

CONF-771127-15

MAGNETIC SUSCEPTIBILITY OF $AnRe_2$ COMPOUNDS

M.B. Brodsky, R.J. Trainor, A.T. Aldred and C.H. Sowers

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Prepared for

23rd Conference on Magnetism and Magnetic Materials
November 8-11, 1977
Minneapolis, MN

MASTER

EP

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Operated under Contract W-31-109-Eng-38 for the
U. S. DEPARTMENT OF ENERGY

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Department of Energy, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona	Kansas State University	The Ohio State University
Carnegie-Mellon University	The University of Kansas	Ohio University
Case Western Reserve University	Loyola University	The Pennsylvania State University
The University of Chicago	Marquette University	Purdue University
University of Cincinnati	Michigan State University	Saint Louis University
Illinois Institute of Technology	The University of Michigan	Southern Illinois University
University of Illinois	University of Minnesota	The University of Texas at Austin
Indiana University	University of Missouri	Washington University
Iowa State University	Northwestern University	Wayne State University
The University of Iowa	University of Notre Dame	The University of Wisconsin

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights. Mention of commercial products, their manufacturers, or their suppliers in this publication does not imply or connote approval or disapproval of the product by Argonne National Laboratory or the U. S. Department of Energy.

MAGNETIC SUSCEPTIBILITY OF AnRe_2 COMPOUNDS*

M.B. Brodsky, R.J. Trainor,† A.T. Aldred and C.H. Sowers
Materials Science Division
Argonne National Laboratory
Argonne, IL 60439

ABSTRACT

The compounds AnRe_2 , where $\text{An} = \text{Th, U, Np, and Pu}$ all have the MgZn_2 -type hexagonal Laves phase structure. Measurements of their magnetic susceptibilities have been made from 2-300 K. Whereas ThRe_2 , URe_2 , and PuRe_2 have essentially temperature-independent susceptibilities, NpRe_2 is ferromagnetic with $T_c = 47$ K. The paramagnetic data for NpRe_2 follow a modified Curie-Weiss law, $\chi - \chi_0 = C/(T - \Theta)$ from 60-230 K with $\Theta = 46.9$ K. and C equivalent to an effective moment, $P_{\text{eff}} = 2.11 \mu_B$. The ordered moment $\mu_0 = 0.90 \mu_B$ and the results are consistent with other actinide compounds having good local moment behavior. The electronic specific heat of $\text{URe}_2 = 34 \text{ mJ}/(\text{mole-K}^2)$ is large enough to indicate the possibility of spin-fluctuation behavior in this compound.

INTRODUCTION

Many actinide intermetallic compounds with composition AnX_2 form Laves phase-type structures. The largest number of these occur in the MgCu_2 -type cubic phase structure. Systematic studies of the magnetic properties of MgCu_2 -type compounds have been made, and reasonable correlations between magnetic ordering behavior and An-An separation have been presented for cases where X is not a $3d$ transition element [1]. Although a number of An Laves-phase compounds also form in the hexagonal MgZn_2 structure, magnetic data have been reported only for UNi_2 , which orders ferromagnetically at $T_c = 30$ K and $\mu_0 = 0.13 \mu_B$ [2]. This paper presents the results of a magnetization study of AnRe_2 compounds where $\text{An} = \text{Th, U, Np and Pu}$. All of these compounds form the MgZn_2 structure. Although URe_2 does form in the MgZn_2 structure above 453 K, below that temperature it transforms to an orthorhombic structure which is a distortion of the MgZn_2 structure at lower temperatures. In view of the similarity of the low temperature structure to the other AnRe_2 structures, the results for URe_2 are also included.

RESULTS

Figure 1 shows the temperature dependence of the molar susceptibility for the compounds between 2-300 K.

The susceptibilities are essentially temperature-independent for ThRe_2 , URE_2 and PuRe_2 . However, the data for NpRe_2 are indicative of ferromagnetic ordering, and these results are replotted as $1/\chi$ versus T in Fig. 2. The results nearly fit a Curie-Weiss law. The curvature may be due to a temperature-independent term, χ_0 , or to crystal-field effects. Both approaches have been used previously to explain curvature in $1/\chi$ versus T plots for actinides. In the absence of a crystal-field calculation for this structure, no attempt is made here to evaluate the crystal-field effects.

Figure 2 also shows the effect of assuming $\chi_0 = 1.21 \times 10^{-3}$ emu/mole and a straight line is obtained.

The modified Curie-Weiss law, $\chi - \chi_0 = C/(T - \theta)$, for NpRe_2 yields $\theta = +47.4$ K and $p_{\text{eff}} = 2.11 \mu_B$. The existence of ferromagnetic ordering at 47 K is supported further by the magnetization data in the vicinity of T_c . These are plotted in Fig. 3 as σ^2 versus H/σ and yield $T_c = 47$ K.

DISCUSSION

The NpRe_2 data in Fig. 2 are strongly indicative of local moment behavior. Below T_c , plots of σ versus $T^{3/2}$, σ versus T^2 and a Brillouin function for $J = 1/2$ all yield $\mu_0 = 0.899 \pm .002 \mu_B$ upon extrapolation to 0 K. Simple Russell-Saunders coupling would indicate $0.84 \mu_B$ and $2.70 \mu_B$ for p_{eff} of $5f^5$ and $5f^4$ configurations, respectively. In the well documented case of NaCl-type actinide compounds [3] intermediate coupling which involves full $j-j$ manifold interactions, the effective moments are 1.41 and 2.59 for $5f^5$ and $5f^4$, respectively. The ratio $\mu_0/p_{\text{eff}} = 0.44$ for NpRe_2 is in the range found for NaCl-type compounds. These considerations are very qualitative in the absence of crystal-field calculations for actinides with the MgZn_2 structure. Whereas no attempt will be made to use the results to assign a ground state configuration to the Np atom, the results are all suggestive of good 5f local moment character in NpRe_2 . This is in contrast to NpOs_2 (cubic Laves phase) which is an itinerant ferromagnet [4,5].

The small break in the data for NpRe_2 at 250 K (best seen in the $1/\Delta\chi$ versus T plot in Fig. 2) may be due to a lattice distortion of the type found in URE_2 at 453 K. Similar effects are found in the susceptibility data for the cubic Laves phase compounds NpOs_2 , NpRu_2 and NpIr_2 [4]. The room temperature x-ray diffraction pattern for the URE_2 sample used here showed the presence of both the hexagonal Laves phase (major) and the low-temperature orthorhombic phase (minor). However, the absence of a temperature-dependent susceptibility or of a strongly temperature-dependent magnetic

impurity contribution indicate that both URe_2 structures are nonmagnetic.

The strong magnetism of the Np compound, in comparison to the U and Pu compounds, is not uncommon. Consider the sequence ThAl_2 , UAl_2 , NpAl_2 and PuAl_2 . ThAl_2 is nonmagnetic; UAl_2 is a spin fluctuation compound [6]; NpAl_2 is a good ferromagnet with $T_c = 56$ K [4]; and PuAl_2 may be magnetic but only below 4 K [7]. Similarly, USn_3 is likely to be a spin fluctuation compound [8]; NpSn_3 is an itinerant antiferromagnet [9]; and PuSn_3 is nonmagnetic [8]. These results may be understood in terms of a strong spin-orbit splitting. When that splitting is larger than the 5f band-width, the 5f band splits into $j = 5/2$ and $j = 7/2$ sub-bands [10]. This approach can explain the lack of magnetism in Am, as well as the stronger magnetism for Np versus U and Pu in some cases.

Most certainly ThRe_2 is nonmagnetic and a superconductor due to the lack of 5f electrons below the Fermi level [11]. Despite the temperature-independent paramagnetism of URe_2 and PuRe_2 , they may still exhibit spin-fluctuation behavior. The specific heat of the URe_2 sample measured at low temperatures yields an electronic term $\gamma = 34$ mJ/(mole-K²). It is observed that all actinide compounds having $\gamma \geq 20$ mJ/(mole-K²) are magnetic or show spin fluctuation behavior. The simplest way to show this would be via a resistivity $\propto T^2$ at low temperatures. However, the two-phase nature of URe_2 samples currently available makes this approach suspect. The possibility of spin fluctuation effects may be tested in PuRe_2 , which is single phased. However, the lower susceptibility of PuRe_2 , $[\chi(\text{PuRe}_2)/\chi(\text{URe}_2)] = 0.5$, makes it a less likely candidate for spin fluctuations than is URe_2 .

REFERENCES

*Work supported by the U.S. Energy Research and Development Administration.

†Permanent Address: Lawrence Livermore Laboratory, Livermore, CA 94550.

1. D. J. Lam and A. T. Aldred, in The Actinides: Electronic Structure and Related Properties, A. J. Freeman and J. B. Darby, Jr., Eds. (Academic Press, New York, 1974) pp. 109-179.
2. D. J. Lam and A. T. Aldred, AIP Conf. Proc. 24, 349 (1975).
3. S. K. Chan and D. J. Lam, in The Actinides: Electronic Structure and Related Properties, A. J. Freeman and J. B. Darby, Jr., Eds. (Academic Press, New York, 1974) pp. 1-49.
4. A. T. Aldred, B. D. Dunlap, and G. H. Lander, Phys. Rev. B14, 1276 (1976).
5. M. B. Brodsky and R. J. Trainor, Physica 86-88B, 143 (1977).

6. R. J. Trainor, M. B. Brodsky and H. V. Culbert, Phys. Rev. Lett. 34, 1019 (1975).
7. R. J. Trainor and M. B. Brodsky, to be published.
8. A. T. Aldred, M. B. Brodsky, B. D. Dunlap and D. J. Lam, to be published.
9. R. J. Trainor, M. B. Brodsky, B. D. Dunlap and G. K. Shenoy, Phys. Rev. Lett. 37, 1511 (1976).
10. B. Coqblin, E. Galleani d'Agliano and R. Jullien, in Proc. of the Conf. on Superconductivity in *d* and *f* Band Metals, Rochester, NY, 1971, p. 154.
11. A. L. Giorgi and E. G. Szkłarz, J. Less Comm. Metals 22, 266 (1970).

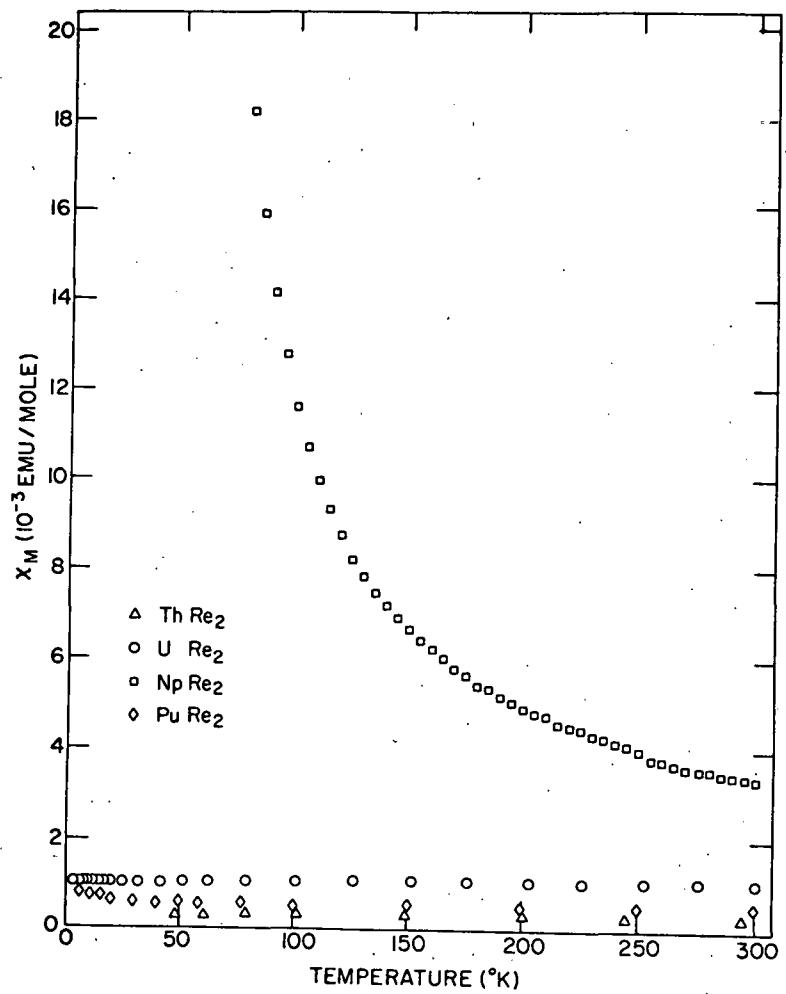


Fig. 1. Molar susceptibilities vs. temperature for AnRe₂ compounds.

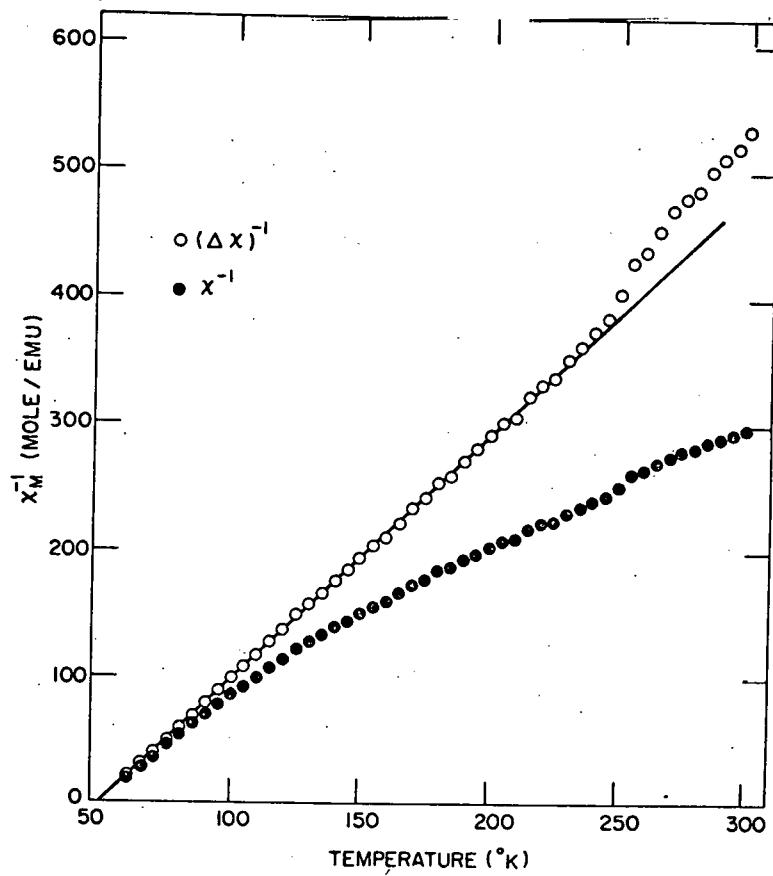


Fig. 2. Inverse molar susceptibility and corrected susceptibility vs. temperature for NpRe_2 .

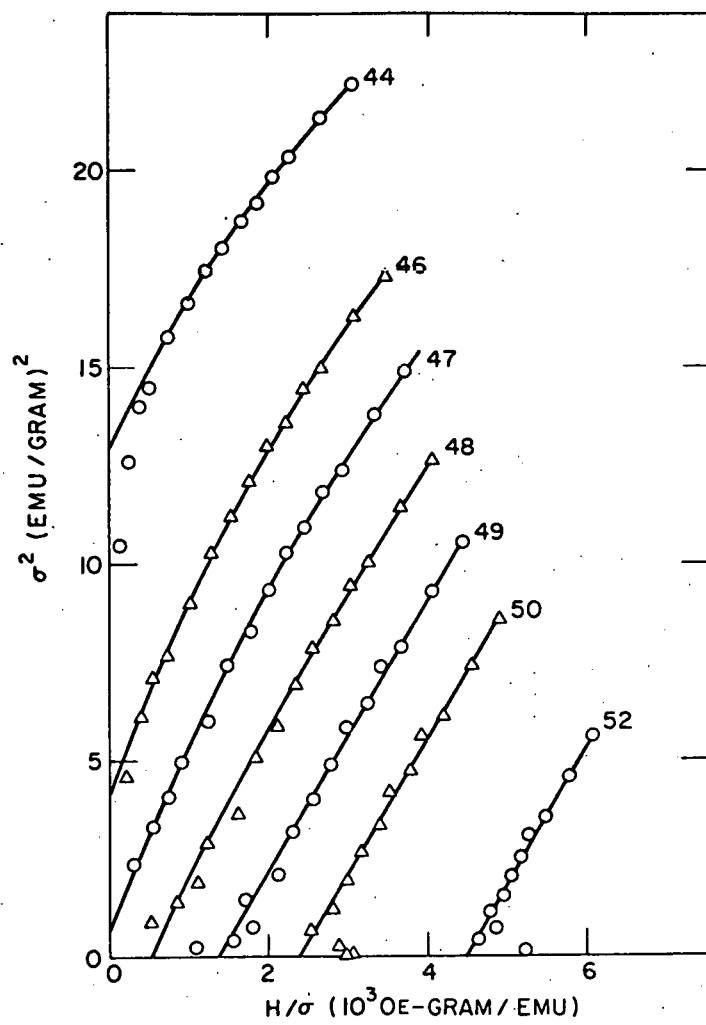


Fig. 3. Arrott plots for NpRe₂.