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1. Introduction

The purpose of this report is to show, using similarity or group theoretic
methods, that the one-dimensional, time-dependent, Lagrangian, equations of
reactive flow can be veduced, via a similarity transformation, to alsystem
of ordinary differenfial equations, from which a class of invariant solutions
can be determined.

The present work differs from that of Cowperthwaite [1] in that we actually
assume a form for the reaction rate and treat the entire system rather than
calculate the reactioﬁ rate from pressuré or particle velocity gage data.
Sternberg [2] has also investigated similarity solutions inreactive flow, but
his calculations are in Eulerian coordinates and fnvolve differeﬁt reaction

rates.

In Lagrangian form, the equations of hydrodynamics can be written

v . o, 8U

) Yo o (conservation of mass) (1)
W oy 3p :

o 0 3h (comservation of momentum) (2)
AE:-!(-EE. HB_A 1

- vt tyog - (conservation of energy) (3)

where t 1s time, h ds Lagrangian position, u 1is particle velocity,

" p is pressure, v 1is specitic volume, and 1 s the reaction coordinate.

The reactants and the products aré assumed to have the same polytropic eguation
of state with the same polytropic index k. The parameters © and g are the
Griineisen constant and the specific heat of reaction, respectively (see

fppendix 1 for a derivation of eqn {3)).
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2
. We assume that the chemical reaction is governed by the equation
L@ a _ . A '
B o=y o (4)

" yhere L, o, and 8 are constants. Hence, we are assuming a pressure
dependent rate law.
Finally, the shock dfscontinuity is governed by the Rankine-Hugoniot jump

conditions

=

VoD - u])‘= vD ' (5)
<] ’
4 ;'\v“'-iolla %‘ (P'l + Po)(VO - v) (7)

where D {s the time-dependent shock velocity and e is the specific internal
energy. The ;ubscript zero denotés the thermodynamic and hydrodynamic values
‘ahead of';he'shock;hand the subscript one denote those values immediately

behind the shock.

. 2. Invariance Criteria

For convenience, we introduce the nstation




*

The partial differential equations (1) - (4) can then be rewritten as

3

2
By = o)+ vl =0 2y
A = 2, K’ 3 (R 3y
sER IRk | (3
bz - L= < 0 - (ay

We seek a one-parameter family of transformations (a one-parameter local Lie

group) of the form

e raltd il 1202 (8)

ﬁk = uk + egﬁ(xi,uz), = 1,,..,4 (9)

under which {1}' - {4)' are invariant in the following sense. We say that

(1) - (4)" s constantTy conformally invariant under (3) - {9) if

B i ot =t - V)
for 1=1,2,3,4, We note that (9) requires that solutions get mapped to
solutions, but the equations are not “"form" invariant. The o; are constants

which depend on the transformation.
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It is clear that in order to calcu]ate the left-hand-side of (10)
we must determine how the derivatives p transform, It is well-knoun (see

0vsJann1kov [3] or Bluman and Cole [4]) that

% k. k.,i & ¢
P.‘ = p.i + Ggpi(x W -pJ) (Tn
. where
k k J
. A 3 aE :
Ekia._!’lf—%pg’.-_?-p;-—%pgpg' (12
o 8% ol

3R, . 9A, 3k,

iJ ik ik
o e g L (13)
a0 Xk np§ LA :

for i=1,..,4 (nosumon i). From these four equations, which are

first-order quasilinear partial differential equations, we can determine the

K

group generatdrs £y and 5; .. Onca the group is known, a similarity variable

Wi1) be determined from the fnvariant surface conditions (Refs. [31, [4]).

3. Invarlance of Eans. (1) - (3).

For the mass equatioﬁ, (13) becones

3“1 3 "Al 7

3 £ uI(D-VP)
ap? pl I LI



ey e 3 1 :
Substituting gp!_ and 5p2 from (12) gives

- 3 3 J J
3€u+ﬂpz i p3ffi-p3p2 3,
ax PR U

Equating the coefficients of the p? to zero gives, if we introduce the
notation

x

o 1. 2 _ 3. 4
EX-T"EX_H’gu'U’EU—P’EU—V’EU"A’

the eight equations

vu + voTh =0, Vp =0, Vv - Tt = aps Va =
' (14)
Uu - Hh = oy Up =, Ht + VGUV =0, Ux =0
The coefficient of the constant term is
U =0 (15)

u p v A
' (16)



Now we write down (13) for i =2, i.e. the momentum equation. Using

the fact, from (16), that

-7 =.0, i= ],2; 1= ]s---s4: (17)

we see that the quadratic terms pgp§ are not present and (13} becomes

el el
+ ——%-p% 2p! -—%
o ooz
2 2
B WS, 23g .
V(b -t S =) = agp; ooy o
0 ;;E au g ry” J - 201 2 0 ?

Equating to zero the constant term and the coefficients of the pf we obtain

U, +vP, =0 - (18)

and

Uy ~Ty=ep  ymvglp=0 =0 G =0

, {19)
Ht i VDPU = D, Pp - Hii = uzi PV = 0, P)\ = 0
Combining (14), (15), and (16) with (18) and (19) we get, in summary,
T=1(t), H=H(k), U=uithu), P=P(t,h,p)
! (20)

V= V(t,h,&); l'A = A(t!h’u’piv’l)



satisfying

At the present time it js possible to obtain some information from

Yy

¢

Vt - vOUh =0

Ut + VOPh =9
'Tt=”ﬁ'”h=“1

'Hh=uu‘Tt=02

{21)

(22)
(22)
(28)

{20) - (28), but first we shall study thc invariance of the energy equation.

For i =3, equation (13) becomes

Upon substituting for the g:l’ 3

we obtain

3A 3A 9A oA

3 2 3 3 3 2 3.3
-5 £ + E + A + 14
A aua,“ apf Pl ap? Pl

+

kp1€u

2
-

p

32

u

2
ki 33, 79 34
- piE t E D
3 {U%Z 1% w%z u'l
4 pt Kt
' wt b ey
3 3 Jj
+kl£(-3_€%+ﬁpz_a—££pq
R L R
4 4 i
-E(ag“ig—"pz-ﬁp“)
P RNTL L B

B

1> and gg1 from (12) and using (17},



2
3 .
s 43(95 + k‘l‘%' h - 'P% P?)
u u

' ;)
Equating the coefficients of p;, pg, pé, and pg equal to zero gives us

no new information. However, setting the constant term to zero as well as

the coefficients of p;, p?, p? and p? gives
khy .M, -
Pt ¥ v Vt v At
A, = 0
-7 -Ta, .
.‘..V_-(-.E.Q.V..T--I:ﬂhz:a
v p v 't kp v 73
v .
A

Equations (21) through (29) give a system of PDEs for the generators
T, H, U, P, V, and 4 of the transformaticns (8) - (9).
-these ten PDEs to obtain the generators.
Subtracting (28) from (23) we get
Tt - Hh Tapmag constant,

' from which we conclude that

Tg=3p H=ap-ata

s

(25)
(26)
(27)

(28)

(29)

He shall now solve



where 3 is a constant, Hence, letting

b2 = a-l - 0:_| + UZ (30)
we get
T= a]t + %
(3n)
K= bzh + b6

Therefore, from (24},
U= (a] + “2)" + f(t,h) (32)
whare f is an arbitrary function. Similarly, from (23} and (24) we get
P = {by * oyl * o(t,h) (33)
V= (a] + a])v'+ r{t,h) | (34)

where g and r are arbitrary functions. Now we substitute the information

(30) - (34) dinto (25) - (29). Im particulcr, (27) thru {29) become

Ap=(b2+u2-a3-a])ly—q (27)"
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: .
o= r(t,h) t,h '

p

ﬂ = 2a-| + a-l + 63 r(t‘—l (29)'

Taking 3/ax of (28)' and 3/av of (29)' and setting the mixed part1als

equal, we get r{t, h) 0. Thus
V=(ay ol , o (35)
‘Thqs; (2%) gives the fact that U 4s independent of h, i.e.,
U=Q1+%N+fHL ' ' (36)

Equation (22) then gives

el e eatt) - w (37)
" From (29)*,
1= {2 _+ :11 +agh + s(.t,h,v,P) (38)

Now, we can write“hu3' in terms of the other constants as follows.

From (27)" we get

b'2+a2-u3-a.l

e Ty




1

From (28)' we get

. (b2 + ay = 0g = a1)k
vp T'q

i
Setting the mixed partials equal welget
Uy + a4y - ay - b? =0
or
ag = b2 + 4y = 3

Thus, from (27)' we get

Thus, from (28)', using (39) and (30} we get

1
b= 2db, + o)+ (g(t) - £ 4 g n)
2 1 r ¥
q 0
Substituting this last velation along with (37) into (25) gives

9s/ot =0 or s =s(h)., No additional simplifications are possible, and

S0 We summarize our result in the following: The most general transformation
of the form (8), (9) under which the equations (1) - (3) are constantly

conformally invariant is defined by the generators
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T=at+a,
H = byh + by

U = (a'l + (!2)“ + f(t)
(40)

P = (b, +ap+ gft) - L&l
2 "2 Yo
1m 20, + a)n + K (g(e) - B8 py 4 5y
2 7l y v
q 0 .
where f, g, and s are arbitrary functions, b2 =4y - tap .

4. Invariance of the Jump Conditions

Before treating the equation for reaction rate, we first will investigate
tie invariance of the Rankine-Hugoniot jump conditions. Our purpose in follow-
ing this apprbach lies in the notion that we later may wish to investigate
other reaction rates. Thus we attempt to combiete the solution to that point.

By requiring the boundary conditions to be invariant, we will obtain a
further refinement of the transformations. First, we assume the strong shock
condition which; for a polytropic gas, takes the form

k+1

Then, the jump conditions can be written

o
v
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u-1w0=m+1w] (5)
k+ 2
P17 ] " (6}’
0
Yo
B - TEET M 7y’

From {5)' we have
(k“"l)v] - (k-'l)vo = (ld"l)(\f.I + e(a] + u-l)V-l) - (k-l)vo

= (ktTy, - (k=T)vy + e(k+1)(a]+u])

Hence, (5)' is invariant if

a" = "'!l-t (42)

Similarly, from (6)’,

- k+1-2 '
P G B oy L0 ey ¢ ot -f—v(‘flh] )

k+1 ?
- 'EVE' {ug + a[(a] + az)u] + F(E)]}

ey + o) 71 (o - St )

+ ¢(g(t) - f%é&l h - Evi—l u]f(t)) + 0(32),
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where we have used (42) and (30). Hence, {6)' will be invariant if
g(t) =0, f(t) = 0.

Consequently, we may rewrite (40) as

"T= alt + 3
H= bzh + b6
U= (b2 - al)u

(43)

V=20
The energy jump conditiun (7)* gives no new information. For,
0, by

_ 0.
e = ey ae F g

is the equation of state of the mixture, and, substituting this into (7)"

using pg = 0 gives (i =0 at the shock)
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b T
[ T
ThUSr
5]—-’ VDEI ~ (p]+2(b2-a1)p]e)v] Vo(pl"'a(bz‘a])p-‘e)
T TR k-1 - 23]

P
= 1+ 2(byma)] € "'T' -ilfl

Therefore, the transformation whose generators are given by (43) leaves the

hydrodynamics equations and the jump conditions constantly conformally invariant,

5. Invariance of the Rate Equat1on

The condition that the rate equation (4)' be invariant is that

4

-l (1-uhe BB ]su + al )Py )u 154 o

= oglo; - L1-0h%05%)

Substituting the expression g:' from (11) and setting to zero the coefficients
of the p} p% gives the following system of partial differential equations

in terms of the unindexed variables:

B g (10T + a0 T+ ol 0-0)%F = 0 (44)

Mo, o M
hooo 2 e0 & (45)
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AL =0 (46)
%’% =0 (47)

Combining these equations with eqns. (40) gives a general family of trams-
formations under which (1) through (4) are invariant. First cqn. (46)

implies that
2by + ag) - 3 = 0y = 0
or
o = Ebz - 3a7 (48)

Also. from egn. {44) we obtain

R IR L W
TR A Y

Since ap/at = 0 we must have

P aA .
p 1x % 0
or, from {43), with s(h) = -2(b2-a1),

= 2Aby)ate) (19)

{/’/’/
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Consequently, we have the following infinitesimal transformations under which

equations (1) through (4) and jump conditions (5) through (7) are invariant:

T-= a]t tag
H= b2h * by
U = (bz'a])u
(50)
¥=10

A= 2(b2-a])(1-1)

6. Similarity Selutions

To obtain the form of the similarity variable and the similarity solution

we write down the invariant surface condition (see Bluman - Cole [41):

TH aw -y (51)
P »

Tk tHgy =P (52)
T 4H2 =y (53)

5t "h
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T 4 dk oy (54)

at ah

Equation (51) becores
(agt + agu, + (bgh + belu, = (b,-a;du
The characteristic equations are .

dt  _ _dh_ . du
a1t+a5 b2h+b6 (bz-a])u

The first pair of equations can be integrated to give

Co b2 R 3
ln(a]t f as) = 1n[n(b2h + bﬁ) ],

where 7 is a constant; hence

. a]
(bzh + bs)

= T constant
(agt + ag) 2
or
b .
Bg'h +1
6 : .
= 5 = constant {55)
bzla] .

Lys
2t 4+
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n 1is the similarity parameter. The equation

dt du
a]t+a6 (bz-ai)u

can now be integrated io give
b,-a a '
Infagtag) 1 = Tn((Byma;Ju) ' = Tn U,

where U is an arbitrary function. This leads to
by

u(th) = (:—; T R (56)

Similarly, solving (52} and (54) gives

by

a 2= - 1)

1 ] n
p(t,h) = (55 t+1) p(n) . (57)

and
b
o 2E-1)

A(t,h) =1+ (% t+1) _] An) (58)

The characteristic system for equation (53) is

dt . _dh_ dv
a]t+a6 b2h+b6 0

Rgain, the first equation has first integral n given by (55). Then,
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ve V(n) isa first integral aiso since dv =0, Thus,

v(t;h) = ‘V(n). (59)

Now, we note that the shock path is described by n =1 from (46)

since (t,h) = (0,0) implies n =1, and since the shock path must be 2
similarfty curve. That is, the shock path is given by
a b 2./b
Tesr=(Enen 2 (60)
aﬁ b6 !

If aj = by, then (48) contradicts (49) and therefore constant velocity

shocks are nut possible. If a) > b2 we obtain decelerating shocks and
for a; < b, we obtain accelerating shocks {see Fig. 1).

t a,> b,

Figure 1

The shock velocity D can be computed from (60) to get

b,
_dh % A 3
D= t a (aﬁ t+1)

(61)
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then we note that {since n =1 at (0,0))

p(0,0) = p; = 1),
u(0,0) = u; = U(1)

v(0,0) = v = 'éf'(])

n
—

n
> 2
—
—
~—
.

2{0,0) = M
Letting

(n) = u,u(n)

=& -

B(n) = Pia(n):

¥ia) = vgitad, Aln) = i),

Then the solutions can be written
b

3 2(5_ .
P byt e ) p(n) (62)
b
2
u=u(=t+1) uln) (63)
6
v=vvn) (64)
b
2 sy,
A= (;gtﬂ) AMn) +1 (65)

Here, p(1) =1, u(1) =1, v(1) =1, and (1) = -1 . It will be shown in the
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next section that the ﬁ, G, G, and»'i can be determined from a system of
MDEs.

7. Reduction’of the PDES to ODEs

If we substitute (62) - (65) into the PDEs (1) - (4) we will obtain a
systen of ODEs for P, U, v, and i. First, substituting (63) and (64) into

(1) we get
dv %Yo da A

8, a.v.p
du “__]u= 601@ (67)

Then substituting (62), (65), and (64) into (3) we yet

Mo dv, Ta ,di,, %15,
n +2p—(1 ) -l S St 2 A1 - 5) (68)
dn v dn V.iVP1 dn bZ N
Finally, substituting (62) and (65) into (4) gives
,l£=za—‘(1 fl)a R fef8 (69)
dt a . b2 L

“ Therefore, equations (66) - (69) can be solved to determine the exact

“similarity solutions.
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Appendix 1. Derivation“gfighg Energy ‘Equation (3)

The EOS is given by
e = e(p,vs?),
From which it follows that

3
28 ) L2y

a8 _ (o8
ot f ( p)v’A it ( Vo at ( Wt

But also from conservation of energy we have

‘38 _ _ . 8V
3t TPt
Thus, using
r. (8 . e
Lo@® 9=
Vool ax bav
we get
3t ( ( ) ) RN at

But- the EOS of the mixture is given by

) o e ?+xq+L
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and so

Hence
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