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The upper critical field in anisotropic superconductors

Daniel Wayne Youngner

Under the supervision of Richard A. Klemm 
From the Department of Physics 

Iowa State University

Theoretical descriptions of the upper critical fields in reentrant 

and anisotropic superconductors are presented. The theories are 

essentially microscopic in nature and incorporate many of the effects 

known to influence the behavior of superconducting electrons. In 

cases where adequate experimental data exist, the agreement between 

experiment and theory is found to be good.
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I. INTRODUCTION

Superconductivity is a common low-temperature phenomenon known (1,2) 

to occur in more than forty elements and in several tens of 

thousands of alloys and compounds. The temperature at which a 

material becomes superconducting is called its transition temperature and 

is denoted by T . Materials in the superconducting state have no elec­

trical resistance to direct currents, and will expel weak magnetic fields 

from their interiors. Sufficiently strong magnetic fields will penetrate 

samples and destroy the superconductivity, causing the sample to return to 

the normal (i.e., nonsuperconducting) state.

Superconductors can be classified as being of one of two types 

depending on how they respond to intermediate strength magnetic fields. 

Type I superconductors abruptly enter the normal state when the applied 

field reaches a temperature dependent critical value Hc(T). In type II 

superconductors the magnetic field starts penetrating the material at 

Hc^(T), but does not fully destroy the superconducting state until it 

reaches H^CT) (>HC^(T)). This thesis will be concerned exclusively 

with upper critical fields in type II superconductors.

Until recently (1960s), the upper critical field vs. temperature 

(Hc2 vs. T) curves of virtually all known type II superconductors had 

the same general shape (3). As shown in Fig. 1, increased mono- 

tonically from zero at T^ (the zero field transition temperature of the 

superconductor) to a maximum value at T = 0. The second derivative of 

this curve at Tcq and at all lower temperatures was negative. Known
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Figure 1. Critical field (la) and upper critical field (lb) curves for 
type I and type II superconductors respectively (3). A 
specimen is normal above its curve and superconducting below
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values of ranged from near zero to as high (4) as 21 °K, and at 

T = 0 was typically less than, or at most slightly greater than, the 

paramagnetically limited (5) value of 18.6 k Gauss/Kelvin.

The upper critical fields of all of these materials could be ex­

plained by a well-known theory in which the Fermi surface is assumed to 

be spherically symmetric and the host lattice is assumed to be free of 

localized magnetic moments. Several important features of this theory 

will be discussed later in this chapter.

Recently several (6-23) new types of superconducting compounds with 

unusual upper critical field curves have been discovered. Two types 

of unusual superconductors will be discussed in this thesis. The first 

type (6-11) includes the ternary rare-earth alloys in which goes 

through a maximum and then returns to zero at a temperature Tc0 < Tcq 
(see Fig. 2). The second type (12-23) is the family of superconductors 

with highly anisotropic Fermi surfaces and pair states. Upward curvature

in H _(T) at T „ and anomalously high values of H „(T) at T = 0 have cz cU cz
been seen in many anisotropic superconductors (see Fig. 3).

A. Ternary Rare-Earth Superconductors 

There are two types of ternary rare-earth compounds which exhibit 

superconductivity and which display anomalous behavior in the temperature 

region below tcq* The first is the Chevrel ternary molybdenum chalco- 

genides (6,7) with the formula RE^MO^Xg (RE = Gd, Sm, Tb, Dy, Er; 

y = 1.0 or 1.2; X = Se or S). Several different types of experiments
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Figure 2. Upper critical field versus temperature of ErRh^B^ determined 
from ac electrical resistivity data (11). H 2(T) is the 
field required to reduce the resistivity to §0% of its normal 
state value
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Figure 3. Experimental upper critical field data (13) on 2H-NbSe2
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have been performed on these materials. Neutron scattering experiments

(8) show that HoMo^Sg, for example, undergoes a ferromagnetic transition

below Tc(). Several Chevrel compounds have lamda-type anomalies in

their specific heat curves below Tcq, indicative of the onset of long

range magnetic order in them. In Fig. 4 we show specific heat data (7)

on Gd. _Mo Se0. The upper critical field curve (6) in Gd, 0Mo.Se0 first l.z o o 1.2 6 o
increases as the temperature decreases, then reaches a maximum value at 

some finite temperature, and begins to decrease as the temperature is 

lowered further.

The second type (9) of ternary rare-earth alloy which exhibits

superconductivity has the formula RERh^B^ where RE is a rare-earth

element. As the temperature of these materials decreases, is often

found to initially increase from 0 at Tc2> then reach a maximum value,

decrease, and vanish at a temperature T^ where T^ > T^ >0. At T^

the material reenters the normal state, and at temperatures just below

Tc2 the material becomes ferromagnetic. Experimental data taken by

Maple et aJL. (9) on ErRh^B^ (Fig. 2) provide an example of this behavior.

(The crystal structure of ErRh^B^ is shown in Fig. 5)

In the compounds mentioned above the 4f electrons of the rare-earth

elements have localized magnetic moments which tend to order ferro-

magnetically. Simple theoretical considerations tell us that as the

temperature of such a compound is lowered, the domains over which the

local moments are ordered grow in size. When the radius £ of them
magnetic domains becomes comparable to the BCS coherence length £, the
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individual Cooper pairs experience a magnetic field. This internally 

generated field tends to break the pairs, suppressing superconductivity 

in a manner analogous to an externally applied field acting on an 

ordinary superconductor. The external field required to destroy super­

conductivity in such a material is therefore diminished. At T^ the 

internal field alone is strong enough to destroy superconductivity and 

cause the material to reenter the normal state. This simple theoretical 

argument will be quantified and developed more fully in Chapter II.

B. Anisotropic Superconductors

In many (12-18) materials with anisotropic Fermi surfaces and 

superconducting gaps the curve displays positive curvature near

Tc0 and unusually high values as T approaches zero. Recent experimental 

work by Orlando et al. (.12), for example, shows upward curvature in the 

critical field curve of the A-15 materials Nb^Sn, and perpendicular 

field measurements made by Dalrymple and Prober (13) on the hexagonally 

distorted material NbSe2 (Fig. 3) show exceeding the predicted (24) 

value for spherically symmetric materials by ^20% in the low-temperature 
regime. Several (16-18) other experimentalists have seen similar results.

Theoretical models attempting to describe these effects have 

included anisotropy in such things as the Fermi surface (25), the super­

conducting pair state (26) , and the electron-electron coupling (27).

These models, however, are either limited in validity to temperatures 

near to or are plagued by other shortcomings which will be

described more fully in Chapter III.
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Figure 5. Crystal structure of ErRh^B^. The centers of the Rh^ tetra 
hedra are located on the origin and center of the unit cell 
Only one of the four B2 pairs is indicated. O, Er; o, Rh;
• , B



10

In Chapter III a two-parameter model which incorporates Fermi

surface and pair state anisotropy and which successfully describes

H „(T) over the entire temperature range will be presented. c2

C. Ginzburg Landau Theory

Thirty years ago Ginzburg and Landau (28) (GL) formulated a 

phenomenological theory which describes some of the properties of super­

conductors near their transition temperatures. The theory is conceptually 

simple and can be used to introduce some of the ideas encountered in the 

study of superconductivity.

Ginzburg and Landau assumed that the free energy of a superconductor 

could be written as

2

F = F + s n
kl2 + 1 M4 + ^

2 2m
-iftV - )* +—Id? (l.D

J Sir-1

where F^ is the free energy in the normal state, ip is the order parameter

(or wave function) of the superconducting electrons, a is a parameter

which is negative for T < T^ and vanishes linearly at Tc> 8 is a positive
* *

constant parameter, e = 2e and m = 2m are the charge and mass respec­
tively of a superconducting pair of electrons, and h = V x ^ is the 

magnetic field. Minimizing the free energy with respect to variations in 

ip and A leads to the coupled set of equations
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2m - i*V - 2eX -|2
(1.2)

curl h T efi . *

where h = curl A

m 1 m
c imc

(ip vip - tiiVip ) - U)2 ^
me

Microscopic calculations (29-31) show that a and 3 are given by

(1.3)

1 T - T
= 1.83

2m £0
(1.4)

3 = 0.35 M-
N(0) ' 2m ?0 <Vc>'

(1.5)

where £q is the coherence length at T = 0 and N(0) is the density of 

states at the Fermi level.

It follows (32,33) from GL theory that spatial correlations in the 

order parameter ip exist over distances on the order of £(1) where

L - (1.6)

and that magnetic fields penetrate into superconductors a distance A(T) 

where

A(T) = — A (0)/2 L \ T ~ T ' c
(1.7)

and 1^(0) is the field penetration depth at T = 0.



12

Near Tc where ip is small, Eq. (1.2) can be written as

2m l -ifiV ¥] (1.8)

Eq. (1.8) is solved by equating -a with the lowest Eigenvalue of 

the differential operator on the left (see Appendix G for details). 

The solution gives:

Hc2
o

2tt£2(T) (1.9a)

where <f>g = c^/Aire is the flux quantum. The essential feature of Eq. (1.8) 

is that near T , varies linearly with T:

Hc2 “ (Tc " T) - (1,9)

deGennes (33) and Saint-James, Thomas, and Sarma (32) provide very 

full accounts of GL theory.

D. The Microscopic Theory

Detailed descriptions of the theoretical techniques for dealing with 

systems containing large numbers of interacting fermions or bosons can 

be found in the literature (29,31). The description given here will be 

very sketchy. It is intended primarily to introduce ideas which will 

be developed more fully later and to quote results which will be used 

either as starting points for calculations to be performed later in this 

thesis or as reference points with which to compare results derived in

this thesis.
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Many body theory may be used to calculate the upper critical field 

of a superconductor. The procedure involves first finding an expression 

for the Green's function for interacting normal state electrons in a 

magnetic field, then correlating pairs of the normal state electrons by 

mathematically "turning on" the attractive BCS interaction. Seeking the 

conditions under which the normal state electrons are unstable with 

respect to the formation of superconducting pairs leads to a homogeneous 

integral equation, the solution of which gives

The procedure begins by defining the noninteracting single electron 

Green's function (29):

G(r]L, t1, r2, x2) =

- <T (iKr , t ,)ij>(r9, t„)S)>T 1 1 Z Z O
<S>o

ip(r, x) = exp[(HQ - yN)x]4)(r) exp[-(HQ - uN)t] 

iKr, t) = exp[(HQ - uN)T]i|;+(r) exp[-(Ho- pN)t]

(1.10a)

(1.10b)

(1.10c)

and ip and ip are the usual Fermion creation and annihilation operators. 

Furthermore, <’’’>0 = Sp{exp[(^o + pN - Hq)/T] •1-} (l.lOd)

where Sp (for "spur" 5 "trace") sums over all states in the grand 
cannonical ensemble, and
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rT
S(t) = Tx exp{- I H (T')dT'}. (l.lOe)

cr
In Eq. (1.10a), S = S(l/T). Throughout this thesis, units will be 

chosen such that -R = k = c = 1.D
-y

In cases where the Green's function depends on r^ and only as 

and on and x^ only as T^“T2» Pr°ves convenient to define 

Fourier transforms

to) = dr exp(-ip.r)

Replacing the operators in

dt exp(itox) G(r,t) (l.lOf)

with their Eigenvalues leads to

GaB)(P»u) ag
im - C(p) (l.lOg)

Here, a and g are possible spin projections of the electron, p is the 

electron's momentum, u> = 2irT(v + 1/2) where T is the temperature of the 

material and v is an integer, 6 is the Kroeneker delta, and £(p) is the 
electron's energy. Typically £(p) = £0(p) “ P = P^/2m - p where m is the 

effective mass of an electron and y is the chemical potential. The super­

script (0) is used to indicate that the electron is in an unperturbed 

state.

Having eliminated all operators from the definition of the Green's 

function, we can Fourier transform the momentum variables in Eq. (1.10g) 

to obtain

6aB 27? eXJ,,l1(s8n “)kFr - U> r (1.11)
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where k^, and are the Fermi wavevector and the Fermi velocity respec­

tively, r = |r|, and cgn x = x/|x|.

By allowing the electron described by Eq. (1.10) or Eq. (1.11) to 

interact with other particles and fields, the electronic Green's function 

can be modified in a variety of ways. In an external magnetic field 

H(=B), for example, the real space Green's function becomes (34)

mn r u + ivigOH -iGaB(^,a)) = "6aB Ifirr 6Xp |Sgn “ [ ikF--- ^---Jr > exp < ie l-r
ds • t(t)

(1.12)

where p,, is the Bohr magneton, a = ±1 is the spin of the electron and
D

l(s) is the magnetic vector potential. The factor exp(ie / ds^ •^(s)) 

comes from treating the magnetic field in a gauge invariant (35), semi- 

classical manner. We have assumed that the magnetic field affects only 

the relative phases of the electronic wavefunctions, and have neglected 

the effects of Landau quantization which become important only when

yBHc2^m ^ 7rT + 1/T-

If the electrons are allowed to scatter from randomly located non­

magnetic impurities, the frequency w in the Green's function is 

renormalized (29):

w -> to = u) + sgn u)/2t^ (1.13)

where is the impurity scattering time. The procedure for treating 

impurity scattering is described in Appendix A and is shown diagrammati- 

cally in Fig. 6.



Figure 6. Diagrams showing impurity scattering. Each X indicates scat­
tering from a single atom. X’s joined by dotted lines 
indicate scattering from the same atom. The general integral 
equation is shown diagrammatically in Fig. 6a. As argued in 
Appendix A, diagrams like 6b serve only to renormalize the 
chemical potential and need not be considered. The contribu­
tion to G from diagrams with crossed impurity lines (i.e.. 
Fig. 6f) are smaller than the contributions from diagrams 
with uncrossed lines (Figs. 6d and 6e) by a factor 
(ept)--*- << 1, and may also be ignored. Diagrams like the 
ones in Figs. 6c, 6d, and 6e contribute significantly to the 
renormalization of G and must be retained. Figure 6g shows 
the integral equation which generates all of the significant 
contributions. See Appendix A for details
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With the inclusion of spin-orbit scattering in our formalism,

gets replaced by the total impurity scattering time t where (36)

1/t = 1/t, + 1/t . A detailed description of the effects of spin-orbitIso
scattering is given in Appendix B.

Numerous other modifications to the normal state electronic Green's 

function can be imagined. For an understanding of the topics to be dis­

cussed in this thesis, however, the three we've already mentioned — 

interaction with a magnetic field, impurity scattering, and spin-orbit 

scattering — are all that need to be considered.

Superconductivity is caused by an attractive, phonon mediated inter­

action between pairs of normal state electrons. The two particle 

propagator A for a pair of electrons in the presence of the interaction 

satisfies the integral equation (37)

A(r1,r2,n) = l Ga(r1,r2,a))G_o(r1,r2,^-a))
co ,a

+ VT l J d3r GCT(r1,r,co)G_a(r1,r,fi-co)A(r1,r2,fi)
co,a

(1.14)

where V is the interaction strength (the BCS coupling constant). The 

Feynman diagram corresponding to Eq. (1.14) is shown in Fig. 7.

The existence of the superconducting state becomes infinitely more 

probable than the existence of the uncorrelated normal two-particle 

state only if A diverges relative to the uncorrelated product of Green's 

functions. Wien this happens, the homogeneous equation
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7a

Figure 7. Diagrammatic representation of Eq. (1.14). A, G, and V are 
represented by the quantity on the left of the = sign, a 
single line, and a dot, respectively. The integral equation 
shown in Fig. 7a generates the terms shown in Fig. 7b
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A(r) = VT £ d^r' KQ(r,r' ,aj)A(r)
m . aa),a

(1.15)

has a solution. Here,

Kq(t,r' ,o)) = G^Cr.r',co)G_a(r,r',-o)) (1.16)

is the kernel of the integral equation. We have made use of the fact 

that the superconducting state is most stable when ft = 0.

If, in addition to the BCS interaction, there are other mechanisms 

serving to enhance (or diminish) the correlation between paired super­

conducting electrons, the effects of the additional mechanisms should be 

incorporated into the kernel. Impurity scattering is one such mechanism. 

In the "ladder" approximation for impurity scattering shown schematically 

in Fig. 8 and discussed in Appendix F, the kernel changes from to K 

where K satisfies

1K(r,r’ ,aj) = K^r.r'.w) + 2tttN(0)

When impurity scattering is to be considered, it should enter the 

expressions for both the single particle propagator (Eq. (1.13)) and the 

two particle vertex (Eq. (1.17)). In Fig. 9 we show diagrams for some 

of the two particle propagators contributing to the superconducting 

state when both BCS coupling and impurity scattering are present.

If we include the effects of spin orbit scattering and spin para­

magnetism on the superconducting state, it is necessary to generalize 

the formalism used to describe the state. The equations of motion for 

the different Green's functions in the superconductor depend on the spin
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Figure 8. Diagrammatic depiction of how impurity scattering treated in 
the "ladder approximation" modifies the kernal. The integral 
equation (Eq. (1.17)) shown in Fig. 8a generates the terms 
shown in Fig. 8b
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Figure 9. Some of the diagrams contributing to K when both the BCS 
force and impurity scattering are considered
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indices of the Green's function and on whether it (the Green's function) 

is built from creation or annihilation operators. The various equations

satisfied by the different Green's functions couple to one another in a 

manner conveniently expressed using the matrix notation of Werthamer, 

Helfand, and Hohenberg (36) (see Appendix B). With spin-orbit scattering, 

the normal state Green's function and the vertex renormalization equation 

are still formally described by Eqs. (1.12) and (1.14)-(1.17) , but o gets 

replaced by the Pauli spin matrices and G, Kq, and K become 2x2 matrices.

Once we've put all of the effects we're interested in (e.g., magnetic 

field, impurity scattering, spin-orbit scattering) into the kernal in 

Eqs. (1.15)-(1.17), the procedure for solving the equations is in 

principle straightforward. The solution gives Tc as a function of H, 

t^, tso, etc. When A is a slowly varying function of position (which is 

almost always the case in macroscopic samples), Eqs. (1.15)-(1.17) can 

be replaced by

1 VT l
0),CT

K(r' ,aj) (1.18)

where K(r',(i)) is the lowest eigenvalue of the kernal in Eqs. (1.15)-(1.17). 

In general, the mathematical core of the problem of finding lies

in solving Eq. (1.18).

Several other theoretical research groups (24,25,36) have attempted 

to solve Eq. (1.18) under varying sets of conditions. Helfand and 

Werthamer (24) solved it in the absence of spin-orbit scattering. They 

found that Eq. (1.18) reduced to
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1 « 1
in- = l ------

t v=—00 2v + 1

(t/h1/2)J(a ) 
______________ai
1 - (X/h1/2)J(a )

u>

where

J(a ) = 2to
2 -1dio exp(-a) )tan (a u)

Ci)

Here,

l (-l)n a 2n+1 n!/(2n+l) 
n=0

= h1/2/(|2v + lit + X)

h - 2e Hc2(vf/2ttTc0)-

X = 1/21tTc0x1

t = T/TcO

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)

Solutions to Eq. (1.19) are shown in Fig. 10.

Hohenberg and Werthamer (25) wrote the solution to Eq. (1.18) using 

a formalism that facilitates the inclusion of Fermi surface and pair state 

anisotropy. They showed that ^^(T) is determined by

1 = VT £ { S^"1 - 1/2itTc0t r1 (1.26)
v

where

S
Cl)

dq N(q) l
n=0

-in <SI ^v(q) ♦ tt j 2n
S> (1.27)
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0.5 1.0
t

Figure 10. Upper critical fields for spherically symmetric materials.
A = (1) 0.0; (2) 0.5; (3) 5.0; (4) 50.0. These results may 
be obtained using either Eq. (1.19) or Eqs. (3.2) and (3.3)
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Here, it = -iV - 2eA(r) is the gauge invariant momentum operator acting 

on the pair state |s>. (More will be said about this model in Chapter III.) 

Hohenberg and Werthamer were only able to evaluate the first few terms in 

the sum over n in Eq. (1.27), and thus obtained results valid only near 

T = T^q. Furthermore, although their formalism could handle anisotropy 

in the pair state |s>, they did not consider its effects on H^W.

Werthamer, Helfand, and Hohenberg (36) showed that with spin-orbit 

scattering, H^Cl) i-s given by the solution of

In 7=1 y-V-T ■ {[Re(IM 1 - <T 1 - y Tc:n 1)/2itT)~1] 1 - y ) 1> L
t ^ 2v + 1 a) 3 so 3 soV

(1.28)

where

.1/2-I = [2irT/v (2eH) ' ]J1 (a )0) r i 0) (1.29)

J1(z) o i , / 2N 1 , , 1 + izw2 da) exp(-(ji) ) -x~r In! t:--0 2i \ 1 - iza) (1.30)

a = v (2eH)1^2 (2 I u) I + t 1 + 2iyH) 1
U) r (1.31)

In the "dirty limit" (3 << £0)> which is a limit frequently satisfied 

by materials in which spin-orbit scattering plays a significant role, 

Eqs. (1.28)- (1.31) become

In — t
1 IX \ ; 1

( y+ -ir K 2+
h + X + iy 2 so

2t

iX
+ I so

4y 2 +
h + -y X - iy 2 so

2t *( j ) (1.32)
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where

h (1.33)

Y [(ah) - ( j A )2]1/2 (1.34)

and ip is the digamma function. The solution to Eq. (1.22) is plotted in 

Fig. 11. We observe that spin-orbit scattering reduces the limiting 

effect of Pauli paramagnetism thereby allowing for larger upper critical

fields.

Most of the formulae quoted in the introduction will be used in some 

manner in the latter chapters of this thesis. We will use the spin- 

orbit formalism (Eqs. (1.32) and (1.33)) of WHH (36) in our calculation 

of H^Cr) in rare-earth compounds (Chapter II). In Chapter III we extend 

the scope of Eqs. (1.26)and (1.27) derived by Hohenberg and Werthamer 

(25) by showing how Fermi surface and pair state anisotropy affect 

H^OO in the range 0 < T < Tcq« We find that our results reduce to 

those of Helfand and Werthamer (24) (Eqs. (1.19)-(1.25)) in the isotropic 

limit.
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h 0.4

Figure 11. Upper critical fields with spin-orbit scattering (36)
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II. TERNARY RARE-EARTH SUPERCONDUCTORS

A. Introduction

The ternary rare-earth compounds form an interesting and unique 

family of materials. In these compounds the competing effects of super­

conductivity and long-range ferromagnetic order each tries to dominate the 

behavior of the electrons at low temperatures. There are some rare- 

earth compounds which, because of this competition, initially enter the 

superconducting state at a temperature T^, then reenter the normal 

(i.e. , nonauperconducting ), paramagnetic state at T^ < and finally

ferromagnetically order at T^ < Tc2* is one such compound.

Experimentally obtained upper critical field data (11) on ErRh^B^ is 

shown in Fig. 2.

All known ternary rare-earth compounds which exhibit superconductivity 

have either the formula RERh.B. or the formula RE Mo,X0 (RE = Gd, Sm,

Tb, Dy, Er; y = 1.0 or 1.2, X = Se or S). Schematic diagrams of the 

crystal structure (38) of these compounds are shown in Fig. 5. When 

these compounds are cooled to low temperatures the conduction electrons, 

which are primarily the 4d electrons of Mo or Rh, would like to condense 

into the superconducting phase, but the localized magnetic moments, 

which come primarily from the 4f electrons of the rare-earth elements, 

would like to align themselves spatially with one another thereby making 

the compound ferromagnetic.

Our model treats the conduction electrons and the localized moments 

as two separate groups. This approximation is also used in the band



structure calculation (39) done for ErRh^B^ (see Fig. 12), and is 

consistent with the fact that in the compounds REMo^Sg

and REMo,SeQ the variation of transition temperature with rare-earth
D O

elements can be described (40) by the Abrikosov-Gor’kov (AG) theory (41) 

with the deGennes factor (except when RE = Ce or Er). In our model the 

conduction electrons interact weakly with the local moments via an 

exchange integral I. The short-range interaction between local moments 

has strength $ and is responsible for magnetic ordering at low tempera­

tures. We treat I and $ as independent parameters. Maekawa and Tachiki 

(42) used the same model as we to calculate thermodynamic properties 

and upper critical fields. Their theory, however, does not reduce to 

the AG theory as I goes to zero.

B. Formulation of the Theory

The model we use is essentially microscopic, but some simplifying, 

semi-phenomenological approximations are made in some of the formulae. 

We begin with the following model Hamiltonian, M:

(2.1)

M describes the energy of the conduction electrons modified by the BCS
presence of a superconducting gap, and is given by

1 ci C,k ka ka -41 <cLc'
k

:!k* + fr-c.) (2.2)

In Eq. (2.2), e is the normal energy of an electron with wavenumber k
K.

and A is the spatially averaged condensation energy of the superconducting
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Figure 12. The calculated (a) total DOS and 1-decomposed partial DOS 
for (b) Rh and (c) Er sites in ErRh^B^. The d electrons 
from Rh are seen to have a high density of states at the 
Fermi level. The magnetic 4f electrons of Er (not shown) 
are in spatially localized core states
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electrons. We treat A as a free parameter. The creation and annihilation 

operators for electrons with wavenumber k and spin a are denoted by 

and respectively, and satisfy the usual aaticommutation relations

{C*a’Cr,a’> = fiaa"5(k-k,) (2.3)

= 0 (2.4)

The abbreviation h.c. in Eq. (2.2) stands for hermitian conjugate.

The second term in the Hamiltonian describes the interaction between 

the conduction electrons and the local moments and is given by

Ucf i)
i(k-k')R.1e (2.5)

where I is the interaction strength between the conduction electrons and 

the local moments, N is the number of local spins per unit volume, g^ is 

the Lande g factor, and a is the Pauli spin matrix. The total angular 

momentum at lattice site R. is J..i i
The final term in the Hamiltonian shows how local magnetic moments 

interact with one another.

♦ff
= “ T I £(R- “ R-)J- * J-

2 . . ^ i i i iij
(2.6)

Here, $(R^ “ Rj) t*ie interaction strength between pairs of spins 

separated by R^ - R^.

We treat the exchange interaction I between the conduction electrons

and the local moments within the Born approximation, and treat the spin-
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spin interaction phenomenologically. Our model is similar to the model 

used in the AG theory except that in ours, translational symmetry of the 

spins is built in from the beginning.

The superconducting transition temperature is found by solving the 

linearized gap equation discussed in Chapter I. The procedure we will 

use for solving it is similar to the procedure used by Matsuura, Ichinose, 

and Nagaoka (43).

A = V Q(T)A (2.7)

Q(T) =
1/T

dt' dr’<T {C (rx)C (rT)C^(r't ')c"!"(r't ’) }> (2.8)
T T + + T

where V is the BCS coupling strength, A is the spatially averaged pair 
state wavefunction, C^(rx) is the Heisenberg operator, and x is the

T

imaginary time. Note the similarity between Eqs. (2.7) - (2.8), and

Eqs. (1.15) - (1.16). After applying space and time Fourier trans­

formations, Eq. (2.8) becomes

Q(T) = T i l Y(a»)Gk(a))G_k(-u) (2.9)
a) k

Gk~1(m) = iw - £k - £(w) (2.10)

where m = (2v + 1)ttT. The vertex correction y(o)) and the self-energy 

correction E(oj) have been introduced. Although the expressions for y 

and £ will generally depend on both momentum k and energy m, the expres­

sions we will use are independent of k. Assuming electron-hole symmetry 

[E(-oj) = -£(a)), y(-u)) = y(w)] and performing the momentum integration
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leads to

Q(T) - mo) T l |„| ^|>(M)| (2.11)
0)

where N(0) is the density of states at the Fermi level. The Dyson equa­

tion for the vertex part (shown diagrammatically in Fig. 13) is

YU) = 1 + T l l r++ (tafl.k'w’) G^Cu^G^.C-w'Mu') (2.12)
w' k'

where r^^kWjk'a)’) is the irreducible four-point vertex which expresses

the effective interaction between the conduction electrons. We have used

the same notation for E(o)), y(w), and F. . (kw.k'u)') as Ref. (43).•fry
Equations (2.7)-(2.12) are quite general and are formally similar to 

equations found in standard textbooks. To obtain results uniquely 

applicable to the rare-earth alloys we must derive expressions for E,

Y, and F.

1. The self-energy

The self-energy E(u)) shown diagrammatically in Fig. 14 is given by

T 2
E(o») = (j) 1 l l G, l(m)x(k - k'.a) - a)') (2.13)

Z m1 k' K

where the spin fluctuation propagator the dynamical suscep­

tibility of the localized spin system. E((o) is the self-energy associated 

with the second order process in the exchange interaction I in which an 

electron emits, then reabsorbs a spin fluctuation (or paramagnon). After 

some manipulations (Appendix C) Eq. (2.13) reduces to



1(<j) &

w■p-

Figure 13. Diagrammatic representation of Eq. (2.12). The quantity on the left is the full two- 
electron vertex. The square on the far right depicts the four-point vertex which will 
be discussed later
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rtCk-k',*)-*')

Figure 14. Self energy involving paramagnon exchange. The squiggly
line represents a paramagnon propagator and the dots repre­
sent the coupling constant I
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* dft
(2.15)

where (u" = 27tTv, Is the Fermi wave vector and 0(x) is the step function. 

We have neglected the real part of E(co).

2. The vertex part

The four point vertex shown schematically in Fig. 15 is given by

r^Ckw.k'w') = - ( ) x(k - k'.ti) - ai’) (2.16)

The effective interaction between conduction electrons described by this 

expression is attractive, second order in the exchange integral I, and 

mediated by spin fluctuations. This interaction is similar to the phonon 

mediated interaction that induces the attractive force between conduction 

electrons responsible for superconductivity. In what follows we call the 

contribution from a> = m' in Eqs. (2.13) and (2.16) the elastic channel, 

and from w ^ w' the inelastic channel. Much of our attention in this 

chapter will be focused on the elastic channel.

3. The dynamical susceptibility
The model we use to describe the dynamics of the spin system starts

with the assumption that the static spin susceptibility (44) of the 

sample is of the Curie-Weiss form:
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U)

U)'- U)

Figure 15. The four point vertex is replaced by simple paramagnon 
exchange. External Green’s function lines have been 
included in this diagram to show how they couple to the 
vertex and to the paramagnon propagator
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X S.>i
S(S + 1)A
T - TM

(2.17)

where X is a proportionality constant with units of energy, and is the 

magnetic transition temperature. When strains are present in the spin 

system it is further assumed that the free energy functional acquires 

the form:

F d3f< | q j2<;> +1 a[^>]2> (2.18)

Stability requires that Q and A be positive above T^. In order that 

S = yh when H is uniform, Q must be described by

Q = 1/x • (2.19)

A is a parameter measuring the stiffness of the spin system. We will 

ignore the possible dependence of A on T, X, and S, and neglect terms 

higher order in S.

It proves useful to define Fourier transforms of the magnetization S:

?(r) = ^ l S(q) exp(-iq • r) . (2.20)
q

The free energy can then be written as

F = | I | (Q + Aq2)1(q) • 1(-q) • (2.21)
q

We can find the thermal expectation value of particular magnetiza­

tion-magnetization correlation functions by knowing that classically 

each q degree of freedom contributes y(kg)T to the total free energy.
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q

but

F = V £ i (Q + • £(-q)>
q

(2.22)

(2.23)

Therefore

x(q) = <s(q) • 3(-q)> VT
X(Q + Aq2)

S(S + 1)T
T + M

S(S + 1)TX . 2 :----  Aq

S(S + 1)T
T - TM + (aq)2

where

2 S(S + 1)TXA a = ----- ------

(2.24a)

(2.24b)

(2.24c)

(2.25)

We insert dynamical effects into our expression for the spin-spin 

correlation function by assuming that the self-correlation relaxes 

exponentially in time as described by deGennes (45,46):

<S(q,0) • ^(-q,t)> = <S(q) • S(-q)>exp(-Aq2t) . (2.26)

The diffusion coefficient A is in general a function of the spin-spin 

coupling constants (46,47). We choose to treat it as an independent 

parameter. Fourier transforming Eq. (2.26) leaves us with
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exp(-ia)t)<S(q,0) •?(-q,t)> = x(q»u) = <i>(q) *S(-q)> --- 2 2 4 ' (-* 2'27^
Tr(o) +A q )

In principle we'd expect T^, a, and A to be functions of but in 

practice we take them to be free phenomenological parameters.

4. The phase diagram

An AG type of expression for the superconducting transition tempera­

ture can be derived provided the characteristic frequencies of the spin

system described in Eq. (2.27) are much smaller than Tc (e.g.,
2Aq << |io|). If the characteristic frequencies of the spin system are 

small, all scattering processes from the spins should be essentially 

elastic. In Appendix D we show that if we neglect the inelastic scat­

tering channel in Eq. (2.13) we can derive the following expression for 

the self energy:

£(a>) = YrTry S8n “ (2.28)

where

1
x (T)

Tf (T)
TAG

(2.29)

— = 2irN(0) ( ^ ) S(S + 1)
tag 2 (2.30)

and

f(T) =
<2*V

ln[ T - TM + (2akp)‘

T - T.M
]

2 .where a is given by Eq. (2.25).

(2.31)
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We comment that (2ak ) has units of energy. Our theory differs from ther
AG theory (41) in that in our theory the relaxation time (i.e., the pair­

breaking parameter) is temperature dependent whereas in the AG theory it 

is constant.

If we neglect the inelastic scattering channel from the self-energy, 

we must also neglect it from the vertex correction in Eq. (2.16). We 

then have

F. .(ku.k'o)’) = - ( ■£ ) x(k - k',w - a>')6 , . (2.32)

Substituting Eqs. (2.10), (2.11), (2.28), and (2.32) into Eq. (2.12) leads 

to (see Appendix K):

1
gN(0) y

v>0
(2.33)

Sums like the one in Eq. (2.33) are formally divergent, but can be made 

convergent by properly introducing a cutoff at In Appendix E

we show that Eq. (2.33) can be written as

T- In ^ = iK|+Pc)-<Kf) (2.34)
cO

where = 1.13 exp(-l/gN(0)) is the critical tempertaure when 1 = 0,

ip is the digamma function, and pc = 1/(2irTcx(Tc)) . We will encounter 

formally divergent sums like the one in Eq. (2.33) several more times 

in this thesis. In each case the cutoff procedure described in Appendix

E must be used.
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There are two temperatures which give solutions to Eq. (2.34): an

upper critical temperature, T and a lower one, T Whencl cz
Pcl 5 1/(2irTclT(Tcl)) <<: 1 and Tc0 " Tcl << Tc0’ Tcl is exPlicitly Siven 

by

T - T cl cO 4 T(IcO) (2.35)

If << Tcq, we may rewrite Eq. (2.35) as

cl

cO
= 1--- In

4 TAG(2akf)'

Tc0 + <2akf) 1

cO

T
tAG[TcO + (2ak*)21 ^. lhL\

T ^ 
cO

(2.36)

The second solution of Eq. (2.34), T^, is typically very near TM, and 

cannot in general be specified analytically. The phase diagram showing 

T^ and T^ versus T^ for different values of the coupling constant I 

is depicted in Fig. 16. We observe that there always exists a narrow 

region between the superconducting state and the magnetically ordered 

state in which the system is normal and paramagnetic. In other words 

the system always exhibits a reentrance phenomenon. There'is no region 

where the two long-range orders coexist.

C. The Upper Critical Field

The starting point in a calculation of the upper critical field is 

the field dependent nonlocal linearized Gor'kov equation (34) described

in Chapter I:



43

Tu/ T,
Figure 16. Phase diagram. (2akf) /Tc0 = 0.5 (1) N(0)(y)2(gj-l)2 

• J(J+l)/Tc0 = 0.01; (2) 0.07; (3) 0.15. A sample is 
superconducting inside of (to the left of) its curve
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A(x) = gT J 
v

2ie / dsA(s)
dxlQ-h + (xl " e X A(x1) (2.37)

(2.38)

The expectation value <.. .> ^ is an average over impurities (see Appendix

A), and Gn(x,to ) is the normal state Green's function:cr v

Gn(x,<jo ) 
a v

m
exp ^ ik^|x|sgn ----|x

2Tr x

1
(2.39)

. 1/ 1 , 1 ,to =» o> + -r —7—r + — sgn to v v 2\ x(T) Tq / 6 v (2.40)

— = 2ttN(0) nlul2
T0

(2.41)

ka = k - ^ KF a
VF

(2.42)

Here, m is the electron mass, is the relaxation time associated with 

scattering from nonmagnetic impurities, n is the concentration of non­

magnetic impurities, U is the scattering potential, and v^ is the Fermi 

velocity of the up or down spin band. The internal molecular field h, 

acting on the conduction electrons, consists of a term expressing the 

interaction of the conduction electrons with the local moments and the 

Pauli paramagnetic term:

1 X°<T,H + ^h (2.43)



45

where Xq(T) is the uniform bulk susceptibility given by Xq(T) =
2(g y ) N /T <J • J > , and Nn is the number of local spins per unitJ c U q -q q_Q U

volume.• We have adopted the semiclassical phase approximation for the 

orbital motion of the conduction electrons in an external magnetic field 

it is the vector potential) and have continued to neglect the inelastic 

scattering channel.

By applying the ladder approximation (Appendix F) to the vertex in 

Q^(x,u)v) and by considering the dirty limit (1/Tg >:> Tc) > we obtain the 

standard (48) pair-breaking equation from which we can determine

+ + + - 0 . (2.44)

_ 1 2The diffusion constant D = -j TqVj is a measure of the dirtiness of 

samples. It is easy to check that in the limit ->• 0 Eq. (2,44) 

reduces to Eq. (2.34). Notice that because the induced magnetization in 

the molecular field is linear in I, depends on the sign of I.

We consider two limiting cases. Near the upper critical field 

and the spin susceptibility are small so we may expand Eq. (2.44) in 

terms of H _. We obtain

Hc2
2ttTcl

DeiJ)(1)(| + pcl) 1 -
Tcilf,CTci>

2ttt
*a)<i+Pci>

AG
] (1

T
--- ) . (2.45)
T icl

If Tc2 << we can use t^ie ssyropbobio expansion for large arguments

of the digamma function. The result is

Hc2
(T - Tc2)27rTc() 

l|gjViBJ(J + l)/3 2irT t(T \

2
cO v c2

(2.46)
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where y is Euler's constant. Note that is proportional to |l| ^ near 

Numerical results for all temperatures are shown in Figs. 17-19.

It is not hard to include the effect of spin-orbit scattering which 

becomes important in high field type II superconductors (36). We define 

the relaxation time tsq due to the spin-orbit scattering by (48)

1
T

SO
soN(0) (2.47)

where v is the interaction strength and n is the concentration of so so
scattering centers. The resulting equation which determines H - iscz
nearly identical to Eq. (1.32) derived by WHH (36), and is given by

In T

TcO
iKy + P_) + + p+)

(2.48)

where b = 1/tso • and

+ DeB ± & - h (2.49)
2irT ' t (T) xso

Numerical results are shown in Fig. 20.

In the strong spin-orbit scattering case Eq. (2.48) reduces to

In
cO

+ ^(-j + p (T) + DeB 
2irT 4'rrTxso

) - *(f) - (2.50)

where p(T) = 1/(2ttTt(T)) .

It should be noted that the molecular field acting on the conduction 

electrons is linear in I. If the exchange integral is negative, the spin
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Figure 17. Upper critical field. Unless otherwise stated, the following 
parameters are used in Figs. 17-20. I/Tcq = 0.5, T^/Tcq = 
0.1, De/2TryB = 2.0, (2akF)2/Tc0 = 0.3, gj = 2.0, J = 3.0,
N0 = 2 x 1021 spins/cm3, N(o) = KeV)"1, 1/(6TrTsoTc0) = 0. In 
Fig. 17 only, l/Tc0 = (1) 0.0, (2) 0.1, (3) 0.5, (4) 1.0,
(5) 2.0, (6) 3.0, (7) 4.0
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/tBHC2
TCo 

x IO-2

Figure 18. Upper critical field. The same parameters are used here as
m’oTw It Tm/t‘° '(1) °-0’ <2) °-1-
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Upper critical field. The same parameters are used here as 
were used in Fig. 17 except: De/Zirp^ = (1) 0*5, (2) 1.0, 
(3) 2.0

Figure 19.



50

/*B HC2
Tco
xIO'2

T/Tco

Figure 20. Upper critical field. The same parameters are used here as
were used in Fig. 17 except: 1/(6tttsoTc0) = (1) 100, (2) 10, 
(3) 1.0, (4) 0.2, (5) 0.0
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polarization counteracts the effect of Pauli paramagnetism thereby

increasing the upper critical field. This is the Jaccarino-Peter effect

(49). On the other hand, the pair-breaking parameter p(T) is proportional 
2to I N(0) and therefore tends to suppress superconductivity regardless of 

the sign of I.

The results shown in Figs. 17-20 enable us to make several observa­

tions. We note (Fig. 17) that as the coupling I between the local

moments and the conduction electrons increases, T , decreases, Tcl c2
increases, and H^Cl) at all intermediate temperatures decreases. In 

short, the conduction electron-local moment interaction suppresses super­

conductivity. From Fig. 18 we see that as T^ approaches Tcq, the gaps

between T„ and T „ and between T , and T _ grow in size, and H _(T)M c2 cl cO c2
between T^ and T^ becomes smaller. Figure 19 reveals that increasing 

the impurity scattering rate (i.e,, making the samples dirtier) 

increases especially near Tc2» ^ut doesn't affect either T^ or

T^. Figure 20 shows that increasing the spin-orbit scattering rate 

increases H^Cl) especially near but doesn't cause shifts in either

tc2 or T=r

D. Pseudo-Ternary Rare-Earth Compounds 

Upper critical fields have been measured on the pseudo-temary 

rare-earth rhodium borides Lu1 Ho Rh.B, (50), Y1 Gd Rh.B. (51), 

Er^_xGdxRh^B^ (51), and Er^_xHoxRh^B^ (52). The results of these measure­

ments are qualitatively similar to the results of measurements made on 

pure ternary compounds. Because of the abundance of materials that can
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be made by varying x in the range 0 ^ x ^ 1, a great deal of information 

can be gathered, and a great deal can be learned about the nature of the 

electron-local moment interactions in these materials.

Our theory can be extended to treat (53a) the pseudo-ternary com­

pounds A^_xBxRh^B^ (A,B = rare-earth elements) by assuming the scattering 

from A and B atoms is independent. The relaxation time defined in 

Eq. (2.29) becomes:

^+^ H(t) = 11 - h 1 - ^ If*<T) (2-51)

where

T . 1

^ i 22irN(0)(-gi) (gj - 1) J.U. + 1) , (i = A or B) (2.52)

fx(I) '
(2akf)'

In
T - Tm(x) + (2akf)

T - tm(x)
(2.53)

The total angular momentum and the Lande g-factor for the A(B) atom are 
A BJa(Jb) and gj(gj) respectively. The ferromagnetic transition temperature

is now a function of x. The total relaxation time r (T) consists oftot
two terms, and x^, multiplied by an enhancement factor fx(T). We note 

that or Jg may vanish when the respective A or B atom is nonmagnetic, 

such as is the case for Y (with no 4f electrons) and Lu (with a closed 

4f shell).

In the case in which a nonmagnetic atom A is replaced by a rare- 

earth magnetic atom B, the initial depression of the transition
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temperature near x = 0 is given by 

1 / dT \ 77 9 n 9rUr „ - - T (gJ - “ JB(JB + « fO(TcO>
c ' > x=0

(2.54)

When both A and B are magnetic rare-earth atoms the change in the upper 

critical temperature near x = 0 is given by

dTcl
T ' cl ' dx x=0

2
T U - 1)2 JA(JA + » ( 1 - ^ ) •

(2.55)

If I is the same for both rare-earth atoms, which is plausible since 

rare-earth atoms are considered to have similar physical and chemical 

properties (53b), Eq. (2.55) reduces to

“cl

dTcl
dx x=0

2

t "W12 U -« ja(ja + y fo<Td)8

, <,; - D2 jb(jb +1)'

' U - 1)2 ja(ja + y 7
(2.56)

This equation shows that the sign of the initial change of T^ with

dilution is determined solely by the relative magnitude of the two
2deGennes factors, (gj. - 1) J(J + 1).

Consider for example (Lu1 Ho )Rh.B. and (Y, Gd )Rh.B/. If we use
J.-’X X XXX

free-ion values for the deGennes factors, we obtain from Eq. (2.54):



54

1 / dT \

' ^ L(y ~
-^0& 0

Gd)

(Lu - Ho)

(Sjd - 1)2 JGd(JGd + ^ 15-75
................................. i ■■■■■■..M- ■ a ------------------------

(85° - 1)2 + » 4-50
^ 3.5

(2.57)

This agrees well with the experimental value (50,51) of 3.4 - 5.1. 

Similarly, for (Er^_xGdx)Rh^B^ and (Er^_xHox)Rh^B^ we obtain

Cx

dTcl
dx (Er - Gd)

x=0

cl

dTcl
dx

^ x=0
(Er - Ho)

1 -

1 -

(gJ ~ 1) JGd^JGd + 1)
- 1)2 JEr^Er +

(gj - 1) JHo(JHo + 1)
(gj - 1) JEr(JEr + !)

6.77

(2.58)

which is of the same order as the experimental value (51,52) (^10).

Other evidence supporting the conclusion that the rare-earth atoms in 

these compounds behave magnetically like free ions includes measurements 

made on the magnetic susceptibility (11) and the Mdssbauer effect (54) 

of ErRh^B^. Neutron diffraction data (55), however, gives smaller 

values for the magnetic moments than are expected from free-ion theory.

We have fit experimental phase diagram data on four pseudo-ternary 

compounds: (Lu^Ho^-, (Er^Ho^-, (Er^Gd^-, and (Y^Gd^-Rh^B^ 

using the following assumptions: (1) The deGennes factor is given by 

its free-ion value. (2) The hypothetical transition temperature T^ is 

11.5°K for all compounds. (This value is used because LuRh^B^, which is 

a compound in which 1=0 (Lu has no magnetic moment), has Tc = 11.5°K.) 

(3) The exchange integral I and the density of states, N(0) (taken to
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be 0.5/eV), are the same for all four compounds and remain constant under

alloying. (A) The ferromagnetic transition temperature T^(x) is taken

from the experimental data to be a linear function (56) of x.

With these assumptions, the only remaining parameters are I and 
2 2(2akp) . We have taken (2akp) /Tcq = 10.0 for all phase diagrams, and

determined I using Eq. (2.34) to fit the upper transition temperature of

ErRh^B^ at 8.55°K. This gives I ^ 318°K. The upper transition tempera-
Tin 2ture of TmRh.B. can then be calculated using (gT - 1) J_ (J_ + 1) =4 4 J im im

1.17. The predicted value of M.0.05°K compares well with the experi­

mental value (57) of 'v.9.80°K. Results are shown in Figs. 21-24. Overall 

fitting is quite good. If we allow I for Gd to vary slightly with its

environment we can obtain a better fit for (Er, Gd )Rh,B/ and1-x x 4 4
(Y, Gd )Rh,B, as shown in Figs. 21-24. This indicates that simple 1-x x 4 4
free-ion theory does not work as well for compounds which contain Gd.

1. The upper critical field

The upper critical field for pseudo-ternary compounds can be 

obtained by modifying the temperature dependent scattering time (i.e.,

Eq. (2.29) becomes Eq. (2.51)) and the internal molecular field defined 

in Eq. (2.43). The modified molecular field h is given by

A ft THh - {(1 - *> SjJa<JA + 1) + * SJJB(JB + »} T _ Tm(x) + PBB . (2.59)

Each constituent moment, and Jg, exerts a molecular field proportional 

to its concentration on the conduction electrons. In the strong spin- 

orbit scattering limit Eq. (2.48) reduces to
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0.8 .

Figure 21. Phase diagram for (Lu1_xHox)Rh4B4. Unless otherwise stated, 
the following parameters will be used in Figs. 21-24: Tcg = 
11.5°K, (2akF)2/Tc0 = 10.0, N(0)I2/4Tc0 = 0.094. The 
deGennes factors, (gj-l)2J(j+l) ==, Gd: 15.75, Ho: 4.60,
Er: 2.55, Tm: 1.17, and Lu: 0. The experimentally determined 
upper critical teraperatures and magnetic transition tempera­
tures are labeled by circles and triangles respectively.
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Figure 22. Phase diagram for (Er1_xHox)Rh^B^ and (Er. Tm jRh.B. 1-y y 44
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0.6

Figure 23. Phase diagram for (Er1_xGdx)Rh4B4. (2akF)2/TcO are
respectively: (1) 100.0, 0.5222; (2) 10.0, 0.94; (3) 2.0, 
0.038; (4) 0.01, 0.0176. The values of N(0)I2/4Tc0 have 
been chosen to fix Tcl of pure ErRh4B4 at 8.55°K
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Figure 24. Phase diagram for (Yi_xGdx) 1111464. Values of (2akF)2/TcQ and 
N(0)I2/4Tc0 are respectively: (1) 100.0, 0.59; (2) 10.0, 
0.115; (3) 2.0, 0.051; (4) 0.5, 0.035; (5) 0.01, 0.029. The 
values of N(0)I2/4Tcq have been chosen to fix the slope of 
Tcl vs. X at 25°K
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in + *(i + P<T> + |f + >-+(•?)- 0 . (2.60)
cO so

where h is given by Eq. (2.59) and p (T) = 1/(2tvTt(T)) with x(T) given by 

Eq. (2.51). The spin-orbit scattering time x is expected to be quite
SO

short for these rare-earth compounds. The diffusion constant D depends 

delicately on sample preparation and is related to the residual 

resistivity of the samples.

We have used Eq. (2.60) and the same set of parameters as in Fig. 23 

to fit experimental data (51) on Er- Gd Rh,B.. The two additional
X

parameters Xgo and D have been adjusted freely to give the best fits.

We find D - 1.5 and l/2irx T _ = 1000. Numerical results are shown inso cO
Figs. 25 and 26. While it is quite likely that D varies from sample to 

sample by ^50% (to date, crystals of Er^ xGdxRh^B^ are so small that 

resistivity ratios cannot be determined to better than 50%), we are 

unable to explain the extremely short spin-orbit scattering times and the 

large variations in xgo from sample to sample.

Two major conclusions can be drawn from the results of this section. 

The first is that the rare-earth atoms in ternary and pseudo-ternary 
rare-earth compounds behave magnetically like free 3+ ions. The second 

is that the coupling between rare-earth ions and the conduction electrons 

is weak .and nearly independent of the atomic number of the ion. We also 

note that all rare-earth alloys made so far (i.e,, the ones mentioned 

in this thesis) seem to be quite dirty and have very short spin-orbit

scattering times.



6.1

T (°K)

Figure 25. Upper critical field vs. temperature. The same parameters 
as used in Fig. 23 will be used in Figs. 25-26. The values 
of additional parameters used are: D = 1.35, l/(2TrTcoTso) = 
(1) 10,000.0, (2) 1,000.0, (3) 100.0, (4) 10.0
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HC2
(kG)

T CK)

Figure 26. Upper critical field of Er^_xGdxRh^B^ (51). x, D, and 
1/(2itTcotso) are respectively: (1) 0.0, 1.35, 1,000.0; 
(2) 0.02, 0.8, 3,000.0; (3) 0.03, 1.3, 2,000.0; (4) 0.05, 
1.4, 300.0; (5) 0.09, 2.0, 300.0; (6) 0.20, 2.0, 300.0; 
(7) 0.24, 2.0, 300.0
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E. Inelastic Scattering

So far, we have considered only the effects of elastic electron-

magnon-electron scattering on the superconducting properties of rare-earth

compounds. We have neglected the inelastic scattering channel (to ^ to')

of the dynamical susceptibility defined in Eqs. (2.16), (2.24), and

(2.27). In this section we consider how inelastic scattering (58)

affects the superconducting state and the ^^(T) curve.

In order to calculate physical quantities dependent on the dynamical

susceptibility, we must simplify its functional form without losing its

characteristic features. The features we must retain are: (1) the

dynamical susceptibility has a singularity at w = 0 in the limit

q 0 near the ferromagnetic transition temperature, and (2) in the 
2region where Aq >> |io|, xCl*10) is independent of go. The following 

crude approximation for xC^j1*3) retains these features:

x(q»w) = x(q)(« + (2.61)

where x(q) is given by Eq. (2.24c). We have introduced a and 6 as 

adjustable parameters. The case a = 0, 6=1 corresponds to an AG (41) 

type theory. The case a = 1, 6=0 corresponds to the Berk-Schrieffer 

(59) theory.

In sections B, C, and D we treated the case where the characteristic

frequencies of the spin system were much smaller than Tc by neglecting

the inelastic scattering channel in x(q>w). In essence, we used Eq.

(2.61) with a = 0 and 6=1. If the characteristic frequencies of the
2spin system are much larger than Tc (e.g., Aq >> |go|), we may neglect
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the frequency dependence in xC^j^) by setting a = 1 and 6=0. We then 

obtain

E(w) 1 # -ia)
t (T) * 2irT (2.62)

and

! 2r^Ckaj.k’u') = - ( | ) X(k - k') . (2.63)

A Berk-Schrieffer (57) type of expression for Tc can be derived (see 

Appendix K):

1 + p N 1
------- = I --------- r (2.64)
gN(0) - pc v>0 v + 2

where 2irT(N + 1/2) = oi^. In this expression the effective supercon­

ducting coupling, gN(0), is shown to be weakened by the attractive, 

paramagnon mediated interaction. Furthermore, the inelastic paramagnon 

scattering causes the masses of the superconducting electrons to be 

renormalized. (Were there no mass renormalization, the numerator on the 

left would be replaced by unity.) This mass enhancement should have an 

effect on the electronic specific heat near T^. If we neglect the mass 

enhancement factor, we obtain the same expression for as Maekawa and 

Tachiki (42):

Tc - 1.14 Bp <2.6:

where uj^ is the Debye frequency.
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Equation (2.64) has two solutions, T n and T If (T _cx c2 cO Tcl)/TcO

<< 1, and << 1, the depression of is given by

T - T cO cl

cO
= pCU [gN(0)]2 gN(O) (2.66)

Numerical solutions to Eq. (2.64) with and without mass renormalization 

are shown in Fig. 27.

If we leave a and g as free parameters, we can solve Eq. (2.12) 

using Eq. (2.61) to obtain (see Appendix K):

Q(T) N(0)$(T)
1 + ap$>(T) (2.67)

*(T) = I ----- 1--------------
v>0 (v + yKl + otp) + gp

(2.68)

where convergence must be introduced in the v sum as demonstrated in 

Appendix E. The superconducting transition temperatures are determined 

by 1 = gQ(Tc), which becomes

1 + ap c
gN(0) - apc 1

v>0 8p
V + -z- H--—2 ap + 1

(2.69)

This equation also has two solutions (T^ and T^) * 

<< 1, and pc^ << 1, we obtain

If <TcO - Tcl>/TcO

T - T cO cl

cO
= P cl [gN(0)r gN(0)

+ B • 3C(3) (2.70)
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Figure 27. Comparison of the phase diagrams for several theories.
gN(0) = 0.25, (2akF)2/Tc0 = 0.5, and N(0)(£)2 • S(S+l)/Tc0 = 
0.01; (1) =0, =1 (Abrikosov-Gor'kov type theory);
(2) a = 0.5, 0 = 0.5; (3) a = 1, 0=0 (Berk-Schrieffer type 
theory without mass renormalization); (4) a = 1, 0=0 (Berk- 
Schrieffer type theory); (5) a = 0 = 1
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Numerical results for all temperatures and for several different values 

of a and 6 are shown in Fig. 27.

1. The upper critical field

It is straightforward to calculate the upper critical field, if

we confine our discussion to the dirty limit. Following standard pro­

cedures (34) leads us to an implicit equation for

1
gN(O) - ap KT.H^) (2.71)

y(T,Hc2) = Re lvso (v+i)(l + ap) + 8p+f? + |f (2.72)

As before, h, the internal molecular field acting on the conduction 

electrons, is given by

h = gy
IHc2

B T - T + yBB 
M

(2.73)

The diffusion constant, D is a measure of the dirtiness of samples. We 

depict numerical results in Fig. 28.

The results of this section show that as the inelastic scattering 

channel is "turned on", the BCS coupling weakens and the effective mass 

of the superconducting electrons increases. This causes an overall sup­

pression of the superconducting state which manifests itself by lowering 

Tc^, raising Tc2» and reducing H^Cl)*
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C2

T/TCO
Figure 28. Upper critical field vs. temperature. The same parameters 

as in Fig. 27 are used here. Additional parameters used in 
all 5 curves are: Tm/Tco = 0.1, De/2iryg = 2.0,
N(0)-Tc0 = 8.6 x 10“*, 47rN0J(J+l)(pBgj)2/(3Tc0 = 0.25, 
gjJ(J+l)l/Tco = 82. Note that as inelastic scattering 
increases, decreases
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F. Discussion

In this chapter we have considered the effects of ferromagnetic 

fluctuations — fluctuations for which the dominant wavenumber is zero — 

on the properties of the superconducting state. There are, however, 

rare-earth alloys which like to order antiferromagnetically. Experi­

mental evidence (60) indicates that superconductivity and long-range 

antiferromagnetic order coexist in some of these alloys. A theoretical 

investigation of this phenomenon has been published (61) by K. Machida.

Other theorists (62) have developed models in which long range 

ferromagnetic order weakens superconductivity but can coexist with it. 

Maekawa and Tachiki (42) have presented a model in which superconductivity 

is stabilized by ferromagnetic fluctuations. These latter two phenomena 

have not been observed experimentally.

The results of calculations done with the model we have presented 

in this chapter agree well with experimental data. In particular, the 

reentrant behavior and the "mole-hill" shaped upper critical field 

curves demonstrated by many ternary and pseudo-ternary rare-?earth alloys 

can be explained using the theory.
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III. ANISOTROPIC SUPERCONDUCTORS

A. Introduction

The upper critical fields of materials with anisotropic Fermi sur­

faces have been the subject of many recent experimental investigations 

(12-18). In some of the anisotropic materials, the curve displays

positive curvature near T^ and retains anomalously high values as T 

approaches zero. Recent experimental work by Orlando _et al. (12), for 

example, shows upward curvature in the critical field curve of the A-15 

material Nb^Sn, and perpendicular field measurements made by Dalrymple 

and Prober (13) and others (14-15) on the hexagonally distorted material 

NbSe2 show exceeding the predicted (24) value for spherically 

symmetric materials by ^20% in the low temperature regime. Similar 

effects are seen in other (16-18) anisotropic materials.

Theoretical models describing these features should include non­

locality of the superconducting pair state as well as anisotropy in both 

the Fermi surface and the pair state. Several years ago, Helfand and 

Werthamer (24) showed how to treat nonlocality in isotropic materials 

exactly. A short time later, Hohenberg and Werthamer (25) did a quasi­

local calculation demonstrating that Fermi surface anisotropy can cause 

upward curvature in HC2(T) near tcq* Takanaka and Nagashima (26) (TN) 

extended the work of Hohenberg and Werthamer by retaining higher order 

terms in the nonlocality and by perturbatively introducting gap 

anisotropy. The applicability of their (TN) work is limited to the 

immediate vicinity of Tcq* Teichler (27), using a different formalism.
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found expressions for the first few terms in a cubic harmonic series 

expansion of the contributions to H^CO from anisotropy in the Fermi 

velocity and the electron-electron coupling. He obtained results for 

all temperatures, but predicted that H^CT) could deviate either above 

or below the Helfand and Werthamer (24) curve depending on the phases of 

the anisotropies of the Fermi velocity and the e-e coupling. (No 

anisotropy-induced reduction of the Helfand-Werthamer curve has ever 

been seen experimentally.)

In this chapter we extend the Hohenberg-Werthamer (25) theory of 

the upper critical field by summing to infinite order the effects of 

nonlocality, and by perturbatively including Fermi surface and pair state 

anisotropy. We will restrict our consideration to fields applied along 

crystal symmetry axes, and will concern ourselves primarily with clean 

materials since it is in them that the effects of anisotropy are most 

pronounced.

In section B we formulate the theory. In section C we describe the 

theory appropriate for materials with general Fermi surface anisotropy 

but unperturbed pair states. In section D we allow both the Fermi 

surface and the pair state to be anisotropic and fit experimental upper 

critical field data on NbSe2 in the perpendicular field direction.

B. Description of the Theory

The foundations for our theory are described by Hohenberg and 

Werthamer (25) and references therein. The assumptions made were thatv
the transition to the superconducting state is second order (only terms
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linear in the gap in the Gor'kov equation are retained), the electron- 

electron coupling is isotropic and weak, the electron scattering centers 

are randomly located and nonmagnetic, and the effect of the magnetic 

field on the orbital motion of the electrons may be treated in the 

semiclassical approximation (63). The Fermi surface may contain only 

one band. Although Hohenberg and Werthamer considered only the case 

where the Fermi surface anisotropy was small and the pair state was 

isotropic, the formalism they developed is sufficiently general as to 

allow arbitrary shapes for both the Fermi surface and the pair state.

A brief discussion of the Hohenberg-Werthamer theory is given in 

Chapter I.

We begin with Eqs. (5) and (11) from Ref. 25, the solution of 

which gives H^Cl):
OO

1 = gN(0)T l [S'1- 1/2t]_1 ' (3.1)0)
\)=—oo

where

2In Eqs. (3.1)-(3.2) g, N(0) , 1/t (En|u| ), N(c}), and v are respectively 

the BCS coupling constant, the average density of states at the Fermi 

surface, the electron scattering rate (or the product of the impurity 

concentration and the square of the impurity scattering amplitude), the 

density of states at the Fermi surface in direction q, and the Fermi 
velocity. Furthermore, it h -iV - 2eX is the gauge-invariant momentum
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operator acting on the pair state |S> (described more fully later), and 

01 = 0)^ + sgn (jjv/(2t) is the Matsubara frequency renormalized by impuri­

ties. As usual, t is the impurity scattering time, = (2v + 1)ttT 
(v = integer), e = |e|, and X is the magnetic vector potential. We 

remark that is the nonlocal pair propagator in the ladder approxima­

tion for the scattering, and Eq. (3.1) includes the usual vertex 

renormalization. Anticipating isomorphism with the harmonic oscillator 
problem (24,64), we choose H = (0,0,-H), and X = (0,-Hx,0) where the z 

axis may be any one of the three crystal axes. As always, units are 

chosen such that ft = = c = 1.
By inserting l'|----12v'1'+ l| in the V sum in ^ (3*1) and

introducing the Debye frequency cutoff in the first of these sums in the 

usual manner (see Appendix E), Eq. (3.1) becomes

where = 2y(0p/ir exp (g^'g)) is the zero-field transition temperature, 

y = 1.781 is the exponential of Euler's constant, and is the Debye 

frequency.

The equations we have written so far are formally identical to those 

in Ref. 25. We will extend their scope by deriving expressions for 

which are valid for all temperatures and for arbitrarily shaped single­

band Fermi surfaces (section D), and by considering the modifications to 

resulting from the inclusion of anisotropy in the superconducting 

pair state (section D).
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C. Anisotropic Fermi Surface

The nonlocal contributions to S for materials with distorted Fermia)
surfaces but undistorted pair states can be summed analytically to 

infinite order. Following Helfand and Werthamer (24) we initially take 
the pair state |S> to be the lowest eigenstate of the harmonic oscillator 

operator ir /2m. We denote this lowest state by |0>. In real space, the 
wavefunction of this state is AqO:) = <r|0> = expC-eH^x^) • The system 

is quantized by setting tt_|0> = 0 where tt+ = ^ ± and establishing

the commutation relations [ir,,TT ] = ] = 0, [it ,Tr ] = 4eH _ = e.

For fields applied along crystal symmetry axes we expect the pair state 

to have no momentum parallel to the field, so tt^ 10> = 0.
The expectation values from Eq. (3.2) of the form <0|(v • u)^n|0> 

can be determined by establishing a recursion relations. In Appendix G 

we show that

<0 (v • tt)2|0> = v+v_e = vx^eHc2 (3.4)

(v+ = (vx ± iVy)). Furthermore (see Appendix H),

<01(v • ^)2n|0> = (2n + l)v+v_e<0|(v • ^)2n|0> (3.5)

so by induction,

<0|(v • k)2i1|0> = (v+v )nen(2n -1)!! (3.6a)

= (vx2eHc2)n(2n - 1)!! . (3.6b)

The sum in Eq. (3.2) then becomes
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(-i)n<o|1 V
n=0

\2n
2w

|0> = 1 + l (-1) a (2n - 1)!!
n=l

(3.7)

2= /iT z exp(z )erfc(z) (3.8)

-1/2 2 ~2where z = (2a) , a = eHc2/^ > and erfc(z) is the complementary

error function.

Notice that the perturbation series (Eq. (3.7)) treating the effects

of nonlocality is asymptotic. If one attempts to evaluate it by

retaining increasingly higher order terms (65) he finds that his

approximation to H^CT) improves in an increasingly narrow neighborhood

of tcq» but diverges at increasingly higher temperatures. To obtain

results valid over the entire temperature range, this series must be

summed to infinite order (Eq. (3.8)).

When Eq. (3.8) is substituted into Eq. (3.2) we have an integral

over the Fermi surface which must in general be evaluated numerically.

This is done by picking a particular v value and evaluating the exact

form of the n sum [Eq. (3.8)] for each of a dense series of points on

the Fermi surface. This procedure is repeated for enough v values that

the v sum is evaluated reliably. When X = l/(2irTcQx) ^ 0, and T are

first estimated then determined self-consistently. Numerical solutions

to Eqs. (3.2) and (3.3) assuming a spherical Fermi surface and various
2 2values of X are shown in Fig. 10. Here t = T/1^, h = eHc2vp /(2ttT q) , 

and h (t) = h(t)/(-dh/dt ^). These solutions are numerically identical 

to those in Ref. 24 and are included here for future comparisons. (In 

Appendix I we show analytically that when the Fermi surface is spherical
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and X = 0, our more general equations defining HC2(T) reduce to those of 
Helfand and Werthamer.) The slopes of all curves in Figs. 10, 30-34 have 

been fixed to be -1 at t = 1. Table 1 contains the actual slopes at 

t = 1 for each of these curves.
Fermi surface anisotropy enters the calculations through the quanti­

ties N(q) and v^n(q) . For materials with hexagonally symmetric distor­

tions (such as the transition metal dichalcogenides with the field 

perpendicular to the layers) we model the Fermi surface by setting 
|vx(q) | = Vp(l + bgCScfO) • sinG and N(q) ^ l/|v(q)|, where 0 and <f> are 

the polar and azimuthal angles respectively. Figure 29 shows how cross

sections of the Fermi surface would appear for b, = 0.0, 0.15, 0.3, ando
Fig. 30 shows the upper critical field curves for materials with

hexagonally distorted Fermi surfaces. We observe that increasing Fermi
■ksurface anisotropy causes the h (T) curve to lie increasingly above the

Helfand-Werthamer curve; for b^ = 0.5 the upper critical field is nearly

linear in temperature. Although we have plotted results only for

hexagonally symmetric Fermi surfaces, identical results are obtained with

v (q) = v„ sin0(l + b cosn<f>) for all n. We therefore conclude that it i *
is the magnitude and not the shape of the Fermi surface anisotropy that

determines the enhancement of H^CT).

Since impurity scattering tends to smear out the Fermi surface, we

expect that increasing impurity scattering should drive the H 0(T) curvescz
towards the isotropic dirty limit curve of Helfand and Werthamer.

Figure 31 shows the results of numerical calculations with b = 0.4 and 

X = 0.0, 0.5, 5.0, and 50.0 % 00. (When X = 1.0, the electron scattering
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Figure 29. Cross sectional shapes of the Fermi surface, = (1) 0.0; 
(2) 0.15; (3) 0.3
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0.5 1.0
t

Figure 30. Upper critical fields for materials with distorted Fermi 
surfaces. X = 0.0, b6 = (1) 0.0; (2) 0.15); (3) 0.3;
(4) 0.4; (5) 0.5
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0.5 1.0
t

Figure 31. Upper critical fields for materials with distorted Fermi 
surfaces and impurity scattering, bg = 0.4, A = (1) 0.0; 
(2) 0.5; (3) 5.0; (4) 50.0
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0.5 1.0
t

Figure 32. Upper critical fields for materials with distorted Fermi 
surfaces and distorted superconducting pair states.
A = 0.0, b6 = 0.4, a6 = (1) 0.0; (2) 0.15; (3) 0.3
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t

Figure 33. Upper critical fields. <|>6 measures the rotation of the pair 
state anisotropy relative to the Fermi surface anisotropy.
X = 0.0, a6 - 0.15, b6 = 0.4, <|>6 = (1) 0.0; (2) tt/2; (3) tt
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t

Figure 34. Upper critical fields for ellipsoidally, cubicly, and hex­
agonally distorted Fermi surfaces and pair states. A = 0.0, 
<f>n = 0.0, an = bn = 0.0 except: (1) bn = 0.4 (any n) ; (2) 
a2 = 0.15, b2 = 0.4; (3) 34 = 0.15, b4 = 0.4; (4) a6 = 0.15, 
b6 = 0.4
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Table 1. Slopes (-dh/dt 
27, 30-34

± 0.2%) at t = 1 of the curves in Figs.

Figure 1 2
Curve

3 4 5

27 0.711 1.055 3.70 31.8

30 0.711 0.722 0.749 0.781 0.829

31 0.781 1.151 4.32 34.6

32 0.781 0.627 0.405

33 0.627 0.627 0.627

34 0.781 0.669 0.672 0.627
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length is roughly equal to the pair coherence length.) We note that the

X = 50.0 curve is essentially identical to the isotropic dirty limit

curve of Helfand and Werthamer. However, for A = 5, which describes
*relatively dirty materials, h (t) for b = 0.4 still lies above the 

isotropic clean limit curve. A material must be quite dirty before the 

effects of Fermi surface anisotropy vanish completely.

D. Anisotropic Pair States

It is expected that the anisotropy in the superconducting pair state

will be strongly dependent on the anisotropy in the Fermi surface as well

as on impurity scattering, temperature, and perhaps even the field.

Takanaka and Nagashima (26) devised a scheme for relating the pair state

anisotropy parameters a2n to the Fermi surface parameters, but their
scheme relied on the assumption that the upper critical field satisfied 

*ctt*c2'c)a2n = 0. (We know of no physical motivation for making this 

assumption. It does not necessarily imply that the free energy will be 

a minimum.) Their resulting expressions for a2 and a^ diverged at low 
temperatures and are therefore unacceptable. In our model the pair state 

anisotropy parameters are considered to be free and independent of the 

Fermi surface, but in practice are always taken to be smaller than the 

analogous Fermi surface anisotropy parameters.

In a manner similar to that proposed by Takanaka and Nagashima (26) 

we write the perturbed pair state as

(3.9)
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Here, a,, for example, is a complex parameter which determines the o
magnitude and phase of the hexagonal distortion of the pair state. In 

much of this section we will consider only hexagonal distortions.

With |s> taken to be

I S> = ( 1 + |a6|2 ) 1/2(l +-^±3)o> (3.10)

we find that the expectation value in Eq. (3.2) can be broken into three 

separate terms.

<S A + |a6|B + |a6

where

/ -*■ \ 2nA = <01 ( J |0> = an(2n-l)!!
V 2m ^

2 cos(6<|) + <)>,)------------ anP (n)
/6!

and

(3.11)

(3.12)

(3.13)

-gj- anQ(n) (3.14)
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2 2Here, is defined by = | a^. | exp(i<f>6) , and as before, a = vx eH^Mio . 

The functions P(n) and Q(n) are found by making repeated use of Eq. (3.6) 

and the commutation relation [tt ,tt ] = e, and are given by

P(n) = (2n+5)!! -15(2n+3)!! +45(2n+l)!! -15(2n-l)!! (3.15)

for n > 3

= 0 otherwise

Q(n) = (2n+ll)!! - 30(2n+9)!! + 315(2n+7)!! - 1380(2n+5)!!

+ 2475(2n+3)!! - 1350(2n+l)!! + 225(2n-l)!! . (3.16)

The derivation of Eqs. (3.11)-(3.16) is given in Appendix J. Each of the 

sums over n of the terms in Eqs. (3.12)-(3.14) is essentially identical 

to the sum in Eqs. (3.7) and (3.8) and can therefore be evaluated 
exactly. Numerical solutions to Eq. (3.3) with |S> hexagonally distorted 

as given by Eq. (3.10) are shown in Fig. 32. We observe that even small 

amounts of pair state anisotropy cause positive curvature in h (t) near 

t = 1, and increased values of h (t) for lower temperatures. Further 

calculations indicate that as impurity scattering is increased, the 

effects of pair state anisotropy vanish in a manner nearly identical to 

that shown in Fig. 31.

Expression B [Eqs. (3.11) and (3.13)] is the coefficient on a term 

linear in the pair state anisotropy. By changing the phase of a, (i.e.,D
by rotating the pair state anisotropy relative to the Fermi surface 

anisotropy) we can estimate the contribution of this linear term to 

h (t). Numerical results are shown in Fig. 33.



87

Although the model used by Teichler (27) is quite unlike the model

developed here and the approximations he made cannot easily be compared

with ours, it is possible to contrast some of his results with ours.
*First, our h (t) curve lies on or above Helfand and Werthamer's (24)

*curve for h (t) in isotropic materials regardless of the relative phase 

of the Fermi surface anisotropy and the pair state anisotropy (Fig. 33). 

Teichler's h (t) curves can fall below Helfand and Werthamer's curves 

for some reasonable values of his parameters. Secondly, we find that 

terms linear in the pair state anisotropy (term B, Eqs. (3.11) and (3.13)) 

contribute significantly to h (t) at low temperatures. Teichler's 

formulism contains no such linear terms. Although parametrized differ­

ently, many of our other results are, however, qualitatively similar to 
Teichler's.

If the crystal symmetry perpendicular to the field is not hexagonal 

but either ellipsoidal or cubic, the pair state is described by

42
S> = (1 + |a2|2 + (3.17)

The sum over n from Eq. (3.2) can now be broken into six separate sums

similar to those in Eqs. (3.12)-(3.14) (see Appendix J). Numerical

results depicted in Fig. 34 show that ellipsoidal and hexagonal pair
*state perturbations cause significantly more enhancement of h (t) than

do cubic perturbations. The reason for this is not understood.

In Fig. 35 we fit our theory to experimental data (13) on 2H-NbSe2,
*a material with hexagonal symmetry in the layers. Here a - T^^m /Epm
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6 30

Figure 35. Fit to experimental Hc2 data (13) (+) on 2H-NbSe2. X = 0.0, 
a6 = 0.12, b6 = 0.34, <j)6 = 0.0, Tc0 = 7.06 K, a = 0.071
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is a free parameter which sets the scale of and m is an average

effective mass of the conduction electrons. The choice of b, = 0.34 is6
consistent with Fermi surface calculations done by Wexler and Woolley 

(66). Prober et al. (67) estimate X ^ Eq/^ = 0.15 for NbSe2. If we 

were to fit the data with X ^ 0, b^ and a^ would be slightly larger and 

a would be slightly smaller.

E. Discussion

The model we have presented can be used to calculate the effects of 

Fermi surface anisotropy and pair state anisotropy on the upper critical 

fields of superconducting materials. It includes the effects of non­

locality to all orders in perturbation theory giving results which are 

valid over the entire temperature range. We demonstrated that increasing 

Fermi surface anisotropy causes to become more nearly linear in 

temperature whereas even small amounts of gap anisotropy cause positive 

curvature in H^^) near Tcq. All effects of anisotropy are diminished 

by increasing the impurity scattering rate. The model successfully 

describes experimental upper critical field curves in many different 

anisotropic superconductors.
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IV. CONCLUSIONS

We have presented discussions of,two different models used to 

describe the upper critical field curves in three different types of 

superconductors. The models were essentially microscopic in nature, and 

incorporated most of the effects known to influence electrons in the 

superconducting state.

In Chapter II we focused our attention on the ternary and pseudo­

ternary rare-earth superconductors which leave the superconducting state 

and reenter the normal state at low temperatures. The Hamiltonian we 

used in the model explaining this peculiar feature contained terms 

expressing the interaction of the rare-earth local magnetic moments with 

the superconducting electrons and with other local moments. The resulting 

equation which gave H^CT) was formally identical to the equation normally 

encountered in theories describing type II superconductors, but con­

tained a pair breaking term not found in the usual theories. This unusual 

pair breaking term diverged logarithmically as the temperature of the 

system approached the Curie temperature, T^, and therefore forced the 

system back into the normal state at temperatures slightly above T^.

In Chapter III we examined how Fermi surface and pair state aniso­

tropy would affect the shape of the upper critical field curve. Both of 

the anisotropy effects were perturbatively inserted into a model which 

described H^CT) in materials with spherically symmetric Fermi surfaces 

and unperturbed gaps. The results of our calculations showed that 

increasing Fermi surface anisotropy caused H^CO to become more nearly



110

linear in temperature whereas even small amounts of pair state anisotropy 

caused positive curvature in H^Cl) near Tcq* All effects of anisotropy 

were seen to be diminished by increasing the impurity scattering rate.

The theory was fit to experimental data of NbSe2.

We remark finally that in cases where experimental data existed, 

excellent agreement between theory and experiment could be obtained with 

very reasonable values of the theoretical fitting parameters.
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VII. APPENDIX A

There are several books (29,36) containing excellent descriptions 

of the effects of random impurity scattering on the single electron 

Green's function. The description given here is very similar to the 

description found in Ref. 29.

We begin by writing the integral equation satisfied by the Green's 

function when impurities are present:

G(p,p' ,ai) 5(p-p')G0(p) + (2tt)

G(p",p',u>) (A. 1)

In Eq. (A.l) r is the position of the a-th impurity, and q is theSi
momentum transferred to the lattice by the scattered electron. A factor 

u(q)exp(iq • r )6(o) - a>') (A. 2)Si

is associated with each impurity vertex. The Feynman diagram corre­

sponding to Eq. (A.l) is shown in Fig. 6a.
We aren't concerned with the exact solution of Eq. (A.l). Instead, 

we average over impurity locations to obtain

G(p,p',co) = G(p)6(p - p') . (A.3)

Three types of terms in the series shown in Fig. 6a need to be con­
sidered. (1) Averaging over the positions of individual scattering sites 

leads to

u(q)exp(iq • r ) = u(0)a
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which is constant and serves simply to renormalize y. In the Born 

approximation we can therefore disregard all diagrams containing any 

scattering site only once. (2) Terms containing successive scattering 

from any particular site contribute a factor

i [^3 |U(J->)|2gV)
(2ir)

(A.4)

to the self energy of the Green's function. Diagrams like 6b, 6c, and
6d must therefore be retained. (3) Other diagrams, such as those shown

in Fig. 6e, contain crossed impurity scattering lines and can be shown
(29) to be smaller than those of type (2) by a factor (Ex) ^ << 1. AGD

r
finds that by considering only diagrams of type (2), the main contribu­
tion to Z can be written as

where

I i sgn m
2x (A. 5)

nml;kF

(2tt) ‘
lu(e)| de (A.6)

and 0 is the angle between p and p'.

With the anzatz that Z is purely imaginary we obtain

G(p) = » - e(P) -
i-i

(A. 7)

for the real time Green's function, and

G(p) " [ . x sgn oj "v ‘ 5<p) -IT
-1

(A. 8)
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for the temperature Green's function. Green's function of the form given 

by Eq. (A.8) are used frequently in the thesis.
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VIII. APPENDIX B

Abrikosov, Gor'kov, and Dzyaloshinski (29) (AGD) show that in the 

absence of any scattering, the various equations of motion describing a 

superconducting system can be written as a single matrix equation:

_9_
9t

-A

/ G(x-x') F(x-x')
\F+(x-x') -G(x'-x)

1
0

where

<T ('Kx,t)iJ>(x' ,t ')§)> 
F(x,x’) = --------- ^---------

F+(x,x') = —^
<T (^+(x,x)i(;+(x' ,t')S)>

<S>

(B.l)

(B. 2)

(B.3)

G(x,x')
-<Tt(^(x,t)i()+(x',t')S)>

(B.4)

and

A = gN(0)F(t = 0+) , A* = gN(0)F+(t = 0+) . (B.5)

As always, g is the BCS coupling constant, \p and i|j+ are the Fermion 

field operators for the electrons, t is the imaginary time, and § is 

given by

g = TT
dr(i|>+(i|r%H) (B.6)
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+where ^ and ^ are evaluated at r and t*.

The superconducting transition temperature in such a system is 

described (36) by the scalar equation (see Appendix E)

- In
cO

) = J 
• w

[|2v + If1 - B°J (B. 7)

where s^ is the lowest eigenvalue of the operator given by

S = T(D r* —a de Ga(p,a))G_CT(-p,-aj) (B. 8)

The potential describing normal and spin-orbit scattering has the

form

V(r,r') = l (2tt)
i

-6 d3p d3q exp [ip • (y(r+r') - Ri)

+ iq • (r-r') ] (^ + iu2p x q • a ) (B.9)

where u^ and u2 are the normal and spin-orbit scattering strengths 
respectively, is the location of the i-th impurity and a is the Pauli 

spin matrix. When the momentum of an electron changes from p(= pk^,) to 

q(= qkp) it generates an orbital magnetic moment proportional to pxq.

The orbital moment couples to the electron's spin with a strength pro- 

portional to pxq • a.

The scattering potential described by Eq. (B.9) affects the differ­

ent spin components of the Green's function in Eq. (B.l) differently.

WHH (36) show that if one wishes to write the generalized version of 

Eq. (B.l) (i.e., including spin orbit effects), he must use 4x4 

matrices. The additional matrix indices label the spins of the electrons.
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The results of the calculations performed by WHH show that when spin- 

orbit scattering is considered, is given by

- In tt- = I [|2v + 1 i-l tr
cO

dp S/P)] (B.10)

where

S>> S [1 + hN(0)/TCO
^ A * A Adp' + iu2p x p' • a)Sw(p') - iu2p x p' o)

(B.ll)

tr means the trace over spin indices and n is the number of impurities 

per unit volume.

In the limit << tsq (a limit we expect most physical systems to 

satisfy), Eqs. (B.10) and (B.ll) become

-ln^- = £ [|2v + if1 - tr s 1 (B.12)
cO v

where

4 tr s = {[Re((s^0))-1 - (t-1 - x “1)/2itT)“1]"1 - -| (2irTT )-1}-1 .
2 oj a) j so j so

(B.13)

In cases where the Fermi surface is spherically symmetric, Eqs.

(B.12) and (B.13) become Eqs. (1.28)-(1.31) in the text. In Chapter IV 

we use Eqs. (B.12) and (B.13) but with describing the pair state

of a quasi zero-dimensional superconductor.
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IX. APPENDIX C

Equation (2.13) can be written as

I(£,u>) = ( 7 ) T l —d3k' G(k'.oj-a)’)
V 2 y to’ (2irr (C.l)

where

G(k,to) = -ia) - Ck - 1(a)) (C. 2)

Electron-hole symmetry requires that

E(o)) = -E(-w) (C.3)

If we concern ourselves only with the imaginary part of E (and, as 

is standard procedure (29), implicitly absorb the real part of E into y), 

Eq. (C.l) becomes

E(n) =
-if | )2 t l —f d3k’

' ' o’ (2.)3 J ck, +(|m,| + |E(i«,)|)

X ( I kp-k1 I ,a)-a)1) (C.4)

where we have defined xClqU^) by

x(|q|><*>) =

Rewriting l/(2ir)3 / d3kf as N(0) /_ d?, in Eq. (C.4) and performing the

‘ dflq 
4ir x(q»w) (C.5)

oo
d^k integral.leaves us with

E (id) = -iir^yj TN(0) £ sgn a)1 x( | kp-k’| *) (C.6)
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Electron-hole synunetry requires that be an even function of u.

We can therefore rewrite Eq. (C.6) as

Kto) = | j N(O)a) l 9(^|j^,^) x(lVk l>a),) • (C>7)
\ / * II

Equation (C.7) is identical to Eq. (2.14) in the text.
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X. APPENDIX D

With x(q»w) = g> Eqs. (2.14), (2.24c), and (2.27) become

I = -1N(0)^-| j irT x(q) sgn O) (D.l)

or

t(T) = 21 E sgn a) (D.2)

= 2ttT N(0) (i): x(q) (D.3)

As before (Eqs. (C.5) and (2.15)),

x(q) _1_
4tt dfiq x(q) (D.4)

With x(q) of the Orstein-Zernike form (Eq. (2.24c))

x(q) = S(S + 1)T
2 2T - TM + a q

(D.5)

and

k-k' = 2kp sin^ | j (D. 6)

Eq. (D.3) becomes

x (T) = N(0)
l1)2 —

\2 ) ^ J 2ird cos 0 S(S + 1)T
-1 T - TM + a2(2kFq sin | )

(D.7)
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Equation (D.7) can be rewritten as

1
t(T)

I2 S(S + 1)T
8a2kF2

fl
dt

-1 T - T.
1 - t + M

2 22aV
(D.8)

or as

1
x (T)

2irN(0)
2

S(S + 1)
T

(2akF)2
tM + (^kp)2

T - TM
(D.9)

Equations (D.2) and (D.9) are identical to Eqs. (2.28)-(2.31) in the text.
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XI. APPENDIX E

Equation (2.33) is of a form frequently encountered in calculations 

involving superconductivity. Although the sum over v is formally diver­

gent, we can invoke the physical constraint that the particles under 

consideration (paired electrons) only interact as described by Eq. (2.33) 

when their energies are less than the Debye energy, and we can therefore 

terminate the v sum at = oj^. A mathematically-gentle method of 

terminating the sum, and the method which preserves the small, but func­

tionally important logarithmic tail of the sum, involves adding and 

subtracting l/(v+l/2) from the r.h.s. of Eq. (2.33), and introducing the 

Debye cutoff in only the first of these additional terms. We then have:

gN(0) v=0 v +
(E.l)

where

(2N + 1)ttT D (E.2)

Using the relationships (68)

k=l
I 2k^T = | (C + In n) + In 2 (E. 3)

and (69)

(E.4)

C = Euler's constant = 0.577...
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leads to

1 “d 1 1
isw+C + 2 1n2 + l„2¥f - *(2 + Pc)-+(2) (E.5)

or

in —-' ’K i + i > (E.6)

where

exp(C + 2 In 2)Tc0-----—S “
0 eXP(-iNw)

Tc0 ' ^““d^-InW)

(E.7)

(E.8)

Equation (E.6) is the same as Eq. (2.34) in the text,
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XII. APPENDIX F

The bare two particle propagator is given as the product of two 

unperturbed normal state Green's functions

rfi \ on0 , „n0 ,->• .Q = G (r,-to )G (r,to )-0,0 -0,-0 V OO V (F.l)

where, as in Eq. (1.11), the normal state Green's functions are

„nO .■+ . -mG (r,a)) = — expoo 2irr r
XP( lkFor(sgn m) - l®lr ^

7Fo >
(F.2)

with

~ _ , sgn coU) — to H „-2t1 (F. 3)

— = 2irN(0)n|u|^
T1 (F.4)

^o =
Fo

(F.5)

Using the relation

m
2Trr

ttN(O)
V

(F.6)

leads to

QU Jr,a>) = 
-o,o

^ ttnco) y exp ^ hr (sgn to) (F.7)

In reciprocal space we have
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Q^Cq.u) 3-* o . . . ->■ ->•d r Q (r,a))exp(-iq • r)U 5 U (F.8)

ttN(O) ) -1d̂r , -iqr iqr. — (e -s'*)

. exp < ■ 21ah sgn oj 2,
VF •

Performing the integration leads to

4tt3N(0)2
Q_a>a(q,o)) = tan-1

2|o)| + 2iah(sgn a>)

(F.9)

(F.10)

Retaining the first two terms in a Taylor series expansion of tan (x) 

gives us

[Q° eq,*.)]"1
-o ,o ttN(O)

(|a)| + iah sgn m) < 1 +
2 2 9 Vv

12 (|to| + iah sgn to)'
(F.ll)

Although we have not written our formuli in an explicitly gauge-invariant
2 ->■ 2manner, replacing q by (-iv - 2eA) will make the equations gauge- 

invariant (35). (The factor of 2 multiplying eit appears because q is 

the sum of the momenta of two electrons.)

Vertex renormalization in the "ladder approximation" is shown 

schematically in Fig. 8 and is given algebraically by
Q_a>a(q»w) = {Q°aj(J(q,to) - (2ttt1N(0)) 1}''1 (F.12)

= ttN(O) j to j + iah sgn to +
2 2

q vF
-1

12 | to j + + iah sgn to

(F.13)
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In the dirty limit, 1/^ >> T, h, Eq. (F.13) becomes

Q-a,cr(<*,a)) = ttN (0)
I a) I + iah sgn a) + 7- t- q^v ^ 

O J. r
(F.14)

We now want to replace q by the lowest eigenvalue (i.e., most stable 
value) of its gauge-invariant replacement = (-i^, - 2aJ)^ where 
X = (0,Hx,0). The lowest eigenstate of the harmonic oscillator operator

2 . ir is

A(x) = exp(-eHx ) (F.15)

and

n A(x) = 2eH A(x) (F.16)

Because of impurity scattering, the true ground state of the system will
2be slightly different from exp(-eHx ). To within the Born approximation,

2however, we may replace q by 2eH in Eq. (F.14). The basic equation 

(e.g., Eqs. (1.15) and (1.18))

1 - gT l Q_ct a(q = ">“>)
V *

A(x) = 0 (F.17)

becomes

1 = gN (0) irT l |a)| + iah sgn ^ (2eH)x^ v^,^ (F.18)

As shown in Appendix E, Eq. (F.18) can be written as

In = Ref \p( j ) - T +
cO *-

1 iah eT,v„ H
+2 2itT 61.T j j (F.19)

Equation (F.19) is formally identical to Eq. (2.44) in the text.



132

XIII. APPENDIX G

The wavefunction ApCr) introduced in Chapter III is defined to be 

the lowest eigenfunction of the gauge-invariant free particle operator 
q^/2m where q = (-iV - 2eA). We use H = (0,0,-H), and choose the gauge 

where t. = (0,-Hx,0). ^qC?) satisfies the Schroedinger equation.

-k (“1^ " 2eZ)2*o& - Eo A0(?) (G.l)

or

—1 9 2 2 2 -*-[d - (2eHx)Z + 9 Z + 8 ]A_(r)2m x y z O Eq A0(r) •(G.2)

Eigenfunctions of this equation are of the form

AqCt) = u(x) exp(ik^y + ikzz) (G.3)

The lowest eigenvalue occurs when = kz = 0. t^1611 satisfies the
harmonic oscillator equation

12 1 2 T- 3 + ^ (2eHx)2m x 2m Vx) = Eo Ao(x) (G.4)

Solutions (70) to this equation are known to be hermite polynomials 

multiplied by exponentially decaying tails. The lowest eigenvalue is 

Eq = 2eH/m. The eigenstate corresponding to this eigenvalue is

A0(r) = exp(-eHx2) (G. 5)

We now establish some basic relationships involving q^, q , q^.

and Aq. If we define
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q± = qx. ± iqy » (g-6)

then

q_ AQ(r) = (-i8x - i2eHx)AQ (G.7a)

= (12eHx - i2eHx)A0 (G.7b)

= 0 . (G.7c)

Furthermore,

[q+,q_] = Iqx + - ^y] (G.8a)

= -2i[qx,qy] (G.8b)

= -4eH = -e (G.8c)

It is obvious that

[q+,qz] = [q_»qz] = o . (g.9)

The equations we have written so far in this appendix have been in 

the language of first quantization. It will prove convenient to shift 

into the language of second quantization. We define the state vector 
whose projection in real space is 4>q(x) to be labeled by |0>, so

<r|0> = ^q(x) = exp(-eHx ) (G.10)

and define second quantized momentum operators as

1T+ =
d3r i|/+(r)q+ ^(r) (G.ll)
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Noting Eqs. (G.6)-(G.9), we write

TT , = TT ± iir± x y (G.12)

IT | 0> = <0 | 1T+ = 0 (G.13)

[tt+,tt ] = -4eH = -£ (G.14)

= = 0 (G.15)

It follows that

<01 (v • tt) 2 91 0> = <0 I (v IT + V TT + V TT ) I 0>1 1 Z Z XX y y (G.16a)

= <0 1 (V TT + V TT ) 2 1 0>
xx y y * (G.16b)

= <0 | (v+TT + V TT+) ^ | 0> (G.16c)

2 2 2 2 = <0|v+TT + V+V (TT+TT + TT TT+) + V TT+1 0> (G.16d)

= V+V <0 | TT TT+ | 0> (G.16e)

= V+V <0 | e + TT+TT | 0> (G.16f)

2 u= v, v e = v , eH „+ - X c2 (G.16g)

In going from Eq. (G.16a) to (G.16b) we have imposed the constraint

that it |0> = 0, and in time Eq. (G.16c) we introduced z

= TT (v ± iv ) ± 2 x y

i

(G.17)
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Equation (G.16g) Is the desired result and is identical to Eq. (3.4) in 

the text.
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XIV. APPENDIX H

In Chapter III we need to evaluate terms of the form

A2n = <01 (v • TT)2n|0> (H.l)

Consider

A2n+2 = <0I^ * -)2n+2|0> (H.2a)

= <01 (v • TT)2n(v • tt)2|0> . (H. 2b)

Since only terms with equal numbers of tt+ and rr operators survive in 

the expectation value, Eq. (H.2b) can be written as

A2n+2 = ('v+v_)n+1<0| (ir+ + Tr_)2n(ir+ + tt_)2|0> (H.3a)

= (v+v_)n+1<0| (ir+ + 7r_)2n(iT2 + ir_T7+)|0> . (H.3b)

From the commutation relation [u ,tt ] = -e it follows thatT* ‘ —

[(rr+ + tt_) ,tt+] = e . (H.4)

Therefore,

<0|(ir+ + T7_)2niT2|0> = <0|(lT+ + T7_)2n ^TT+(Tr+ + IT ) ^TT+1 0>

+ e<0|(tt+ + TT_)2n 1Tr+|0> (H. 5a)

= <0| (7r+ + fr_)2n mTT+ ( Tr+ + Tr_)mir+|0>

+ me<0|(ir+ + fr_)2n "*’tt+|0> (H.5b)
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<0|(tt+ + Tr_)^niT^|0> = <0|TT+(ir+ + T7_) ^n7r+10> + 2ne<0|(ir+ + rr )^n

= 2ne<0|(ir+ + tt )^n|o>

And

<0|(ir+ + TT_)^n''f_fr+|0> = e<0|(ir+ + ir )^n|0>

Combining Eqs. (H.2a), (H.3b), (H.5d), and (H.6) yields 

<0|(v • Tr)^n+^|0> = (2n + l)ev+v <0|(v • u)^n|0>

which is identical to Eq. (3.5)

|0> (H.5c) 

(H.5d)

(H.6)

(H. 7)
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XV. APPENDIX I

If X = 0 and the Fermi surface is spherically symmetric so 

N(q) = l/4ir and

2n 2n 2 n!dq N(q) vA - vp (2n + 1)n (I.D

Eqs. (3.3, (3.7), (3.8) become

In
cO

00 27rT 00 /
1 — l (-I)"

n=l '
nl eHc2VF

v=_00 (i) 4a)

2nn!
(2n + 1) ! !

(2n - 1)!! (1.2)

or

ln(t) = I
\)=S—CO

2v + 1 2v + 1 l (-Dn
n=0

(2h) 1/2
t(2v + 1) J 2n + 1

(1.3)

where t and h are defined in Chapter III. Equation (1.3) is identical 

to Eqs. (24) and (36) in Ref. 24.
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XVI. APPENDIX J

We found in Appendix H and Chapter III that 

<0|(tt+ + TT_)2n|0> - (2n - 1) ! !en

In this appendix we evaluate terms of the form

where

(J.D

(J.2)

|S> 1 +
00

1
m=l

2m
a2m V

mml e
(J.3)

Typically, only a few of the a2m?s will be nonzero.

For simplicity, we will set v+ = v_ = 2u) = 1 in this appendix. It 

is trivial to reinstate factors of v+, v , and 2a) at the end of the 
calculations. Furthermore, we will drop the state label |0>. Unless 

otherwise specified, all expectation values will be taken in the ground 

state. We begin by considering diagonal terms of the form

DN = <Tr^(iT+ + ir )2tlir^b> . (J.4)

From Eq. (J.l) we know that

DO = <(rr+ + rr_)2n> - (2n-l)!!en . (J.5)

Furthermore,
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Dl = <ir (7r+ + 'n'_)^n,n'+ > = + it ) (tt + tt )^n(7r+ + it )>

= (2n+l)!!en+1

Similarly,

D2 = <Tr^(ir + ir )^nTT^>
- + — +

A simple exercise reveals that 

2TT+> = 1T_|_(ir+ + IT )>

2= t(TT+ + IT ) - IT TT+]>

= [(tt+ + tt_)2 - e]>

(J.6a)

(J.6b)

(J.7)

(J. 8a)

(J.8b) 

(J.8c)

Similarly,

<ir2 = <[(tt+ + ir_)2 - e] . (J.9)

Combining Eqs. (J.5) and (J.7)-(J.9) yields

D2 = en+2[(2n +3)!! - 2(2n +1)!! + (2n - 1)!!J . (J.10)

It is conceptually simple, but computationally cumbersome to 

repeat this procedure indefinitely. We quote some of the intermediate 

results:

D3 = <tt^(it+ + it )2nir_^> 

n+3 [(2n + 5)!! - 6(2n +3)!! + 9(2n + 1)!!] (J.ll)
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D4 = <Tr^(Tr+ + tt )^nir^>

= en+4t(2n +7)!! - 12(2n +5)!! + 42(2n +3)!! - 36(2n +1)!!

+ 9(2n - 1)!!] (J.12)

D5 = <ir^(ir+ + ir )^nir^>

= en+5[(2n +9)!! - 20)2n + 7)!! + 130(2n +5)!! - 300(2n +5)!!

+ 225(2n + 1)!!] . (J.13)

The final diagonal term with which we will concern ourselves is 

D6 = <ir^(ir+ + it )^nir^>

= en+6[(2n +11)!! - 30(2n +9)!! + 315(2n +7)!! - 1380(2n +5)!!

+ 2475(2n +3)!! - 1350(2n +1)!! + 225(2n -1)!!] . (J.14)

It is also necessary to evaluate some of the off-diagonal terms.
With |s> given as in Eq. (3.17) by

I S> - U+ |a2|2+ |a4|2)(l+^± + ~~~~2 j 10> (J.15)
z H ^ v^T e 1/4T ez /

we have to evaluate the three off-diagonal terms

F02 = <(ir+ + u_)2nTr£> = <n^(-n+ + ir_)2n>* (J.16)

F04 = <(ir+ + ir_)2nir4> = <Tr4(ir+ + ir )2n> (J.17)

and
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F24 = ^2, . .2n 4s.<.ir (ir+ + ir ) ir+> ^4, . . 2n 2s.*= <ir (ir+ + ir ) ir+> (J.18)

We begin with F02:

F02 = <(ir+ + ir )^n(ir+ + ir )2> - <(ir+ + ir )2nir ir+> (J.19a)

F02 = en+1[(2n +1)!! - (2n - 1)!!] (J.19b)

Making use of Eq. (H.4) allows us to write F04 as

F04 = e^(2n)(2n - 1)(2n - 2) (2n - 3)<(ir+ + ir_)2n 4> (J.20)

or

F04 en+2[(2n + 3)!! - 6(2n +1)!! + 3(2n - 1)!!] . (J.21)

Similarly,

F24 = <(ir+ + ir )^(ir+ + ir )^nir^> - <(ir Tr+) (ir+ + ir_)^n (J.22a)

= En+3[ (2n + 5) ! ! - 6(2n + 3) ! ! + 3(2n + 1) ! ! ]

- en+3[(2n +3)!! - 6(2n +1)!! + 3(2n - l)!!](J.22b)

F24 = en+3 [ (2n + 5) ! ! - 7 (2n + 3) ! ! + 9 (2n + 1) ! ! - 3 (2n - 1) ! ! ] . (J. 22c)

The final type of off-diagonal expectation value we will consider 
arises when |S> is defined by

, -1/2/ a. irj x
| S> = (1 + [ 1 + 3 j|0> . (J.23)

We define
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F06 = <(7r+ + tt )2nir^> = <ir^(ir+ + it )^n>

Making use of Eq. (H.4) again allows us to write F06 as 

F06 = e6(2n)(2n - 1) ... (2n - 5)<(ir+ + TT_)2n“S

= en+3(2n)(2n - 2)(2n - 4)(2n -1)!!

= en+3[(2n +5)!! - 15(2n +3)!! + 45(2n +1)!! - 15(2n - 1)!

Equations (J.24c) and (J.14) give Eqs. (3.15) and (3.16) in Chapter 
Equations (J.2), (J.15), (J.19), (J.10), (J.21), '(J.22), and (J.12) 

be combined to give

2n „
<si is> = a+ia2iD+ia2iE+ia4iF+ia2iia4iG+ia4r

2a)

where

A = <0| ( - ) |0> = an(2n - 1)!!
2(o

1 a„
D =

Sll
<0|

v • IT 2n

2(o
) "+l 0> + h.c.

2 cos(2(|> + (t>?)
-------------=- a [ (2n + 1)!! - (2n - 1)!! ]

2!

E =
-1T<oi^(^)2n^|o>
2!e ^ 2(o ^

(J.24)

(J.24a)

(J.24b) 

]

(J.24c)

III.

can

H

(J.25)

(J.26)

(J.27)
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an[(2n +3)!! - 2(2n +1)!! + (2n - 1)!!]

1 a. -* -> 2nV • TT
F =

AT -2 <o
e a.

2 cos(4(() + <p.)-------------— an[(2n +3)!! - 6(2n +1)!! + 3(2n - 1)!!]
AT

G =
S2UT e3 |a2l|aj

^ <01,2^ ll! j2” + ^

2u

2 cos(2<f> + <(),- <t>9)
-------- ----— a [(2n + 5)!! - 7(2n + 3)!! + 9)2n + 1)

/2T4T
- 3(2n - 1)!!]

4!' 2u '
H =

n
= t(2n + 7)!! - 12(2n + 5)!! + 42(2n + 3)!! - 36(2n + 1)!!

+ 9(2n - 1)!!2

Here, and <(>^ are defined by 82 = |a21exp(i<|)2) and - |a^|exp(i<|) 

and

a
v 2eH 
x c2
4a)

(J.28)

(J.29)

(J.30)

(J.31)

,)>
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XVII. APPENDIX K

In this appendix we will derive an expression for Tc when both 

elastic and inelastic magnon scattering are included. We will use 

Eqs. (2.10)-(2.13), (2.16), and (2.61).

Equations (2.16) and (2.61) combine to give

r^kw.k'w') = ( 4 ) X(k - k')(o + 06 ,.) . (K.l)
(0,0)

Similarly, combining Eqs. (2.10) and (2.12) gives

y(<o) = 1 + T ^ r^(ku),k'a),)Glf,(a),)G_k,(-a)')Y(a)') (K.2)
a)' k

where

y(u>) = 1 + irN(0)T \ r++(ka),k,aj,)Y(m,)/[ |a)'| + | Z(w') | ] (K.3)
0)'

f+ + (km,k,a),) “1 d\-k'
4tt ++r . (km.k'to') (K.4)

( 7 ) (a + 06 ,)z m,co _
|fx(k-k') (K.5)

( y ) (a + 06 ,) xZ 0) ,U) (K.6)

An expression for x is derived in Appendix D. We can now write y(“) as

-r ^
Y(a)) = 1 - ttN(0)T ( ^ ) X I (a + 06 ,)z to, a)

Y(a),)
U'| + |E(a>*)

(K.7)

or as
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Y(co) = + U(gj)l

0) + |E(w) I + BirN(0)( 4 ) XT

1 - N(0)( 4 ) x^T l ay(a)')

a)' |(o' | + | E((d') | 

(K.8)

Rearranging terms and summing over a) gives

ttT l ----^----  = ttT l ------------------------- 2
W M + | E (ui) | ^ a) + |E(a))| + BTrN(0)( | ) xT

• /l - ciN(O) ( y ) x*T £ ----^---- ) (K.9)
\ to |to| + | E(to) | /

irT X ---- --------  := -------- ------- j~ (K. 10)
“ |to| + | E(to) | 1 + a$N(0) ( y ) x

where

$ = ttT l ----------------------------— . (K. 11)
W | to | + |E(<o) | + BirN(0)( ) xT

We note that Eq. (2.11) can be written in terms of $.

Q(T)

Q(T)

7rN(0)T l 
to

Y (to)
|to| + | E(to) |

N(0)g
! 2_

1 + o*N(0)( j ) X

or, using Eq. (D.3),

Q(T) N(0)|l>
1 + ap$

(K.12)

(K.13)

(K.14)
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where

p = 1/ (2ttTt (T)) . (K.15)

Equation (K.14) will later prove to be very useful.

We return now to our investigation of $. Using Eq. (D.3) allows us 

to write Eq. (K.ll) as

$ = ttT £ ---------- ------- 5— (K.16)
0) |<o| + 11(a)) | +

where t(T) is given by Eqs. (2.29)-(2.31). The derivation of an expres­

sion for £(u>) is very similar to the derivation given in Appendix D. We 

find that

£(10) = ^ t + & sSn “ ] • (K.17)

Equation (K.16) then becomes

$ = 2irT £ -------- ---------  # (K.18)
a)>0 u(l + up) + 2ttTp(3

Our basic equation

A = gQ(T)A (K.19)

becomes

1 = $
gN(0) 1 + ap$ (K.20)

or

1
gN(0) — = $ap (K.21)
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Using Eq. (K.18) gives

1 + otp _ £ ______ 1_______
gN(O) - ap n>0 n + -| + apg^ 1 (K.22)

Equation (K.22) is identical to Eq. (2.69). The technique discussed in 

Appendix E may be used to rewrite Eq. (K.22) in terms of digamma functions.


