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The upper critical field in anisotropic superconductors

Daniel Wayne Youngner

Under the supervision of Richard A. Klemm
From the Department of Physics
Iowa State University

Theoretical descriptions of the upper critical fields in reentrant
and anisotropic superconductors are presented. The theories are
essentially microscopic in nature and incorporate many of the effects
known to influence the behavior of superconducting electrons. In
cases where adequate experimental data exist, the agreement between

experiment and theory is found to be good.



I. INTRODUCTION

Superconductivity is a common low-temperature phenomenon known (1,2)
to occur in more than forty elements and in several tens of
thousands of alloys and compounds. The temperature at which a
material becomes superconducting is called its transition temperature and
is denoted by Tc' Materials in the superconducting state have no elec-
trical resistance to direct currents, and will expel weak magnetic fields
from their interiors. Sufficiently strong magnetic fields will penetrate
samples and destroy the superconductivity, causing the sample to return to
the normal (i.e., nonsuperconducting) state.

Superconductors can be classified as being of one of two types
depending on how they respond to intermediate strength magnetic fields.
Type I superconductors abruptly enter the normal state when the applied
field reaches a temperature dependent critical value Hc(T)' In type II
superconductors the magnetic field starts penetrating the material at
Hcl(T)’ but does not fully destroy the superconducting state until it
reaches HcZ(T) (>HC1(T)). This thesis will be concerned exclusively
with upper critical fields in type II superconductors.

Until recently (1960s), the upper critical field vs. temperature

(1 vs. T) curves of virtually all known type II superconductors had

c2
the same general shape (3). As shown in Fig. 1, ch increased mono-
tonically from zero at Tco (the zero field transition temperature of the

superconductor) to a maximum value at T = 0. The second derivative of

this curve at TCO and at all lower temperatures was negative. Known
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Critical field (la) and upper critical field (1b) curves for
type 1 and type II superconductors respectively (3). A

Figure 1.
specimen is normal above its curve and superconducting below



ranged from near zero to as high (4) as 21°K, and HC at

0 2

T = 0 was typically less than, or at most slightly greater than, the

values of TC

paramagnetically limited (5) value of 18.6 TCO k Gauss/Kelvin.

The upper critical fields of all of these materials could be ex-
plained by a well-known theory in which the Fermi surface is assumed to
be spherically symmetric and the host lattice is assumed to be free of
localized magnetic moments. Several important features of this theory
will be discussed later in this chapter.

Recently several (6-23) new types of superconducting compounds with
unusual upper critical field curves have been discovered. Two types
of unusual superconductors will be discussed in this thesis. The first
type (6-11) includes the ternary rare-earth alloys in which ch goes
through a maximum and then returns to zero at a temperature TC2 < TcO
(see Fig. 2). The second type (12-23) is the family of superconductors
with highly anisotropic Fermi surfaces and pair states. Upward curvature

in HCZ(T) at TC and anomalously high values of HCZ(T) at T = 0 have

0

been seen in many anisotropic superconductors (see Fig. 3).

A. Ternary Rare-Earth Superconductors
There are two types of ternary rare-earth compounds which exhibit
superconductivity and which display anomalous behavior in the temperature

region below Tc The first is the Chevrel ternary molybdenum chalco-

0
genides (6,7) with the formula REyMO6X8 (RE = Gd, Sm, Tb, Dy, Er;

y = 1.0 or 1.2; X = Se or S). Several different types of experiments
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Upper critical field versus temperature of ErRh B, determined
from ac electrical resistivity data (11). H_,(T) is the
field required to reduce the resistivity to g%% of its normal
state value



50 | | T l

)
O
I

I

“H¢, (kOe)

n

O
I
I
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Specific heat versus temperature (7) for Gdq,



have been performed on these materials. Neutron scattering experiments
(8) show that HoMo6SS, for example, undergoes a ferromagnetic transition

below TC Several Chevrel compounds have lamda-type anomalies in

0
their specific heat curves below TcO’ indicative of the onset of long
range magnetic order in them. In Fig. 4 we show specific heat data (7)
M . - . . .
on Gd1.2 06Se8 The upper critical field curve (6) in Gdl.2M°6se8 first
increases as the temperature decreases, then reaches a maximum value at
some finite temperature, and begins to decrease as the temperature is
lowered further.

The second type (9) of ternary rare-earth alloy which exhibits
superconductivity has the formula RERh4B4 where RE is a rare-earth
element. As the temperature of these materials decreases, ch is often
found to initially increase from 0 at Tcl’ then reach a maximum value,
decrease, and vanish at a temperature T ., where T > T > 0. At T

c2 cl c2 c2
the material reenters the normal state, and at temperatures just below
Tc2 the material becomes ferromagnetic. Experimental data taken by

Maple et al. (9) on ErRh B4 (Fig. 2) provide an example of this behavior.

4
(The crystal structure of ErRh4B4 is shown in Fig. 5)

In the compounds mentioned above the 4f electrons of the rare-earth
elements have localized magnetic moments which tend to order ferro-
magnetically. Simple theoretical considerations tell us that as the
temperature of such a compound is lowered, the domains over which the
local moments are ordered grow in size. When the radius gm of the

magnetic domains becomes comparable to the BCS coherence length £, the



individual Cooper pairs experience a magnetic field. This internally
generated field tends to break the pairs, suppressing superconductivity
in a manner analogous to an externally applied field acting on an
ordinary superconductor. The external field required to destroy super-
conductivity in such a material is therefore diminished. At Tc2 the
internal field alone is strong enough to destroy superconductivity and

cause the material to reenter the normal state. This simple theoretical

argument will be quantified and developed more fully in Chapter II.

B. Anisotropic Superconductors
In many (12-18) materials with anisotropic Fermi surfaces and
superconducting gaps the HcZ(T) curve displays positive curvature near
TCO and unusually high values as T approaches zero. Recent experimental
work by Orlando et al. (12), for example, shows upward curvature in the
critical field curve of the A-15 materials NbBSn, and perpendicular
field measurements made by Dalrymple and Prober (13) on the hexagonally

distorted material NbSe2 (Fig. 3) show HC exceeding the predicted (24)

2
value for spherically symmetric materials by ~20%Z in the low-temperature

regime. Several (16-18) other experimentalists have seen similar results.

Theoretical models attempting to describe these effects have
included anisotropy in such things as the Fermi surface (25), the super-
conducting pair state (26), and the electron-electron coupling (27).
These models, however, are either limited in validity to temperatures

near to T or are plagued by other shortcomings which will be

c0’
described more fully in Chapter III.



Figure 5.

Crystal structure of ErRh;B,. The centers of the Rh, tetra-
hedra are located on the origin and center of the unit cell.

Only one of the four By pairs is indicated. CL Er; O, Rh;
e B
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In Chapter III a two-parameter model which incorporates Fermi
surface and pair state anisotropy and which successfully describes

HCZ(T) over the entire temperature range will be presented.

C. Ginzburg Landau Theory
Thirty years ago Ginzburg and Landau (28) (GL) formulated a
phenomenological theory which describes some of the properties of super-
conductors near their transition temperatures. The theory is conceptually
simple and can be used to introduce some of the ideas encountered in the
study of superconductivity.
Ginzburg and Landau assumed that the free energy of a superconductor

could be written as

2,8 (,4, L i\ | w2
F = F_ + ELM +le| + (-ihv - ———)w +—:|d1,> (1.1)

2m c 8w

where Fn is the free energy in the normal state, ¥ is the order parameter
(or wave function) of the superconducting electrons, o is a parameter
which is negative for T < TC and vanishes linearly at Tc’ B is a positive
* *

constant parameter, e = 2e and m = 2m are the charge and mass respec-

I3 . 3 + .
tively of a superconducting pair of electrons, and h = V x X is the
magnetic field. Minimizing the free energy with respect to variations in

*
Y and X leads to the coupled set of equations
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2
z_lm[’ ihv‘%] v+ap+slul®y = 0, (1.2)
> 4 2
curlh _ I _ &b %o o0 _i%mzz . (1.3)
4 c imc mc

where K = curl K

Microscopic calculations (29~31) show that o and B are given by

22 1 T- T
@ = 183 — — —C (1.4)
2m EO Tc
2
2
8 = 0.35 —% (h— 12) 1 5 (1.5)
N(O) \ 2m &0 (kBTc)

where EO is the coherence length at T = 0 and N(0) is the density of
states at the Fermi level.
It follows (32,33) from GL theory that spatial correlations in the

order parameter y exist over distances on the order of £(T) where

- = EX(D) (1.6)

and that magnetic fields penetrate into superconductors a distance A(T)
where

1/2

1 Tc
A(T) = — A (0)(-—————-) (1.7
/3 L T )

2 -T
c

and AL(O) is the field penetration depth at T = 0.
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Near Tc where ¢ is small, Eq. (1.2) can be written as

.1 2eR
%l -V - S Y= - ap (1.8)

Eq. (1.8) is solved by equating -o with the lowest Eigenvalue of
the differential operator on the left (see Appendix G for details).

The solution gives:

¢

o (1.9a)

ZHEZ(T)

Hc2

where ¢O = ch/4me is the flux quantum. The essential feature of Eq. (1.8)

is that near Tc’ ch varies linearly with T:

HC2 o« (Tc - T) . (1.9)

deGennes (33) and Saint-James, Thomas, and Sarma (32) provide very

full accounts of GL theory.

D. The Microscopic Theory
Detailed descriptions of the theoretical techniques for dealing with

systems containing large numbers of interacting fermions or bosons can
be found in the literature (29,31). The description given here will be
very sketchy. It is intended primarily to introduce ideas which will

be developed more fully later and to quote results which will be used
either as starting points for calculations to be performed later in this
thesis or as reference points with which to compare results derived in

this thesis.
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Many body theory may be used to calculate the upper critical field
of a superconductor. The procedure involves first finding an expression
for the Green's function for interacting normal state electrons in a
magnetic field, then correlating pairs of the normal state electrons by
mathematically "turning on'" the attractive BCS interaction. Seeking the
conditions under which the normal state electrons are unstable with
respect to the formation of superconducting pairs leads to a homogeneous
integral equation, the solution of which gives HCZ(T).

The procedure begins by defining the noninteracting single electron

Green's function (29):

G(rl, Tys Tys T2)=

T TG T)uEy, 108, (1.10a)
<S>
o]
where
p(r, t) = exp[(HO - uN) 1]y (r) exp[-(Ho - uN)t] (1.10b)
V(r, © = exp[(H_ - uN)T]Y’ (r) exp[-(H - uN)] (1.10c)

+
and y and ¥ are the usual Fermion creation and annihilation operators.
Furthermore, Seee> = Sp{exp[(Q0 + uN - HO)/T] eie} (1.10d)

where Sp (for "spur" = '"trace") sums over all states in the grand

cannonical ensemble, and



14

. (T
s(t) = TT exp{—oJ Hint (t7)dx"}. (1.10e)
In Eq. (1.10a), S = S(1/T). Throughout this thesis, units will be

chosen such that i = kB =c = 1.

> ->
In cases where the Green's function depends on r1 and r, only as

|¥i—¥2 and on T and T,y only as T Tos it proves convenient to define
Fourier transforms
éﬂkg,w) = (d? exp(—ig-r) Jdr exp (iwTt) G(?,T) (1.101f)

Replacing the operators in éQ%;’w) with their Eigenvalues leads to

8
) > af
G (P,w) = > * 1-
o i - E£(D) (1.10¢g)

Here, a and B are possible spin projections of the electron, 3 is the
electron's momentum, w = 27T(v + 1/2) where T is the temperature of the
material and v is an integer, § is the Kroeneker delta, and g(;) is the
electron's energy. Typically E(;) = 80(3) -u= p2/2m - u where m is the
effectivemass of an electron and p is the chemical potential. The super-
script (0) is used to indicate that the electron is in an unperturbed
state.
Having eliminated all operators from the definition of the Green's
function, we can Fourier transform the momentum variables in Eq. (1.10g)

to obtain

Gég)(¥,w) = —6aB E%; exp  i(sgn w)kFr :%ilz (1.11)
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where kF and v are the Fermi wavevector and the Fermi velocity respec-
>
tively, r = |r|, and sgn x = x/|x]|.
By allowing the electron described by Eq. (1.10) or Eq. (1.1l1l) to
interact with other particles and fields, the electronic Green's function
can be modified in a variety of ways. In an external magnetic field

ﬁ(=§), for example, the real space Green's function becomes (34)

m

n > w + iuBoH r K N
GaB(r’w) = _6a6 Snp ©XP (S8 W [1kF - ———:a:———{]r exp( ie Jo ds - (s))
(1.12)

where Hp is the Bohr magneton, o = *1 is the spin of the electron and
>y . . . - >
K(s) is the magnetic vector potential. The factor‘exp(lej'd5° K(s))
comes from treating the magnetic field in a gauge invariant (35), semi-
classical manner. We have assumed that the magnetic field affects only
the relative phases of the electronic wavefunctions, and have neglected
the effects of Landau quantization which become important :only when
>
+ .

uBch/m A~ Tl 1/t

If the electrons are allowed to scatter from randomly located non~
magnetic impurities, the frequency w in the Green's function is

renormalized (29):

w>w = -+ sgn w/2t (1.13)

1

where Ty is the impurity scattering time. The procedure for treating

impurity scattering is described in Appendix A and is shown diagrammati-

cally in Fig. 6.



Figure 6.

Diagrams showing impurity scattering. Each X indicates scat-
tering from a single atom. X's joined by dotted lines
indicate scattering from the same atom. The general integral
equation is shown diagrammatically in Fig. 6a. As argued in
Appendix A, diagrams like 6b serve only to renormalize the
chemical potential and need not be considered. The contribu-
tion to G from diagrams with crossed impurity lines (i.e.,
Fig. 6f) are smaller than the contributions from diagrams
with uncrossed lines (Figs. 6d and 6e) by a factor

(€FT)_1 << 1, and may also be ignored. Diagrams like the
ones in Figs. 6c, 6d, and 6e contribute significantly to the
renormalization of G and must be retained. Figure 6g shows
the integral equation which generates all of the significant
contributions. See Appendix A for details



16b

— -
-
~




17

With the inclusion of spin-orbit scattering in our formalism, Ty
gets replaced by the total impurity scattering time T where (36)

1/t = 1/11 + l/Tso. A detailed description of the effects of spin-orbit
scattering is given in Appendix B.

Numerous other modifications to the normal state electronic Green's
function can be imagined. For an understanding of the topics to be dis-
cussed in this thesis, however, the three we've already mentioned --
interaction with a magnetic field, impurity scattering, and spin-orbit
scattering -~ are all that need to be considered.

Superconductivity is caused by an attractive, phonon mediated inter-
action between pairs of normal state electrons. The two particle

propagator A for a pair of electrons in the presence of the interaction

satisfies the integral equation (37)

A(rl,rz,ﬂ) = Z Go(rl,rz,w)G_G(rl,rz,Q—m)

b

+ VT z f d3r Gc(rl,r,w)G_o(rl,r,Q—w)A(r
w,0

19r2’§2)

(1.14)

where V is the interaction strength (the BCS coupling constant). The
Feynman diagram corresponding to Eq. (1.14) is shown in Fig. 7.

The existence of the superconducting state becomes infinitely more
probable than the existence of the uncorrelated normal two-particle
state only if A diverges relative to the uncorrelated product of Green's

functions. When this happens, the homogeneous equation



18

N 0 f ~ N r r T,
‘ n n 0 n . r "

2 h By C r r© 6
PN ——————
@)
d , noon TS S

b

Figure 7. Diagrammatic representation of Eq. (1.14). A, G, and V are
represented by the quantity on the left of the = sign, a
single line, and a dot, respectively. The integral equation
shown in Fig. 7a generates the terms shown in Fig. 7b
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A(r) = VT ) Jd3r' Ko (r,r',0)a(x) (1.15)
W,0
has a solution. Here,
' = ' "
Ko(r,r S W) Go(r,r ,w)G_O(r,r y =) (1.16)

is the kernel of the integral equation. We have made use of the fact
that the superconducting state is most stable when = 0.

If, in addition to the BCS interaction, there are other mechanisms
serving to enhance (or diminish) the correlation between paired super-
conducting electrons, the effects of the additional mechanisms should be
incorporated into the kermel. Impurity scattering is one such mechanism.
In the "ladder" approximation for impurity scattering shown schematically
in Fig. 8 and discussed in Appendix F, the kernel changes from K0 to K

where K satisfies

1 3
K(r,r',w) = Ko(r,r',w) + E;;ﬁ?ay J d rl Ko(r,rl,m)K(rl,r',w) . (1.1

When impurity scattering is to be considered, it should enter the
expressions for both the single particle propagator (Eq. (1.13)) and the
two particle vertex (Eq. (1.17)). In Fig. 9 we show diagrams for some
of the two particle propagators contributing to the superconducting
state when both BCS coupling and impurity scattering are present.

If we include the effects of spin orbit scattering and spin para-
magnetism on the superconducting state, it is necessary to generalize
the formalism used to describe the state. The equations of motion for

the different Green's functions in the superconductor depend on the spin



Figure 8.

20

Diagrammatic depiction of how impurity scattering treated in
the "ladder approximation" modifies the kernal. The integral

equation (Eq. (1.17)) shown in Fig. 8a generates the terms
shown in Fig. 8b



Figure 9. Some of the diagrams contributing to K when both the BCS
force and impurity scattering are considered
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indices of the Green's function and on whether it (the Green's function)

is built from creation or annihilation operators. The various equations

satisfied by the different Green's functions couple to one another in a
manner conveniently expressed using the matrix notation of Werthamer,
Helfand, and Hohenberg (36) (see Appendix B). With spin-orbit scattering,
the normal state Green's function and the vertex renormalization equation
are still formally described by Eqs. (1.12) and (1.14)-(1.17), but o gets
replaced by the Pauli spin matrices and G, KO’ and K become 2 x 2 matrices.
Once we've put all of the effects we're interested in (e.g., magnetic
field, impurity scattering, spin-orbit scattering) into the kernal in
Eqs. (1.15)-(1.17), the procedure for solving the equations is in
principle straightforward. The solution gives Tc as a function of H,

T Teo® etc. When A is a slowly varying function of position (which is

1’
almost always the case in macroscopic samples), Eqs. (1.15)-(1.17) can

be replaced by

1 = vr J fd3r' K(r',w) (1.18)

WO

where K(r',w) is the lowest eigenvalue of the kernal in Eqs. (1.15)-(1.17).
In general, the mathematical core of the problem of finding HCZ(T) lies
in solving Eq. (1.18).

Several other theoretical research groups (24,25,36) have attempted
to solve Eq. (1.18) under varying sets of conditions. Helfand and
Werthamer (24) solved it in the absence of spin-orbit scattering. They

found that Eq. (1.18) reduced to
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1 - 1 (t/hl/z)J(aw)
In — = - 1/2 (1019)
t = | 2v +1 1 - (/h )J(aw)
where
J(a ) = 2 j dw exp(—mz)tan—l(a w) (1.20)
w 0 w
= 7 D% ™ gyena) (1.21)
n=0 w
Here,
a, = hl/z/(IZv + 1|t + ) (1.22)
h = 2e HCZ(VF/ZHTCO)2 (1.23)
A= 1/21rTCOTl (1.24)
t = T/TCO . (1.25)

Solutions to Eq. (1.19) are shown in Fig. 10.
Hohenberg and Werthamer (25) wrote the solution to Eq. (1.18) using
a formalism that facilitates the inclusion of Fermi surface and pair state

anisotropy. They showed that HCZ(T) is determined by

1 -1

1 = VT Z [s, - 1/2nT v ] (1.26)
where
- T o.m MOREA RS
S = [dq N(qQ) ) -1 <s "—‘L—;——l) s> . (1.27)
w W n=0 2w
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1.0 | | |

h*0.5

0.5 10

Figure 10. Upper critical fields for spherically symmetric materials.
A= (1) 0.0; (2) 0.5; (3) 5.0; (4) 50.0. These results may
be obtained using either Eq. (1.19) or Eqs. (3.2) and (3.3)
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Here, T o= —in - 2eK(¥) is the gauge invariant momentum operator acting

on the pair statelS>. (More will be said about this model in Chapter III.)
Hohenberg and Werthamer were only able to evaluate the first few terms in
the sum over n in Eq. (1.27), and thus obtained results valid only near

T=T Furthermore, although their formalism could handle anisotropy

c0’
in the pair state [S>, they did not consider its effects on HCZ(T)'
Werthamer, Helfand, and Hohenberg (36) showed that with spin-orbit

scattering, HCZ(T) is given by the solution of

1 _ 1 _ -1 . -1 4 -1 -1.-1 _ 4 -1,-1
In < = \5) o1 - {[Re(T (1 3 Tgo /27D 7] 3 (2rTt )77}
(1.28)
where
- 1/2
Iw [ZFT/VF(ZeH) ]Jl(aw) (1.29)
_ ” 2,01 . 1+ dizw
Jl(z) 2 Jo dw exp(-w) 21 lna if:—zza-) (1.30)
o = VF(ZeH)l/2(2|w| + T_l + ZiuH)_l . (1.31)
In the "dirty limit" (1 <<£O), which is 'a limit frequently satisfied
by materials in which spin-orbit scattering plays a significant role,
Egs. (1.28)- (1.31) become
. }- ) ( i'+ lkso \w; E-+ h +-§ AS + iy
t S L2 7 Tay Y\ 2 2t
1 iAo, o1 R4Ea -y
[ __so T 2 "so \ _ 1
+ 1 2 by ’w\ + 2t / v 2 ) (1.32)
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where

2
h = 2eHC2(vF T/GTrTc (1.33)

o)

2]1/2

Y o= LR - () (1.34)

and y is the digamma function. The solution to Eq. (1.22) is plotted in
Fig. 11. We observe that spin-orbit scattering reduces the limiting
effect of Pauli paramagnetism thereby allowing for larger upper critical
fields.

Most of the formulae quoted in the introduction will be used in some
manner in the latter chapters of this thesis. We will use the spin-
orbit formalism (Eqs. (1.32) and (1.33)) of WHH (36) in our calculation
of HcZ(T) in rare-earth compounds (Chapter II). In Chapter III we extend
the scope of Eqs. (1.26)and (1.27) derived'by Hohenberg and Werthamer
(25) by showing how Fermi surface and pair state anisotropy affect

HCZ(T) in the range 0 < T < T We find that our results reduce to

c0’
those of Helfand and Werthamer (24) (Egqs. (1.19)-(1.25)) in the isotropic

limit.
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Figure 11. Upper critical fields with spin-orbit scattering (36)



28
IT. TERNARY RARE-EARTH SUPERCONDUCTORS

A. Introduction
The ternary rare—earth compounds form an interesting and unique
family of materials. In these compounds the competing effects of super-
conductivity and long-range ferromagnetic order each tries to dominate the
behavior of the electrons at low temperatures. There are some rare-
earth compounds which, because of this competition, initially enter the

superconducting state at a temperature TC ,» then reenter the normal

1
(i.e., nonsuperconducting ), paramagnetic state at Tc2 < Tcl’ and finally
ferromagnetically order at TM < Tc2' ErRh4B4 is one such compound.
Experimentally obtained upper critical field data (11) on ErRh4B4 is
shown in Fig. 2.

All known ternary rare—earth compounds which exhibit superconductivity
have either the formula RERh4B4 or the formula REyMo6X8 (RE = Gd, Sm,
Tb, Dy, Er; vy = 1.0 or 1.2, X = Se or S). Schematic diagrams of the
crystal structure (38) of these compounds are shown in Fig. 5. When
these compounds are cooled to low temperatures the conduction electrons,
which are primarily the 4d electromns of Mo or Rh, would like to condense
into the superconducting phase, but the localized magnetic moments,
which come primarily from the 4f electrons of the rare-earth elements,
would like to align themselves spatially with one another thereby making
the compound ferromagnetic.

Our model treats the conduction electrons and the localized moments

as two separate groups. This approximation is also used in the band
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structure calculation (39) done for ErRh4B4 (see Fig. 12), and is
consistent with the fact that in the compounds REM0658

and REMo6Se8 the variation of transition temperature with rare—eartﬁ
elements can be described (40) by the Abrikosov—-Gor'kov (AG) theory (41)
with the deGennes factor (except when RE = Ce or Er). In our model the
conduction electrons interact weakly with the local moments via an
exchange integral I. The short-range interaction between local moments
has strength J and is responsible for magnetic ordering at low tempera-
tures. We treat I and & as independent parameters. Maekawa and Tachiki
(42) used the same model as we to calculate thermodynamic properties

and upper critical fields. Their theory, however, does not reduce to

the AG theory as I goes to zero.

B. Formulation of the Theory
The model we use is essentially microscopic, but some simplifying,
semi-phenomenological approximations are made in some of the formulge,

We begin with the following model Hamiltonian, H:

H = :ﬂBcs + ﬁcf + ]iff . (2.1)

ﬁBCS describes the energy of the conduction electrons modified by the

presence of a superconducting gap, and is given by

SRR W B (2.2)

H =
X -k+

+
BCS ) € ko “ko
ko

In Eq. (2.2), e, is the normal energy of an electron with wavenumber k,

k

and A is the spatially averaged condensation energy of the superconducting
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electrons. We treat A as a free parameter. The creation and annihilation

. . +
operators for electrons with wavenumber k and spin o are denoted by Cko

and C respectively, and satisfy the usual amticommutation relations

ko
+ 1
{CKO’CK',G'} = 600J S(k - k") (2.3)
{CEG’CE',O'} = {Céo’ci',o'} 0 : (2.4)

The abbreviation h.c. in Eq. (2.2) stands for hermitian conjugate.
The second term in the Hamiltonian describes the interaction between
the conduction electrons and the local moments and is given by

. S P
+ i(k-k )Ri

1 ->
H - Eﬁ'(gJ -1 ) 31 e Cku Ck'v e (2.5)

cf

wheire I is the interaction strength between the conduction electrons and
the local moments, N is the number of local spins per unit volume, 8y is
the Lande g factor, and s is the Pauli spin matrix. The total angular
momentum at lattice site Ri is Ji'

The final term in the Hamiltonian shows how local magnetic moments

interact with one another.

|
1
N

Mg I 9, - RJ.)F. . 3. . (2.6)
ij

Here, g(Ri - Rj) is the interaction strength between pairs of spins
separated by Ri - Rj'

We treat the exchange interaction I between the conduction electrons

and the local moments within the Born approximation, and treat the spin-
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spin interaction phenomenologically. Our model is similar to the model
used in the AG theory except that in ours, translational symmetry of the
spins is built in from the beginning.

The superconducting transition temperature is found by solving the
linearized gap equation discussed in Chapter I. The procedure we will
use for solving it is similar to the procedure used by Matsuura, Ichinose,

and Nagaoka (43).

A = V Q(DA 2.7)
1/t + +
QT) = Jo dr’ J dr'<TT{C+(rT)C+(rT)C+(r'T')C+(r'1')}> (2.8)

where V is the BCS coupling strength, A is the spatially averaged pair
state wavefunction, C:(rr) is the Heisenberg operator, and t is the
imaginary time. Note the similarity between Egqs. (2.7) - (2.8), and

Egqs. (1.15) - (1.16). After applying space and time Fourier trans-

formations, Eq. (2.8) becomes

QT = T ] ] v (w6, (-w) (2.9)
w k

Gk—l(w) = dw - £ - I(w) (2.10)

where w = (2v + 1)7T. The vertex correction y(w) and the self-energy
correction I(w) have been introduced. Although the expressions for vy
and ¥ will generally depend on both momentum k and energy w, the expres-
sions we will use are independent of k. Assuming electron-hole symmetry

[2(~w) = -Z(w), Y(-w) = y(w)] and performing the momentum integration



33

leads to

- Y (w)

where N(0) is the density of states at the Fermi level. The Dyson equa-

tion for the vertex part (shown diagrammatically in Fig. 13) is

Yw) = 1+T 1Y) ) Tyy (ewyk'0') 6y (@G, (-0 )y (") (2.12)
w' k'

where F++(kw,k'w') is the irreducible four-point vertex which expresses
the effective interaction between the conduction electrons. We have used
the same notation for X(w), y(w), and P++(kw,k'w') as Ref. (43).
Equations (2.7)-(2.12) are quite general and are formally similar to
equations found in standard textbooks. To obtain results uniquely
applicable to the rare-earth alloys we must derive expressions for I,

Y, and T.

1. The self-energy

The self-energy I(w) shown diagrammatically in Fig. 14 is given by

2

2@ = (3) T LT 6 x( -k - w") (2.13)
w

k'

where the spin fluctuation propagator yx(q,w) is the dynamical suscep-
tibility of the localized spin system. I(w) is the self-energy associated
with the second order process in the exchange interaction I in which an
electron emits, then reabsorbs a spin fluctuation (or paramagnon). After

some manipulations (Appendix C) Eq. (2.13) reduces to



Figure 13.

1

Diagrammatic representation of Eq. (2.12). The quantity on the left is the full two-

electron vertex.
be discussed later

The square on the far right depicts the four—~point vertex which will

Ye
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Figure 14. Self energy involving paramagnon exchange. The squiggly
line represents a paramagnon propagator and the dots repre-
sent the coupling constant I
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2 1"
L(w) = -iN(0) (%) o Z" 9(Ju] fw!‘*’ Dl XUk -k [0 (2.14)
w
_ dg
x(q,w'") = J ;;q x(q,w") (2.15)
where "

= 2nTv, kF is the Fermi wave vector and 6(x) is the step function.

We have neglected the real part of I(w).

2. The vertex part

The four point vertex shown schematically in Fig. 15 is given by

2

r ke’ = = ( %) x(k - k'0 - 0') . (2.16)

The effective interaction between conduction electrons described by this
expression is attraective,second order in the exchange integral I, and
mediated by spin fluctuations. This interaction is similar to the phonon
mediated interaction that induces the attractive force between conduction
electrons responsible for superconductivity. In what follows we call the
contribution from w = w' in Eqs. (2.13) and (2.16) the elastic channel,
and from w # w' the inelastic channel. Much of our attention in this

chapter will be focused on the elastic channel.

3. - The dynamical susceptibility

The model we use to describe the dynamics of the spin system starts
with the assumption that the static spin susceptibility (44) of the

sample is of the Curie-Weiss form:



Figure 15.
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The four point vertex is replaced by simple paramagnon
exchange. External Green's function lines have been
included in this diagram to show how they couple to the
vertex and to the paramagnon propagator



38

= & .¥> - 568+ DA
X = <Si Si> = T — T (2.17)

M

where A is a proportionality constant with units of energy, and TM is the

magnetic transition temperature. When strains are present in the spin
system it is further assumed that the free energy functional acquires

the form:
F o= 2 f a32( % Q2@ + % AVED1S . (2.18)

Stability requires that Q and A be positive above TM. In order that
S = B when H is uniform, Q must be described by

Q = 1/x . (2.19)

A is a parameter measuring the stiffness of the spin system. We will
ignore the possible dependence of A on T, A, and S, and neglect terms

higher order in S.

>
It proves useful to define Fourier transforms of the magnetization S:

5 = 17 3@ em(-1i3 - D . (2.20)
q

The free energy can then be written as

F =

<[>

I 2 @+ad3@ - 3D . (2.21)
q

We can find the thermal expectation value of particular magnetiza-
tion-magnetization correlation functions by knowing that classically

each q degree of freedom contributes %(kB)T to the total free energy.
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F = J -% T (2.22)
q
but
F=27 20@+aH8@ - 35> . (2.23)
q
Therefore
x@ = B@ - 3> = —F— (2.24a)
A(Q + Aq™)
S(s + 1)T
= (2.24b)
-1+ S(s +V1)Tx qu
- S+ 1T > (2.24¢)
T - TM + (aq)
where
22 - §£§_ivll£&é . (2.25)

We insert dynamical effects into our expression for the spin-spin
correlation function by assuming that the self-correlation relaxes

exponentially in time as described by deGennes (45,46):

B(q,0) - 3(-q,t)> = <5(Q) - S(-Q)>exp(-1\q2t) . (2.26)

The diffusion coefficient A is in general a function of the spin-spin
coupling constants (46,47). We choose to treat it as an independent

parameter. Fourier transforming Eq. (2.26) leaves us with
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2w 2,..24

2
J A i (-106)<E (@, 0) - 3(-4,0> = x@ow) = B@F(-0> —4 — . (2.27)
m(w +A"q )

In principle we'd expect TM, a, and A to be functions of @, but in

practice we take them to be free phenomenological parameters.

4. The phase diagram

An AG type of expression for the superconducting transition tempera-
ture can be derived provided the characteristic frequencies of the spin
system described in Eq. (2.27) are much smaller than Tc (e.g.,
qu << |w[). If the characteristic frequencies of the spin system are
small, all scattering processes from the spins should be essentially
elastic. In Appendix D we show that if we neglect the inelastic scat-
tering channel in Eq. (2.13) we can derive the following expression for

the self energy:

t(w) = E%%TT sgn w (2.28)
where
1 _ TE(T)
o - Ty (2.29)
1 I 2
—— = 27N(0) ( E—) S(S + 1) (2.30)
TaG
and
1 T - TM + (ZakF)2
£(T) = — 5 ln[ ] (2.31)
2akF) T - TM

where a2 is given by Eq. (2.25).
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We comment that (ZakF)2 has units of energy. Our theory differs from the
AG theory (41) in that in our theory the relaxation time (i.e., the pair-
breaking parameter) is temperature dependent whereas in the AG theory it
is constant.

If we neglect the inelastic scattering channel from the self-energy,
we must also neglect it from the vertex correction in Eq. (2.16). We

then have

2
r, (ko,k'n') = -(%) ¥k - k"0 - 0§, . (2.32)

W,Ww

Substituting Eqs. (2.10), (2.11), (2.28), and (2.32) into Eq. (2.12) leads

to (see Appendix K):

1 _ 1
O Y e . (2.33)

I 1
V2 + =+
0 v 2 pc

Sums like the one in Eq. (2.33) are formally divergent, but can be made

convergent by properly introducing a cutoff at w, = In Appendix E

D*

we show that Eq. (2.33) can be written as

Te 1 1
= ln— = P ( 7t pc) - ¥( 7)) (2.34)
c0
where Tco = 1.13 wy exp(-1/gN(0)) is the critical tempertaure when I = 0,

¢y is the digamma function, and p. = l/(2ﬁTCT(TC)). We will encounter
formally divergent sums like the one in Eq. (2.33) several more times
in this thesis. In each case the cutoff procedure described in Appendix

E must be used.
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There are two temperatures which give solutions to Eq. (2.34): an

upper ctritical temperature, Tcl’ and a lower one, T When

c2’

Pey = 1/(2nTclr(Tcl)) << 1 and TcO - Tcl << TcO’ Tcl is explicitly given

by

e T _1
T, =T = G X o (2.35)
cO

If T, << TcO’ we may rewrite Eq. (2.35) as

M
T 1 -T _ + (2ak )2
cl m : c0 ake
—= = 1l-—+«———— In _
c0 4 TAG(zakf) TcO
™ 1 /T
. - (M> . (2.36)
b t,lT o + (2akp) 7] T.o

The second solution of Eq. (2.34), Tc2’ is typically very near TM’ and
cannot in general be specified analytically. The phase diagram showing

T . and Tc2 versus T, for different values of the coupling constant I

cl

is depicted in Fig. 16. We observe that there always exists a narrow

M

region between the superconducting state and the magnetically ordered
state in which the system is normal and paramagnetic. In other words
the system always exhibits a reentrance phenomenon. There’ is no region

where the two long-range orders coexist.

C. The Upper Critical Field
The starting point in a calculation of the upper critical field is
the field dependent nonlocal linearized Gor'kov equation (34) described

in Chapter I:
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. J(J+1)/Tc0 = 0.01; (2) 0.07; (3) 0.15. A"sample is
superconducting inside of (to the left of) its curve
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]
2ie fx dsA(s)

A(x) = gT g J dle++(x1 - x;wv) e A(xl) (2.37)
Q++(x,wv) = <G+(x,wv)G+(X, wv)>imp (2.38)
The expectation value <...>:.me is an average over impurities (see Appendix
A), and Gg(x,wv) is the normal state Green's function:
n n o I(:)\)l
Gc(x,wv) = - exp iklelsgn w, =g |x| (2.39)
2w|x v
F
~ 1 1 1
w, = o, ¥ 2( T(T) + Ty )sgn vy (2.40)
L - 2m(0) nlu]? (2.41)
T
0
¢ _ L _oh
kF = kF 0 . (2.42)
F

Here, m is the electron mass, TO is the relaxation time associated with
scattering from nonmagnetic impurities, n is the concentration of non-

magnetic impurities, U is the scattering potential, and vg is the Fermi
velocity of the up or down spin band. The internal molecular field h,

acting on the conduction electrons, consists of a term expressing the

interaction of the conduction electrons with the local moments and the

Pauli paramagnetic term:

= —1
h = I xo(T)H + ugB (2.43)

NoB"g
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where xO(T) is the uniform bulk susceptibility given by xO(T) =
2 > >

(gJuB) NO/T <Jq . J_q> q=o, and N0

volume. - We have adopted the semiclassical phase approximation for the

is the number of local spins per unit

orbital motion of the conduction electrons in an external magnetic field
ﬁ'(K'is the vector potential) and have continued to neglect the inelastic
scatteriné channel,

By applying the ladder approximation (Appendix F) to the vertex in
Q++(X’wv) and by considering the dirty limit (1/1o >> Tc), we obtain the

standard (48) pair-breaking equation from which we can determine HCZ:

T Yot T et t 2eT 3) = 0 . (2.44)

1n —!;-+ Re w(-l
2
c0

1, ih +DeB)_w(l

The diffusion constant D = is a measure of the dirtiness of

l~r v2
3 0°f
samples. It is easy to check that in the limit ch + 0 Eq. (2.44)
reduces to Eq. (2.34). Notice that because the induced magnetization in
the molecular field is linear in I, ch depends on the sign of I.

We consider two limiting cases, Near TCl the upper critical field

and the spin susceptibility are small so we may expand Eq. (2.44) in

terms of H ,. We obtain
c2

27T T |£'°(T_ )| T
H = 1o el Wl hla-— . .5
c2 Dew(l)(l-+ ) 27T 2 cl T
2 Pe1 AG cl
If TC2 << TcO’ we can use the asymptotic expansion for large arguments

of the digamma function. The result is

. ] (T - T_,)27T . ( 1 )2 i ( 1 )2 2.46)
c2 |I[gJuBJ(J + 1)/3 oY ZWTCOT(TCZ) :
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where y is Euler's constant. Note that H ., is proportional to |I|_1 near

T Numerical results for all temperatures are shown in Figs. 17-19.

c2’

It is not hard to include the effect of spin-orbit scattering which
becomes important in high field type II superconductors (36). We define
the relaxation time Ty, due to the spin-orbit scattering by (48)

1 1 2 .2
¥;; = £ 10, N0 J dQ]vsol sin"o (2.47)

where vSo is the interaction strength and n_, is the concentration of
scattering centers. The resulting equation which determines ch is

nearly identical to Eq. (1.32) derived by WHH (36), and is given by

T ;[( __b___‘); < _b_)_; ] 1, _
1n + 1+ y(EG+p )+ {1~ V& + o)) [-vE) =0
T g LA VAIEEY I AR AZ_nZ)2 T+ 2

c0
(2.48)
where b = 1/t _, and
s0
o, = 1( I +- L 4 peB = bz_hz) . (2.49)
2nT \ T(T) 180
Numerical results are shown in Fig. 20.
In the strong spin-orbit scattering case Eq. (2.48) reduces to
T 1 DeB h2 1
1n E;;a + 11)(54‘ p(T) + 2T + 47TTTSO ) - lj)(-z—) = 0 (2.50)

where p(T) = 1/(2%Tt(T)).
It should be noted that the molecular field acting on the conduction

electrons is linear in I. 1If the exchange integral is negative, the spin
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Upper critical field. Unless otherwise stated, the following
parameters are used in Figs. 17-20. I/T.g = 0.5, Ty/Tqqo =
0.1, De/2mup = 2.0, (2aky)?/T.g = 0.3, g7 = 2.0, J = 3.0,

Ng = 2 x 1021 spins/cm3, N(0) = 1(eV)~1, 1/(6mtgoTep) = 0. Inm
Fig. 17 only, I/T.q = (1) 0.0, (2) 0.1, (3) 0.5, (4) 1.0,

(5) 2.0, (6) 3.0, (7) 4.0
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Figure 18. Upper critical field. The same parameters are used here as

were used in Fig. 17 except: TM/TCO = (1) 0.0, (2) 0.1,
(3) 0.3, (&) 0.6, (5) 0.8 _
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Figure 19. Upper critical field. The same parameters are used here as
were used in Fig. 17 except: De/2mug = (1) 0.5, (2) 1.0,

(3) 2.0
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Figure 20. Upper critical field. The same parameters are used here as
were used in Fig. 17 except: 1/(6"TsoTcO) = (1) 100, (2) 10,
(3) 1.0, (4) 0.2, (5) 0.0
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polarization counteracts the effect of Pauli paramagnetism thereby
increasing the upper critical field. This is the Jaccarino-Peter effect
(49). On the other hand, the pair-breaking parameter p(T) is proportional
to IZN(O) and therefore tends to suppress superconductivity regardless of
the sign of I,

The results shown in Figs. 17-20 enable us to make several observa-
tions. We note (Fig. 17) that as the coupling I between the local
moments and the conduction electrons increases, Tcl decreases, Tc2
increases, and HCZ(T) at all intermediate temperatures decreases. 1In
short, the conduction electron-local moment interaction suppresses super-

conductivity. From Fig. 18 we see that as T

M approaches TcO’ the gaps

between T, and Tc

M 2 and between TCl and Tco grow in size, and HCZ(T)

between Tc and TC becomes smaller. Figure 19 reveals that increasing

2 1

the impurity scattering rate (i.e., making the samples dirtier)
increases HCZ(T) especially near Tcl’ but doesn't affect either Tc2 or

T Figure 20 shows that increasing the spin-orbit scattering rate

cl®

increases HCZ(T) especially near Tc2’ but doesn't cause shifts in either

Tc2 or Tcl'

D. Pseudo-Ternary Rare-Earth Compounds
Upper ciritical fields have been measured on the pseudo-ternary
rare-earth rhodium borides Lul—xHoth4B4 (50), Yl—deth4B4 (51),

Erl_dethaB4 (51), and Erl—xHOth4B4 (52). The results of these measure-

ments are qualitatively similar to the results of measurements made on

pure ternary compounds. Because of the abundance of materials that can
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be made by varying x in the range 0 £ x £ 1, a great deal of information
can be gathered, and a great deal can be learned about the nature of the
electron-local moment interactions in these materials.

Our theory can be extended to treat (53a) the pseudo-ternary com-
pounds Al—xBth4B4 (A,B = rare-earth elements) by assuming the scattering

from A and B atoms is independent. The relaxation time defined in

Eq. (2.29) becomes:

1 1 -x X 1 TA'
———-—-——TtOt(T) = {\ o + ;-]; )fo('r) = ;X 1 - x< 1 - g) TE_(T) (2.51)
where
L - 2mo Ifl)z(i D25, +1 i = A or B 2.52
Ti = m ( )('2""' gJ - i i ) s (1 = or ) ( . )
2
1 T - Ty(x) + (2ak,)
£(D = — 1nl: } . (2.53)
X (2ak) T - Ty (x)

The total angular momentum and the Landé g-factor for the A(B) atom are
JA(JB) and gﬁ(gﬁ) respectively. The ferromagnetic transition temperature

is now a function of x. The total relaxation time Ttot(T) consists of

two terms, s and Tgs multiplied by an enhancement factor fx(T)' We note

that JA or JB may vanish when the respective A or B atom is nonmagnetic,
such as is the case for Y (with no 4f electrons) and Lu (with a closed
4f shell).

In the case in which a nonmagnetic atom A is replaced by a rare-

earth magnetic atom B, the initial depression of the transition
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temperature near x = 0 is given by

l ch Ul 2 B 2
T:('EE_ )x=0 = - 7?'N(O)IB (gJ - 1) JB(JB + 1) fO(Tco) . (2.54)

When both A and B are magnetic rare-earth atoms the change in the upper

critical temperature 'I'C near x = 0 is given by

1

2

m

i cl _ 2 , A _ 2
i > = 3 N(O)IA (gJ 1)
x=0

A
JA(JA + 1) fO(Tcl)( 1 —'_'E—B')

(2.55)

If I is the same for both rare-earth atoms, which is plausible since
rare—-earth atoms are considered to have similar physical and chemical

properties (53b), Eq. (2.55) reduces to

- — NO)T? (85 - 1) 3,(3, + ) £,(1

1 4T ) TT2
8

cl)

2
JB(JB + 1)

(g§ - 1)
. ( 1 - . (2.56)

A
(g; - D" J,U, +1)
This equation shows that the sign of the initial change of Tcl with

dilution is determined solely by the relative magnitude of the two
deGennes factors, (gJ - 1)2 J(I +1).

Consider for example (Lu —xHox)RhAB and (Yl_dex)Rh B If we use

4 474°

free-ion values for the deGennes factors, we obtain from Eq. (2.54):

1
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1 ch )
- € (Y - 6d) Gd _
TcO( dx %=0 - (gJ 1) JGd(JGd + 1) . 15.75 W 3.5
1 ,dT - Ho 2 v
- c ) (Lu - Ho) (g = DT 3y (G, + D 4.50
4] x=0 (2.57)

This agrees well with the experimental

value (50,51) of 3.4 - 5.1,

Similarly, for (Erl_dex)Rh4B4 and (Erl—xﬂox)Rh4B4 we obtain
Gd 2
1 chl (gJ - 1) JGd(JGd + 1)
Tt .\ dx (Er - Gd) 1 - Er 2
cl x=0 (8J - 1) Ig .. +1)
r  Er
L dTy ) @l @y T
- ———( c (Er - Ho) g3 Ho ‘" Ho
Tc1 dx x=0 1- Er 2
(g;" - D° 3, (3 + 1)
(2.58)

which is of the same order as the experimental value (51,52) (n10).
Other evidence supporting the conclusion that the rare-earth atoms in
these compounds behave magnetically like free ions includes measurements
made on the magnetic susceptibility (11) and the M&ssbauer effect (54)

of Erkh,B

484 Neutron diffraction data (55), however, gives smaller

values for the magnetic moments than are expected from free-ion theory.
We have fit experimental phase diagram data on four pseudo-ternary

compounds : (Lul_xHox)-, (Erl_xHox)—, (Erl_dex)—, and (Yl—dex)_Rh4B

4

using the following assumptions: (1) The deGennes factor is given by

its free-ion value. (2) The hypothetical transition temperature Tc is

0

11.5°K for all compounds. (This value is used because LuRh , which is

424
a compound in which I = 0 (Lu has no magnetic moment), has Tc = 11.5°K.)

(3) The exchange integral I and the density of states, N(0) (taken to
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be 0.5/eV), are the same for all four compounds and remain constant under
alloying. (4) The ferromagnetic transition temperature TM(x) is taken
from the experimental data to be a linear function (56) of x.

With these assumptions, the only remaining parameters are I and
(ZakF)z. We have taken (2akF)2/TCO = 10.0 for all phase diagrams, and
determined I using Eq. (2.34) to fit the upper transition temperature of
ErRh4B4 at 8.55°K. This gives I % 318°K. The upper transition tempera-
ture of TmRhaB4 can then be calculated using (ggm - l)2 JTm(JTm + 1) =
1.17. The predicted value of ~10.05°K compares well with the experi-
mental value (57) of 9.80°K. Results are shown in Figs. 21-24. Overall
fitting is quite good. If we allow I for Gd to vary slightly with its
environment we can obtain a better fit for (Er

1—dex)Rh4B4 and

(Yl—dex)Rh4B4 as shown in Figs. 21-24. This indicates that simple

free-ion theory does not work as well for compounds which contain Gd.

1. The upper critical field

The upper critical field for pseudo-ternary compounds can be
obtained by modifying the temperature dependent scattering time (i.e.,
Eq. (2.29) becomes Eq. (2.51)) and the internal molecular field defined

in Eq. (2.43). The modified molecular field h is given by

ho= {(1-x) g),(J, +1) +x ghdy (3 + D} == B . (2.59)

TM(x) B

Each constituent moment, JA and JB’ exerts a molecular field proportional
to its concentration on the conduction electrons. In the strong spin-

orbit scattering limit Eq. (2.48) reduces to
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10

(°K)

Figure 21. Phase diagram for (Luj_yHo,)Rh;B;. Unless otherwise stated,
the follow1ng Barameters will be used in Figs. 21-24: T, =
11.5°K, (2akg)4/ 10, 0 N(0)I2/4T co = 0.094. The
deGennes factors, (gJ-l) J(J+1) =, Gd: 15.75, Ho: 4.60,

Er: 2.55, Tm: 1.17, and Lu: 0. The experimentally determined
upper critical temperatures and magnetic transition tempera-
tures are laheled by circles and triangles respectively.
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Figure 22. Phase diagram for (Erl—xHOX)Rh4B4 and (Erl_miy)Rh
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10

Figure 23.

0.6 0.8 1.0

Phase diagram for (Erl_dex)Rh4B4. (ZakF)z/TCO are
respectively: (1) 100.0, 0.5222; (2) 10.0, 0.9%; (3) 2.0,
0.038; (4) 0.01, 0.0176. The values of N(0)I2/4T,( have
been chosen to fix T.; of pure ErRh,B,; at 8.55°K
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(°K)

0.8 1.0

Figure 24. Phase diagram for (Y;_,Gdy)Rh;B,. Values of (2akF)2/TC0 and
N(O)IZ/ATCO are respectively: (1) 100.0, 0.59; (2) 10.0,
0.115; (3) 2.0,_0.051; (4) 0.5, 0.035; (5) 0.01, 0.029. The
values of N(O)IZ/ATCO have been chosen to fix the slope of
T.1 vs. X at 25°K
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2
T 1 DeB . _h 1, _
Ing—+ ¥ ¥ oD + 907 * Zaze ) v = 0 . (2.60)

where h is given by Eq. (2.59) and p(T) = 1/(27Tt(T)) with 1(T) given by
Eq. (2.51). The spin-orbit scattering time Teo is expected to be quite
short for these rare-earth compounds. The diffusion constant D depends
delicately on sample preparation and is related to the residual
resistivity of the samples.

We have used Eq. (2.60) and the same set of parameters as in Fig. 23
to fit experimental data (51) on Erl Gd Rh4B4 The two additional
parameters Aso and D have been adjusted freely to give the best fits.

We find D = 1.5 and l/2ﬂTsoTC0 = 1000. Numerical results are shown in
Figs. 25 and 26. While it is quite likely that D varies from sample to
sample by ~50% (to date, crystals of Er1 Gd Rh4B4 are so small that
resistivity ratios cannot be determined to better than 50%), we are
unable to explain the extremely short spin-orbit scattering times and the
large variations in Teo from sample to sample.

Two major conclusions can be drawn from the results of this section.
The first is that the rare-earth atoms in ternary and pseudo~ternary
rare—-earth compounds behave magnetically like free 3+ ions. The second
is that the coupling between rare-earth ions and the conduction electrons
is weak .and nearly independent of the atomic number of the ion. We also
note that all rare-earth alloys made so far (i.e., the ones mentioned

in this thesis) seem to be quite dirty and have very short spin-orbit

scattering times,
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Figure 25. Upper critical field vs. temperature. The same parameters
as used in Fig. 23 will be used in Figs. 25-26. The values
of additional parameters used are: D = 1.35, 1/(21T.qgtgo) =
(1) 10,000.0, (2) 1,000.0, (3) 100.0, (4) 10.0
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Upper critical field of Erj_,Gd,Rh;B, (51). x, D, and

1/(2nT gtg0) are respectively: (1) 0.0, 1.35, 1,000.0;
(2) 0.02, 0.8, 3,000.0; (3) 0.03, 1.3, 2,000.0; (4) 0.05,
1.4, 300.0; (5) 0.09, 2.0, 300.0; (6) 0.20, 2.0, 300.0;
(7) 0.24, 2.0, 300.0
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E. 1Inelastic Scattering

So far, we have considered only the effects of elastic electron-
magnon-electron scattering on the superconducting properties of rare-—earth
compounds. We have neglected the inelastic scattering channel (w # w')
of the dynamical susceptibility defined in Eqs. (2.16), (2.24), and
(2.27). 1In this section we consider how inelastic scattering (58)
affects the superconducting state and the HCZ(T) curve,

In order to calculate physical quantities dependent on the dynamical
susceptibility, we must simplify its functional form without losing its
characteristic features. The features we must retain are: (1) the
dynamical susceptibility x(q,w) has a singularity at w = 0 in the limit
q + 0 near the ferromagnetic transition temperature, and (2) in the
region where qu >> [w], x(q,w) is independent of w. The following

crude approximation for x(q,w) retains these features:

x(q,w) = x(q@)(a + B%,o) (2.61)

where x(q) is given by Eq. (2.24c). We have introduced a and B as
adjustable parameters. The case a = 0, B = 1 corresponds to an AG (41)
type theory. The case a = 1, B = 0 corresponds to the Berk-Schrieffer
(59) theory.

In sections B, C, and D we treated the case where the characteristic
frequencies of the spin system were much smaller than TC by neglecting
the inelastic scattering channel in x(q,w). In essence, we used Eq.
(2.61) with o = 0 and B = 1. If the characteristic frequencies of the

spin system are much larger than Tc (e.g., qu >> |w|), we may neglect
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the frequency dependence in x(q,w) by setting o = 1 and B = 0. We then

obtain
_ 1L -ie
(w) = ) FnT (2.62)
and
1 2 .
r++(kw,k'w') = - E') x(k - k') . (2.63)

A Berk-Schrieffer (57) type of expression for Tc can be derived (see

Appendix K):

1+0p N 1

- c = z I (2.64)
gN(0) - CI v0 v + 0

where 2uT(N + 1/2) = w In this expression the effective supercon-

D'.
ducting coupling, gN(0), is shown to be weakened by the attractive,
paramagnon mediated interaction. Furthermore, the inelastic paramagnon
scattering causes the masses of the superconducting electrons to be
renormalized. (Were there no mass renormalization, the numerator on the
left would be replaced by unity.) This mass enhancement should have an
effect on the electronic specific heat near TM. If we neglect the mass

enhancement factor, we obtain the same expression for Tc as Maekawa and

Tachiki (42):

_ -1
Tc 1.14 wp) exp( ZN(0) = o ) (2.65)

where wp is the Debye frequency.
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Equation (2.64) has two solutions, Tcl and Tc2' If (TcO - Tcl)/Tco

<< 1, and et << 1, the depression of Tc is given by

TcO - Tcl 1 1
0 el pc1< - ) . (2.66)
L [gN(0)] gN(0)

Numerical solutions to Eq. (2.64) with and without mass renormalization
are shown in Fig. 27.
If we leave o and B as free parameters, we can solve Eq. (2.12)

using Eq. (2.61) to obtain (see Appendix K):

N(0)¢(T)

Q(T) = T+ 0pa(D) . (2.67)

1
VS0 (v + %)(1 + ap) + Bp

o(T) (2.68)
where convergence must be introduced in the v sum as demonstrated in
Appendix E. The superconducting transition temperatures are determined
by 1 = gQ(Tc), which becomes

1+ apc 1

gN(0) - apc v30 1 ch
v+

+______
2 apc + 1

(2.69)

This equation also has two solutions (Tc and Tc2)' If (Tco - Tcl)/TCO

1

<< 1, and p << 1, we obtain
cl

T . -T 1 1

= p o + + B » 3z(3) . (2.70)
T Ll ) N1 gN(0)
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Tw /7 Tco

Comparison of the phase diagrams for several_theories.

gN(0) = 0.25, (2akp)Z/T.q = 0.5, and N(O)($)? + S(s+1)/Tq =
0.01; (1) = 0, = 1 (Abrikosov-Gor 'kov type theory);

(2) a =0.5, B=20.5; (3) o =1, B = 0 (Berk-Schrieffer type
theory without mass renormalization); (4) a =1, B = 0 (Berk-
Schrieffer type theory); (5) a = 8 =1
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Numerical results for all temperatures and for several different values

of o and B are shown in Fig. 27.

1. The upper critical field

It is straightforward to calculate the upper critical field, ch, if
we confine our discussion to the dirty limit. Following standard pro-

cedures (34) leads us to an implicit equation for Hc2:

1

¥(T,H_ ,) = Re ] 1 . (2.72)

1 ih DeB
v=0 (\)+2)(l+ap)+6p +m T

As before, h, the internal molecular field acting on the conduction

electrons, is given by

H
gn, —S2—
BT - T,

h = + u B . (2.73)

B

The diffusion constant, D is a measure of the dirtiness of samples. We
depict numerical results in Fig. 28.

The results of this section show that as the inelastic scattering
channel is '"turned on'", the BCS coupling weakens and the effective mass
of the superconducting electrons increases. This causes an overall sup-
pression of the superconducting state which manifests itself by lowering

Tcl’ raising Tc2’ and reducing HcZ(T)'
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c2

Tco

Figure 28.

02 .4 .6 '8 l.o
T/ Tco

Upper critical field vs. temperature. The same parameters
as in Fig. 27 are used here. Additional parameters used in
all 5 curves are: T%/TCO = 0.1, De/21ru§ = 2.0,

N(0)+Tog = 8.6 x 107%, 4aNgJ(J+1) (uggy) 4/ (3T¢o = 0.25,
gJJ(J+l)I/TC0 = 82, Note that as inelastic scattering
increases, HCZ(T) decreases
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F. Discussion

In this chapter we have considered the effects of ferromagnetic
fluctuations -— fluctuations for which the dominant wavenumber is zero --
on the properties of the superconducting state. There are, however,
rare-earth alloys which like to order antiferromagnetically. Experi-
mental evidence (60) indicates that superconductivity and long-range
antiferromagnetic order coexist in some of these alloys. A theoretical
investigation of this phenomenon has been published (61) by K. Machida.

Other theorists (62) have developed models in which long range
ferromagnetic order weakens superconductivity but can coexist with it.
Maekawa and Tachiki (42) have presented a model in which superconductivity
is stabilized by ferromagnetic fluctuations. These latter two phenomena
have not been observed experimentally.

The results of calculations done with the model we have presented
in this chapter agree well with experimental data. In particular, the
reentrant behavior and the "mole-hill" shaped upper critical field
curves demonstrated by many ternary and pseudo-ternary rare-earth alloys

can be explained using the theory.
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III. ANISOTROPIC SUPERCONDUCTORS

A. Introduction

The upper critical fields of materials with anisotropic Fermi sur-
faces have been the subject of many recent experimental investigations
(12-18). 1In some of the anisotropic materials, the HCZ(T) curve displays
positive curvature near TCO and retains anomalously high values as T
approaches zero. Recent experimental work by Orlando et al. (12), for
example, shows upward curvature in the critical field curve of the A-15
material Nb3Sn, and perpendicular field measurements made by Dalrymple
and Prober (13) and others (14-15) on the hexagonally distorted material
NbSe2 show ch exceeding the predicted (24) value for spherically
symmetric materials by ~20% in the low temperature regime. Similar
effects are seen in other (16-18) anisotropic materials.

Theoretical models describing these features should include non-
locality of the superconducting pair state as well as anisotropy in both
the Fermi surface and the pair state. Several years ago, Helfand and
Werthamer (24) showed how to treat nonlocality in isotropic materials
exactly. A short time later, Hohenberg and Werthamer (25) did a quasi-
local calculation demonstrating that Fermi surface anisotropy can cause
upward curvature in HCZ(T) near TcO' Takanaka and Nagashima (26) (TN)
extended the work of Hohenberg and Werthamer by retaining higher order
terms in the nonlocality and by perturbatively introducting gap
anisotropy. The applicability of their (TN) work is limited to the

immediate vicinity of TCO' Teichler (27), using a different formalism,
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found expressions for the first few terms in a cubic harmonic series
expansion of the contributions to HcZ(T) from anisotropy in the Fermi
velocity and the electron—-electron coupling. He obtained results for
all temperatures, but predicted that HCZ(T) could deviate either above
or below the Helfand and Werthamer (24) curve depending on the phases of
the anisotropies of the Fermi velocity and the e-e coupling. (No
anisotropy-induced reduction of the Helfand-Werthamer curve has ever
been seen experimentally.)

In this chapter we extend the Hohenberg-Werthamer (25) theory of
the upper critical field by summing to infinite order the effects of
nonlocality, and by perturbatively including Fermi surface and pair state
anisotropy. We will restrict our consideration to fields applied along
crystal symmetry axes, and will concern ourselves primarily with clean
materials since it is in them that the effects of anisotropy are most
pronounced.

In section B we formulate the theory. 1In section C we describe the
theory appropriate for materials with general Fermi surface anisotropy
but unperturbed pair states. 1In section D we allow both the Fermi
surface and the pair state to be anisotropic and fit experimental upper

critical field data on NbSe2 in the perpendicular field direction.

B. Description of the Theory
The foundations for our theory are described by Hohenberg and
Werthamer (25) and references therein. The assumptions made were that

[N

the transition to the superconducting state is second order (only terms
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linear in the gap in the Gor'kov equation are retained), the electron-
electron coupling is isotropic and weak, the electron scattering centers
are randomly located and nonmagnetic, and the effect of the magnetic
field on the orbital motion of the electrons may be treated in the
semiclassical approximation (63). The Fermi surface may contain only
one band. Although Hohenberg and Werthamer considered only the case
where the Fermi surface anisotropy was small and the pair state was
isotropic, the formalism they developed is sufficiently general as to
allow arbitrary shapes for both the Fermi surface and the pair state.
A brief discussion of the Hohenberg-Werthamer theory is given in
Chapter I.

We begin with Egs. (5) and (11) from Ref. 25, the solution of

which gives HCZ(T):

o0

1 = gN(O)T [sm‘1 - 1/2¢17t " (3.1)
where
o n > > 2n
s = Lf dg N@) ) (-1 <s|(V '") |s> . (3.2)
w ~ ~
|o] n=0 2w

In Eqs. (3.1)-(3.2) g, N(0), 1/t (En|u|2), N({§), and v are respectively
the BCS coupling constant, the average density of states at the Fermi
surface, the electron scattering rate (or the product of the impurity
concentration and the square of the impurity scattering amplitude), the
density of states at the Fermi surface in direction 4, and the Fermi

+ + . 3 .
velocity. Furthermore, 7 = -iV - 2ek is the gauge—invariant momentum
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operator acting on the pair state |S> (described more fully later), and
w = w, + sgn wv/(ZT) is the Matsubara frequency renormalized by impuri-
ties. As usual, T is the impurity scattering time, w, = (2v + )T

(v = integer), e = Iel, and K is the magnetic vector potential. We
remark that Sw is the nonlocal pair propagator in the ladder approxima-
tion for the scattering, and Eq. (3.1) includes the usual vertex
renormalization. Anticipating isomorphism with the harmonic oscillator
problem (24,64), we choose H = (0,0,-H), and k= (0,-Hx,0) where the z
axis may be any one of the three crystal axes. As always, units are

chosen such that # = kB =c = 1.

By inserting |2vl+ 1] - |2v1+ 1] in the v sum in Eq. (3.1) and
introducing the Debye frequency cutoff in the first of these sums in the

usual manner (see Appendix E), Eq. (3.1) becomes

- -1
T -1 1 1
T T ) T[ S T J [2v + 1] (3.3)

V==—00

St

where TcO = 2wa/n exp (gN(O)) is the zero-field transition temperature,
y = 1.781 is the exponential of Euler's constant, and wh is the Debye
frequency.

The equations we have written so far are formally identical to those
in Ref. 25. We will extend their scope by deriving expressions for Sw
which are valid for all temperatures and for arbitrarily shaped single-~
band Fermi surfaces (section D), and by considering the modifications to
Sw resulting from the inclusion of anisotropy in the superconducting

pair state (section D).
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C. Anisotropic Fermi Surface

The nonlocal contributions to Sw for materials with distorted Fermi
surfaces but undistorted pair states can be summed analytically to
infinite order. Following Helfand and Werthamer (24) we initially take
the pair state ]S> to be the lowest eigenstate of the harmonic oscillator
operator n2/2m. We denote this lowest state by |0>. In real space, the
wavefunction of this state is A0(¥) = <?|0> = exp(—echxz). The system
is quantized by setting ﬂ_|0> = 0 where LU + iﬂy, and establishing
the commutation relations [ﬂ+,nz] = [n_,nz] = 0, [n_,n+] = 4eHC2 = e,
For fields applied along crystal symmetry axes we expect the pair state
to have no momentum parallel to the field, so ﬂz|0> = 0.

The expectation values from Eq. (3.2) of the form <0|(3 . ?)2n|0>
can be determined by establishing a recursion relations. In Appendix G

we show that

©@-DH> = vyve = vl (3.4)

(vi = %‘-(vX + ivy)). Furthermore (see Appendix H),
Q|G - HIo> = (20 + vy ed|E - D> (3.5)

so by induction,

0| - D2o>

(vyv ) e (2n - 11! (3.6a)

(v, 2em )*(n - D11, (3.6b)

n
c2)

The sum in Eq. (3.2) then becomes
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SN RS At S
) (-1) <o|("~ ) o> = 1+ § (-1D%a%@2n - 11! (3.7)
n=0 2w n=1
= V/n z exp(zz)erfc(z) (3.8)
_ -1/2 2 ~2
where z = (2a) > a=v, eHc2/4w » and erfc(z) is the complementary

error function.

Notice that the perturbation series (Eq. (3.7)) treating the effects
of nonlocality is asymptotic. If one attempts to evaluate it by
retaining increasingly higher order terms (65) he finds that his
approximation to HCZ(T) improves in an increasingly narrow neighborhood
of TcO’ but diverges at increasingly higher temperatures. To obtain
results valid over the entire temperature range, this series must be
summed to infinite order (Eq. (3.8)).

When Eq. (3.8) is substituted into Eq. (3.2) we have an integral
over the Fermi surface which must in general be evaluated numerically.
This is done by picking a particular v value and evaluating the exact
form of the n sum [Eq. (3.8)] for each of a dense series of points on
the Fermi surface. This procedure is repeated for enough v values that
the v sum is evaluated reliably. When A = 1/(2chor) + 0, ch and T are
first estimated then determined self-consistently. Numerical solutions
to Eqs. (3.2) and (3.3) assuming a spherical Fermi surface and various

2

values of A are shown in Fig. 10, Here t = T/T h = echsz/(ZnTco) ,

c0?

These solutions are numerically identical

and h(t) = h(t)/(-dh/dt

t=1)‘

to those in Ref. 24 and are included here for future comparisons. (In

Appendix I we show analytically that when the Fermi surface is spherical
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and A = 0, our more general equations defining HCZ(T) reduce to those of
Helfand and Werthamer.) The slopes of all curves in Figs. 10, 30-34 have
been fixed to be -1 at t = 1. Table 1 contains the actual slopes at

t = 1 for each of these curves.

Fermi surface anisotropy enters the calculations through the quanti-
ties N(q) and vl?n(ﬁ). For materials with hexagonally symmetric distor-
tions (such as the transition metal dichalcogenides with the field
perpendicular to the layers) we model the Fermi surface by setting
Ivl(a)| = vp(1 + b (6¢)) + sind and N(3) ~ 1/|v(q)|, where 6 and ¢ are
the polar and azimuthal angles respectively. Figure 29 shows how cross

sections of the Fermi surface would appear for b, = 0.0, 0.15, 0.3, and

6
Fig. 30 shows the upper critical field curves for materials with
hexagonally distorted Fermi surfaces. We observe that increasing Fermi
surface anisotropy causes the h*(T) curve to lie increasingly above the
Helfand-Werthamer curve; for b6 = 0.5 the upper critical field is nearly
linear in temperature. Although we have plotted results only for
hexagonally symmetric Fermi surfaces, identical results are obtained with
vl(ﬁ) = Vg sind(1l + b cosné) for all n. We therefore conclude that it
is the magnitude and not the shape of the Fermi surface anisotropy that
determines the enhancement of HCZ(T)'

Since impurity scattering tends to smear out the Fermi surface, we
expect that increasing impurity scattering should drive the HCZ(T) curves
towards the isotropic dirty limit curve of Helfand and Werthamer.

Figure 31 shows the results of numerical calculations with b = 0.4 and

A =0.0, 0.5, 5.0, and 50.0 & », (When A = 1.0, the electron scattering



ce. bg = (1) 0.0;
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10

0.5 10

Figure 30. Upper critical fields for materials with distorted Fermi
surfaces. A = 0.0, bg = (1) 0.0; (2) 0.15); (3) 0.3;
(4) 0.4; (5) 0.5
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h* 0.5
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Figure 31. Upper critical fields for materials with distorted Fermi
surfaces and impurity scattering. bg = 0.4, A = (1) 0.0;
(2) 0.5; (3) 5.0; (4) 50.0



80

0.5 10
t

Figure 32. Upper critical fields for materials with distorted Fermi
surfaces and distorted superconducting pair states.
A = 0.0, bg = 0.4, ag = (1) 0.0; (2) 0.15; (3) 0.3
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Figure 33. Upper critical fields. ¢ measures the rotation of the pair
state anisotropy relative to the Fermi surface anisotropy.
A =0.0, ag = 0.15, bg = 0.4, ¢g = (1) 0.0; (2) /25 3) «
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0.5 1.0

Figure 34. Upper critical fields for ellipsoidally, cubicly, and hex-

agonally distorted Fermi surfaces and pair states. A = 0.0,
0.0, a, = b, = 0.0 except: (1) b, = 0.4 (any n); (2)
0.15, by = 0.4; (3) a; = 0.15, b, = 0.435 (4) ag = 0.15,
0.4

nn u
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Table 1. Slopes (-dh/dt + 0.2%) at t = 1 of the curves in Figs.
27, 30-34
Curve
Figure 1 2 3 4 5
27 0.711 1.055 3.70 31.8
30 0.711 0.722 0.749 0.781 0.829
31 0.781 1.151 4,32 34,6
32 0.781 0.627 0.405
33 0.627 0.627 0.627
34 0.781 0.669 0.672 0.627
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length is roughly equal to the pair coherence length.) We note that the
A = 50.0 curve is essentially identical to the isotropic dirty limit
curve of Helfand and Werthamer. However, for A = 5, which describes
relatively dirty materials, h*(t) for b = 0.4 still lies above the
isotropic clean limit curve. A material must be quite dirty before the

effects of Fermi surface anisotropy vanish completely.

D. Anisotropic Pair States

It is expected that the anisotropy in the superconducting pair state
will be strongly dependent on the anisotropy in the Fermi surface as well
as on impurity scattering, temperature, and perhaps even the field.
Takanaka and Nagashima (26) devised a scheme for relating the pair state
anisotropy parameters a,, to the Fermi surface parameters, but their
scheme relied on the assumption that the upper critical field satisfied
chZ/Ba;n = 0. (We know of no physical motivation for making this
assumption. It does not necessarily imply that the free energy will be
a minimum.) Their resulting expressions for a, and a, diverged at low
temperatures and are therefore unacceptable. In our model the pair state
anisotropy parameters are considered to be free and independent of the
Fermi surface, but in practice are always taken to be smaller than the
analogous Fermi surface anisotropy parameters.

In a manner similar to that proposed by Takanaka and Nagashima (26)

we write the perturbed pzir state as

2m

oo -1/2 © am
s> = (1+ I la, |2) (1+ ) —?-“‘—*—m)|o> . (3.9)
m=1 " m=1 V2m! ¢
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Here, ags for example, is a complex parameter which determines the
magnitude and phase of the hexagonal distortion of the pair state. 1In
much of this section we will consider only hexagonal distortiomns.

With lS> taken to be

6
-1/2 a.m
|s> = ( 1+ |a612 ) (1 + ——9—15-)o> (3.10)
6! €

we find that the expectation value in Eq. (3.2) can be broken into three

separate terms.

> > 2n 2
<s[< -7 ) |s> = A+ |a|B + |ag|"C (3.11)
2w
where
> > 2n
A = <o|( u ) lo> = a"C2n - 1)1 (3.12)
20
1 ag 3 N4 2n 6
B = 3 <D|( ) w+|0> + h.c.
/6! ¢ |a6| 2w
2 cos(69 + ¢6) n
= a P(n) (3.13)
/61
and

= ¢r @ Q(m) . (3.14)
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. . , 2 ~2
Here, ¢6 is defined by ag = |a6|exp(1¢6), and as before, a = v, eHC2/4w .
The functions P(n) and Q(n) are found by making repeated use of Eq. (3.6)

and the commutation relation [n_,n+] = ¢, and are given by

P(n) = (2n+5)!1! - 152n+3)!1! + 452n+1)!! - 15(2n-1)1!! (3.15)
forn =2 3
= (0 otherwise
Q(n) = (2n+lL)!! - 30(2n+9)!! + 315(2nt7)!! - 1380(2n+5)!!
+ 2475(2n+3)!! - 1350(2n+1)!! + 225(2n-1)1!! . (3.16)

The derivation of Egs. (3.11)-(3.16) is given in Appendix J. Each of the
sums over n of the terms in Eqs. (3.12)-(3.14) is essentially identical
to the sum in Eqs. (3.7) and (3.8) and can therefore be evaluated
exactly. Numerical solutions to Eq. (3.3) with IS> hexagonally distorted
as given by Eq. (3.10) are shown in Fig. 32. We observe that even small
amounts of pair state anisotropy cause positive curvature in h*(t) near

t = 1, and increased values of h*(t) for lower temperatures. Further
calculations indicate that as impurity scattering is increased, the
effects of fair state anisotropy vanish in a manner nearly identical to
that shown in Fig. 31.

Expression B [Eqs. (3.11) and (3.13)] is the coefficient on a term
linear in the pair state anisotropy. By changing the phase of ag (i.e.,
by rotating the pair state anisotropy relative to the Fermi surface
anisotropy) we can estimate the contribution of this linear term to

*
h (t). Numerical results are shown in Fig. 33.
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Although the model used by Teichler (27) is quite unlike the model
developed here and the approximations he made cannot easily be compared
with ours, it is possible to contrast some of his results with ours.
First, our h*(t) curve lies on or abové Helfand and Werthamer's (24)
curve for h*(t) in isotropic materials regardless of the relative phase
of the Fermi surface anisotropy and the pair state anisotropy (Fig. 33).
Teichler's h*(t) curves can fall below Helfand and Werthamer's curves
for some reasonable values of his parameters. Secondly, we find that
terms linear in the pair state anisotropy (term B, Egqs. (3.11) and (3.13))
contribute significantly to h*(t) at low temperatures. Teichler's
formulism contains no such linear terms. Although parametrized differ-
ently, many of our other results are, however, qualitatively similar to
Teichler's.

If the crystal symmetry perpendicular to the field is not hexagonal

but either ellipsoidal or cubic, the pair state is described by

2 4
asm a,m
> = @+ lay)?+ g, D1+ 2y A N> L Gan
2 4 21 e Vil &2

The sum over n from Eq. (3.2) can now be broken into six separate sums
similar to those in Eqs. (3.12)-(3.14) (see Appendix J). Numerical
results depicted in Fig. 34 show that ellipsoidal and hexagonal pair
state perturbations cause significantly more enhancement of h*(t) than
do cubic perturbations. The reason for this is not understood.

In Fig. 35 we fit our theory to experimental data (13) on 2H—NbSe2,

*
a material with hexagonal symmetry in the layers. Here a = TcOm /eFm
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Figure 35. Fit to experimental H,p data (13) (+) on 2H-NbSe,. X = 0.0,
ag = 0.12, bg = 0.34, ¢g = 0.0, Tog = 7.06 K, a = 0.071
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*
is a free parameter which sets the scale of ch, and m 1is an average

effective mass of the conduction electrons. The choice of b6 = 0.34 is

consistent with Fermi surface calculations done by Wexler and Woolley

0/2 = 0.15 for NbSez. If we

were to fit the data with X # 0, b6 and ag would be slightly larger and

(66). Prober et al. (67) estimate XA n €

a would be slightly smaller.

E. Discussion

The model we have presented can be used to calculate the effects of
Fermi surface anisotropy and pair state anisotropy on the upper critical
fields of superconducting materials. It includes the effects of non-
locality to all orders in perturbation theory giving results which are
valid over the entire temperature range. We demonstrated that increasing
Fermi surface anisotropy causes ch to become more nearly linear in
temperature whereas even small amounts of gap anisotropy cause positive
curvature in HCZ(T) near TcO' All effects of anisotropy are diminished
by increasing the impurity scattering rate. The model successfully
describes experimental upper critical field curves in many different

anisotropic superconductors.,
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IV. CONCLUSIONS

We have presented discussions of . two different models used to
describe the upper critical field curves in three different types of
superconductors. The models were essentially microscopic in nature, and
incorporated most of the effects known to influence electrons in the
superconducting state.

In Chapter II we focused our attention on the termary and pseudo-
ternary rare-earth superconductors which leave the superconducting state
and reenter the normal state at low temperatures. The Hamiltonian we
used in the model explaining this peculiar feature contained terms
expressing the interaction of the rare-earth local magnetic moments with
the superconducting electrons and with other local moments. The resulting
equation which gave HCZ(T) was formally identical to the equation normally
encountered in theories describing type II superconductors, but con-
tained a pair breaking term not found in the usual theories. This unusual
pair breaking term diverged logarithmically as the temperature of the
system approached the Curie temperature, T, and therefore forced the
system back into the normal state at temperatures slightly above TM.

In Chapter III we examined how Fermi surface and pair state aniso-
tropy would affect the shape of the upper critical field curve. Both of
the anisotropy effects were perturbatively inserted into a model which
described HCZ(T) in materials with spherically symmetric Fermi surfaces
and unperturbed gaps. The results of our calculations showed that

increasing Fermi surface anisotropy caused HCZ(T) to become more nearly
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linear in temperature whereas even small amounts of pair state anisotropy
caused positive curvature in HCZ(T) near TcO' All effects of anisotropy
were seen to be diminished by increasing the impurity scattering rate.
The theory was fit to experimental data of NbSez.

We remark finally that in cases where experimental data existed,
excellent agreement between theory and experiment could be obtained with

very reasonable values of the theoretical fitting parameters.
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VII. APPENDIX A

There are several books (29,36) containing excellent descriptions
of the effects of random impurity scattering on the single electron
Green's function. The description given here is very similar to the
description found in Ref. 29.

We begin by writing the integral equation satisfied by the Green's

function when impurities are present:

%) + 2n 7 1 @) de"u(*#E">exp[i<E-3"> - 1]

a

G(3,p',0) = 8(3-p")G

(", p'w) . (A.1)

In Eq. (A.1) ?; is the position of the a-th impurity, and E is the

momentum transferred to the lattice by the scattered electron. A factor

u(@exp(ig + T )6(w - w") (A.2)

is associated with each impurity vertex. The Feynman diagram corre-
sponding to Eq. (A.l) is shown in Fig. 6a.
We aren't concerned with the exact solution of Eq. (A.l1). Instead,

we average over impurity locations to obtain
> > > >
G(p,p',w) = G(p)S(p - p'") . (A.3)

Three types of terms in the series shown in Fig. 6a need to be con-
sidered. (1) Averaging over the positions of individual scattering sites

leads to

u(q)exp(iq - ?a) u(0)
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which is constant and serves simply to renormalize p. 1In the Born
approximation we can therefore disregard all diagrams containing any
scattering site only once. (2) Terms containing successive scattering
from any particular site contribute a factor

AL Rl (8.4)
(2m)

to the self energy of the Green's function. Diagrams like 6b, 6c¢c, and
6d must therefore be retained. (3) Other diagrams, such as those shown
in Fig. 6e, contain crossed impurity scattering lines and can be shown
(29) to be smaller than those of type (2) by a factor (EFT)—l << 1, AGD
finds that by considering only diagrams of type (2), the main contribu-

tion to I can be written as

- 1 8sgn w
) ——&——ZT (A.5)

where

1 nmkF

L ore
T (2m)

and 9 is the angle between p and p'.

With the anzatz that ¥ is purely imaginary we obtain

; -1
G(p) = [w - &) - i—sg%i”—] (A.7)

for the real time Green's function, and

-1
6(p) = [% - &) - i%‘;—‘*—’] (A.8)
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for the temperature Green's function. Green's function of the form given

by Eq. (A.8) are used frequently in the thesis.
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VIII. APPENDIX B

Abrikosov, Gor'kov, and Dzyaloshinski (29) (AGD) show that in the
absence of any scattering, the various equations of motion describing a

superconducting system can be written as a single matrix equation:

2
9 v
Y + 2m tu A
2
—A* J%'+ %ﬁ +
G(x-x") F(x-x"') 1 0
. -
F (x-x'") -G(x'-x) 0 1
where
<T_ (b, Db(x,TH>
F(x,x') = 35 (B.2)
. < @0V T 9>
F (x,x") = 5 (B.3)
~<T_W(x,0Y (x',7)8)>
G(x,x") = S (B.4)
and
* +
A = gN(O)F(t = O+) , AT = gN(O)F (t = 0+) . (B.5)

+
As always, g is the BCS coupling constant, y and ¢ are the Fermion
field operators for the electrons, T is the imaginary time, and 8 is
given by

T
8= T, exp[- f dt' J dr(w+(w+w>w)] (B.6)
0
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+ >
where ¥ and § are evaluated at r and t°'.
The superconducting transition temperature in such a system is

described (36) by the scalar equation (see Appendix E)

T -1 0
—1n<——) = ) [|2v+1|7" -5s"] (B.7)
TcO v w

where sg is the lowest eigenvalue of the operator Sg given by

0 = 1 [_w de G_(p,w)G_ (-p,w) . (B.8)

The potential describing normal and spin-orbit scattering has the

form
vEE) = ] en™® f 4% a3 expliP - G(HEY) -R))
i
+ iq - (¥-¥')](u1+1u2§xa =) (B.9)

where Uy and u, are the normal and spin-orbit scattering strengths

respectively, R, is the location of the i~th impurity and ‘0 is the Pauli

i
spin matrix. When the momentum of an electron changes from 3(= ﬁkF) to
a(= akF) it generates an orbital magnetic moment proportional to 31{3.
The orbital moment couples to the electron's spin with a strength pro-

. ~ ~ >
portional to pxq * 0.

The scattering potential described by Eq. (B.9) affects the differ-
ent spin components of the Green's function in Eq. (B.1l) differently.
WHH (36) show that if one wishes to write the generalized version of

Eq. (B.1l) (i.e., including spin orbit effects), he must use 4 x 4

matrices. The additional matrix indices label the spins of the electrons.
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The results of the calculations performed by WHH show that when spin-

orbit scattering is considered, '1‘C is given by

S P S [|2v+l|-1——]=trjdﬁs 1 (B.10)
T 2 W
cO Vv
where
S 3) = SOIL + hN(O)/T | dp'(u, +iu pxp' + 3)S (') (u, - iu pxp' * 3)
W ® ) ® 171y,

(B.11)

tr means the trace over spin indices and n is the number of impurities

per unit volume.

In the limit T << Teo (a limit we expect most physical systems to

satisfy), Eqs. (B.10) and (B.l1ll) become

—ing— = Jil2v+1|Tt -2 ers ) (B.12)
cO v
where
%-tr s, = {[Re((s(f)o))_l - (T—l --% Tsonl)/ZﬂT)_l]_l - %‘(ZHTTSO)_l}_l
(B.13)

In cases where the Fermi surface is spherically symmetric, Egs.

(B.12) and (B.13) become Egqs. (1.28)-(1.31) in the text. In Chapter IV
(0)

we use Eqs. (B.12) and (B.13) but with N

describing the pair state

of a quasi zero-dimensional superconductor.
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IX. APPENDIX C

Equation (2.13) can be written as

2
Y(k,w) = (-% ) i — 3 J k' Gk, 0 xER w0 (c.1)
w' (27)

where

1

Gk, w) A ) (€.2)
Electron-hole symmetry requires that
I(w) = -I(-w) . (c.3)

If we concern ourselves only with the imaginary part of I (and, as
is standard procedure (29), implicitly absorb the real part of I into u),

Eq. (C.1l) becomes

o = 1) e p iy [ e smerdel s lswnly
w' (2m) g+ o'+ ]z
x(|kpk!'| u=0") (C.4)
where we have defined x(|q|,w) by
xlalw = [8Gw (c.5)

Rewriting 1/(2m)° | a3k’ as N(0) [7 ae

Kk in Eq. (C.4) and performing the

d¢, integral.leaves us with

k

[

2
$(w) = -iw(-% ) ™) ] sen w' X(kgk'|,u-u") (C.6)

w"'=—
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Electron-hole symmetry requires that X(q,w) be an even function of w.

We can therefore rewrite Eq. (C.6) as

\2 ' _
(w) = —inT<%) N(0)w wZ' e(l“’]I;II” D x(kgk |,0") . (C.7)

Equation (C.7) is identical to Eq. (2.14) in the text.
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X. APPENDIX D

With x(q,w) = x(q)dw 0° Eqs. (2.14), (2.24c), and (2.27) become

2
] = ’iN(O)(%) 7T x(q) sgn w (D.1)
or
1 = 2i I sgn w (D.2)
w(T) -~ g :
1\? -
= 27T N(O)(-Z-) x(q) (D.3)
As before (Eqs. (C.5) and (2.15)),
X = = | deg x@ 4
x(@ = q x(q . (D.4)
With x(a) of the Orstein-Zernike form (Eq. (2.24c))
x(@ = SE+DL_ ©.5)
T - TM + aq
and
q = |k—k'l = ZkF sin( %—) . (D.6)
Eq. (D.3) becomes
2 1
1 _ V"L S(s + 1)T
T N(O)( 2 ) i J-l 2nd cos 8 5 .

M

T -T. + a2(2kFa sin %-)

(D.7)
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Equation (D.7) can be rewritten as

1
LE ———”Néo)z 12 5(s + )T J dt L 7 (D.8)
- T
(T) 8a"k -1 M
F 1-t+——s
2a kF
or as
1 I.\?2 T T - T, + (2ak1_,)2
= 21rN(O)( —) S(s + 1) 3 ln( ) (0.9)
T(T) 2 (2akF) T - TM

Equations (D.2) and (D.9) are identical. to Eqs. (2.28)-(2.31) in the text.
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XI. APPENDIX E

Equation (2.33) is of a form frequently encountered in calculations
involving superconductivity. Although the sum over v is formally diver-
gent, we can invoke the physical constraint that‘the particles under
consideration (paired electrons) only interact as described by Eq. (2.33)
when their energies are less than the Debye energy, and we can therefore
terminate the v sum at w, = wp. A mathematically-gentle method of
terminating the sum, and the method which preserves the small, but func-
tionally important logarithmic tail of the sum, involves adding and

subtracting 1/(v+1/2) from the r.h.s. of Eq. (2.33), and introducing the

Debye cutoff in only the first of these additional terms. We then have:

N ©
1 _ 1 1 _ 1
NO) o suT (\,+;+p \,+l) (E.1)
g 5 Lo L
where
N+ Drt= e | (£.2)
Using the relationships (68)
n 1 1
I zg-1 - 7@+lam +in2 (E.3)
k=1
and (69)
- v 1 _ 1
Ve s -C—kzo(x+k k+1) (E.4)

- C = Euler's constant = 0.577...
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leads to
1 w
_ D . 1 _ o L
~ N 0) +C+21n2+ 1n 5T = u( 0 + pc) ¥ ( 5 )
or
T
0 _ 01 ol
In — = lP(2+pc) 11)(2)
where
_ exp(C + 2 1n 2) _ 1
TcO 2w Yp €X¥P gN(0)
T = 1.13 w, ex - 1 _
c0 : p €¥P gN(0)

Equation (E.6) is the same as Eq. (2.34) in the text.

(E.5)

(E.6)

(E.7)

(E.8)
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XII. APPENDIX F

The bare two particle propagator is given as the product of two

unperturbed normal state Green's functions

0 -> n0 > n0 -
Q_o’o(r,w) = G_o’_c(r,—wv)Gw(r,wv) (F.1)

where, as in Eq. (1.11), the normal state Green's functions are

no0 > _o-m _f. lo]r
Goo(r,w) = orr exp( 1kFor(sgn w) - Ve ) (F.2)
with
~ sgn
w = + 51 (F.3)
1
L - 2mN(O)n|ul? (F.4)
T
1
- oh
Fo
Using the relation
m__ 7N (0)
2ty kFr (F.6)
leads to
2 . ~
Q@ (e, = (M) exp { =239 hy(sgn w) =210lx . (F.7)
-0,0 kFr Vg Vg

In reciprocal space we have
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it

Qgc’o(q,w) J a>F Qg,_c(r,w)exp<-13 - 1) (F.8)

( 7N{(0) )2 o f dr (e—iqr _ eiqr)

kF ~-iqr
. expd - ( 2ich sgn w ZLwl )r . (F.9)
v F

Performing the integration leads to

3.2
4T N(0) qv
0 tan ! ( F ) i (F.10)

Q (qw) = ———F5— .
=050 qu2 2|w| + 2ioh(sgn w)

. . -1
Retaining the first two terms in a Taylor series expansion of tan ~ (x)

gives us

1 1 qva2

0 -1 ~ .
[ ()] = (|o] + ich sgn w) {1 +— —
Q"O,G 4,0 N (0) 12 (|w| + ich sgn w)2

(F.11)
Although we have not written our formuli in an explicitly gauge-invariant
manner, replacing q2 by (—i$¥ - ZeK)2 will make the equations gauge-
invariant (35). (The factor of 2 multiplying ek appears because q is
the sum of the momenta of two electromns.)
Vertex renormalization in the "ladder approximation" is shown

schematically in Fig. 8 and is given algebraically by

Uy (0 = 102 (q,0) - (2neyN(0) 17 (F.12)
-1
1 qvaz
= nN(O)[ |w| + ich sgn w + — i ]
12 |w| + 5= + ich sgn w

271
(F.13)
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In the dirty limit, l/'r1 >> T, h, Eq. (F.13) becomes

Q (q,0) = N(0) 75 . (F.14)

050 |w| + ich sgn w + %—11 q Vg

We now want to replace q2 by the lowest eigenvalue (i.e., most stable
. 2 _ v o 2
value) of its gauge-invariant replacement 7~ = (-1 r 2eA)” where
X = (0,Hx,0). The lowest eigenstate of the harmonic oscillator operator

2,
T is

Ax) = exp(—esz) . (F.15)
and
ﬂzA(x) = 2eH A(x) (F.16)

Because of impurity scattering, the true ground state of the system will
be slightly different from exp(—esz). To within the Born approximation,
however, we may replace qz by 2eH in Eq. (F.l1l4). The basic equation

(e.g., Eqs. (1.15) and (1.18))

l:l - gl ) Q, sla= w,w)]A(x) = 0 (F.17)
v b
becomes
1
1 = gN(O)nT J T 5 (F.18)
v |w| + ich sgn w +g (2eH)Tl Vg
As shown in Appendix E, Eq. (F.18) can be written as
2
T 1 1 ich eT, Vo H
l“'_r:a = Re[w(_f)_w(f+21rT+ 6nT )] (F.19)

Equation (F.19) is formally identical to Eq. (2.44) in the text.
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XIII. APPENDIX G

The wavefunction AO(?) introduced in Chapter III is defined to be
the lowest eigenfunction of the gauge-invariant free particle operator
2
q~/2m where 3 = (—i_V>r - ZeK). We use H = (0,0,-H), and choose the gauge

where & = (0,-Hx,0). AO(?) satisfies the Schroedinger equation.

2—1m (-iV - ZeK)ZAO(?) = E, AO(}*) (G.1)
or
;—i [ax2 - (2eHx)? + ayz + azz]Ao(?) = By 8,(®  .(6.2)

Eigenfunctions of this equation are of the form

AO(?) = u(x) exp(ikyy + ikzz) . (G.3)

0. AO(?) then satisfies the

The lowest eigenvalue occurs when k.y = kz

harmonic oscillator equation

[- % axz + zl—m (2etix) 2 :IAO(X) = By 8,0 . (G.4)

Solutions (70) to this equation are known to be hermite polynomials
multiplied by exponentially decaying tails. The lowest eigenvalue is

E0 = 2eH/m. The eigenstate corresponding to this eigenvalue is

Ao(;) = exp(—esz) . (G.5)

We now establish some basic relationships involving Qs qy, 9,5

and AO. If we define
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Ay = 9 * 14 , (G.6)
then
q_ AO(?) = (-i3_ - i2eHx)A, (G.7a)
= (i2eHx - iZeHx)A0 (G.7b)
= 0 . (G.7¢)
Furthermore,
la,,9.1 = la, + 95,9, - iq/] (G.8a)
= _Zi[qx’qy] (G.8b)
= -4eH = -¢ (6.8¢c)
It is obvious that
la,,9,] = [a_,q,] = 0 . (G.9)

The equations we have written so far in this appendix have been in
the language of first quantization. It will prove convenient to shift
into the language of second quantization. We define the state vector

whose projection in real space is wo(x) to be labeled by |0>, so

-+ 2

<r|0> = wo(x) = exp(-eHx") (G.10)
and define second quantized momentum operators as

T = JdBr F@ae, v® (G.11)

e o
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Noting Egqs. (G.6)-(G.9), we write

L = L + iny (G.12)
m_[0> = <ofm_ = 0 (G.13)
[ﬂ+,ﬂ_] = -4ed = -¢ (G.14)
[ﬂ+,ﬂz] = [ﬂ_,ﬂz] = 0 . (G.15)

It follows that

> > 2 _ 2

<0|(v . ) |0> = <D|(vzﬂz + Vo + vyﬂy) |0> (G.16a)

_ 2
= <D|(vx7rX + vyny) ]0> (G.16b)

2
= <0l(v+n_ + v_ﬂ+) |0> (G.16c)

2 2 2 2

= <0|v+n_ + V+V_(ﬂ+ﬂ_ + w_n+) + v_w+[0> (G.16d)
= v+v_<D|w_w+|0> (G.16e)
= v,v<0le + m n_|O> (G.16f)
- e = v2eH (G.16g)
= v,v_ vieH , . .1lé6g

In going from Eq. (G.16a) to (G.16b) we have imposed the constraint

that nz|0> = 0, and in time Eq. (G.1l6c) we introduced

v, = -% (v. * ivy) . (G.17)
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Equation (G.1l6g) is the desired result and is identical to Eq. (3.4) in

the text.
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XIv. APPENDIX H

In Chapter III we need to evaluate terms of the form

_ >  >2n
A, = L0l - mTo> (H.1)
Consider
> > 2n+2
Ay vy = <O|G - T 0> (H.2a)
> > 2n - > 2
= 0w - M - Mm|o> . (H.2b)

Since only terms with equal numbers of T, and 7_ operators survive in

the expectation value, Eq. (H.2b) can be written as

+1 2 2
Ay to (v v )0 (my + ), 4w ) [0> (H.3a)
+ 2 2
= "oy + 1)@ ) (H.3b)
From the commutation relation [ﬂ+,ﬂ_] =z -¢ it follows that
[(n+ + n_),n+] = g . (H.4)
Therefore,
2n 2 2n-1 1
<D|(w+ + 7)) ﬂ+|0> = <D|(n+ + 7)) ﬂ+(ﬂ+ + 7)) ﬂ+|0>
2n-1
+ e<0(m, + w ) o> (H.5a)

<0[(n+ + ﬂ_)zn—mﬂ+_(ﬁ+ + w_)mw+|0>

2n-1

+ me<0l(ﬂ+ + 7)) ﬂ+|0> (H.5b)
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2n 2

<0|(1r+ + 7)) 1r+|0> = <0|1r+(1r+ + n_)znﬂ+|0> + 2ne<0|(11+ + n_)2n|0> (H.5¢)

20e<0| (m, + i N [ (H.5d)
And
Of(n, + 1) w Jo> = e<0l(n, + w )PP o> . (H.6)
Combining Eqs. (H.2a), (H.3b), (H.5d), and (H.6) yields
@+ H72 0> = (20 + Devw 0@ - HPo> (H.7)

which is identical to Eq. (3.5)



138

XV. APPENDIX I

If A = 0 and the Fermi surface is spherically symmetric so

N(q) = 1/47 and

n
~ ~ 2n  _ 2n 2 n!

J dq N(@) v,© = vp G OIT e (I.1)

Egqs. (3.3, (3.7), (3.8) become
2 n n
T o 2T n echvF 2!
1n — = '2 — 7 (-1 ( 5 ) (2n - 1! (1.2)
TCO =00 le n=1 4y (2n + l) 1
or
2n
00 o 1/2
_ 1 _ 1 _1\0 (2h) J n!

In(t) = =z_w 12\) T ll lz\) T 1| nZO (-1 [ t(2v + 1) 2n + 1

(1.3)

where t and h are defined in Chapter III. Equation (I.3) is identical

to Eqs. (24) and (36) in Ref. 24.
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XVI. APPENDIX J
We found in Appendix H and Chapter III that
O, + 1 )%o> = (2 - D . (3.1)

In this appendix we evaluate terms of the form

>, 2n
<s|( T ) |s> (J.2)
2w :
where
2m
o ~-1/2 © g, T
s> = (1+ ) |32m|2) [1+ ) —2“‘-—1“;]1» . (7.3)
m=1 m=1l V2m! ¢
Typically, only a few of the azm's will be nonzero.
For simplicity, we will set v, = v_ = 20 = 1 in this appendix., It

+

is trivial to reinstate factors of Vs Vs and 2w at the end of the

calculations. Furthermore, we will drop the state label |0>. Unless
otherwise specified, all expectation values will be taken in the ground

state. We begin by considering &iagonal terms of the form

DN = <ﬂ§(ﬂ+ + n_)Zn“E> . (J.4)
From Eq. (J.1) we know that

DO = <(m, + 7)™ = (2n -1t (3.5)

Furthermore,



140

2 X 2 '
D1 = <n_(w+ + 7)) nw+ > = <(ﬂ+ + Tr_)(ﬂ+ + 7)) n(ﬂ+ + 7 )> (J.6a)
= (@n+ 11100 (J.6b)
Similarly,
_ 2 2n 2
D2 = <ﬂ_(n+ + 7)) w+> . J.7)

A simple exercise reveals that

n> = w (n, o on)> (3.8a)
= [(n, + 1) = w_n, 1> (3.8b)
= [(m + vr_)2 - el> (J.8¢c)
Similarly,
o= <+ -el . (3.9)

Combining Eqs. (J.5) and (J.7)-(J.9) yields

D2 = e™2[(2n + 3)11 - 2(2n + DIt + (2n - 1!!'] . (J.10)

It is conceptually simple, but computationally cumbersome to
repeat this procedure indefinitely. We quote some of the intermediate

results:

2nwi>

D3 <h3(ﬂ+ + 7))

"3 2n + 5)11 - 6(2n + 3) 1t + 9(2n + 1)1!] (3.11)
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- 4 2n
D4 = <h_(ﬂ+ + 7)) ﬂi?

en+4[(2n + 7)1 - 12(2n + 5)!! + 42(2n + 3)!! - 36(2n + 1)!!

+ 9(2n - 1)!1!] (J.12)

D5 = <w§(n + ﬂ_)znn5>

e™2[(2n + 9)11 - 20)2n + 7)1! + 130(2n + 5)!1 - 300(2n + 5)!!

+ 225(2n + 1)11] . (J.13)

The final diagonal term with which we will concern ourselves is

- 6 2n
D6 = <ﬂ_(ﬁ+ + ) ﬂ$>
= En+6[(2n + 11!t - 30(2n + 9)!! + 315(2n + 7)!! - 1380(2n + 5)1!!
+ 2475(2n + 3)!! - 1350(2n + 1)!! + 225(2n - 1)!!] . (J.14)

It is also necessary to evaluate some of the off-diagonal terms.

Wwith |S> given as in Eq. (3.17) by

2 4
a, m a, w
s> = (1+ Iaz|2+ |a4|2)(1+ 22 4 2 E )|o> (3.15)
21 ¢ /41 €
we have to evaluate the three off-diagonal terms
FO2 = <(m, + = )Znﬂ2> = <n2(ﬂ + 7 )2n>* (J.16)
+ 7T Ty =
FO4 = <(n, + 1) %> = <lr, + )P (3.17)

and
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_ 2 2n 4y _ 4 2n_2.*
F24 = <n_(w+ + 7)) ﬂ+> = <n_(n+ + 7)) n+> . (J.18)
We begin with F02:

<(1r+ + n_)zn(ﬂ+ + w_)2> - <(1r+ + n_)znn_n > (J.19a)

FO2 "

F02 e lron + 1)1t - (2n - D] . (J.19b)

1]

Making use of Eq. (H.4) allows us to write F04 as

2n-4.

FO4 = €'(20)(2n - 1)(2n - 2)(2n - H<(n, + 1) (3.20)
or
FO4 = e7T2[(2n + 3)1! - 6(2n + 1)1! + 3(2n - D11] . (J.21)
Similarly,
F24 = <(m, + w_)2(n, + 1) 2> - <(n_n)(n, + 1)2" > (3.220)
= ™3[@n + 511 - 6(2n + 3T+ 3(2n + 111]
- ™3 (2n + 3)11 - 6(2n + 1)1 + 3(2n - 1)11](J.22b)
F26 = ™3[(2n + 5)10 - 7(2n + 3)11 + 9(2n + 1) - 3(2n - 1)11] . (J.22¢)

The final type of off-diagonal expectation value we will consider

arises when |S> is defined by

+ o

-1/2 T
> = a+lald (1e2

1+ 3 )|o> . (J.23)
/61 ¢

We define
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*
F06 = <(r, + 1) = <l(n, 4w )® (3.24)

Making use of Eq. (H.4) again allows us to write F06 as

F06 = ¢®(20)(2n - 1) ... (20 - 5)<(m, + 7w )"0 (3.24a)

= ¢™3(2n)(2n - 2)(2n - 4)(2a - 11! (J.24b)
e™3[(2n + 5)11 - 15(2n + 3)!11 + 45(2n + 1)!! - 15(2n - 1)11]

(3.24¢)

Equations (J.24c¢) and (J.14) give Eqs. (3.15) and (3.16) in Chapter III.
Equations (J.2), (J.15), (J.19), (J.10), (J.21), (J.22), and (J.12) can

be combined to give

vy.3 % 2 2
<s| - |s> = A+ |a,[D+ |a,|"E + [, |F + la,lla,]c + la,| 8
(J.25)
where
> > 2n
A = <o|( vl T ) o> = a™(2n - 1)!! (J.26)
2w
1 a2 3 . F 2n 2
D = <o|( - ) 1, |0> + h.c.
/21 e |a,]
2 cos(2¢ + ¢2) n
= a[(@2n+ 1) - (2n - 1)1] (J.27)
21
-> >\ 2n
E = ]'2 <Diﬂ3( Y. '~ﬂ ) ﬂil0>
2le 2w
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= —zlran[(zn+3)!! = 22n + 1)1 + (2n - 1)1!] (J.28)
1 a, v 2n 4
F = 5 <O|( ) n+|0> + h.c.
/ﬂ € la(&l w

2 cos(4¢ + ¢4)

= a"[(2n + 3)!! - 6(2n + 1)1 + 3(2n - 1)!1!] (3.29)
x
1 a*a 3 e n
G = ; —2 <o]nf( ) n2]o> + h.c.
V2141 € la,|]a, |
2"
2 cos(2¢ + ¢4 - ¢2) n
= al[(2n+ 5)!! - 7(2n + 3)!! + 9)2n + 1)
V214!
- 3(2n ~ 1)!!] (J.30)
> > \2n
H = 1‘4 <D|ﬂf( kA '~" ) wi|0>
4le 2w
n
= %T [(2n + )1 - 1220 + 5)!! + 42(2n + 3)!! - 36(2n + 1) !!
+9(2n - 1)!112 . (J.31)

Here, ¢2 and ¢4 are defined by a, = |a21exp(i¢2) and a, = |a4|exp(i¢4),

and
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XVII. APPENDIX K

In this appendix we will derive an expression for Tc when both
elastic and inelastic magnon scattering are included. We will use
Eqs. (2.10)-(2.13), (2.16), and (2.61).

Equations (2.16) and (2.61) combine to give

2
(ko) = = () x(k-kD(+85, ) .

Similarly, combining Eqs. (2.10) and (2.12) gives

y(w) = 14T wZ' kz' Tyy (oo, k0”6 1 (0G0 (") v (w")
YW = 1+ aNOT ] T tkwk'o)y)/[u']+[2"]]
w
where
T, Gw,k'e") = J dgi;k' r,, (k")

2
1 dq v
= - 5—).(a + BGN’w.) j Zr X(k - k')

2

-(3) @H+Bs DX -

(K.1)

(K.2)

(K.3)

(K.4)

(K.5)

(K.6)

An expression for X is derived in Appendix D. We can now write y(w) as

1,2 ) y(')
y(w) = 1-aNO)T (%) x (@ + BS )
2 w' w,w lw'|4—|2(w')|

or as

(K.7)
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2 '
Y(w) = le + IZ(U))I 3 1 - N(O)( _;_) )_(’ITT z aY(w ) )
] + [2(@)] + 8N ( 5 ) XT ol lu'[+]zn]
(K.8)
Rearranging terms and summing over w gives
mT Z Y (w) = 7T z 1 5
© ol + |z ] © w4 |T(w)| + BTIN(O)( —21—) T
' 1.2 ()
. (1 - aN(0)( E-) xmT ) YR ) (K.9)
w |w] + [Z(w) |
or
a1 § — (W) - i . (K.10)
“ o] + 2] 1+ aoN(0)( ) X
where
¢ = mT 2 L 2 . (K'll)
© ol + |z@)| + 8nN(©O)( 3 ) FT
We note that Eq. (2.11) can be written in terms of &.
Q) = wN(O)T § ——X(®) (K.12)
W le + IZ(w)I
Q(T) = N(0)e 5 (K.13)
1+ adN(0)( 5 ) X
or, using Eq. (D.3),
Q(T) N (K.14)

1+ apd
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where
o = 1/(2nTt(T)) . (K.15)

Equation (K.14) will later prove to be very useful.
We return now to our investigation of ¢. Using Eq. (D.3) allows us

to write Eq. (K.1ll) as

o = 1T ] 1 2 (K.16)
w I(.L)l + IZ(U))| +T(TT

where 1(T) is given by Eqs. (2.29)-(2.31). The derivation of an expres-—

sion for IZ(w) is very similar to the derivation given in Appendix D. We

find that
(w) = -!;[ o= 48 sgn w ] (K.17)
2T T ' :
Equation (K.16) then becomes
1
o = 21T ) . (K.18)

w30 w(l + ap) + 27TpR

Our basic equation

A = gQ(T)a (K.19)

becomes

gN(0) 1+ opd (K.20)

or

1

m ] . (K.21)
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Using Eq. (K.18) gives

1+ ap - 1

1 8p
gN(0) - ap nz0 n + 2 + w1

(K.22)

Equation (K.22) is identical to Eq. (2.69). The technique discussed in

Appendix E may be used to rewrite Eq. (K.22) in terms of digamma functions.



