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Abstract

Annual precipitation chemistry data from network start-up
through 1988 is presented for the nine MAP3S sites. Time trends

show significant negative linear regressions (P < 0.10) for SO4~ at
2 sites, H' at 4 sites, Ca*t at 1 site, and Na¥ at 1 site. Significant
positive regressions over time include: NH4% at 2 sites, Cat™ at 1
site, Kt at 4 sites, and Cl™ at 2 sites. The Ithaca site shows the
highest number of significant trends, with positive trends for CI°,
NHg4', Ca*™™, and K¥, and a negative trend for HY.

Linear regressions of annual SO4~ concentrations on SO2
emissions show a significant positive relationship for Whiteface,
Illinois, and Ohio at p < 0.10, 0.02, and 0.05 respectively. Overall
for all MAP3S sites. plus Hubbard Rrook a 25% decline in SO2
emissions over the region has been accompanied by a 16.5%

decline in annual precipitation concentrations of SO4™ - Linear

regressions of H' concentrations on combined emissions of SO2
plus NDx show significant positive relationships for Whiteface,
Ithaca, Illinois, Ohio, and Lewes at p < 0.10, 0.02, 0.05, 0.05, and
0.10 respectively. For the region as a whole, a 20% decline in

combined emissions has been accompanied to a 20% decline in H
concentrations. Thus a linear relationship exists between

combined emissions and precipitation HY concentrations.

No strong relationship exists for NOx emissions and

precipitation NO3~ concentration at the annual, seasonal or
monthly level. Removing the NOx transportation sector, removing
high and low precipitation values, or high pH values also does

little to improve the NOx - NO3~ concentration relationships. Dry

- deposition components such as PAN, NO2, gaseous HNO3, or

aecrosol NO3~ should be includedin the future with precipitation
NO3™ to relate emissions of NOx to nitrogen deposition.

The appreciable MAP3S data record, which is of high quality,
should continue, especially to monitor and investigate changes in
precipitation chemistry which will result from changing emission
levels proposed by 1990 Amendments to the Clean Air Act.



page 3
Introduction

The Ithaca MAP3S Regional Precipitation Chemistry Site has
been in continuous operation since September of 1976. Site
operation during the entire time period has been performed by
Tom Butler. Event and daily (as of 3/89) precipitation samples are

collected and analyzed for field pH, lab pH, conductivity, SO4~,

dissolved SO2, NO3~, CI, HY, NH4™*, Cat*, Mg**, K*, and Na*.
Complementary meteorological and air chemistry data are being
collected (as of 8/87) at a co-located National Dry Deposition
Network (NDDN) site. Precipitation chemistry samples are still
being collected and analyzed although funding by DOE for
monitoring and analysis was discontinued in November 1990.
Because DOE support for the Ithaca MAP3S site was removed
suddenly and without adequate warning, the last few months of
operation of the site and preparation of this final report were
supported by funds provided to the Institute of Ecosystem Studies
by the General Reinsurance Corporation. This support is gratefully
acknowledged.

Precipitation chemistry research has been a fundamental part
of network operations since it's inception. Personnel associated
with the Ithaca site, Gene E. Likens and Tom J. Butler, continue to
pursue the objective of research associated with the MAP3S
program. Published research papers associated with the Ithaca
MAP3S project are listed in Appendix A.

The MAP3S Network Record - Annual Data
Precipitation

Yearly precipitation values through 1988 for the nine MAP3S
sites are displayed in Fig. 1. Mean annual precipitation and
annual standard deviations for the sites are presented in Table 1.
Average precipitation for all sites is 100.45 cm/yr with a range of
85.0 cm/yr for Illinois to 111.0 cm for Oak Ridge .
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Ioni ncentration nd _Time Tren

Figs. 2 through 10 are plots for all sites of the annual
precipitation-weighted means for SO4~, NO3~, CI-, HT, NH4*, Ca*™,

Mg++, K*, and Nat, through 1988. Linear regression analysis of a
particular ion regressed on year was performed on each set of
graphs. Significant regressions at a level of p < 0.10 are indicated
by a regression line. Whiteface and Illinois show significant

downward trends in SO4~ (Fig. 2) and Whiteface, Ithaca, Virginia,
and Illinois all show significant downward trends in HY (Fig. 3)

over time. NO3~ (Fig. 4), shows no significant trend for the period
of record.  Further discussion concerning these ions and how they
relate to emissions of NOx and SO2 will be presented below.

NH4% demonstrates a significant positive time trend for Ithaca
and Virginia (Fig. 5). Ithaca and Illinois show a significant

positive and negative trend, respectively, for Ca** (Fig. 6). No

significant relationships exist for Mg*™ (Fig. 7). Four of the nine
sites, Ithaca, Penn State, Virginia and Oak Ridge, show a significant

positive time trend for K* (Fig. 8). Na* has a significant downward

time trend at Oak Ridge (Fig. 9), and CI° shows a positive time
trend for both Ithaca and Penn State (Fig. 10). Overall the Ithaca
sitc shows the highest number of significant trends among the

MAP3S stations. A significant negative trend exists for H*, and

positive trends exist for CI°, NH4+, Ca*t, and K% at the Ithaca site.
Continuing the MAP3S network precipitation chemistry record for
several more years would be necessary to further establish real
trends, if they exist, for various ions in precipitation for the
eastern U.S.

| The relationship between regional SO2 and NOx emissions on

recipitation chemistr

Control of acid inputs to ecosystems is a national and
international concern. A major question dealing with this concern
is how will reductions in emissions of SOZ and/or NOx affect
precipitation chemistry and deposition of acid species. We have
addressed this issue in Butler and Likens, 1991, using the MAP3S
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data record from the ADS Precipitation Chemistry Database
(Watson and Olsen, 1984) to 1987, plus the Hubbard Brook, N.H.
precipitation chemistry record from 1975 to 1987. The analysis
excludes the two coastal sites, Brookhaven and Lewes, and also
Oak Ridge because of its relatively short record. Emissions data
are from Kohout et al. (1990), which is the most current and
detailed U.S. emissions record available to us.

Combining data for all seven sites (Whiteface, Ithaca, Penn
State, Virginia, Ohio, Illinois and Hubbard Brook) and regressing
precipitation chemistry data on emissions, a 22% decline in SO2
emissions during the period of record was accompanied by a 16%

+ 3% decline in SO4™ concentration for the Eastern U.S. An 18%
decline in combined emissions of SO2 plus NOx has led to an 18% +

3% decline in HY concentration. For NO3~ regressed on NOx
emissions no significant relationship was found. We have redone
this analysis using a data record extending to 1988, and also
including the three remaining MAP3S sites (Brookhaven, Lewes,
and Oak Ridge). This analysis is presented below.

Annual Emissions

The trends in annual emissions of SO2 and NOx (from Kohout et
al., 1990) are presented in Figs. 11 and 12 respectively. Details on
the establishment of source regions for particular sites are given
in Butler and Likens (1991). It should be noted that while the
magnitude of emissions is different for the various source regions,
the trends or patterns in emissions for both SO2 and NOx are very
similar between the various source regions. It is the trend in the
emissions that is the most relevant parameter for the regression
analyses.

For SO2, peak emissions occured in 1976 or 1977, and the
lowest emissions occurred in 1987. A 23% - 27% decline in SO2
emissions occurred during this period for the various sourcc
regions. Peak NOx emissions occurred in 1977 and 1978 with
lowest emission rates in 1987 and 1988, representing a 16% to
18% decline in NOx emissions.
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Effects of changing SO2 emissions on SO4~_concentrations

Individual regressions for each site of annual precipitation

S04~ concentrations on annual SO2 emissions from the
appropriate source regions are presented in Fig. 13. Whiteface,
Illinois and Ohio all show significant positive relationships at p <
0.10, 0.02 and 0.05 respectively. The remaining six sites show
positive relationships, however they are not significant at a level
of p < 0.10.

If the data for each site were standardized by plotting both

emissions and SO4~ concentrations as %'s of the long-term mean
for each site, then the data from all sites (including Hubbard
Brook) can be analyzed for the entire region as a whole. This
relation is shown in Fig. 14 (a). It is interesting to note that the
slope of this regression is a measure of the efficiency with which
changing SO2 emission levels led to changes in SO4~ concentration
(and deposition) for the eastern U.S. as a whole. In this analysis
the slope is 0.66 which means that for a 25% decline in SO2
emissions there has been about a 16.5% decline in precipitation
S04~ concentrations for the MAP3S region as a whole. This 66%
efficiency compares with a 74%=+15% (standard error) found in

Butler and Likens (1991) where the data record was through
1987 and Brookhaven, Lewes, and Oak Ridge were not included.

The regression line in Fig. 14 (a), while highly significant (p <
0.01) only accounts for 17% of the variability in the data. This
clearly shows that other factors such as oxidants (OH, H202),
catalysts, and most likely meteorological factors also control the

transformation of SO2 to SO4~ . However, this analysis supports
the premise that reductions in SO2 emissions will bring declines in

~ precipitation S04~ and will reduce acid loading to ecosystems.

Eff f changing NOx plu 2 emissions on H* concentrations

Individual regressions for each site of annual HY concentrations
regressed on combined annual emissions of NOx plus SO2 are
presented in Fig. 15. Moles of NOx were added to two times the
moles of SO2 to get combined NOx plus SO2 emission values. One
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mole of NOx has the potential to produce one mole of HY, while one

mole of SO2 has the potential to produce 2 moles of HY. Whiteface,
Ithaca, Illinois, Ohio, and Lewes show significant positive
relationships at p < 0.10, 0.02, 0.05, 0.05, and 0.10 respectively.
The remaining 4 sites show positive relationships but they are not
statistically significant at a level of p < 0.10.

Fig. 14 (b) is the overall emissions vs H' regression using the

same approach as was done for the overall SO2 - SO4~ analysis.
The slope, which again is the efficiency with which changing

emissions of NOx plus SO2 lead to changes in HY concentration, is
0.99 or an efficiency of 99%. A 20% decline in combined emissions

has been accompanied by a 20% decline in precipitation H*
concentration for the region as a whole. This compares well to a
slope of 100% +15% for this regression through 1987 and not
including Brookhaven, Lewes, and Oak Ridge (Butler and Likens,
1991). Thus, there appears to be a strictly linear relationship for

combined NOx plus SO2 emissions and precipitation HY. This

analysis offers strong support for reduced emissions of both NOx
and SO2 in order to decrease acid loading to ecosystems.

Effects of changing NOx emissions on precipitation NO3~

In Butler and Likens (1991) no sites showed statistically

significant relationships between annual NOx emissions and NO3~
concentrations in precipitation. In this analysis, updated to 1988
and including Brookhaven, Lewes and Oak Ridge, the results are
essentially the same. Fig. 16 shows no significant regressions for
all nine MAP3S sites for annual emission and concentration
values.

Disaggregation of the NOx and NO3~ data

Seasonal and monthly analysis for NOx and precipitation NO3~

The lack of significant relationships between annual NOx

emissions and annual precipitation NO3~ at any of the sites raised
the question of whether there might be any significant
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relationships at a more disaggregated level of analysis. We
therefore performed regressions at selected sites at seasonal and
monthly levels. Figs. 17 to 21 are the seasonal regressions for
Whiteface, Ithaca, Illincis, Ohio, and also Hubbard Brook. Illinois

shows significant NOx - NO3~ relationships for the winter (p <
0.05) and fall (p < 0.10) data sets, and Ohio shows a significant
relationship for fall (p < 0.02). The remaining 17 regressions are
not significant at p < 0.10. Figs. 22 and 23 are the results of a
further analysis performed on monthly values for Hubbard Brook,
which had the longest record (1975-1988) of the sites examined
in this study. Only data for the month of July showed a significant
regression (p < 0.02).

Removing monthly data where precipitation amounts were
more than 1 standard deviation from the average resulted in only
onie month (October) having a significant relationship (p < 0.05) for
Hubbard Brook. Also removing monthly data with pH values
greater than 4.5 again left only October with a significant
relationship (p < 0.05) for Hubbard Brook.

NOx Sector Emissions

Fig. 24 shows NOx Emissions from 1975 to 1988 by sector for

the Northeastern and Southeastern U.S., from Kohout et al., (1990).
Northeastern and Southeastern regions are defined in Fig. 25. The
two dominant sources of NOx emissions are transportation and
electric utilities. Note that the transportation sector shows a
decline from the late 1970's to 1988, while electric utilities show
an upward trend. Electric utilities which was formally the second
major source of NOx emissions is now about equal to
transportation, which was formally the major NOx source. These
two NOx sources are emitted to the atmosphere in fundamentally

different ways. Transportation is a ground level source which may
~ be less susceptable to long range transport and transformation.
Electric utility NOx sources, like SO2 sources from the same sector,
are usually emitted from tall stacks and so have a greater
potential for long-range transport and transformation.

Because of these basically different modes of emission (see
Discussion below) it seemed reasonable to examine the
relationship of NOx, without the ground-level transportation
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sector, to NO3~ in precipitation. Figs. 26 and 27 are annual
regression plots for Whiteface, Ithaca, Penn State, Virginia, Ohio,
Lewes, Oak Ridge, and Hubbard Brook. Whiteface and Ohio show
significant positive regressions at a level of P < 0.10 and 0.05
respectively. Lewes shows a significant regression at p < 0.05
when the year 1979 is removed from the data set. That particular

year recieves a poor rating for the quality of the NO3™ data at
Lewes, in the ADS database for precipitation chemistry.
Previously, Fig. 16 had showed no significant regressions for

annual NO3~ regressed on NOx emissions.

Fifty-one NOx - NO3~ regressions have been presented in
figures for this report. Only 8 regressions or 18% of the total are
significant at a level of p < 0.10 or less. After examining the NOx -
NO3~ relationship at the annual, seasonal and monthly level, and
also stratifying the data to remove low and high precipitation
periods and high pH periods, and finally separating out the
transportation sector, we conclude that with the record presently
available no strong relationship is discernable between NOx

emissions and precipitation NO3", for the eastern U.S. as a whole.

Discussion

Other researchers have also had difficulties in establishing

significant relationships for NOx and precipitation NO3~. Rodhe
and Rood (1986) found no significant relationships for NOx
emissions and NO3 in precipitation for northern Europe. Dillon et
al. (1988) found no change in concentration or deposition of
precipitation NO3~ from 1976 to 1985, a period when NOx
emssions declined 10%. Hilst and Chapman (1990), using a spatial
approach, found a strong to moderate relationship when

comparing regional spring and summer NO3~ concentration levels
to spring and summer NOx emissions for regions in southeastern
Canada and the northeastern U.S. However the relationship breaks
down in the fall and winter.

There may be a good explanation why a clear NOx -
precipitation NO3~ relationship does not emerge from this study.
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NOx transformation chemistry is dependent on concentrations of
other chemical parameters such as O3 , H202, OH radical and
reactive hydrocarbons and u.v. radiation intensity (Moussiopoulos,

1990). More importantly, precipitation NO3~ is only one of
several end products for NOx . NO + NO2 atmospheric chemistry
can lead to dry deposition of NOx, HNO3 , peroxyacetyl nitrate
(PAN) (Olsen et al., 1990), or aerosol nitrate ( ie NH4NO3
(Lindberg et al., 1990; Khwaja and Husain, 1990) and large aerosol
NaNO3 or Ca(NO3)2 which effectively sediment out (Dasch and
Cadle, '990)). Lindberg et al. (1990) found dry deposition to

forested landscapes to account for 60% and 66% of the total NO3~
dcposition in the southeastern U.S. (Oak Ridge, TN) and Germany
respectively.  Olsen et al.,, (1990) in a nitrogen budget for eastern
Canada found only 1/3 of the nitrogen deposition as precipitation

NO3", the remaining 2/3 consisting of dry-deposited NO3~, NO2,
and PAN. These data suggest that the addition of the nitrogen dry
deposition component to precipitation nitrate values may be
critical to establishing a strong relationship between NOx
emissions and their end products.

NOx emission types are also a factor. For example NOx dry
deposition is a function of surface concentrations. Thus NOx dry
deposition losses are much greater for ground level emissions
from the transportation sector rather than for elevated sources,
such as electric utilities (Simpson et al., 1990). Such ground level
emissions, which represent the largest source of NOx emissions, do
not allow the regional-scale mixing and long-range transport that
occurs in the case of SO2 emissions. As shown earlier, an attempt
was made to remove the transportation sector, which may

contribute very little to the formation of precipitation NO3~, from
the NOx emissions. However removing this sector results in a
change in NOx emissions of less than 12% for the Northeastern U.S.
~ over the period of record. Such a small change is not conducive to
regression analysis.

The establishment of the NDDN network, begun in 1987, will
hopefully allow the incorporation of the dry deposition component
into an analysis of nitrogen deposition as a function of NOx
emissions. At present the NDDN record (quarterly data) extends
to 1990 (E. Edgerton, pers. comm.), but the MAP3S record in the
ADS database extends only to 1988 and must therefore be
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updated to at least 1990. When this is accomplished then we can
begin to look at the relationship between NOx emissions and how
they relate to wet and dry nitrogen chemistry and deposition.

Addendum

The MAP3S precipitation chemistry network is the longest
operating U.S. network, and the only network collecting
precipitation chemistry samples on a daily basis in the United
States. The high quality of the data record is also a critically
important aspect of the MAP3S network. At a time when
declining emission levels are mandated by the 1990 Amendments
to the Clean Air Act we believe that it is critical that this
particular precipitation chemistry record be continued to monitor
any changing rainfall chemistry parameters, and to investigate the
probable causes of such changes.
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Table 1. Average annual precipitation and standard deviation for the
MAP3S sites. n = number of years of record to 1988. See Fig. 1 for
data on individual years.

Site n Mean Precipitation Standard Deviation
(cm) (cm)

Whiteface 12 101.5 15.1

Ithaca 12 101.5 14.0

Penn State 12 98.2 17.4

Virginia 12 101.1 24.2

Illinois 11 85.5 14.4

Ohio 10 92.4 12.0

Brookhaven 11 108.5 22.0

Lewes 11 104.9 21.3

Oak Ridge 8 111.0 19.0
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LIST OF FIGURES

Fig. 1 Annual Precipitation Amounts for the MAP3S sites.

Fig. 2 Annual volume-weighted SO4~ concentrations for the
MAP3S sites. Linear regressions with a significant slope at p <
0.10 are illustrated with a slope line and a stated level of
significance.

Fig. 3 Annual volume-weighted H' concentrations for the MAP3S
sites. Linear regressions with a significant slope at p < 0.10 are
illustrated with a slope line and a stated level of significance.

Fig. 4 Annual volume-weighted NO3~ concentrations for the
MAP3S sites. No linear regressions are significant at p < 0.10.

Fig. 5 Annual volume-weighted NH4%" concentrations for the
MAP3S sites. Linear regressions with a significant slope at p <
0.10 are illustrated with a slope line and a stated level of
significance.

Fig. 6 Annual volume-weighted Catt concentrations for the
MAP3S sites. Linear regressions with a significant slope at p <
0.10 are illustrated with a slope line and a stated level of
significance.

Fig. 7 Annual volume-weighted Mg** concentrations for the
MAP3S sites. No linear regressions are significant at p < 0.10.

" Fig. 8 Annual volume-weighted K* concentrations for the MAP3S

sites. Linear regressions with a significant slope at p < 0.10 are
illustrated with a slope line and a stated level of significance.

Fig. 9 Annual volume-weighted Na¥ concentrations for the MAP3S
sites. Linear regressions with a significant slope at p < 0.10 are
illustrated with a slope line and a stated level of significance.
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Fig. 10 Annual volume-weighted Cl° concentrations for the
MAP3S sites. Regressions with a significant slope at p < 0.10 are
illustrated with a slope line and a stated level of significance.

Fig. 11 Annual SO2 emissions from source regions for Whiteface,
Ithaca, and Brookhaven (WF,IT,BH); Penn State, Virginia, Lewes,
and Oak Ridge (PS,VA,LE,OR); Illinois and Ohio (IL,OH); and for the
eastern 2/3 of the U.S. Source regions represent the same states
as found in Butler and Likens (1991).

Fig. 12 Annual NOx emissions from source regions for Whiteface,
Ithaca, and Brookhaven (WF,IT,BH); Penn State, Virginia, Lewes,

and Oak Ridge (PS,VA,LE,OR); Illinois and Ohio (IL,OH); and for the
eastern 2/3 of the U.S. Source regions represent the same states

as found in Butler and Likens (1991).

Fig. 13 Annual precipitation SO4~ concentrations regressed on
annual SO2 emissions. Regressions with a significant slope at p <
0.10 are illustrated with a slope line and a stated level of
significance.

Fig. 14 Linear regressions of annual volume-weighted SO4~ (a)

and H (b) concentrations in precipitation for all MAP3S sites plus
Hubbard Brook (expressed as the % of each site mean) on annual
emissions for each appropriate source region (expressed as the %
of the appropriate source region mean for each site). The slope of
the regression line ( X 100) is a conservative estimate of the
efficiency of how changing emission levels affect changing levels

of S04~ and H' concentration over the entire study region. The
slope is 0.66 for (a) and 0.99 for (b).

- Fig. 15 Annual precipitation H" concentrations regressed on
annual SO2 plus NOx emissions (2 times moles SO2, plus moles
NOx). Regressions with a significant slope at p < 0.10 are
illustrated with a slope line and a stated level of significance.
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Fig. 16 Annual precipitation NO3~ concentrations regressed on

annual NOx emissions. No linear regressions are significant at p <
0.10.

Fig. 17 Seasonal precipitaton NO3~ concentrations at Whiteface
regressed on seasonal NOx emissions. No linear regressions are
significant at p < 0.10.

Fig. 18 Seasonal precipitaton NO3~ concentrations at Ithaca

regressed on seasonal NOx emissions. No linear regressions are
significant at p < 0.10.

Fig. 19 Seasonal precipitaton NO3~ concentrations at Illinois
regressed on seasonal NOx emissions. Linear regressions with a
significant slope at p < 0.10 are illustrated with' a slope line and a
stated level of significance.

Fig. 20 Seasonal precipitaton NO3~ concentrations at Ohio
regressed on seasonal NOx emissions. Linear regressions with a
significant slope at p < 0.10 are illustrated with a slope line and a
stated level of significance.

Fig. 21 Seasonal precipitaton NO3~ concentrations at Hubbard
Brook regressed on seasonal NOx emissions. Linear regressions
with a significant slope at p < 0.10 are illustrated with a slope line
and a stated level of significance.

Fig. 22 Monthly precipitaton NO3~ concentrations at Hubbard
Brook regressed on monthly NOx emissions, January through June.
No linear regressions are significant at p < 0.10.
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Fig. 23 Monthly precipitaton NO3~ concentrations at Hubbard
Brook regressed on monthly NOx emissions, July through
December. Linear regressions with a significant slope at p < 0.10
are illustrated with a slope line and a stated level of significance.

Fig. 24 Northeast (a) and Southeast (b) sectoral emissions trends
showing seasonal variations, 1975 to 1988 (from Kohout et
al.,1990).

Fig. 25 Defined regions for Fig. 24.

Fig. 26 and 27 Annual precipitation NO3~ concentrations
regressed on annual NOx emissions, not including the
transportation sector. Linear regressions with a significant slope
at p < 0.10 are illustrated with a slope line and a stated level of
significance.
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APPENDIX A
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