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ABSTRACT 

Conservation measures t h a t  s e a l  a  bu i ld ing ,  l i k e  storm window 

i n s t a l l a t i o n ,  can s i g n i f i c a n t l y  reduce i t s  energy requirements .  

These measures a l s o  p r o t e c t  i t s  occupants from a i r  p o l l u t a n t s  

having outdoor sources  b u t  amplify any harmful e f f e c t s  of those generated 

indoors .  Which e f f e c t  i s  g r e a t e r ?  

It i s  inadequate  t o  cons ider  outdoor p o l l u t i o n  l e v e l s  cons t an t ,  so  we 

assume t h a t  they fo l low d a i l y  cyc l e s  and can thus  be w e l l  represented  by 

Four ie r  s e r i e s 1 .  (Indoor s o u r c e s . c a n  be t r e a t e d  s i m i l a r l y . )  It fol lows 

t h a t  t he  indoor concen t r a t ion  of any p o l l u t a n t  generated s o l e l y  outdoors  

w i l l  a l s o  fo l low a d a i l y  cyc l e  b u t  i t s  maximum w i l l  both l a g  behind and 

be lower than t h e  outdoor maximum t o  an  e x t e n t  depending i n  an i n v e r s e  

manner on a  b u i l d i n g ' s  a i r  exchange ( v e n t i l a t i o n  + i n f i l t r a t i o n )  r a t e .  

A simple measure of t he  d a i l y  v a r i a t i o n  of p o l l u t a n t  concent ra t ions  and 

indoor product ion r a t e s  can be der ived  from t h e i r  Four i e r  s e r i e s '  and 

used t o  formulate  a  t e s t  f o r  when these  q u a n t i t i e s  can be  assumed cons tan t .  

usinge t h e s e  Four i e r  s e r i e s  techniques and an  approximation of out- 

door p o l l u t i o n  peaks by s t e p  func t ions ,  we obta ined  the  fol lowing r e s u l t s :  

t he  average d a i l y  concentra . t ion indoors  i s  t h e  same a s  outdoors  f o r  any 

p o l l u t a n t  wi th  no indoor s i n k s  i f  i n s i d e  and o u t s i d e  a i r  a r e  assumed 

uniform ( t h a t  i s ,  w e l l  mixed). .However, lowering a  b u i l d i n g ' s  a i r  ex- 

change r a t e  4-fold w i l l  s t i l l  p r o t e c t  i t s  occupants from outdoor p o l l u t i o n  

sources ,  b u t  only i f  

1 )  t h e  outdoor peak o r  v a r i a t i o n  above i t s  average i s  nluch g r e a t e r  

than i t s  average,  and 

2 )  t h e  peak i s  sho r t - l i ved .  



The e x t e n t  of p r o t e c t i o n  v a r i e s  i n  an inve r se  way wi th  the  t rans iency  of 

t h e  p e a k ; ' i f  t he -peak  l a s t s  f o r  1-2% Hours, a 2-3-fold reduct ion  i n  t he  

peak p o l l u t a n t  l e v e l  can be  expected. By c o n t r a s t ,  lowering t h e  a ir  

exchange r a t e  the  same e x t e n t  w i l l  r a i s e  t he  long-term average 

conbent ra t ibn  due t o  indoor sources 2%-4-fold, and t h i s  is  probably a  

more s i g n i f i c a n t  e f f e c t .  



Outdoor Sources of Indoor A i r  P o l l u t i o n  

Rising f u e l  c o s t s  and government t a x  i n c e n t i v e s  w i l l  probably encourage 

the  use  of energy conserva t ion  measures. Some of t hese  measures, l i k e  t he  

i n s t a l l a t i o n  of storm windows and improving the  q u a l i t y  of bu i ld ing  con- 

s t r u c t i o n ,  reduce the  i n f i l t r a t i o n  of z i r  (and hence t h e  a i r  exchange 

r a t e ,  v) between t h e  i n s i d e  and o u t s i d e  of a  bu i ld ing .  A r educ t ion  i n  

i n f i l t r a t i o n  can be expected t o  r a i s e  t he  indoor l e v e l s  of p o l l u t a n t s  whose 

1 
o r i g i n s  a r e  p r imar i ly  indoors ,  and t o  expose a  l a r g e  p ropor t ion  of t h e  

2 
popula t ion  t o  t hese  h igher  concent ra t ions .  W i l l  t h e r e  be a  corresponding 

r educ t ion  i n  t h e  concent ra t ion  of p o l l u t a n t s  of outdoor o r i g i n ?  

I f  t h e  outdoor concen t r a t ion  of such a  p o l l u t a n t  remains cons t an t ,  then 

over t he  long term i t s  indoor concent ra t ion  should approach i t s  outdoor 

concent ra t ion .  However, indoor concent ra t ions  of such a r e  u s u a l l y  

lower than t h e i r  outdoor concent ra t ions .  3 ' 4  There a r e  probably two reasons  

f o r  t h i s :  1. the  p o l l u t a n t ,  P, i s  removed by t h e  wa l l s  o r  f u r n i t u r e  of t he  

house, o r  i n  r e a c t i o n s  wi th  o ther  p o l l u t a n t s ,  and/or  2.  t he  outdoor concen- 

t r a t i o n  changes before  t he  indoor concent ra t ion  has  a  chance t o  a t t a i n  i t s  

s teady s t a t e  concent ra t ion ,  which i s  equal  t o  t he  outdoor concent ra t ion .  

Thus, t o  adequately t r e a t  t he  case  of outdoor sources  of p o l l u t i o n  we cannot 

assume t h a t  P t h e  outdoor concent ra t ion  of P ,  i s  cons t an t .  
0 1 l t  , 

The equat ion  f o r  t h e  indoor concent ra t ion ,  p ,  of P i s  given by: 1 

where k = r a t e  of formation of P i n s i d e  the  house lun i t  volume 

of t he  house 



and P  = t h e  outdoor  concen t r a t ion  of P. 
o u t  

W e  assume t h a t  Pout v a r i e s  d i u r n a l l y ;  t h a t  i s ,  i t  i s  p e r i o d i c  wi th  a  per iod  of 

24 hours .  I n  t h i s  ca se  i t  i s  reasonable  t o  assume t h a t  p  is  a l s o  d i u r n a l .  

(We a l s o  assume, a s  w e  have previous ly  done: t h a t  indoor and outdoor a i r  a r e  

uniform and t h a t  v  i s  cons t an t .  We w i l l  n o t  d e a l  a t  a l l  wi th  t he  p o s s i b i l i t y  

of indoor r e a c t i o n s  of P, t h a t  i s ,  of s inks . )  

I f  P  i s  produced s o l e l y  outdoors  then  k = 0 .  However, s i n c e  

many p o l l u t a n t s  (SO NOy, CO a n d . p a r t i c u l a t e s ,  f o r  example) a r e  produced both a.' -- 
indoors  and outdoors ,  we s h a l l  no t  assume t h a t  k  .= 0. I n  f a c t ,  wi th  no 

a d d i t i o n a l  d i i i i c u l t y ,  we can so lve  (1) when k i s  n o t  even assumed t o  be 

cons t an t ,  b u t  only d i u r n a l .  

. To say  t h a t  p ,  p and k  a r e  p e r i o d i c  i s  t o  say  t h a t  they can be 
out  

r ep re sen ted  very  w e l l  by Four i e r  s e r i e s ' .  Note t h a t  f o r  any Four ie r  s e r i e s  
- 

f  = A + ? A cos  n0 + ? B s i n  ne,  f = average of f  = A 
0 1 n  7 n 0 

Thus we may write 

(2) = + C A cos n0 + Z B s in0  Pou t  Po 11 11 

(3)  k = + C C cos n9 + C D s i n  n0 n  n 

and ( 4 )  p = p I C a cos nO C b s i n  nO 
n  n  

where P  = 
Pout '  

a  cons tan t  
0 

t - t  

and 
to 

= some time dur ing  t h e  day. 

The. c o e f f i c i e n t s  A C and D must be def ined  empi r i ca l ly .  
ny Bn' n n 



S u b s t i t u t i n g  (2) ,  (3) and (4) i n t o  equat ion  (1) we db ta in  

(6) 0' (C nbncos n0 - C na s i n  no) = E - v ( p  - n ( 
+ L (an - va  ) cos  n0 

n 

o + C (Bn - vb ) s i n  n0 
n 

(7) 
71 

where 0'  = - - 
12 h r  

- .26/hr 

Notice t h a t  k + v p = (I; + vp)  + Ca cos  n0 + C 6  s i n  n0 = t he  rate of 
out  n  n 

a d d i t i o n  of p o l l u t a n t  t o  t he  house whi le  v(C a cos  n0 + C b  s i n  0) = t h e  
n n 

r a t e  of i t s  removal. 

Equating c o e f f i c i e n t s  on both s i d e s  of eq. (6) g ives  u s  

and 

from which we g e t  

. and t h e  p a i r , ,  f o r  each n ,  of simultaneous equat ions  

(10a) va  + o 1 n b n = a n  , n 

and ( lob)  0'na - vbn = -6 
n n 

Notice t h a t  t he  s o l u t i o n  f o r  p i n  ( 7 )  co inc ides  w i th  t h e  s teady-s ta td  s o l u t i o n  

1 f o r  p when pout and k a . re  cons tan t .  



A s o l u t i o n  t o  t h e  set  of s imul taneous 'equa t ions  (8) is  g iven  by 

We w i l l  be i n t e r e s t e d  i n  p  t h e  maximum of p ,  and i n  how much l a t e r  i t  
max ' 

occu r s  t han  t h e  maximum of p  ( t h e  " lag  time"). Le t  t = t h e  t i m e  a t  which 
o u t  m 

'max 
occurs  and t '  = t h e  t i m e  a t  which p ach ieves  i t s  maximum. The l a t t e r  

m ou t  

w i l l  probably be known empi r i ca l l y .  Then t h e  l a g  t i m e  = t - t '  and t can 
m m y  m 

IT be  de r ived  simply from 0 = - 
m 12 h r  (tm - to) (eq . (5) ) .  Om i s  a  s o l u t i o n  of 

p '  (.Oh) = 0 and p' (0) i s  g iven  by t h e  l e f t  s i d e  of eq. ( 6 ) .  

Unless  p is  g iven  by a  p a r t i c u l a r l y  s imple Four i e r  series ( f o r  example, 

- 
p = p + acos  0 + b s i n  0 ) ,  i t  w i l l  be  ve ry  d i f f i c u l t  t o  s o l v e  f o r  0  . For 

m 

t h i s  r ea son ,  and because p can be expected t o  be near  i t s  maximum f o r  only 

b r i e f  p e r i o d s  of time, w e  would l i k e  t o  have another  measure of how much w e  

may expec t  p  t o  v a r y  over  a  24 hour per iod .  Such a  measure i s  provided by a ,  

t h e  s t anda rd  d e v i a t i o n  of p abour irs mean; o i s  particularly easy LO d e r l v e  

f o r  a  F o u r i e r  s e r i e s .  I n  g e n e r a l  



Since p i s  a Four ie r  s e r i e s  wi th  a  per iod of 24 h r  

so  t h a t  

(12) 
1 2 + .  

0 = z ( U a n  + bn 1) 

(For example i f  p  = p + a cos 0 ,  then  p - p = 1 a 1 but  o. i s  only $$.I 
max 

We now have a  t e s t  f o r  determining when we can assume t h a t  p  and k ou t  
1 2 2 ' 

a r e  cons t an t :  
Pout  

may be considered t o  be cons t an t  whenever - (C A + B ) 
fi n n 

i s  much sma l l e r  than  p . Simi l a r ly  k may be taken a s  cons t an t  whenever 
0 out  

1. - ( 1  cn2 + Dn2)' i s  much smal le r  then  E. 
fi 

What time does t r e p r e s e n t ?  t should be chosen t o  simply p o r  k  a s  
0 0 ou t  

much a s  poss ib l e .  For example, i f  k  r e f e r s  t o  t h e  r a t e  ,of product ion of a 

p o l l u t a n t  due t o  t h e  ope ra t ion  of a  hea t ing  system, then 
t - t  

k = + Dcos ( 2 ~ ~ ~  hr O > 

i f  t is  chosen t o  be t h a t  time of t h e  day when t h e  o u t s i d e  temperature i s  
0 

a t  i t s  maximum. ( I f  t i s  chosen 6 h r  e a r l i e r  then  w e  can r e p l a c e  cos by s i n . )  
0 .  

For some p o l l u t a n t s  i t  might be p o s s i b l e  t o  choose t s o  t h a t  p  v a r i e s  
0 ou t  

s i n u s o i d a l l y  wi th  t - t : 
0 

t - t  
= p + b s i n   I IT 24 hr 

Pout  0 1 
O 1 

For o t h e r  pol.3.utants t h e r e  might be some t i m e  dur ing  t h e  day around which p 
ollt 

is  d i s t r i b u t e d  s y ~ m e t r i c a l l y ;  f o r  example, i f  p  achieves  peaks of comparable 
o u t  

s i z e  and du ra t ion  during the  morning and af te rnoon rush  hours ,  t should be  
0 

chosen t o  be e i t h e r  t he  midpoint between these  peaks o r  12  hours l a t e r .  Fig. 1 



- -- 

i l l u s t r a t e s  t h i s  s i t u a t i o n  and another ,  i n  which t h e r e  i s  a s i n g l e  broad peak. 

If pout  
i s  symmetric about  t (or  equ iva l en t ly  about  t +12 h r )  then  a l l  t h e  

0 0 

B = 0 and only cos ine  terms appear i n  p 
n ou t '  

Unfor tuna te ly ,  i t  would be  wholly f o r t u i t o u s  i f  t hese  s p e c i a l  p o i n t s  

i n  t ime f o r  k and p 'should co inc ide ;  i n  gene ra l ,  t h e r e  is  no reason  t h a t  
ou t  

they  should.  Thus i f  t i s  chosen t o  s imp l i fy  k ,  one could n o t  expect  any 
0 

s i m p l i f i c a t i o n  t o  r e s u l t  i n  p and v i c e  ve r sa .  We w i l l  assume below t h a t  
ou t  

'mi + i s  symmetric because our r e s u l t s  w i l l  be  more c l e a r l y  i l l u s t r a t e d  f o r  

t h i s  c a s e  than f o r  t h e  g e n e r a l  case ,  and because many p o l l u t a n t s  probably have 

a symmetric concen t r a t ion  p r o f i l e  ( a s  I n  F i g .  i for example). 

l 2 :30 6:30 12330 G:30 12:30 a ~ U U  U:UU 3:OO 8.60 3 iOO 
AM AM PM PM P M  AM AM P M P M AM 

T IME TIME 

Figure  1. Symmet l t ic  po l lurant  concen t rac lu~l  p ~ u l i l e s :  
( a )  rush hour- l ike  (b)  s i n g l e  broad peak. 



Symmetric p  out  
. . 

Since we a r e  focus ing  our a t t e n t i o n  on outdoor sources  of indoor 

p o l l u t i o n ,  we may assume t h a t  t h e r e  a r e  no indoor sources ,  o r  k = 0.- Then, 
. . . . . . . .. . . . . . . . . . ,. . 

according t o  ( 4 ) ,  (9)  and ( l l ) ,  p  i s  g iven  by 
8 .  A 

n  
(13 p = p  + v C  2 2 (vcos n8 + 8 ' n s i n  no) 

' 

0 v + (8 ' )  n  

and., by (12) ,  a is  given by 

Notice t h a t  a l though p i s  symmetric, p  i s  no t .  This  is due t o  t he  
ou t  

terms of t he  form b s i n  n8, each of which modif ies  t he  phase of t he  
n 

corresponding cos ine  &nu. The t o t a l  phase d i f f e r e n c e  r e s u l t i n g  from C b  s i n  nu 
n 

i s  what we previous ly  c a l l e d  the  " lag  time". A s  we might have expected, p  

i nc reas ing ly  resembles p i n  both magnitude and phase a s  v becomes l a r g e  
ou t  

1 i m  
( i . e .  

v+- = Pout  
. We a r e  more i n t e r e s t e d ,  however, i n  t he  behavior  of p  

when v .is small.. 

A s  v  becomes smal l  compared t o  8' = 0.26/hrY vcos n8 becomes n e g l i g i b l e  

2 
compared t o  8 ' n s in  n8, and v becomes n e g l i g i b l e  i n  t h e  denominator terms of 

2  2 2 
(13) and (14) ,  v  + ( 8 ' )  n  . Thus f o r  v  <<0.26 ach 

A 
11 p = p o + v C -  s i n  n8 +- p a s  v -t 0 8 'n  . o 

and 

This  shows t h a t  when v i s  ve ry  much smal le r  than  k ach : 

1. p becomes inc reas ing ly  out  of phase wi th  p o u t y  

2. th.e o s c i l l a t i o n s  about p  become ~ m a l l e r ,  and 
0 

- 
3. p  = po i s  unaf fec ted ;  

t h a t  i s ,  p becomes more nea r ly  cons tan t .  This  is  shown i n  F i g .  2,  where p i s  



p l o t t e d  f o r  s e v e r a l  va lues  of v  and compared wi th  the  s p e c i f i c  p  given i n  out  

t h e  next  s e c t i o n .  

I n  F ig .  3 we show an  a c t u a l  p r o f i l e  of t he  CO concent ra t ion  i n s i d e  a  

house i n  Har t ford ,  C t .  4 9 5  A s  t h e  model presented  above p r e d i c t s  p  < p 
out  

when p i s  near  i t s  maximum and p > p when p i s  near  i t s  minimum. 
ou t  o u t .  ou t  

A similar r e s u l t  i s  r epor t ed  f o r  SO 
6 

2 ' 
Often,  however, t h i s  behavior i s  only 

approximated;while p cont inues  t o  be smal le r  than  p f o r  CO, SOZ, NOx and 
o u t  

suspended p a r t i c u l a t e  ma t t e r  when p 1s large, p i s  either approxiua te ly  
o u t  

equa l  t o  o r  a  l i t t l e  smal le r  than  p when Pout i s  smal l  and < P 
3 , 7  

o u t  o u t '  

Some p o s s i b l e  explana t ions  f o r  t h i s  a r e  t h a t  v  i s  no t  cons tan t  throughout 

t h e  day and n e i t h e r  indoor nor outdoor a i r  i s  completely uniform, a s  we have 

assumed. In s t ead ,  t h e r e  is  a p o l l u t i o n  g r a d i e n t  between t h e  u l t i m a t e  p o l l u t i o n  

sou rce  and t h e  i n t e r i o r  of t h e  house. Unless measurements a r e  taken j u s t  i n s i d e  

and o u t s i d e  an a i r  channel of t h e  house, t h e  average concent ra t ion  ou t s ide  

would be expected t o  be g r e a t e r  than t h e  average concentraLion i n s i d e .  Another 

complicat ion i s  t h a t  t h e  house con ta ins  s i n k s  f o r  some p o l l u t a n t s  . . l i k e  SO and 
2 

3 
p a r t i c u l a t e s .  I f  t h e s e  s i n k s  a r e  l oca t ed  i n  t he  c racks  of t he  house, a s  they 

may be f o r  p a r t i c u l a t e s ,  s e a l i n g  up these  c racks  may a c t u a l l y  remove s inks .  

Thus, a t  b e s t ,  lowering v may have some p r o t e c t i v e  va lue  i n  reducing 

peaks of concen t r a t ions  of e x t e r n a l l y  generated p o l l u t a n t s .  This  w i l l  only occur 

when p o r  a is  ve ry  l a r g e  compared t o  p and a s  we s h a l l  s e e  below, only 
max o ' 

when the p o l l u t i o n  peak is t r a n s i e n t .  By c o n t r a s t ,  lowering v r a i s e s  t h e  average 

concen t r a t ion  of i n t e r n a l l y  generated po l lu t an t s1  no ma t t e r  what t h e i r  

p a r t i c u l a r  p r o f i l e s .  

I n  t h e  next  s e c t i o n  we o b t a i n  some q u a n t i t a t i v e  e s t ima te s  of t h e  r educ t ion  

i n  p due t o  lowering v ;  we then d e r i v e  condi t ions  f o r  when lowering v has a  

maximal b e n e f i c i a l  e f f e c t .  



TIME, hours 

v 
Figure 2. pout = po (1 - cos 8) and p = po (1 - ,2 + (e1)2- 
(v cos 8 + 8' sin 8)) for several different v. 

(0' = .L 
12 hr 

and 8 = 8 '  t). 

TI  ME, hours 

Figure 3. Carbon monoxide concentrations for house 
in Hartford, Connecticut; September 22, 1969.5 
(copied from ref. 4). 

Pout i s  s i n u s o i d a l  

Actua l ly ,  i t  w i l l  be  more convenient t o  r ep re sen t  p  a s  
ou t  

- (17 - 
Pout Po 

- Acos 8 ,  A > 0 

than  a s  p + Asin 8;' t h e  only d i f f e r e n c e  i n  t hese  p r o f i l e s  is  a phase d i f f e r e n c e  
0 

of 6 h r ;  a l l  t he  important  parameters l i k e  t h e  l a g  time, p  and o a r e  
max 

i d e n t i c a l .  

We choose A a s  l a r g e  a s  p o s s i b l e  compared t o  p so  t h a t  lowering v w i l l  
0 

have t h e  g r e a t e s t  p o s s i b l e  e f f e c t .  Since p I p - A I - 0,  A = po. (17) now 
ou t  - 0 

becomes 

- 9 - 



(18) Pout  = Po ( 1  - cos 8) 

and t h e  s o l u t i o n  ( 1 3 ) . i s  g iven  by 

(19) P  = Po - Po v  
2  2  (veos 8  + 8'  s i n  8) 

- v + ( e ' )  
pout  

W e  p l o t  - , and f o r  s e v e r a l  va lues  of v ,  i n  F ig .  3. W e  a l s o  have, from (14) ,  
Po Po 

W e  can now c a l c u l a t e  p  and t h e  l a g  time. Le t  to = 0 .  Then p  
max ou t  

ach i eves  i t s  maximum a t  

W e  need p' : 

p '  = pave' 
2  2  

(v s i n  8  - 8'  cos 8)  
v + (8 ' )  

S e t t i n g  p '  = 0  w e  o b t a i n  8 : m 

v s i n  0 = 0 '  cos  0 
m m 

0 ' e = e ' t  = arc t a n -  
m m v  

There a r e  two s o l u t i o n s  t o  (21);  t i s  g r e a t e r  of t he se ;  t h e  o t h e r  m 

s o l u t i o n ,  occuring 12 hours  e a r l i e r ,  i s  t h e  t i m e  when p  ach ieves  i t s  

minimum. Choosing t h e  c o r r e c t  s o l u t i o n  of (21), w e  g e t  

(22') 
1 8 '  " l ag  time" = t - 12 h r  = - arc ran(-) - 12 h r  

m 8' v  

Subs t i t u t i ng '  (21) i n t o  (19) w e  o b t a i n  

Comparing (20) and (23) w e  s e e  t h a t  



A s  an approximation, ' s ince  p p about a s  o f t e n  a s  p < p we may consider  t h a t .  
0 0 

p has  an e f f e c t i v e  concent ra t ion  of p + o, f o r  ha l f  of each day and of p - o 
0 0 

(5 
f o r  t h e  o the r  h a l f .  ' I n  Table I we c a l c u l a t e  l a g  t imes,  E, and - f o r  va r ious  

Po Po 
va lues  of v ;  we inc lude  t h e  extreme cases  v ' =  0 and v = rn. AS. expected, 

a l l  t h e  parameters approach t h e i r  va lues  f o r  t hese  extreme cases  a s  v becomes 

very smal l  o r  l a r g e ,  r epec t ive ly .  Note t h a t  f o r  v = % achy w h i c h , i s  very  c lose  

t o  8 ' ,  t h e  l a g  time i s  midway between i t s  two extreme va lues ;  t h i s  i s  a l s o  a s  

expected from t h e  d i scuss ion  i n  t h e  l a s t  s ec t ion .  

The e f f e c t s  of v on outdoor generated indoor 

' a i r  p o l l u t i o n  when p "= ( 1  - cos 8) 
0 o u t  

'ma, . o 
v (ach) l a g  time (hr )  - 

. . Po Po 

o ( l i m i t )  6 ,. . I  O 

.1 . 5:54 , ,, 1.36 .25 

. :% . .3:05 1.69: .49 

4 1:51  . . 1.89 . . 6 3 .  

1 .  0:59 1.97 .68 

2 0:30 1.99 .70 

( l i m i t )  0 2 .707 



What are the  e f f e c t s  of lowering v from 1 t o  k ach,  f o r  example? For 

v = 1 ach,  p achieves  i t s  maximum 1 h r  l a t e r  than p does,  and p = 1.97 po. 
o u t  max 

For ' the  h a l f  of t h e  day we a r e  i n t e r e s t e d  i n  ( i . e .  when p > p , p 1 1.68 po. 
0 

For v = k ach,  p does n o t  achieve  i t s  maximum u n t i l  3 h r  l a t e r  than  p does,  
o u t  

= 1.69 p and f o r  t h e  i n t e r e s t i n g  h a l f  of t h e  day p " 1.49 po. Thus, pmax Pmax o 

i s  reduced 14%, and f o r  h a l f  of each day, t h e  e f f e c t i v e  concen t r a t ion  i s  reduced 

- 
by 12%. p ,  of course ,  remains unchanged a t  p . I n  c o n t r a s t ,  i f  P were produced 

0 

. 1  , e x c l u s i v e l y  indoors  ( a t  a product ion rate independent of v ), then  f o r  t h e  same 

r educ t ion  of v ,  i ts  average concen t r a t ion  would have increased  300%: (150% if 

1 
h e a t i n g  systems produce P because they can ope ra t e  l e s s  i f  v i s  reduced. ) 

We d o n ' t  wish t o  g ive  t h e  impression t h a t  t h i s  r e s u l t  i s  a gene ra l  one. 

The shape of p i s  much more important  f o r  a n  a n a l y s i s  of p than  t h e  shape 
out  

of k.  The reason f o r  t h i s  is  t h a t  s i n c e  p changes when i t  is  due t o  'k ,  bu t  

does n o t  when i t  i s  due t o  p any o s c i ~ l a t i o n s  about  average va lues  a r e  m o r e '  ou t '  

impor tan t  i n  t h e  l a t t e r  case.  For example, i n  t h e  p r o f i l e  we analyzed i n  

d e t a i l  above, an  examination of Table I w i l l  r e v e a l  t h a t  t h e  o r d e r s  of 

~uaguiLucle ul: I, - p and a are ~Ii i i i lar .  Fig.  2 shows t h a t  t h e  breadth  
0,  "out,  max 0 

of t h e  peak i n  p ( t h e  t ime i t  t akes  f o r  p t o  rise from g5 of i t s  peak 
o u t  o u t  

:3 3 
h e i g h t  above average,  7 pd through i t s  peak, 2 po, and back down t o  - p ) i s  2 0 

8 hours .  W e  w i l l  show i n  t h e  nex t  s e c t i o n  t h a t  i f  w e  i nc rease  p r e l a t i v e  
o u t ,  max 

t o  po and decrease  the  b read th  of t h e  peak s u f f i c i e n t l y ,  then  lowering v may be  

b e n e f i c i a l  i n  p r o t e c t i n g  a g a i n s t  high outdoor p o l l u t i o n  l e v e l s .  



Health Benefits of Lowering v 

In order to achieve a significant reduction in p . when v is lowered, 
max 

- p must be much larger than p . otherwise even the complete elimination 
'out, max o o y 

of the peak at tm will have little effect on pmax since p - - 
max Po-5 Pout, max 

In addition, the breadth of the peak at t must be small. We can see this 
m 

as follows. 

If there are no indoor sources of P, then the essential features 

of p can be, derived.' from equation (1) : 

1. p increases (p' > 0) whenever p < p out' 

2. p reaches its maximum when p = p and 
O U ~  * 

3. p decreases (p' < 0) whenever p > p 
uuL 

The actual CO profile in Fig. 3 displays these features, as do the profiles 

in Fig. 2 and 4. 

Now suppose that p has a sharp peak around time t (Fig. 4 ) :  If v out m 

is small, p will not increase very much before.it intersects p out during the 

descent of the letter from its maximum,after which p must decrease also.' , 

(Fig. 4 illustrates the behavior of p hor relatively small and large v.) 

m 
T IME 

z 
0 
I- 
a 
K 
t- 
Z 
W 
0 
2 
0 
0 .  

Figure 4 .  Pollutant concentration profile with a 
single sharp peak at time tm. 

P ,  LARGE v 



0 W TIME 

Figure 5. Approximation of a pollutant 
concentration profile with a single sharp 
peak by the step function. pout. 
pout = h for 0 5 t 5 w 

= 0 elsewhere 

p is given for v = k and 1 ach. 

How small must the breadth of the peak be in order for the outdoor 

concentration of pollutant to be reduced significantly? 

Let us approximate any peak of breadthw and height h by the 

step function (shown in Fig. 5): 

= h f o l : f ] < t < w  
pout - - 

Pout 
= 0 elsewhere 

Let us further assume that at time t = 0 p ='O. Then, we know1 that 

p (we write p = p to emphasize its dependence on v) achieves its maximum 
v v 

at time w and chat 

In Table fP we show how large w can be so that p remains smaller than 

certain multiples of h, for v = % ach. 



Table 11 

Maximum breadth  of peak i n  o rde r  t h a t  

p  5 ah when v = % ach 

a maximum w (h r )  

How much p r o t e c t i o n  can we g e t  by lowering v from 1 t o  % ach? We.take 

the  r a t i o s ,  R  of p 
1' max '%, max: 

-w h r  ' 

(26) 
'1, max - 1 - e - R  = -w hr 
p+, max 1 - e  6 

Now f o r  

f o r  

0  < w < 0:50 h r  - 3 ( R <  4 1  

0 :50 'h r  < w < 2:26 h r ,  . 2  < R  < 3 ,  - - 

and f o r  2:26 h r  < w < 24 h r ,  l < R < 2 .  

Thus w e  s e e  t h a t  a s  long a s  t h e p e a k  he igh t  i s  l e s s  than  2% hours', t h e r e  

w i l l  be  a t  l e a s t  a  two-fold r educ t ion  of p caused by lowering v from 1 t o  k ach. 

P o l l u t a n t s  t h a t  are most l i k e l y  t o  e x h i b i t  t h i s  kind of t r a n s i e n t  behavior ,  

t h a t  is ,  a t t a i n  s h o r t  l i v e d  peaks t h a t  a r e  enormous r e l a t i v e  t o  t h e i r  average 

c o n ~ e n t r a t i o n s ~ a r e  automobj..le emi.ssions dur ing  rush  hours  t r a f f i c .  



Summarv 

Lowering v 4-fold may afford some protection against pollutants 

originating outdoors by reducing their peak concentrations indoors approximately 

in half. At the same, however, long-term average indoor concentrations of prac- 

tically all internally generated pollutants will be raised 2.5-4-fold. It seems 

likely that the latter is the more important effect. 
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