

1626
1627
1628
1629
1630
1631
1632
1633

1634

1635
1637
1638
1639
1640
1641
1642
1643
1644
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102
100

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE SOLV2(ISTART,JSTART,JEND,NSOL,PHI, RBS)
IMPLICIT REAL*8 (A-H,0-Z), INTEGER (I-N) :
DINENSION PHI(30,16), A(30),B(30),C(30),D(30), 950(30 16)
COMMON

,1/ALL/IT,JT,IN,JN,INH,JNH,IL,ILP,IPROB,IGRID,IHAX(16),IND,JHIN(30),

C

2 ISEC,IPILE,JJL,ICONV,NSOLU,INUM,JL,JLP
1/AGRID/R (30) ,¥1(30) ,X2 (16)
1/COEF/AP (30,16) , AN (30, 16), A5 (30, 16) , A (30, 16) , AW (30, 16) ,SU (30, 16)

C**SOLUTION BY POINT ITERATION

C

- 651
650

10
11

IF(INUM,. FQ.0) GO TO 650 °

DO 651 J=1,JN

po 651 I=1,IN

PHO (I,J)=PHI (1,J)

CONTINUE -

CONTINNE .

RE5=0.0 ' : -
DO 201 J=JSTART,JEND :

"IH=THAX (J)

 IF(NSOL.EQ.1) IH= IH+1

DO 202 I=ISTART,IH

IP(J.EQ.1) GO TO 10

DDS=PHI (I,J-1)

IF(INOM.EQ.1) DDS=PHO(I, J—l)

GO TO 11

DDS=0.0

CONTINUE

IF(J.FQ.JN) GO TO 14

ANUM=AE (I,J) *PHI (I+1,J) +AW (I,J) *PHI(I-1,J) +AN(I, J)*PHI(I J+1) +
/ AS(1,J)*DDS +SU(1,J) :
GO TO 15.

1657
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1660

1661
- 1662

1663
1664
1665
1666
1667

1668 -

1669
1670
1671
1672
1673
1674
1675
1676
1677
1618
1679

1680

1681
1682
1683
1684
1685
1686

.1687

1688

1689

1690
1691
1692
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14
15

202
201

c
CHRE
C.

C

Cc
Cosx%

C*%xs .

BNGY = aﬁ(l,g)@Pﬁl(Itlgaa¢@a4x,g)¢PHI(I 1,d) +48 (I, J)*Dps+§U(;,J)
CONTINUE:

IF (APYI,J) .EQ.0.0) GO TO 202

Z=PHI (1,J)
CPHI(I,Jd)= =ANUM/AP (I,J)

RS=DABS (2-PHI(I,J))

IF(RS.GT.RES) RES=RS

CONTINIE A

CONTINUE

RETURN

END
. .SUBROUTINE PROMOD
" IMPLICIT REAL*8 (A-H,O- 2), INTEGER (I-N).

THTNSTON TV A16)
C ON/GE@EC/RHIB@),ABEiSO)ahﬁa(§b§gﬁBN(QQB,%RP(30)¢Bxﬂ{30),
/ ANG{16) ANGH(16) ,VBPL16)

counow/ArURB/Dvs43o 16) “CA ,€A1,CA2,CB,ITURB

COMMON
1/VAR /U (30,16) ,Vd430,16), v2(30 16),r(30,16) ,PP(30,16) ,TE (30,16),
2 ED(30, 16),AL(30416» VIS{30,16),GEN(30, 16),PRUT(30,16)
1/ALL/1T,JT,IN,JN,INM,IN%,IL,ILP,IPROB,IGRID,INAX (16) ,IND,JININ (3C),
2 1sSFC, IPILE JJL,MLCNV NSOLU INUN, JL JLp ‘
1/AGRID/R (30) ,X1(39) ,X2(16).
1/FLUPR/URPVIS,VISCOS,DENSIT,PIT, DIA, DH,ATOT,RE,VAVG, VB
1/5TRES$/T11(30,1&3,T22«30,16)
1/TURB/CD,CMU,C1,C2,CK,E,CVIS,CDIS,PRTE,PRED
1/WALLF/TALAV,USAV, RTAL (16) ,USTAR(16),.FR, Y8, THAVE

BOUNDARY -CONDITTONS

ENTRY MODU

WALL
COMPUTE USTAR
IF(IPROB.EQ.-1) GO TO 114

1693
1694
1695
1696
1697
1698

1699.
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1702
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1704

1705
1796
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1708
1709
1711
1712
17132

1714

1798
1716
1747
4718
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1721
1722
1723
1724
1725
1726
1727
1728
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- 53
54

Cex% .

52
114

49

106 .

H1= (R (IL+2)-R(IL))/(R(IL+1)-R(IL)) /(R (IL+2)-R (IL+1))

H2= (R(IL+1)-R(IL))/(R(IL+2)-R(IL)) /(R (IL+2)-R(IL+1))

H= (R (IL+2) +R (IL+1)-2.%R(IL)) /(R(IL+1)-R{IL)) /(R (IL+2)-R (IL))
DO 52 J=2,JNM

DO 53 L=1,100

B3=1./CK/X1(IL)

YS=0STAR (J) *X1(IL) /VISCOS

A3=DLOG (F*YS) /CK - : :

Cl= (H1%U(IL+1,J) . -H2%0 (IL+2,J) )/ (B3+H*A3)

- IF (DABS ((USTAR(J)-CU4)/CH4).LT.1.0D-5S) GO TO -54

USTAR (J) =Cu
YS USPAR(J)*XI(IL)/VISCOS
CONTINUE
CONTINUR
U(IL,Jd)= USTAR(J)*DLOG(F*YS)/CK
NEAR WALL REYNOLDS STRESS
UV (J)=R(1) /R (IL) *USTAR (J) %*2 ~2. *(R(IL)**Z B(1)**2)/R(IL)/DH*THAVE
CONTINUE
GO TO 106
CONTINUE
DO 49 J=2,JNM . ,
USTAR (J) = DSORT(VISCOS*U(Z J)/x1(2)) ' .
CONTINUE ,
USTAR (1) =USTAR(2) “
USTAR (JN)=USTAR (JNN) — -

C*%% COMPUTE NEW FRICTION FACTOR

20

s=0. 5*(USTAR(1)**2+USTAR(JN)**2)
DO 20 J=2,JHM
S=S+USTAR (J) *%2

. TALAV=S/DFLOAT (JNH)

FR=2.*TALAV/VB*%2

IF(IPILE.EQ.0) TWAVE=TALAV

Cx** WALL SHEAR STRESS DISTRIBUTION

30

DO 30 J=1,JN |
RTAL (J) =USTAR (J) #%2/TALAV
CONTINUE

1729
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1732
1733
1734
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1748

1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761

1762 -
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CHa®

1
Cake

12

a

CH &%

-’;;74‘;! .
72
C*%

41
CH &%

42

Cxex

83
e 2 4

81

SOUTH BOUNDARY
TH=TMAX (19

po 1 I=IL,IH
u(I,=u(1,2)
NORTH BOUNDARY .
DO 12 I=2,INNM

0 (I,IN)=U(I,INN)

M (IN, IN) = U(INH,JN)

RETURN

ENTRY MODTE

'HALL

{DO 7 &H—(Qwsﬁmfﬂ

U0 E (Lo =W {3 gﬂcmxu«mw % :
CONTINGE .

SOUTH BOUNDARY
TH=IMAX (1)
DO 41 I=IL,IH

TR (I59)=TF (I.,2)

NORTH BOUNDARY

DO 42 TI=2,INM

TE (I, JN) =TE (I,.J%8)
TE (IN,JIN)= TE(INMﬁJN)
RETURN

ENTRY. MODED

WALL -
DO 83 .J=2,JNM

ED(IL,Jd)= UV(J)*USTAR(J)/CK/X?(IL)

SOUTH BOUNDARY
TH=TIMAX (1)

po 81 I=IL,IH
ED(I,1)=FD(I,2)

1765
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1768
1769
1770

1771

1772
1773
1774
1775
1776

1777
A7I8

779
780
A8
1782
1783
1784
178
1786
1787
1788
1789
1790
1391
1792

1793
1794
1795

1736

1797

1798
1799
1800
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Cx*%

82

- 93

52

301

NORTH BOUNDARY
DO 82 I=2,INN
ED(I,IN)=FED(I,JNNM)

ED (IN,JN)=ED (INM,JN)

RETURN
ENTRY MODV1

SOUTH BOUNDARY

“IH=IMAX (1)

po .121 1=2,IH

V1(1,1)=V1(1,2)

DO 122 I=1,INM
V1(I,dN)=V1(I,JINM)
V1(IN,IN)=V1(INM,IN)
RETURN

ENTRY MODV2
RETURN

ENTRY MOLCP

TH=IHAX (1)
DO 93 I=2,IH

. PP(I,1)=PP(I,2)

DO 92 I=2,INM

PP (I,JN) =PP(I,JNH)
PP (IN,JN)=PP (INM,JN)
RETURN 4

/

ENTRY MODSTR.

IH=IMAX (1)
po 301 I=2,IH

T22(I,1)=T22(1,2)
CT11(I,1)=T11(1,2)
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302

Cc
Cesx

C

.DQ 302 1=2,1INH

T11(I,IN)= T11(I JNN)
722 (I,JN)=T22(I,JNH)
T11(IN,IJN)=T11(IN,JNN) -

- T22(IN, JN) =T22 (IN, INK)

RETURN

END

SUBROUTINE PRINT(ISTART JSTART PHI HEAD)
IMPLICIT REAL*8 (A-H,0-2), INTEGER (I-N)

- DIMENSION PHI(30,16),HEAD(9),STORE(50)
'DIMENSION F(7),E#(11)

1

.1

1

COMMON

1/ALL/IT,JT ,IN,IN,INH,INH, IL,ILP,IPROB, IGRiD,IHAX(16),IND,JHIN(30),
2 5

ISEC, TRILE, 9L, ICONY,N50L0, INDN, 3L, LD

/AGRID/R (30) 4¥1{30) ¥2(16)

DATA F/QH(IH 48,84, ,4813, (HHIIT 4010, ,4HTX, ,

4HAEY) / ' '

DATA P4/0H 11 ,4H 21 ,uH 31 ,4H 4T ,4H 5T ,4H 61 ,
4R 71,44 BI ,uH 9T ,4H10I ,4HINL /

" DATA HI,HY UH I=,4H Y s/

100

PRINT OUT SUBRQ@TINB

ISKIP=1

JSKIP=1
WRITE(6,110) HEAD
ISTA=ISTART-12
CONTINUE
ISTA=1ST

IEND= ISTA+11
IEND=MINO (IN,IEND)
F (4) =F4 (IEND-ISTA)

"WRITE(6,F) HI, (I I=ISTA, IEND ISKIP), HY

WRITE (6,112)
DO 101 JJ=JSTART,JIN,JSKIP

. J=JSTART+JIN-JJ

1837
1838
1839
1840

1841

1842
1843
1844
1845
1846
1847

1848
1849

1850
1851
1852
18953
1854
1855
1856
1857
1858
1859

-+ 1860

1861
1862

1863

1864
1865
1866
1867
1868
1869
1870
1871

1872
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IH=IMAX (J)
DO 120 I=ISTA,IEND

A=PHI (I,J)

IF (DABS (A) .LT.1.D-20) A=0.0

STORE (I) =A :

WRITE(6, 113) J, (STORE(I) JI=ISTA,IEND,ISKIP),X2(J)
CONTINUE

- - ———— A -  — — — D D W Y " > G - - - -y -

IF (LEND.LT.IN)GO TO 100
" RETURN
FORMAT (1HO, 20 (2H*~) ,7X,9A4,7X, 20 (2H-*))

* FORMAT (3H -J)

FORMAT (1H ,I3,1P12D10.2, OPFP7.3)

END

SUBROUTINE ANORM (L, INCRM,ISTRES,ICURVE,PV)

INPLICIT REAL*8 (A-H,0-2), INTEGER (I-N)

- DIMENSION v1p(3o,16),vzp(3o,16),v3p(30,16),T23(30,16),T13(30,16)
COMMON/HD/HEDU (9) ,HEDV 1(9) ,HEDV2 (9) , HEDP (9) , HEDK (9) , HEDD (9) ,

1 HFDN (9) HEDL (9) ,HEDN (9) ,HEDPR (9) ,HEDV1P (9) ,HEDV2P (9) ,HEDV3P (9) ,
2 HEDPT13(9) ,HFDT23 (9)

COMMON

1/VAR/U (30,16),V1(30,16), v2(30 16),P (30,16) ,PP (30,16) ,TE (30,16),

2 ®p(30,16),2L(30,16),VIS(30,16) ,GEN (30,16) ,PRUT (30, 16)
1/ALL/IT,JT,IN,JN,INM,JNH,IL,ILP,IPROB,IGRID,IHAX(16),IND,JMIN(30),

2 ISEC,IPILE,JJL,ICONV,NSOLU,INUM,JL,JLP
1/AGRID/R (30) ,X1(30) ,X2(16)
1/STRESS/T11(30,16),T22(30,16)

1/WALLP/TALAV,USAV,RTAL (16),USTAR(16) ,PR,YB, THAVE
1/GEOMA/DPF (30, 16) ,DPW (30,16) ,DPN (30, 16) , DPS (30, 16)

EQUIVALENCE (T11 (1), V1P(1)),(T22(1) VZP(1)),(DPE(1) V3P(1)),
1 (DPW(1) T13(1)),(DPN(1) T23(1))

FF=FV

PO 54 J=1,JN

TII=IMAX (J)

IF(L.EQ.3) FF= FV/USTAR(J)

PVV=FPF**

1873
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54

15

L 4
- CALL : PRENT {2, 1,3

DO Sl L=V, Il

U (T pdf=0 (T, 3) ¢PP

IF (I'PROB.GT.2) TE (I, J)—TB(I J)*FVV
IF (ISTRES.EQ.0) GO TO 54

VAP (I,J)=V1P (I,J) *FP

V2P (I,J)=V2P (I,J)*FF

v3p(1,J)=V3P(I,J)*FF
13 (1,J)=T13 (1I,J) *FVV
T23(1,J)=T23(1,J)*FVV
CONTINUR ‘
CALL PRINT(1,1,U,HEDU)

1F (IPROB.GT.2) CALL PRINT(1,1,TE, PFDK)
TP (ISTPES.EQ.0) GO TO 15
CALE

BRINT (2, 1, VP, HEDV 1P}
.1, V2P, HEDV2P)
Y g HEDV3 P), ’
CALL PRINT (2,7%,T13,HEDT13)
CALL PRINT(2,1,T23,HEDT23).

CRLL PREN

- CONTINUE

RETURN
END
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cOomMONMOO0n

INSTRUCTIONS

IWAL=0 TEMPERATURE BOUNDARY CONDITIONS
. TWAL=1 . FLUX BOUNDARY CONDITIONS
IREG=1. CGOLANT ONLY
IREG=2 . COOLANT+CLAD |
IPSI=1 . HEAT TO MOMENTUM RATIO EQUAL TO ONE

IMPLICIT REAL*8(A-H,0-2)y INTEGER (I-N)

DIMENSION RTW(16),ANUIL16),TT(41,16)
COMMON/HD/HEDU(9)4HEDVL1{9) ,HEDV2(9) 4HEDP(9) ,HEDK(9) HEDD(9),

1 HEDM(9),HEDL(9),HEDN(9) ,HEDPR(9),HEDVLIP(9),HEDV2P(9) ,HEDV3P(9),
3 HEDTCI(9) HEDPSI{9),HEDTCLI9) .

CGMMGON/BB/JS

COMVUN/GEUMC/RM(3O)9ARF(30)1ARN(3O’:ARN(30, ARP(30),0Xx1(30),
/ ANG(16),ANGM(16),VBP(16) _
COMMON/CCLAD/CONCL yDIoFLUXTZFLUCL(16)4TCL{10,16),1IM,IMN

COMMDN -

L/TEMPC/URFTCRESTCoyNSKHTC
1/VAR/U(30,16),4V1(30,16),V2(30,416),VIS{30,16), PRUT(30016)9
2 TC(30,16),PST(30,16)
T/ALL/IT3JT o INy INe TNMy JNM, IL, ILP.IPROB, IGRIDy IMAX(16), IND’JMIN(30"
2 ISEC,IPILE,JJLoyICONV,NSOLU,y INUM, JL,JLP '
1/AGRID/R{30),Xx1(30),x2(16)
1/GEOM/BE(30),"N(30),BW(30),BS(30),VP(30)
1/FLUPR/CONDC,VISCOS,DENSIT,PIT,DIA,DH,ATOT, RE,VBvTREFoPRAND
1/WALLF/TALAV,USAV,RTAL(16),USTAR(16)4FRyYB,TWAVE,FLUC(16) .
1/COEF/AP(41,16),AN(41,16),AS(4]1,16),AE(41,16), AH(41 16’15U(41116)
LOGICAL INCALU,INCLV1,INCLVZ,INPRD

INCALU=.TRUE.

INCLVLI=<TRUE.

’ INCLV2=.TRUE. ~

INPRO=.TRUE.

N1=4]

10001

0002
0003
0004

- 0005.
~. 0006
.0007

0008
0009
0010
0011
0012
0013
0014

0015
0016

ool7
0018
0019
0020
0021
0022

10023
0024

0025

- 0026 -

0027
0028
0029
0030
00131
0032
00133
0034

0035
. 0036

Lyt



Cose

T Cese

Ce¥xx%

- N2=30

N3=16

READ: (15)U,V1 V2oVISsPRUTZUSTARJRTALy TWAVE s X1 9X24Ry RN.ARE ARW 4 ARN
READ (15)ARP,DX1+ANG,V8P,BE,BW,BN,BS,DH,ATOT,RE,VB,PIT,DIA, PITR.
READ (15)IN,JNyJJIL, IPRGB'ISEC INM'JNleLoILPplPILE-INAX '

READ (15) VISCGS

VAVG=VB

IF(ISEC.EQ.0) INCLV1=.FALSE.

IF(ISEC.EQ. 0) INCLV2=.FALSE.

NITER=0 : , -

PI=3,14159

!ND 1

DF{T‘;XZWZW

CE=0W0

CN=0.-0

€Cs=0.0 .

NUMERICAL PROCEDURE

READ(5,700) NSOLU, INUMyNSWTC 4+ INDPRI, IMON,JMON.INORM.INAL.IREF JREF

‘READ(S,700) IPSE

READ(5,.700) IREGyIM

READ(5,701) CC,URFTC,FACTOR.
IF{IREG.GT.1) READ(5,701) CONCL, DI
PROBLEM DATA

READ(5,701)ALHGR »CONDC s DENS T 5 C SHy BREF
PLOT 'CURVES

READ'S, 700 Y !CURVE.FCURVS:J$

CHESTITLES

Caxx

READ(5,010) HEDU, HEDVI y HEDV2 , HEOP s HEDK » HEDD s HEDL 5 -

1 HEDN,HEDPR ,HEDV1P,HEDV2P,HEDV3P,HEDTC,HEDPST, HEDTCL

PRINT INPUT DATA

WRITE(6,700)NSOLU, INUM, NSHTC, INDPRT o TMON, JMON, INORM; TWAL  IREF, JREF
WRITE(6,700)1PST

WRITE(647100) IREG, M

0037
0038
0039

- 0040
0041

0042
0043
0044
0045
0045
0047

6048
0049
.00506-
- 005k
0052
0053

0054
0055
0056
0057
0058
0059
0060
0051
0062
0053

0064 -

0055
0066
0067
0068
0069
6070
0071
0072

. 8heE



NRITF(6 T01)CC,URFTC, FACTDR

IF(IREG.GT.1) WRITE(6,7TO1)CONCL,DI, DIA’
-WRITE(6,4701 )ALHGR,CONDC,DENSIT, CSH.TREF
WRITE(6,T7TO00)ICURVE, ICURVS,JS

"WRITE(6,010) HEDU,HEDV1,HEDV2,HEDP, HEDK 4 HEDD, HEDL ,
1 HEDN,HEDPR,HEDV1P,HEDV2P, HEDV3P'WEDTC HEDPS[.HEDTCL
WRITE(6,210)

WRITE(6,240) PITR

WRITE(54270) TWAVE

WRITE(64220) VB

WRITE(6,230) RE : ' ' 5

ITF(INCALU) CALL PRINTI(1,1,U oHEDUoIN N2yN3)
TFOINCLVLI) CALL PRINT(141,V1,HEDV1I,INgN2,N3)
IFIUINCLV2) CALL PRINT(1l414V2,HEDV2,IN,;N2,N3)
CALL PRINT(141,VIS,HEDN, IN,N2, N3)
[F(IPROB.GT41l) CALL PRINT(1,1,PRUT HEDPR.!N,NZ,NB)
WRITE (64200)

ITR=1

IT=1IM+IN

IMP=1IM+]

IMN=[M~-1

DO 29 J= lrJN .

XST= Xl(lL)*USTAR(J)/VISCUS

_ WRITE (6,313) J'RTAL(J)pUSTAR(J) XST

29

CHnx

Crk%

CONTINUE L
" PARAMETERS AND CONTROL INDICES

INITIAL OPERATIONS
DIFFC=CONDC/DENSIT/CSH
PRAND=VISCOS/DIFFC
PE=RE*PRAND

IF(IREG.GT.1) FLUXI=ALHGR/PI/DI
FLUX=ALHGR/PI1/DIA

CALCULATE GEOMETRICAL OUANTIT[ES AND SET VARIABLES T0 ZERO

0073
0074
0075
0076
0077
0078
0079

- 0080
0081 .
0082.

0083
0084
0085
0086
0087
0038

. .0089
0090

0091

" 0092
0093

0024
0075

0096

0097
0098
0099
0100
0101
0102

0103
0104
0105

0106
o107

0108
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32

30

. GAEL, &PSK&?SL&LP&I&

oo’ 3@ FEILINT T

FLUCEJ)=FLUX

IF(IREG.GT.1) FLUCL{J)= FLUXI

DO 32 I=1,I1T

TTL1,J)=0.0

CONTINUE

CALL PRINT(IMy Y, TToHEDTCsITsN1¢N3)
CALL PRINT(1,1,TTyHEDTCLyIMyN14N3) "’
CALL PRINT (141, PSI.HEDPSI'IN N24N3)
TWI=TREF

TW=TC(1,1)

DO 257 J=1,JIN

fnw-tm&x«mt“
0257 F=hy W

104

L

VlS&!pJD PM&SLE;J) VESCBSL*PSI(frJD

"CONTINUE '

DO 6 [=2,INM
vPiI)= DTETA*(R@EGI) R(I-1))* R(IlIZ.
IND=0

INITEAL QUTPUT

CALL PRINT(1,1,MESHEDN, INyN2, N3)
TCNURM TREF "

00,100 J=2 9 JNM
IH=IMAX (J)
DO 101 '1=2,1H

'CALCULATE DIFFUSIDN COEFFLCIENTS

1IF{TLEQ. kH ANDoJoLE. JJL) GO TO 103

DW= (3. #DTFFCHVISTIy JISVISCI-1, JI1eBWE T}
DN=(2.*DIFFC+VISUI,J)/PRUT(I, J)fVIS(IvJ+l)/PRUT(loJ+1))*BN(I)

IF(1.EQ.IH) GO TG 104

UF—(Z *DIFFC+VISIIJ)+VIS{I+1,J))*BELT)
=(2.*DIFFC+VIS(I,J)/PRUT(I, J)GVIS(I J-1)/PRUT(1,4J- -1))#8s(1)

GO T0 105

DE=0.0




A DS=0.0

‘105  CONTINUE
[F(ISEC.EQ.0) GO TO 150
V1E=Vi(1+1,J)
VIW=V1({I,J)
V2N=V2(1,J+1)
V2S5=V2(1,4)
CE=ARE(I)*VIE
CW=ARW(I)*VIiW
CN=ARN(1)%*V2N
CS=ARN(I)#VZS

C-=---ASSEMBLE MAIN COEFF[C[ENTS
[F(I.EQ.IH) GO TO 23
Al=CE*DXL(1)+CW*DX1(I-1)
CE=(DABS(AL1)-AY)/DX1(I)/4.
CW=(DABS(AL)+ALl)/DX1(1I- -1V/4.
A2=CN+CS
CN=(DABS(A2)-A2)/4.
CS—(DABS(AZ’*AZ)/4.
GO TO 150

23  CE=0.0
€CS$=0.0

W=CW/2.

CN=-CH/2. o

150 CUNTINUE - . .
AE(I,J)=CE+DE : :
ARt 1,J)=CW+DH
ANUT,3)=CN+CN
AS(1,3)=CS+DS
AP(I4d)= AE(l'J)*AN(loJ,*AN(IpJ’*AS(l J)
SUlTL,J)= ALHGR*U([oJ,/VB/DENS[T/ATUT/CSH/IZ.‘VP(l,
IF(I.EQalH) SULI4J)=SU(I, J)‘VBP(J)/VP([)
SUlEyJ)=-SULI, J) -

101 CONTINUE

GO TG 100

103 ~ CONTINUE

0145

0146
0147
0148

0149

0L50
0151

0152

0153

" 0195%

0155
0156
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0158

0159
0160
0161
0162

0163

0164

- 0165

0164
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100

262
261

TETA=XR( I

CC=ANG(J) - ®(R{IH)-R(IH-1))/R{IH)/DTETA
AE{IH,J)=0.0 . ,
AN(IH,J)=CC/(1.+CC)

AW(IH, J"-—lo’(lo“CC)

AS(IHzJ)=0.0

AP(IH,J)=1.0

SU{IHyJ)}=0.0

CONTINUE '

IF{IWAL.EQ.O) GO TO 261

DD 262 J=24JNM

AP(1,J)=1.0

AE(1eI)2000

AUl 3130

~w4ﬂ$."‘;g
A"S'( ilz' J‘.' ¢

SU(Lyd)= FLUX*Xlii)/CONQC

CONTINUE
CONTINUE

DX=X142)
[E{IREG.GT.1) CALL CLAD(XZ'CONDC DI1A,DX)

C*%*SOLUTION OF ‘THE DFPFERENCE EQUATICN

C

Conx
300

273

2174

ISTART=1

CIF{IWALEQ. 0) ISTART=2

ITERATION LOGP
NITER=NITER#L
DO 837 1E=1,1TR °
IF(NSOLU.EQ.0) CALL SOLV1(1START, Z'JNM'TT,RES) S
[FINSOLU.EQ.1) CALL SOLVZ(ISTART,2,JNM,TT,RES,URFTC)
TH=IMAX (1)
DO 273 1=1,IH
TII,1)=TT(142)
DO 274 1=1,INM
TTUEaJN)=TT(F,INM)

0181

0182
o183

. 0184

0185
0186
0187
0188
0189
0190
0191
0192

0193

019%
01'95
019
0198
0199
0200
0201
0202
Cz03

- 0204

02105
0206
0207
0208
0209
0210

-0211

0212
0213
0214
0215
0216

256




302
C*x% B

282
281

TTUINGJINI=TT{INM,JN)

CONTINUE

INTERMEDIATE OQOUTPUT
RESTC=RES/TCNORM
DELTA=TT(IREF,JJREF)-TREF
TTT=TT({IMGN, JMON)-DELTA
WRITE(6,313) NITERGRESTC,TTT .
IF(MOD(NITER, INDPRI).NE.O) GO TO 301
IF(IWAL.EQ.Q) GO TO 381
DELTA=TT({IREF,JREF)-TREF

DO 382 J=1,JN

[H=IMAX(J)

DO 382 I=1,IH
YTUIJ)=TT{1,J)-CELTA

CONTINUE :

CONTINUE

CALL PRINT(IMeloTY4HEDTCoIToN1oN3)
CALL PRINT(1ly]1TToHEDTCL,IM,NL,N3)}
CONTINUE

TERMINATION TESTS

"IF(NITER.EQ.NSWTC) GO TO 302

IF(RESTC.GT.CC) GO TO 300
CONTINUE

OUNDARY VALUES |
IF{IWAL.EQ.0) GO TO 281
DELTA=TT([REFy JREF)~TREF
DO 282 J=1,JN ‘
[H=IMAX(J) |

DO 282 I=1,IH .
TT{1,J)=TT(1,J)-DELTA
CONTINUE |
CONTINUE |
CALL PRINT{IMy1,TT,HEDTC, IT,N1,N3)
CALL PRINT(1,14TToHEDTCLyIM,N1,N3)
DO 610 J=1,JN

IF(IREG.GT.1) FLUCL(JI=CONCL*(TT'l.J)—TT(Z,J)l

7

0217
0218
0219 -
0220 -

‘0221

0222
0223
0224
0225
0226
0227
0228

0229

0230
0231
0232

0233

02134
0235
0236
0237

102138

0239

0240
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0242
0243

0244

0245
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0247
0248

0249
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610

- 611

612

LN

613
- 815

614

. 010
700
701 .
- 210

FLYUTH I )=CONDCHATIL UM JI-TT L TNPH I
CALL. AVG2{FLUX,FLUC+JNsJNM)
IF(TREG.GT.1) CALL AVGZ(FLUXI.FLUCL.JN.JNM)

"CONTINUE

CALL AVG(AfOT.TB,TT.U,VB,lN.INM.JNgJNM.lMAX,lM)

"CALL AVGL(TW,TTy JINyJINM, IM)

IFd IREG.GT41) CALL AVGLITWISTT4JINyJNMy1)
DO 612 J=1,JIN

RTW(J)=CONDC*{TT L TM,3)-TW) /ALHGR

ANU(J) =FLUCTJ) #DH/CONDC/ (TT (T, )= T8}
CONTINUE -
CALL AVG2 LANUA JANUs JNs INM)
DG 613 I=519IN
ANGLIY =ANOCI)vANuA
IF{ TREGGT 1) FLUCLAIY= SFLUUCLYJ9 /FLUXT

FLUCH N =FLUCE I /FLUX

WRITE(69800) NLHGRyFLUXy TBg TH4REePRAND o PEs ANUASTWIE o FLUXT
WRITE (64820)

DO 815 J=1,JN

IF(JREG.EQ.1) "WRITE(643139 3,RFWII)FLUCIIIZANULI)
IF{TREG.EQ.2) WRITE (643130 J, RTH(J)'FLUC(J) ANU(J) s FLUCLLJ)
CONTINUE

'TF{ INORM.EQ.0) ‘STOP

WRITE(64615)

D0 614 J=14JN
CTH=TMAX(J)

DO 614 T=iM,IH
Tl V=TT Jﬂ/TB
CONTINUE

"CALL PRINT([M.l.TTyHEDTC'ITle.N3)

CALL PRINT(1y1sTT4HEDTCLsIMsN14N3)
FORMAT (9A4)

. FORMAT(1015)

FORMAT (8010.3) - - -
FORMAT (1HO 47X, S1HHEAT - TRANSFER- CALCULATIONS IN A BARE ‘ROD BUNDLE

1 9////)




220 FORMAT(//1HOy15X921H BULK FLUID VELOCITY ,T60,1H=,3X,1PD11.3)
230 FORMAT(1HOy15X916HREYNOLDS NUMBER ,T60,1H=43X,1PD11.3)
240 FOGRMAT(1HO415X415HPITCH RATIO ,T76091H=943X,1P011.3)
A 250 FORMAT(1HO,15Xy 1 BHLAMINAR VISCOSITY ,T6041H=93X,1PD11.3)
270 FORMAT(//1HO,15Xs21H AVE SHEAR STRCSS/R0O sT60431H=93X,1PD11.3)

310 FORMAT(1HO4HITER4Xy 106HI~~~~~=—- - ==~ ABSOLUTE RESIDUAL SOURCE SUM
1S~ =—~—=——m I Jeem——— FISZLD VALUES AT MONITORING LOCATION,
-2 LH{41241Hyy12,41H),9H--—=m—=— 1/72X32HNO,6X 9 4HUMOM,6X 4 4HVIMO,6X,

34HV2MO, 68Xy 4HMASS s 6 X s 4HTKIN, 6X, 4HUI;P.10X.1HU.9X 2Hv‘.8x.2Hv2.8x 1H
4P 39Xy 1HK 39X 1HD)
‘311 FORMAT(1H o13,4X41P6D10.3,3X,1P6D10.3)
402 FORMAT(///75Xs LHI o TXySHXU(T) 96Xy 10HS.S.COEFF,)
403 FORMAT(/5X412+3X92(1PD11.3))
200 FORMAT{1H130X,35HDISTRIBUTICN OF WALL SHEAR STRESSES///
/75Xy 1HJ 3 10X, OHTAL/TALAV, 10X, SHUSTAR/ /)
313 FORMAT (4Xy [448XyD11.496Xe1PDL1.3,6X,1PD11.3,6X51PD11s 3/)
615 FORMAT{1HL,* NORMALIZATION CF THE RESULTS')
800 FORMAT(31HOHEAT INFORMATION CALCULATED IS/7
110X, 50HALHGRy LINEAR HEAT GENERATION RATIDececcecccscecece=y1lPD15.6/

210X s SOHFLUX, OUTSIDE CLAD HFAT FLUXeeeeovsceasccscseee=ylPDL5.6/

310X,50HTB, COOLANT BULK TEMPERATUREeeecesccccacensee=glPDLS.6/
410Xy5S0HTHW, AVERAGE CLAD TEMP-RATUREcscsocecsccscaceae=ylPD15.6/
Slox'SGHRE’ REYNOLDS NUMBER.O......‘.........O.....0.8.1P015‘6,
6lOX'SOHpRAND, pR\NTDL NUMBER..........O...........‘....='1p01'5..6/
710X, 50HPE, PECLET NUMBER<eoeoscvecocsccsocscsacscececoa=glPD15,6/

810X,SOHANUA, AVERAGE NUSSELT NUMBER:cesecosescscccsnsee=glPD15.6/ ~

8LOX,SOHTHWI AVERAGE INNER CLAD TEMPERATUREcececssceoce=yg1PD15.6/
810X, SOHFLUXI. AVERAGE INNER CLAD FLUXceooooscocsacceaceezyglPD15,.6)
820 FORMAT(1H130X,31HDISTRIBUTICN OF HEAT PARAMETERS/// B ,
' /5X¢1HJy 10Xy 15HWALL TEMP RATIO,5X,14HOUT FLUX RATIO,5Xs BHLOCAL NU,
15X, LOHINNER FLUX/)
sToP
END
SUBROUT INE APSI(PS[.IPSI)
IMPLICIT REAL*8(A-H,0-2Z)y INTEGER (I-N)
OIMENSION PSI(30,16)
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c

EDMMEN
L/ALL/TToJT o INg INoINMy INMy Lo ILP, IPROB, IGRID, IMAX(1614 IND, JMIN(30,

2 ISEC,IPILE,JJL,ICONV, NSOLU.INUM.JL.JLP
1/AGRID/R(30),X1(30),X2(16)
llFLUPRICONDC.VlSCOSoDFNSlT PIT,DIA,DH; ATOT RE:VB:TREF,PRAND

C SUBROUTINE FOR CALCULATION OF HEAT TO MOMENTUM EDDY DIFFUSIVITY RATIO

GG TO (152),1PSI
CONTINUE

DO 10 J=1yJN

DO 10 I=1,IN
PSi(15d1=2140
RETURN

ﬁﬁNf@ﬁUé‘

RETURN -

END

SUBRGUTINE CLAD(XZ CONDC,DIA,DX)

_IMPLIGIT REAL#8(A-H,0- 7)i INTEGER (I—N)

DIMENSION X2(16)4R(10)

CDMMON/CCLAD/CGNGL DI,FLUXT, FLUCL(Ib).TCL(lO.lb).IM.IMN .
,COMMDN

" 1/TEMPC/URFTC,RESTC NSWTC ,
L/ALLZITodT o IN, N, INMy JNM, IL, TLP, lPRGB.IGRlD-IﬂAX(lbi'lND,JMlN(30).

2 ISEC,IPILE,JJL#TCONV,NSOLU;INUM, JLyJLP
1/COEF/AP(41'16) AN(41.16) AS(41916).AE(41 16),AN(41916) SU(41;16)

1N=IN+IM-1,

INM=IN-1

IMN=IM-1

DTETA=X2(2)

DO 1 J=1,JN

IMAX{J)=IMAXLJI+IM-1

IH IMAX(J) '
MP=1H-IM

&
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10

21

DO 1 1I=1,MP
I=TH-11+1
AE(I,J)=AE(I-IMN,J)
AW, J)=AW(I-TMN,J)
AN(I.J)=AN(1—IMN.J)

AS(14J)=AS(I-IMN,J)

AP(T,2)=APLI-IMN,J)
SUlT.J)=Sull- IMN J)
CONTINUE

R{1)=D1/2.
R(IM)=DIA/2.

DR=(DIA-DI)/2./DFLOAT(IMN)
DO 10 I=2,IMN

R{I)=R{I-1)+DR

DO 20 J=2,JNM
AP(1,J4)=1.0
AE(1,J)=1.0"
AW(1,J)=0.0"
AN(1,J)=0.0
AS(1,4)=0.0
SUl1,J)=FLUXI*DR/CONCL
DO 21 [=2:1IMN

BE  =.25%DTETA*{R{I+1)+R{I)I/Z(R(I+1)-R(I))
J25«DTETA®({R(I-1)4+R{ I}/ IR(CD)-R{I-1))"

BW =
" BN =,25% (R{I+L)-R{I-1))Y/R{T)/DTETA
85=BN ' ' '

AE(14J)=2.¢CONCL*BE

AW(I,J)=2.%CONCL*DW
AN{I,J)=2. #CONCL *#BN
AS(I,J)=2.%CONCL*BS

SU(T,J0)=0.0
AP(1,J)=AE(1, J)wa(l J)*AN(!.JP*AS(I 3.

CONTINUE -
AE(IM,J)=CONDC/CONCL*DR/DX
AW(IMyJ)=1.0.

AN(IMyJ)=0.0



20

A?(TM J16.60

SUtEM,J)1=0.0

AP(IMyJ)= AE(IM.J!+AH(!M.J)
CONTINUE

RETURN

END

SUBROUTINE AVG(ATOT,PB, PHvU:VBth,lNM.JNcJNH.lMAX.lM)

IMPLICIT REAL*8(A-H,0-Z)s INTEGER (I-NY¥

DIMENSION PH{4L,16),U(30, 16),IMA((16)

COMMON
1/AGRID/R(30},X1(30), X2(16)

C####***##*###*######t#*##*#**#*###****####t*###t#*########

Gi

12

vmn-rm—f
THE=1ie
AV=0.0

D0 22 J=1l4JN
TAV=0.0 '
LH=EMAX(J)

DO ‘12 I=IMP,IH

BAV=(R(I- lMN)cwéx [MNyJ) FR{T-TMISULT-IMyJ)

IMNI=R{I-IMN- 1V¥/72.
TAV=TAV:DAV
TAV=TAVEX2(2)
[F(J.EQel.CRaJS EQ JN) TAV=0.5%TAV
CAV=AVETAV
VB-AV/&FGY

AV=0.0
DTETA=X2(2)

D0 20 J=1,JN°
TAV=0.0 '
TH=IMAX(J)

DO 10 I=IMP,IH

SUBROUT ENE FER COMPUTAT EON GF BUEK TEMPERATURE
t*###*t#*###t#*###t#**#######t#ﬁ##v*###ﬁftt####*t#ttitt

DAV=(R(I~- lMN)*PHIl.J)*U(l IMN,J)*R(!-[M)*PH(l'

A

-

YR(R(I-1

JVRULI-TM, VYR (RUI-1
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1MN)-R{I~-IMN-1))}/2.
10 TAV=TAV+DAYV
- TAV=TAV2X2(2)
IF(J.EQ.1.0R.J.EQ.JIN) TAV= 0 S*TAV
20 AV=AV+TAV :
C**¥ CALCULATE BULK TEMPERATURE
PB=AV/ATOT/VB
RETURN
END
SUBROUTINE AVGLUPBsPH, JNy JNM, 1)
IMPLICIT-REAL*8(A-Hs0-2), INTEGER (I-N)
DIMENSION PH(41,16)
S=0.5%(PH{T,1F+PH(I,JN))
DO 1 J=24JNM
1 S=S+PH(I1,J)
P3=S/DFLOAT(JNM)
RETURN
END
SUBROUTINE AVG2(PB+PH,.JINyJNM)
[MPLICIT REAL*8(A-H,0-Z)y INTEGER (I-N)
DIMENSTION PH(16)
S=0.5¢{PH(1)+PH(JN))
‘ D0 1 J=2,JNM
1 S=S+PH(J) -
PB=S/DFLOAT(JNM)
RETURN
DEBUG SUBCHK
END
SUBROUTINE SOLV2{ISTARTJSTART,JEND,PHI, RES.UREL)
IMPLICIT REAL*8B(A-H,0-2Z)y INTEGER (I-N)
- DIMENSION PHI(41,26)9Al41),B(41),C(41),D(41), PHO(41'16)
COMMON

L/ALL/TIT 3 IT o INy IN INM, JNM, IL,ILP, IPRUB IGR[D!IMAX(l6)91NDoJM‘N(30,9A

2 ISEC,IPILE,JJIL,ICONVyNSOLUy INUMyJLsJLP
1/AGRID/R{30),X1130),X2(16)
IICOEFIAP(4lg16) AN(41416), AS(41'16).AF(41 16),AW(41,410},SUL41,16)
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e .
C**SOLUTION 8Y POINT ITERATION
c
' "1F{ INUM.EQ.Q) GO TO 650
DO 651 J=1,JN s
DO 651 I=1,IN
PHO(T ,J)=PHI(L,J)
651  CONTINUE
650  CONTINUYE
RES=0.0
DO 201 J=JSTART, JEND
[H= [MAX §J) :
DB 202 F=START, kW L z :
BAS=PHEtFed=1F" -
TF(INUMQEQsl! DDS=PHOC T, J’ll
IFLE.EQ.Y) 60 TQ IQ

ANUM=AE (15 J)*PHI (1+1,J) +AWLI, J)*PHI(I-I.J)*AN(l.J)‘PHI(I Jely o+
/ AS(1,J)%DDS +SULT1+J)
GO TO 12

10 ANUM=AE(T, J)*PHt(I*l.J)+SU(I'JI
12 CONTINUE
- FF(AP(T,J).EQ. Qgﬂ) GO 1O 202
. I=PHItI,)

. PHIUL )= ANUMI&&(I-JE
RS=DABS(Z-PHI(1,J))
IF(RS.GL.RES) RES=RS

202 CONTLNUE
201 CONEENUE
RETURN

END

SUBROUTENE SOLVI(ISTART ¢JSTART,JENDPHILRES)

IMPLICIT REAL*8(A-Hy0~-Z), INTEGER (I-N)
- DIMENSION PHI(41,416),A(41), B(4l), C(4l),0(41)

CGMMGON _
l/ALL/lT'JT.IN'JN,INM.JNM.lL.lLP.IPROB.IGRID'IMAX(16)leDrJMlN(30|o
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c
C

10
1

12

101

102

2 -
1/COEF/AP(41416),AN(41,16), AS(41'16)oAE(41116).AH(41'16),SU(41916)

ISEC IPILE,JJLo ICONVyNSOLU INUM, JL, JLP

C**SOLUTION BY MATRIX FACTORIZATION ALONG RADIAL LINE

A(1)=0.0
c(1)=0.0
RES=0.0

‘DO 100 J= JSTART’JFND

GC 10O 12 : =
CUI)=AN(T,J)*PHI(1,J¢+1) +SUlT,J)

DITL)=APII,J)-AS(I,J) ‘

GO 70 12 : _

ClI1)= : +AS(T4J)2PHI(T,d-1)+SULT,J)

[H=TMAX(J)
DO 101 I=ISTART,[H
AT)=AE(I,J)
BII)=AW(T4d)
IF(J.EG<2) GO TO 10
IF(J.EQ.JNM) GO TO 11

C(l)-AN(I.J)#PHI(lefl)*AS(l.J)*PHI(l J-11+SU(T4J)

D(I)=AP(I,J)

DUI)=AP(I4J)-AN[1,J)
CONTINUE

IF(1.EQ.1) GO TO 101
TERM=1./(D(1)-BLI)*A(I-1))
A(TI)=A(1)*TERM
CUI)=(CUIN+BLTII*C{I-1))*TERM
CONTINUE.

D0 102 II=ISTART,IH
[=IH-TT+ISTART

I=PHI(I,J)

PHILT,J)= A(l)*PHl(l*l J)*C{I)
RS=DABS (Z-PHI(1,4))
IF(RS.GT.RES) RES=RS
CONTINUE

«*
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100 CONTINUE
RETURN
END - o
;sueaourxus.Paxnr(xsrAnw,JsrARI.pn;,ﬁsno;te.rwaK)
IMPLICIT REAL#8{A=Hy0-Z), INTEGER d1-N) '
DIMENSION PHI{TK,JK) 4HEADT9) s STORE(50)
DIMENSION F(79,Fal11)
C OMMON

.I/ALL/ITaJToIN:BN'INM'JNM;TL-ILP.&PROB,PGRLD.YMﬁﬂdﬁﬁlilN@pmﬂﬁNl30%,

2 ISEC,lPILE,JﬁL.lCONV.NSDLU.1NUM1JL.JUP
41/AGRLo/R(}0J,x1130).X2(L6! ' -
@@ALA;&ﬂ&ﬁ(ﬂﬁ»,én,némgéﬁlsm-.4H114 5 4HL Oy a9 @HT Xy o
T HHAGY A

TR T ST e D e B it AT A T s 6T -

1l ot T et T8 ek 9 G HITDH OHINTE
" DATA HI HYZWH (fl=a/H W =7
Coek  PRINT ‘OUT SUBROUTINE
c
I1SKiEP=1
- JSKIP=1"
WRTTE(649110)HERD
: TSTA=ISTART-12
1:00 CONTINUE
I'STA=I'STA+12
TEND=TSTA+11 .
FEND=MENOL I €0 LENDY
| F () SF4 (HE NDRESTA) o
-leTEtprJ-H]g‘11;1=1@ngﬂ$mméﬂ%*ﬂ¢%giwm
WRITE(6,4112) » - '
DO 101 JJ=JISTART ¢IN,JSKIP
J=JSTART+IN-JJ
[H=IMAX(J)
DO 120 I=ISTA,IEND .
A=PHI(1,44d) ; :
[F{DABS(A).LT.1.0-20). A=0.0
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STORE(1)=A

WRITE(64113) J,(STORE(I),I=ISTA,1END, ISKIP),X2(J)

CONTINUE

IF(IEND.LT.IE}GO TO 100

RETURN

FGRMAT (1HO,20(2H*~), 7X.9A4.7X 20(2H°*))
FORMAT(3H J) '
FORMAT (lH :l3plP12010 2,0PF7 3)

END
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