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1. Introduction 
The purpose of this report is to show, using similarity or group theoretic 

methods, that the one-dimensional, time-dependent, Lagrangian, equations of 
reactive flow can be.reduced, via a similarity transformation, to a system 
of ordinary differential equations, from which a class of invariant solutions 
can be determined. 

The present work differs front that of Cowperthwaite [1] in that we actually 
assume a form for the reaction rate and treat the entire system rather than 
calculate the reaction rate from pressure or particle velocity gage data. 
Sternberg [2] has also investigated similarity solutions in reactive flow, but 
his calculations are in Eulerian coordinates and involve different reaction 
rates. 

In Lagrangian form, the equations of hydrodynamics can be written 

|| = VQ —• (conservation of mass) (1) 

|~ = _ v n fh" (conservation of momentum) (2) 

ft = " ̂  W + ? t (conservation of energy) (3) 

where t 1s time, h is Lagrangian position, u is particle velocity, 
p is pressure, v is specific volume, and 1 is the reaction coordinate. 
The reactants and the products are assumed to have the same polytypic equation 
of state with the same pol.ytropic index L The parameters r and q are the 
Griineisen constant and the specific heat of reaction, respectively (see 
Appendix I for a derivation of eqn (3)). 



We assume that the chemical reaction is governed by the equation 

2 

ft =L(1-X)V (4) 

where L, a, and 8 are constants. Hence, we are assuming a pressure . 
dependent rate law. 

Finally, the shock discontinuity is governed by the Rankine-Hugoniot jump 
conditions 

v„(D - u,) = ̂ D (5) 

P i " P o a ^ D u i < 6 ) 

ei " eo sl"( pi + p o ) ( V v ) ( 7 ) 

where D i s the time-dependent shock velocity and e is the specific internal 

energy. The subscript zero denotes the thermodynamic and hydrodynamic values 

ahead of the shock, and the subscript one denote those values immediately 

behind the shock. 

2. Imparlance Criteria 

For convenience, we introduce the notation 

T 2 1 2 3 4 
x -» t , x = h, u ~ u, u = p, u = v, u = ^ 

pj s.auVax1 
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The partial differential equations (1) - (4) can then be rewritten as 

• * i « h s - ^ - ° (»>' 

p 
JI - «^ . ku _3 rq A _ n ,«. 
A 3 s p l * " 7 p l " ^ p l " ° ( 3> 

A 4 3 p* - L(l - u 4 ) V ) e = 0 (4) ' 

We seek a one-parameter family of transformations (a one-parameter local Lie 

group) of the form 

x* « x 1 + e?t (xV)* * = 1.2 (8) 

3* » u* + eeJ(>cV), fc = 1 4 (9) 

under which ( I ) 1 - (4)' are invariant in the following sense. We say that 

(1)' - (4)' is constantly conformally invariant under (8) - (9) if 

£ V * J > " * . P j ) _ = 3iVxJ'u*>PJ> (1 0> 

for 1 - 1,2,3,4. We note that (9) requires that solutions get mapped to 

solutions, but the equations are not "form" invariant. The 0. are constants 
which depend on the transformation. 
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It is clear that in .order to calculate the left-hand-side of (10) 

we must determine how the derivatives p. transform. It is well-known (see 
v 

Ovsjannikov [3] or Bluman and Cols [4]) that 

where 

? p i " ^ ~ p i ^ T p j ~ » p j p i l l ' 
v ax au ax J ail J 

Consequently, the irtvariance condition (10) my be written 

8 V i a A i k 3 A i k 
3X3 * 3UK U ap} P J ^ ' 

V 

for i = 1,...,4 (no sum on i). From these four equations, :Which are 
first-order quasilinear partial differential equations, we can determine the 

k i group generators %*• and ̂  . Once the group is known, a similarity variable 
will be determined from the invariant surface conditions (Refs. [3], [4]). 

3. Invariance of Eqns. (1J. - (3). 

For the mass equation, (13) becones 

ftl . 3 A

 8 A 1 J ' , 3 .. J 
3" 5pl + 3 St = a l ( p l ' V2 } 

«?2 
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3- 1 Substituting Q . and % 2 from (12) gives 

3 3 j j 
~T ~T p1 p j ^ P j P l "T 
8X 3U J 3X J 8U 

J .J 
- V, S*5^3-#^-^' 

Equating the coefficients of the p!| to zero gives, if we introduce the 
notation 

Sx = T ' . ^ H ' 4 = u > ^ p ' ^ v ' ? 2 = A ' 

the eight equations 

Wh = 0' V0' W v V°i 
Uu - Hh " -I* V ° > Ht + v 0 U v = 0' V ° 

(M) 

The coefficient of the constant term is 

V t - v 0U h - 0 (15) 

u Setting the coefficients of the sixteen terms involving p M to zero gives 

T„ • 0, T p - 0. T v = 0, T A - 0 

H u = 0, H p - 0 , H v = 0, H A = 0. 
(16) 
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Now we write down (13) for i = 2, I.e. the momentum equation. Using 
the fact, from (16), that 

- | = . 0 , i = 1,2; 1 = 1,...,4, 
3U 

(17) 

u we see that the quadratic terms p.p: are not present and (13) becomes 

2 2 j 
+ V7 +^P2"Pj^l = ^ l + a 2 V 2 

Equating to zero the constant term and the coefficients of the p. we obtain 

u t + voV° (18) 

and 

V V a 2 ' V v o V 0 ' V 0 ' u x s 0 

Wu = 0> W ° 2 ' Pv = 0> P x B Q 

(19) 

Combining (14), (15), and (16) with (IS) and (19) we get, in summary, 

T • T(t), H = H(h), U = U(t,h,u), P = P(t,h,p) 

V=V(t,h,v), A = A(t,M,p,v,x) 
(20) 
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satisfying 

V Vh = 0 

V Vh = 0 

\ -v u. -
u V a1 

pp -V V V 

(21) 
(22) 
(23) 
(24) 

At the present time it is possible to obtain some information from 
(20) - (24), but first we shall study the invan'ance of the energy equation. 
For i = 3, equation (13) becomes 

„„2 ^u ZJ U 
3U W 

3 A 3 2 . 3 A 3 3 . s A 3 4 
^P 1 ZJ^ 3 5 p l 3P 1 SP- 3P 

•M-W-W 
2 ' 4 

Upon substituting for the £,, £,, and E . from (12) and using (17), 

we obtain 

. 3 2 

u 3 

k"2 A 3 * 
- # 

ax' au ' i 
ax 

^ 

. ku 2 A . 3 ? u 
+ ~ 3 < n " + ~ 

U 3X 8K 

* 
a 4 ^ 
ax J 

4 4 j 
rq f H u , 8 ?u i \ n 4, 
- j (—j-+ — Pi - - T PJ 
<T ax' ax* ' ax' 3 
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- 3(Pl*^l 3->l) 
1 2 * 4 Equating the coefficients of P 2> P 2, Pp. and p 2 equal to zero gives us 

no new information. However, setting the constant term to zero as well as 
1 ? 3 4 

the coefficients of p^ fi, p, and p! gives 

V ^ V T V 0 

*u-° 

? + V A A =-a3 

(25) 

(26) 

(27) 

(28) 

(29) 

Equations (21) through (29) give a system of PDEs for the generators 
T, H, U, P, V, and A ot the transformations (8) - (9). We shall now solve 
these ten PDEs to obtain the generators. 

Subtracting (24) from [23) we get 

Tj, - H. = a, - a 2 = constant, 

from which we conclude that 

V V Hh = al " a l + a 2 
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where a, is a constant. Hence, letting 

by = a-, - a + a« (30) 

we get 

T = a,t + a g 

H = b ?h + b 6 

(31) 

Therefore, from (24), 

U = (a1 + a 2)u + f(t,Ii) (32) 

wlrre f is an arbitrary function. Similarly, from (23) and (24) we get 

P = (b 2 + a z)p + g(t.h) (33) 

V = (a] +o 1)v'+r(t,h) (34) 

where g and r are arbitrary functions. Now we substitute the information 
(30) - (34) into (25) - (29). In particular, (27) thru (29) become 

A p = ( b 2 + a ? - « 3 - a i ) f (27)' 
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J a A v = ( b 2 + a r t t 3 . a i ) . ^ i O + S l M i {B). 

A x = 2a, + «, + a 3 + * & $ • (29)' 

Taking a M of (28)' and a/av of (29)' and setting the mixed partials 

equal, we get r(t,h) = 0 . Thus 

V = (a-, + Q|)v (35) 

Thus, [2]) gives the fact that U is independent of h, i.e., 

U= (a, +a 2)u + f ( t ) . (36) 

Equation (22) then gives 

P = (b2 + <x2)p + g(t) -&& h (37) 

From (29)', 

A = {2a, + a, + aj)x + s(t.h.V.p) (38) 

Now, we can write 03 in terms of the other constants as follows. 
From (27)' we get 
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From (28)' we get 

(b„ + cu - a, - aJk 
A.. vp rq 

Setting the mixed partials equal we get 

or 

a3 + al ' a2 " b2 = ° 

"3 = b2 + a l ' al 

Thus, from (27)' we get 

l p - 0 

Thus, from (28)', using (39) and (30) we get 

A = 2{b, + a,) + f (g(t) - £ M ) v + s(t,h) 
L q 0 

Substituting this last relation along with (37) into (25) gives 
8s/3t = 0 or s = s(h). No additional simplifications are possible, and 
so we summarize our result in the following: The most general transformation 
of the form (8), (9) under which the equations (1) - (3) are constantly 
conformally invariant is defined by the generators 
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1 " V + a 6 

H = b 2h + b 6 

U = (a1 + a2)u + f(t) 
(40) 

P = (b 2 + « 2)p + g(t) - i ^ I h 

V = (a1 + o^v 

A-2(b2 + «,)X + |Mg(t)-££U)*s(h) 

where f, g, and s are arbitrary functions, bn = a, - c 1
 + a 2 . 

4. Invariance of the Jump Conditions 
Before treating the equation for reaction rate, we first will investigate 

the invariance of the Rankine-Kugoniot jump conditions. Our purpose in follow­
ing this approach lies in the notion that we later may wish to investigate 
other reaction rates. Thus we attempt to complete the solution to that point. 

By requiring the boundary conditions to be invariant, we will obtain a 
further refinement of the transformations. First, we assume the strong shock 
condition which, for a polytropic gas, takes the form 

D = ̂  u, (41) 

Then, the jump conditions can be written 



( k - l ) v 0 = (k+ 1)v] 

13 

(5)' 

i L L i u 2 (6)' P r ^ u i 

vvAh (7}' 
From (5)' we have 

(k+1)?-, - (k-l)v0 = (k+l)(Vl + e ^ + a^v,) - (k-l)v0 

= ( W ) v 1 - (k-DvQ + edH-lJta^) 

Hence, (5)' is invariant if 

Similarly, from (6)', 

p r ^ ^ = { P i + [ ( b 2 , a 2 ) P i + g ( t ) . m h ] e } 

- TT" { u l + e [ ( a l + a 2 ) u l + f U , ] } 2 

- [ ^ ( l 1 + a 2 ) + 1 3 ( P 1 - i [ 2 ^ L u f ) 
v0 

• . ( g W - ^ - h - ^ V W + O )̂. 
v 0 v 0 
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where we have used (42) and (30). Hence, (6)' will be invariant if 

g(t) = 0, f(tj a 0 . 

Consequently, we may rewrite (40) as 

' T = ajt + a g 

H = bgh + b 6 

U = (b 2 - a^u 
(43) 

P = 2(b 2 - a,)p 

V = 0 

A = 2(b 2 - a^A * s(h). 

The energy jump condition (7)' gives no new information. For, 

e = ef + XAe° + g r 

is the equation of state of the mixture, and, substituting this into (7)' 
using p n = 0 gives (x = 0 at the shock) 
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V i V i . n 

k-1 * k+1 " u 

Thus, 

P~lvl v ^ (p1+Z(bj!-fl1)Pje)v1 v 0(p t+2(b 2-a,)p ] e) 
TT'WT = i?1 kTT 

-n+ 2(^)3«{if - ^ f ) . 

Therefore, the transformation whose generators are given by (43) leaves the 

hydrodynamics equations and the jump conditions constantly conformably invariant. 

5. Invanance of the Rate Equation 

The condition that the rate equation (4)' be invariant is that 

-M^W>^*d.iM^r]4*^ 

- Hip\ - LO-uV(u2)6) 

Substituting the expression |Lj from (11) and setting to zero the coefficients 
i k of the p! p* gives the following system of partial differential equations 

in terras of the unindexed variables: 

| - g L O - ^ y - ' p * «LpB(1-A)tt*?A + u 4L(l-A)V * 0 (44) 
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M-V° M 
$ • 0 (47) 

Combining these equations with eqns. (40) gives a general family of trans­
formations under which (1) through (4) are invariant. First nqn. (46) 
implies that 

2(t>2 + 0 ] ) - a 1 - o/j, = 0 

or 

a 4 = 2b 2 - 3a, (48) 

Also, from eqn. (44) we obtain 

M i/i ,\aKPr3P aA -i „ 

Since 3A/3t = 0 we must have 

p ~.V* " a 4 - ° 

or, from (43), with s(h) = -2(b2-a-|), 

o 4 = 2(62»«1)(«fB)- (49) 

^. 



17 

Consequently, we have the following infinitesimal transformations under which 
equations (1) through (4) and jump conditions (5) through (7) are invariant: 

1 = 8 ^ + a f i 

(50) 

H = b 2h + b 6 

U = (bg-a^u 

P = 2(b2-a1)p 

V « 0 

A = 2(b2-a1)(i-l) 

6. Similarity Solutions 

To obtain the form of the similarity variable and the similarity solution 

we write down the invariant surface condition (see Bluman - Cole [4]): 

T ^ + H | = U (51) 

T f £ + « $ = P (52) 

T g + H | = V (53) 
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T | | + H | [ = A (54) 

Equation (51) becomes 

(ajt + a 6 )u t + (b£h + b g )u h = (bg-a^u 

The characteristic equations are . 

dt _ dh . du 
a^t+a, ty*bz (bp-aiJu 

The first pair of equations can be integrated to give 

' _ i_r_/u t, J. L \ ii 1n( a i t + a 6) ' = ln[T,(b2h + bg) ' ] 

where n is a constant; hence 

(b2h + b 6) 
al 
b 2 

(a,t + a 6) 
= constant 

or 
b2 ir-h + 1 

(-it + 1 ) 2 ] 

a6 

n = constant (55) 
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n is the similarity parameter. The equation 

dt s du 
ajt+ag ~ (bg-ayju 

can now be integrated to give 

ln( a it+a 6) 2 ] = ln((b 2- a i)u) 1 = 1nu(n), 

1 / 

where u is an arbitrary function. This leads to 

u(t,h) = ( ! i t + l ) a i 3f(n). ( 5 6 ) 

a6 

Similarly, solving (52) and (54) gives 

and 

b2 

P(t,h) = ( r t + 1 ) ' P(n)- (57) 
a6 

a 2 { r ' ] \ 
* ( t , h ) - l + ( r L t 4 l ) ] x(n) (58) 

a 6 

The characteristic system for equation (53) is 

dt „ dh _ dv 
a l t + a 6 b 2 h + b 6 ° 

Again, the first equation has first integral n given by (55). Then, 
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v = v(-n) is a first integral also since dv = 0. Thus, 

v(t,h)=^(n). (59) 

Now, we note that the shock path is described by n = 1 from (46) 
since (t,h) ' (0,0) implies n = 1, and since the shock path must be a 
similarity curve. That is, the shock path is given by 

a, b, a-,/b„ 
(60) 

If a, = b 2, then (48) contradicts (49) and therefore constant velocity 
shocks are not possible. If a, > b„ we obtain decelerating shocks and 
for a, < by we obtain accelerating shocks (see Fig. 1). 

a , > b 

Figure 1 

The shock velocity D can be computed from (60) to get 

»-*.-£•(£* •1)*' 161) 

If., at t = 0. h = 0 we denote the initial values by u., v,, p., and \^ = 1, 
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then we note that (since n = 1 at (0,0)) 

P(0,0) - p. - p(l). 

u(0,0) = U i = u(l) 

v(0,0) = «. = v(l) 

A(0,0) -\. » 1 -x(l) 

Letting 

p{n) = PfPfn), u(n) = u-ufo) 

v(n) = v 1v(n), x(n) = x{n)» 

Then the solutions can be written 

a 2 r - ' > 
P = P i ( F

L t + l) } p{„) (62) 

u ^ u ^ ^ t + l } 1 uCn) (63) 
6 

v = v-v(n) (64) 
b ? a ^F" 1' 

x = (r t + D ] *M + i (es) 
a6 

Here, p(l) = 1, u(l) = 1, v(l) = 1, and 1(1) = -1 . It will be shown in the 
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next section that the p, u, v, and A can be determined from a system of 
CDEs. 

7- R,ed.iictip,!l: ? f ' t n e P D E s t o 0 D E s 

If we substitute (62) - (65) into the PDEs (1) - (4) we will obtain a 
A A A A 

system of ODEs for p, u, v, and \. First, substituting (63) and (64) into 

(1) we get 

dv„ W i du ,,,, 
%--Thrift ( 6 6 ) 

Substituting (63) and (62) into (2) we get 

"^- ( 1-bj ) u"^urdt ( 6 7 ) 

Then substituting (62), (65), and (64) into (3) wt sjet 

Finally, substituting (62) and (65) into (4) gives 

•!•'2".-$:-%»"•*? <«> 
Therefore, equations (66) - (69) can be solved to determine the exact 

similarity solutions. 



REFERENCES 

1. M. Cowperthwaite, "Characterization of Initiation and Detonation by 
Lagrange Gage Technology", SRI Final Report (July 1977). 

2. H. M. Sternberg, "Similarity Solutions for Reactive Shock Waves", 
quarterly J. Mech. and Applied Math."23, 77-99 (1970). 

3. L. V. Ovsjannikov, "Group Properties of Differential Equations"; 
translation of "Gruppovye Svoystva Differentsialny Uravneni" 
Novosibirsk, U.S.S.R. (1962). 

4. G. W. Bluman and J. D. Cole, "Similarity Methods for Differential 
Equations", Springer-Verlag, flew York (1974). 

Acknowledgment 

The authors greatly benefited from many conversations with M. Cowperthwaite 

at Stanford Research Institute. They would also like to thank D. Meingart of 

Lawrence Livennore Laboratory for support. 



Appendix 1. Derivation of the Energy Equation (3) 

The EOS is given by 

e = e(p,v }*), 

From which i t follows that 

at" V „ , at V n ..at V3AJ_ 

But also from conservation of energy we have 

' ae _ av 
at " " p at 

Thus, using 

v 3 e v , r 3 A p , v 

we get 

at w l p • W n l

, a t + q a t 
P»A 

But the EOS of the mixture is given by 

e = ej + xq + J^j-



and so 

r - k - T and (g) • & 

Hence 

3t " v at v at 
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