

ornl

OAK
RIDGE
NATIONAL
LABORATORY

**GEOLOGICAL AND GEOCHEMICAL ASPECTS
OF
URANIUM DEPOSITS**

A Selected, Annotated Bibliography—Vol. 4

MASTER

OPERATED BY
UNION CARBIDE CORPORATION
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

Sponsored by
GRAND JUNCTION OFFICE/DEPARTMENT OF ENERGY

ORNL/EIS-121/V4

Contract No. W-7405-eng-26

Information Division

**GEOLOGICAL AND GEOCHEMICAL ASPECTS OF URANIUM DEPOSITS
A SELECTED, ANNOTATED BIBLIOGRAPHY**

Volume 4

Compiled and edited by

J. M. Thomas, P. A. Garland, M. B. White, and E. W. Daniel

National Uranium Resource Evaluation Program
Ecological Sciences Information Center
Information Center Complex/Information Division

Sponsored by the
Grand Junction Office
of the
Department of Energy

Date Published: September 1980

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37830
operated by
UNION CARBIDE CORPORATION
for the
DEPARTMENT OF ENERGY

DISCLAIMER

The contents of this document have not been formally reviewed or approved by the United States Department of Energy. The document has been made available to you by the Oak Ridge National Laboratory, which is operated by Union Carbide Corporation for the United States Department of Energy. The document is provided "as is" and is not guaranteed to be free of errors. The document is not a formal report of the United States Department of Energy and is not subject to the same level of review and approval as formal reports. The document is intended for informational purposes only and is not intended to be used as a basis for any legal or technical decision. The document is not a formal report of the United States Department of Energy and is not subject to the same level of review and approval as formal reports. The document is intended for informational purposes only and is not intended to be used as a basis for any legal or technical decision.

CONTENTS

ABSTRACT	v
PREFACE	vii
ACKNOWLEDGMENTS	ix
SAMPLE REFERENCE	xi
BIBLIOGRAPHIC REFERENCES	
Geochemistry	1
Exploration	49
Mineralogy	75
Genesis of Deposits	91
Geology of Deposits	107
Uranium Industry	121
Geology of Potential Uranium-Bearing Areas	131
Reserves and Resources	137
INDEXES	
Author	141
Geographic Location	151
Quadrangle Name	161
Geoformational Feature	167
Keyword	183

ABSTRACT

This bibliography, a compilation of 464 references, is the fourth in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base was created for the Grand Junction Office of the Department of Energy's National Uranium Resource Evaluation Project by the Ecological Sciences Information Center, Oak Ridge National Laboratory. The references in the bibliography are arranged by subject category: (1) Geochemistry, (2) Exploration, (3) Mineralogy, (4) Genesis of Deposits, (5) Geology of Deposits, (6) Uranium Industry, (7) Geology of Potential Uranium-Bearing Areas, and (8) Reserves and Resources. The references are indexed by author, geographic location, quadrangle name, geoformational feature, and keyword.

PREFACE

This bibliography of 464 indexed and abstracted references is the fourth in a series of bibliographies produced from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. The data base was created and maintained by the Ecological Sciences Information Center (ESIC) of the Oak Ridge National Laboratory as information support to the National Uranium Resource Evaluation Project of the Grand Junction Office of the Department of Energy (DOE). In addition to the NURE Bibliographic File, ESIC created and maintains six other data bases for the Grand Junction Office of DOE: Uranium Mines File, Quadrangle File, Contractor's Report File, Geounits File, Reference File, and Numeric File.

The literature is indexed by subject categories: (1) Geochemistry, (2) Exploration, (3) Mineralogy, (4) Genesis of Deposits, (5) Geology of Deposits, (6) Uranium Industry, (7) Geology of Potential Uranium-Bearing Areas, and (8) Reserves and Resources. Indexes to assist in finding pertinent references are: author, geographic location, quadrangle name, geoformational feature, and keyword. Geographic information is presented by state, county, and/or country if foreign. The study areas are categorized into one-degree by two-degree National Topographic Map Series quadrangles. Geologic formations, mines, claims, rivers, and regional structures located within the study site are listed if they are applicable to the research. All references in this bibliography are contained in the NURE Bibliographic Data Base and are available for searching on request. The services of ESIC are free to all DOE-funded researchers. All inquiries for information services should be addressed to:

Ecological Sciences Information Center - NURE Project
Oak Ridge National Laboratory
P. O. Box X, Building 2001
Oak Ridge, TN 37830
Telephone: (615) 574-7765, FTS 624-7765

ACKNOWLEDGMENTS

F. M. Eckerson of the Grand Junction Office of the Department of Energy provided assistance and guidance in the establishment and compilation of the National Uranium Resource Evaluation data bases. The staff of the Information Sciences and Operations Department, Information Center Complex, Oak Ridge National Laboratory, were responsible for the computer production of this bibliography. This document was reviewed for its content by Mary Moran and Nancy Vaughan.

SAMPLE REFERENCE

A - Subject category	F - Publication description
B - Record number (of reference)	G - Publication date
C - Author	H - Abstract
D - Corporate author	I - Abstractor's initials
E - Title	J - Comments

A EXPLORATION

B 231

C D Price, V.; Jones, P. L., Savannah River Laboratory, Analytical Chemistry Division, Aiken, SC

E F G Orientation Study Data Release VI: Leesville, South Carolina, Area GJBX-61(78); DPST-78-141-1; 39 pp. (1978, March)

H I Water and stream sediment samples were collected from the upper Coastal Plain, Modoc Fault Zone, Kiokee Belt, and the Carolina Slate Belt. Currings were collected from water wells being drilled in the area. This report includes sample locality maps, uranium distribution maps, tables of water quality and field measurement data, and tables of uranium and other elemental concentrations. (PAG)

J This paper presents only raw data. Field data are presented in two parts: Tables 1 and 2 contain a record of site description data and Tables 3 and 4 contain a listing of field analytical data.

GEOCHEMISTRY

<1>
Texas Instruments Incorporated, Dallas, TX

Study of Airborne Gamma-Ray Spectrometer Data
Procedures, Casper Quadrangle, Wyoming.
GJBR-88(88); 158 pp. (1977, October)

A comprehensive study of the aerial gamma-ray spectrometer survey data in the Casper quadrangle, Wyoming has resulted in an improved understanding of the nature of uranium provinces and their radiometric characteristics. The survey data were reprocessed to produce conventional radiometric anomaly maps, contour maps of absolute values and significance levels, and stacked profiles of absolute values and significance levels. The resulting gamma-ray data displays were examined in conjunction with the uranium occurrences, geology, surface geochemical samples, LANDSAT imagery, and other published data to establish their inter-relationships and develop more appropriate data collection, analysis and interpretation approaches for the USSR National Aerial Radiometric Reconnaissance Survey. An improved statistical analysis of eU , eU/Th and eU/K anomaly maps was developed to define uranium anomalies which are both statistically and geochemically significant. Gamma-ray statistical summary data were applied to characterize broad uranium provinces and these data are suggested as a means of relating the gamma-ray data to uranium potential. Contour maps were demonstrated to be useful in displaying gamma-ray data and in defining uranium provinces. Significance level contour maps were better than absolute values maps in this application. The gamma-ray data show uranium depletion in mapped altered areas associated with the Gas Hills and Shirley Basin districts indicating that the data may be used to search for possible uranium sources for roll-type deposits. Significance factor stacked profiles were easily interpreted than were conventional radiometric stacked profiles, and provide a better low-level anomaly determination to outline uranium provinces. Both types of profiles should be studied together for maximum interpretive information. Operational parameter studies indicated that flight-line spacing should be commensurate with the size of the target sought. The data collection period should be designed to detect the smallest target that can be practically resolved along the flight line. Sixteen of 1) factors affecting data accuracy and precision, 2) advantages and disadvantages of digital filtering, 3) data clustering and pattern recognition, 4) surface geochemical data, and 5) data collection parameters have resulted in clarification of some problems and have suggested procedural modifications. (Auth) (PAG)

Volume 1 is the narrative report and Volume 2 contains 32 maps, 72 profiles, and 83 histograms.

<2>
Alekperov, R.A., and T. Kh. Efendiev, Academy of Sciences, Institute of Chemistry, Azerbaijan, USSR

On the Uranium Content in Petroleum.
Geochemistry 6:621-627. (1959)

The uranium content of some Azerbaijani petroleum deposits bound in different Tertiary sediments was determined. The uranium content was determined by luminescence of the petroleum ash. Uranium was found to be a component in all the petroleum studied with the concentration varying from 0.0001 to 0.05 percent in the ash or from $1 \times 10^{(2-3)}$ to $5 \times$

$10^{(2-3)}$ g/l of petroleum. The uranium content and the ash content of the petroleum were inversely related indicating a correlation between uranium content and the organic petroleum components. The character of uranium distribution in the petroleum-salt waters system depends on the chemical composition of the latter. Equilibrium always shifted towards the petroleum, but it was more pronounced in the case of hard waters. It was established that the decrease of the uranium content, being extracted by petroleum from artificial solutions, is in conformity with the following salt series contained in the solutions: $\text{CaCl}_2 - \text{MgCl}_2 - \text{NaClO}_3$. (Auth) (JET)

<3>
Alekseev, P.A., V.I. Ermakov, and V.A. Filosov, Academy of Sciences, Petroleum Institute, Moscow, USSR

Radioactive Elements in Oil Field Waters.
Geochemistry 7:806-814. (1958)

The concentration and distribution of uranium and radium in waters of oil fields and in rocks related to reef and salt dome structures was studied. For all types of fields similar radium concentrations ($\text{u} \times 10^{(2-10)}$ g/l) and a low uranium content, rarely exceeding $1.0 \times 10^{(2-7)}$ g/l, were noted. This ratio was considerably higher than the equilibrium ratio in the radium concentrations in bed waters with increasing distance from the oil fields. A decrease of radium content in the upper water-bearing horizons with a relative uranium increase was observed. These peculiarities in the radium and uranium contents in waters of oil fields are due to the specific geochemical conditions typical to oil fields. (Auth) (JET)

<4>
Andreyev, P.P., I.V. Andreyeva, and E.S. Rogozina
Reactions of Uranyl Salts with the Components of Plant Tissue and Some of Their Derivatives.
Geochemistry (4):359-368. (1962)

Absorption of uranium from uranyl salts in aqueous solution by cellulose, lignin, wood, and oxidation products of cellulose (oxycellulose, acetyl cellulose, carboxyl-methyl-cellulose, and nitrocellulose) were investigated as a function of concentration and pH. One liter of uranyl nitrate solution with a concentration of $1 \times 10^{(2-3)}$ g/l was passed through the samples at 2-2 ml/min and at pH's of 2.9-9.3. Absorptivities averaged 0.01 g/g; the highest values were from oxycellulose and wood flour (95-95 percent and 100 percent, respectively), the lowest from cellulose (wood and cotton) and acetyl cellulose (78-83 percent, 23-93 percent, and 74-90 percent extraction, respectively). Best results were obtained near pH 5. Part of the absorbed uranium is bound by carboxyl groups; evidence from similar No and Pb experiments confirms that most of the absorption is by formation of oxonium complexes, rather than ion exchange or physical adsorption. It is suggested that living plants must possess a defense mechanism against accumulation of uranium, since uranium is essentially absent from their tissues, even when growing in high-uranium soils. (LKH)

<5>

GEOCHEMISTRY

<5>

Arshavakaya, B.I., I.G. Berrina, and E.A. Lyubinaova, Academy of Sciences, Institute of the Physics of the Earth, Moscow, USSR; All-Union Institute of Nuclear Geophysics and Geochemistry, Moscow, USSR

Geochemical and Geothermal Data from the Drill Hole of the Pechenga and Nikolayevsk Regions. *Geochemistry International* 9(5):768-771. (1972)

The concentration of uranium was determined in the cores of gabbroids and gneisses from drill holes in the Pechenga and Nikolayevsk regions of the Kola Peninsula. Fission track analysis was used in the determination. Radioelement contents were used to calculate the quantity of radiogenic heat generated in the earth's crust in the two regions of the Precambrian Baltic shield. Heat flow from the crust is only 3.37-12.56 $\text{mW}/(\text{m}^2)$ (0.2-0.3 mW/cm^2). This indicates that a considerable quantity of heat is generated in the continental upper mantle underlying the two regions. (Keth) (JMT)

<5>

Agapitidis, S.S., Institute of Petrogenesis and Geochemistry, Athens, Greece

On the Phenomenology and Geochemistry of Differential Leaching and Element Agglomeration Processes. *Chemical Geology* 2:311-329. (1967)

Uranium containing minerals are often susceptible to differential leaching with a preferential mobilization of certain elements over others under alteration due to hydration. X-ray fluorescent spectroanalyses of unaffected and altered margins of a U, Y niobate from Barrar, Ethiopia showed that U and Nb are relatively more soluble than Y. However, the comparison of U/Tb ratios was difficult to assess because of the relatively small amounts of Th present. Additional comparisons of X-ray fluorescent spectroanalyses of unaffected and altered marginal zones of uraninite from Gorionia, South Africa, gave U/Y ratios of 22/1, 10/1, and 5/1 for unaffected uraninite, the black margin of alteration, and the yellow margin of alteration, respectively. U/Tb ratios were 10/1, 6/1, and 3/1 respectively. These ratios were interpreted as indicating a relatively greater mobilization - leaching out - of U over Y and Tb. It is suggested that the relatively greater leaching out of U and Nb over Y and Tb is due to the fact that U and Nb both possess two different valencies and are thus more mobile under hydration processes in comparison to Y and Tb, each of which possesses only one valency. (JMT)

<7>

Baranov, V.I., and S.A. Titayeva, Moscow State University, Department of Geology, Division of Geochemistry, Moscow, USSR

Uranium, Thorium, Radium and Ioniun Content in the Quaternary Deposits of the Lena River Valley. *Geochemistry* 2:121-126. (1961)

Twenty-five samples of peats, bottom soils, and loams from a Siberian permafrost region were analyzed for uranium, thorium, ionium, and radium. Uranium concentrations ranged from 1.6 to 15.0 pps, thorium from 1 to 13 pps, ionium from 0.5 to 5.5 pps, and radium from

0.3 to 3.9 pps. The investigation of the unconsolidated sediments in the middle course of the Lena River shows that in loess and mucks containing less than 10 percent humus the content of uranium, thorium, ionium, and radium is near the average content in sedimentary rocks and soils and that in all samples, the radioactive equilibrium between uranium and radium is well preserved and the equilibrium between uranium and ionium somewhat less so. The average Th/U ratio in the sediments was 6. In the sediments containing plant debris (humus) in excess of 10 percent, there is a noticeable enrichment in uranium and impoverishment in thorium, ionium and radium. In these sediments, the equilibrium between uranium and its daughter products is greatly disturbed and the Th/U ratio is reduced to 0.5. (JMT)

<8>

Baranov, V.I., Le-Tien Tu, and V.L. Korobkov, Moscow State University, Department of Geochemistry and Radiochemistry, Moscow, USSR

Geochemistry of Uranium and Thorium in the Granitic Rocks of the Kyzyltaus Massif (Central Kazakhstan), Part 2. Modes of Occurrence of Radioactive Elements in Granitic Rocks. *Geochemistry* 5:469-483. (1962)

The distribution of radioactive elements in minerals from granites of the Kyzyltaus massif was studied by autoradiographic methods using thin sections and grain mounts. It was found that in the course of magmatic differentiation, the content of thorium gradually diminishes, while uranium accumulates in the late differentiates. There was an intimate relation between the content of uranium, and possibly thorium, in the rocks and its constituent minerals. These minerals were divided into three groups: light-colored rock-forming minerals (quartz, potassium feldspars, and plagioclases), accessory minerals, and biotite. The variation of uranium concentrations in samples of granites taken from the same intrusive phase was found to be determined entirely by variation in the uranium content in accessory minerals and the content of these minerals in the rocks. The radioactivity of biotite in the granites was due primarily to inclusions of accessory minerals. Whether the majority of uranium in granitic rocks occurs in the essential or accessory minerals was determined by the conditions of formation of the rocks, particularly by the rate of crystallization of the parent magma. Besides the primary distribution of uranium that dates back to the formation of the rocks, there were also modes of occurrence of uranium which characterize its behavior during secondary processes such as autometamorphism and hydrothermal alteration. The study showed the principal causes of irregular distribution of uranium in the Kyzyltaus granites were autometamorphism and undisturbed crystallization of the magma. (JMT)

GEOCHEMISTRY

<9>
Baturin, G.N., Academy of Sciences, Institute of Oceanology, Moscow, USSR

Geochemistry of Uranium in the Baltic. Geochemistry International 5(3):384-388. (1968)

The uranium content in Baltic Sea sediments ranges from 1 to 4 ppm in inshore coarse-grained sediments to 5 to 20 ppm in deep-water clayey sediments. Distribution of uranium in the Baltic sediments is of the ordered type with a distinct pelagic maximum. The distribution and content of organic matter control the uranium content and distribution in the sediments. Hydrogen sulfide occurs only locally and sporadically in the Baltic and, as such, is not a principal factor in the accumulation of uranium in this basin. (JNT)

<10>
Baturin, G.N., A.S. Kochenov, and Yu.M. Senin, Academy of Sciences, Institute of Oceanology, Moscow, USSR

Uranium Concentration in Recent Ocean Sediments in Zones of Rising Currents. Geochemistry International 8(2):281-286. (1971)

Recent sediments around continental coasts have uranium concentrations of about 10 ppm, several times those in deepwater oceanic sediments. The biogenic and diagenetic phosphates in these sediments contain 10-100 ppm uranium. In both cases, the uranium accumulated is extracted from sea water, and this extraction is comparatively rapid from ocean water on the ocean shelf in upwelling regions. This process is responsible for the high contents of organic carbon and phosphorous in the shelf sediments, which in turn arise from the high biological productivity of the shelf waters. Syngenetic accumulation of uranium is produced by organic matter and by biogenic and diagenetic phosphates. (JNT)

<11>
Baturin, G.N., and A.K. Kochenov, Academy of Sciences, Institute of Oceanology, Moscow, USSR

Uranium Content of Oceanic Phosphorites. Lithology and Mineral Resources 9(1):99-103. (1974, November)

Sea bed phosphorites consist of material of diverse form, composition, and mode of occurrence, among which phosphate grains, concretions, plates, blocks, and phosphated rocks may be distinguished in addition to bone detritus. Phosphorites have characteristically high uranium contents ranging from 5-600 ppm. Most known oceanic phosphorites are of Eocene to Lower Pleistocene age. Recent phosphorite concretions have been found only in the shelves of Southwest Africa and Chile, with the former being the most intensively studied. In these deposits, the uranium content is nonuniform and increases gradually in going from the unconsolidated youngest formations to

the lithified formations (from 3.9 ppm to 17-86 ppm). The sediments adjoining the authigenic phosphorite concretions on the shelf of Southwest Africa are enriched in organic carbon (10-20 percent) and with uranium (30-60 ppm). The Eh in the surface layer of these sediments is about 200 mV, the pH is 7.2-7.8, and the uranium content of the water of the sed is several orders of magnitude higher than that of sea water. At reduced pH values the uranyl carbonate complex (the form in which dissolved uranium is present in sea water) becomes unstable and promotes sorption of uranium by phosphates. Phosphorite concretions are diagenetic formations and are formed principally below the water-sediment interface. They therefore extract uranium from the water of the sed and not from the sea water. The intensity of this process depends in particular on the specific surface of the sorbent. (JNT)

<12>
Bell, K.C., USGS, Washington, DC

Uranium and Other Trace Elements in Petroleum and Rock Asphalts. USGS Professional Paper 356-B; 20 pp. (1960)

Uranium is a minor trace-element constituent of petroleum and their natural derivatives. The quantity of uranium in crude oils ranges from none to 5 parts per billion. The average uranium content for all crude oil is established to be about 1 ppb, or about 1/3 that of the average content of sea water. Paraffin-base crude oils have the smallest uranium content. Mixed-base and asphalt-base crude oils contain a slightly greater quantity of uranium and they tend to show a rough positive correlation between specific gravity and uranium content. As a group, the crude oils of the Colorado Plateau and Rocky Mountain regions, both being uraniumiferous provinces, contain less-than-average quantities of uranium, a condition that is attributed to predominance of paraffinic constituents. The bituminous constituents of rock asphalts contain as much as a few thousand parts per billion of uranium, the average being about 1000 ppb. It is believed that the bitumens extract uranium from the host rocks. There is no evidence that petroleum acts as an ore-forming fluid for uranium. Oil field waters containing dissolved organic substances extracted from petroleum and hydrogen sulfide, may provide a reducing environment in which uranium brought in by ground water or hydrothermal solutions may be precipitated at the interface of the solutions. Crude oil is not a practical source material for uranium, and the total uranium content of crude oil reserves of the United States does not exceed 5 tons. The bitumens of the rock asphalt deposits of the United States contain several hundred tons of uranium, but, because these bitumens are dispersed in several billion tons of rock, they are not practical source materials for uranium. (Auth) (JNT)

<13>

GEOCHEMISTRY

<13>

Bell, R.C., C. Goodman, and W.L. Whitehead,
United States Gypsum Company, Chicago, IL;
Massachusetts Institute of Technology, Cambridge,
MA

Radioactivity of Sedimentary Rocks and Associated
Petroleum. AAPG Bulletin 24(9): 1529-1547.
(1940, September)

Determinations of the radioactivity of 21
sedimentary rocks and 7 associated crude oils
were made. The specimens consisted of
cuttings and cores from wells in the
Bartlesville, Crosswell, Frio, Woodbine, and
Viola-Simpson formations. Considerable
variability in radioactivity was found in the
sandstones and limestones. The shales were
uniform. Apparently, discrete mineral
particles in sandstone and impurities in
limestone account for their occasional high
radioactivity. The radon content of the crude
oils was in one sample 38 times the amount in
equilibrium with the radium present. The
average for the oils was 10 times. These
results corroborate the inferences of former
investigators that radon tends to concentrate
in crude oils. Maximum radon content and
maximum ratio of radon to radium were found in
petroleum produced from a permeable, Oligocene
sandstone of high radioactivity. The amounts
of radioactivity found in these crude oils are
quantitatively sufficient to cause appreciable
cracking by alpha radiation during geologic
time. These reactions, together with
subsequent hydrogenation, may account for
important changes in petroleum. The
hypothesis would also explain the presence of
hydrogen in some natural gases. The hydrogen
content of soil gases is suggested as a
possible method of geochemical prospecting for
oil fields. (JHT)

<14>

Berthelin, J., G. Belgy, and R. Maigne, Centre de
Pedologie Biologique du C.N.R.S.,
Vandoeuvre-les-Nancy, France

Some Aspects of the Mechanism of Solubilization
and Desolubilization of Uranium from Granites by
Heterotrophic Microorganisms. (1977)

In batch cultures, complex microflora from
granitic mountain mass, promoted
solubilization of U in presence of amino-acids
as sole source of carbon and energy.
Solubilized U amounted up to 100 mg U/l in
presence of microorganisms but was less than
35 mg U/l in absence of microorganisms
(sterile controls). Microflora involved
contained different strains of bacteria,
PSEUDONONAS FLUORESCENS, P. PUTIDA,
ACAROBACTER, BACTERIUM, GALLKVA or
PEPTOCOCCUS. In experimental design of
factorial type with semi-continuous flow
devices, the activity of different microflora
from known forest soil was compared.
Microflora specifically withstand partial
sterilization and comprising, different
PSEUDONONAS BACILLUS LICHENIFORMIS, B. CERCEUS,
B. LENTUS, B. POLYMYXA, B. NEGATERIUM, plus

one or two unidentified yeasts promoted
significantly microbial solubilization of U by
synthesis of complexing agents with high
complexing capacity for Al and Fe, but lower
complexing capacity for U. But anaerobic
microflora induced by waterlogging was much
less active as compared by solubilization with
control microflora. From the comparison of
the different strains involved, PSEUDONONAS
appeared to be the most active. In presence
of an "organo-uranyl" solution, obtained by
adding glutamic or aspartic acids to uranium
ore in sterile conditions, different bacteria
originating from samples of granitic mountain
mass could grow: ACAROBACTER,
BREVIBACTERIUM, ACINETOBACTER, GALLKVA or
PEPTOCOCCUS, PSEUDONONAS, showing that such
microorganisms could contribute to U
deposition by metabolising organo-uranium
compounds. Leaching and ecological
implications of such processes are discussed.
(Auth)

<15>

Bertine, R.K., L.H. Chan, and K.K. Terekian, Yale
University, Department of Geology and Geophysics,
New Haven, CT

Uranium Determinations in Deep-Sea Sediments and
Natural Waters Using Fission Tracks. Geochimica
et Cosmochimica Acta 34:681-688. (1970)

Uranium determinations by induced fission
track analysis were made utilizing a discharge
counter instead of visual counting.
Sediments, rocks, freeze-dried river salts
(with Na₂CO₃ carrier) and one freeze-dried sea
salt were analyzed by this technique.
Comparisons with samples whose uranium
concentrations were determined independently
indicate that the method is accurate. The
uranium concentration in deep-sea sediments
varies widely with oceanic depth and depth in
the core ranging from 0.5-40 ppb uranium on a
calcium carbonate-free basis. Seventeen river
water samples ranged from less than 0.01 to
1.2 ppb with an average value of 0.27 ppb.
(Auth) (JHT)

<16>

Bradbury, J.C., R.E. Ostrom, and L.D. McVicker,
Illinois Geological Survey, Urbana, IL

Preliminary Report on Uranium in Hardin County,
Illinois. Illinois Geological Survey Circular
200; 21 pp. (1955)

Tests of about 200 samples taken from Wicks
Dome in Hardin County, Illinois and throughout
the county suggest that the residual clays and
breccias within the Devonian-New Albany area
of the dome are generally more radioactive
than samples elsewhere, though there are some
exceptions. Samples of fluor spar, zinc and
lead ores, and concentrates from these ores
have little or no radioactivity as measured by
Geiger counter. U₃O₈ determinations made by
chemical procedures on 25 samples having some
of the higher uranium equivalent values were
all lower than the uranium equivalent values.
(Auth) (MBW)

GEOCHEMISTRY

<17>
Cadigan, R.A., USGS, Washington, DC

Geochemical Anomalies and Alteration in the Boenakopi Formation, Skull Creek, Moffat County, Colorado. USGS Professional Paper 761; 21 pp. (1972)

The Triassic Boenakopi Formation is exposed in the scarp encircling Skull Creek anticline in Moffat County, Colorado. The formation contains a thick altered layer of greenish-gray siltstone which is overlain by reddish-brown siltstone in most localities. Metal content of both the red and altered rocks in the Skull Creek area is significantly higher than the geometric mean of metal content of Boenakopi strata in the Colorado Plateau region as a whole. A very thin zone of enrichment at the upper contact of the green altered rock with the overlying red rock contains anomalous amounts of copper (100-5000 ppm) and other metals. Other anomalous occurrences of mineralization and alteration include a copper-uranium deposit in the base of the Jurassic Curtis Formations. Factor analysis of measurements of metal content of the enrichment zone suggest two major events: (1) Invasion of the rocks by metal-bearing solutions and alteration of part of the Boenakopi, and (2) and interaction at the contact between the red rocks which represent an oxidized environment and the green rocks which represent an invading reducing environment. This interaction results in a thin zone of enrichment of leached and redeposited metals - mercury, copper, silver, uranium, and gold - at the geochemical interface. The authors recommend for further geochemical exploration. (JRT)

<18>
Campbell, I.H., and P.R. Kelly, University of Melbourne, School of Earth Sciences, Parkville, Victoria 3052, Australia

The Geochemistry of Loveringite, a Uranium-Rare-Earth-Bearing Accessory Phase from the Jamberlana Intrusion of Western Australia. Mineralogical Magazine 42(322):197-193. (1978, June)

The distribution and geochemistry of loveringite, an accessory Fe, Mn plus or minus Cr oxide containing U and rare-earth elements from the Jamberlana Intrusion was studied. The Jamberlana Intrusion is a layered horizontal pipe-like body containing three layered series: the upper layered series, the lower layered series, and the marginal layered series. The lower layered series consists of a repeated macro-rhythmic succession of olivine and bronzite cumulate layers overlain by a thick layer of plagioclase-augite-hypersthene cumulates. The upper layered series is similar but has a granophytic layer (55-57 wt. percent SiO₂, granophytic texture) at the top of the succession. It is thought to be due to a new pulse of magma that was injected into the

magma chamber before crystallization of the lower layered series had reached the granophytic stage. Most of the samples used in this study came from the lower layered series, but three samples were included from the granophytic layer of the upper layered series. Loveringite is most abundant in the bronzite cumulates; it is found in trace amounts in early plagioclase-augite-hypersthene cumulates, but is not found in the olivine cumulates or in the late-stage differentiates. Loveringites from the bronzite cumulates have a high Cr content compared with those from the plagioclase-augite-hypersthene cumulates, suggesting intercumulus liquid. The Lanthanide Series rare-earth pattern shows a strong depletion trend from La to Eu, a sharp reversal between Eu and Tb, and a second depletion pattern from Tb to La. This pattern suggests that the Lanthanide series rare earths are substituting into two sites, one much larger than the other. (JRT)

<19>
Cassou, A.S., J. Connan, J. Correia, and J.J. Orgeval, Societe Nationale des Petroles d'Aquitaine, Centre de Recherches de Pau, Pau, France; National College of Applied Geology and Mine Prospecting, Nancy, France

Chemical Studies and Microscopic Examinations of the Organic Matter in Some Uraniferous Ore Bodies. The Oklo Phenomenon, Proceedings of a Symposium, Libreville, Gabon, June 23-27, 1975. International Atomic Energy Agency, Vienna, Austria, (pp. 195-206). (1975)

Uraniferous ore bodies are often accompanied by considerable concentrations of organic matter. Studies have been made of the organic matter in Francevillian samples from Oklo and in Persian samples from the Lodeve Basin in France. Techniques derived from organic geochemistry and optical microscopy were used. Microscopic examinations were carried out in transmitted and reflected light (natural and fluorescent). For the Lodeve Basin, the uraniferous samples were compared with sterile ones. Their kerogenesis is clearly more advanced and they are without chloroformic extract. Their gaseous hydrocarbons (C1-C6) have a dry-gas composition and their gasoline fractions (C6-C15) contain only light elements (C1-C8). In short, while the sterile samples possess high-quality organic matter whose diagenetic stage is that of oil diagenesis, the radioactive samples are found to be more mature at the gas diagenesis stage. The Oklo samples are similar to the Lodeve uraniferous samples (low concentration of chloroformic extract, gaseous hydrocarbons with a dry-gas composition, gasoline with predominantly light molecules). However, the degree of evolution of their organic matter appears to be higher (reflecting power of the vitrinite and exinite; carbon ratio); moreover, it becomes increasingly high as one approaches the nuclear reactor. From this preliminary study, it would seem that modifications of the organic matter due to irradiation reveal themselves in a distinctly higher degree of evolution. (Auth) (JRT)

<20>

GEOCHEMISTRY

<20>

Chang, C.W., and W.D. Li, Institute of Nuclear Energy Research, Atomic Energy Council, Lung-tan, Taiwan 325, Republic of China

Determination of U-235/U Isotopic Ratio by Gamma-Ray Spectrometric Method. Nuclear Science Journal 11(1):11-17. (1976, March)

A simple, non-activation gamma-ray spectrometric method for the determination of U-235/U isotopic ratios was studied. The method is based on the proportionality of the specific count rates of the 185 keV gamma-ray from U-235 to the U-235/U isotopic ratios at fixed experimental conditions. The U-235/U isotopic ratios were determined by comparison of the specific count rates of the unknown sample with that of a standard of known U-235/U isotopic ratios. The effects due to uranium self-absorption and the method for the correction were also discussed. The precision of the method is about 3 percent. (Auth)

<21>

Cheney, E.S., and H.L. Jensen

Stable Isotopic Geology of the Gas Hills, Wyoming, Uranium District. Economic Geology 61(1):44-71. (1966)

A sulfur, carbon, and oxygen isotopic study of more than 300 samples has been made of the sandstone-type uranium deposits of the Gas Hills district, Wyoming. The deposits occur as rolls and blankets in the arkosic, low Eocene Wind River Formation located on the southern edge of the Wind River Basin. Pyrite cement associated with uranium mineralization is isotopically similar to the acid soluble sulfides produced by anaerobic bacteria in nearby springs and is significantly lighter and more variable in S 34 composition than undoubted magmatic hydrothermal sulfides. Isotopic analyses of hydrogen sulfide from a neighboring oil field, pyrite in granitic Precambrian cobbles, and groundwater sulfate from the overlying tuffaceous strata are consistent with, but do not prove, the "volcanic leach" hypothesis of origin for the sulfur of the epigenetic pyrite. The very light S 34 composition of pyrite associated with jordisite and coalified wood, and the enrichment of S 34 in selenites bearing pyrite and groundwater sulfate of the host Wind River Formation suggest limited production of hydrogen sulfide, resulting in isotopically heavy supergene sulfides. The extremely light isotopic composition of pyrite associated with jordisite on the leading edges of roll ore bodies is probably caused by oxidation and re-reduction of previously formed biogenic sulfides. Further evidence of a biogenic origin for these deposits is furnished by the

carbon isotopic composition of epigenetic calcite cement. The similarity of the C 13 values of calcite associated with asphalt and calcite associated with coalified wood implies that the anaerobes derived their energy from both. The heavier isotopic composition of most of the other epigenetic calcites suggests some contamination by sedimentary carbonate during calcite precipitation. The study shows that syngenetic-diagenetic and epigenetic deposits of bacterial origin have distinguishable sulfur and carbon isotopic characteristics. The extremely light S 34 composition of sandstone-type uranium deposits is believed to be primarily due to the reduction of fairly light sulfate by anaerobes in an environment that approximates a closed system. Further enrichment in S 32 occurs when these isotopically light sulfides are oxidized to light sulfate which is again reduced to pyrite during the formation of roll ore bodies. (Auth) (JMT)

<22>

Chenoweth, W.L., DOE, Grand Junction, CO

Uranium in Western Colorado. The Mountain Geologist 15(3):89-96. (1978, July)

Uranium deposits in western Colorado occur in rocks of many geologic ages and lithologic types. Bedded, vanadiferous deposits in continental, fluvial sandstones of the Salt Wash Member of the Morrison Formation of Jurassic age are the most important. A cluster of deposits in Mesa, Montrose, and San Miguel Counties comprises the Colorado segment of the Uranium mineral belt, the largest uranium area in Colorado. During the period 1948 through 1976, 15,589,100 tons of ore with an average grade of 0.23 percent U3O8 and containing 71,132,400 pounds of uranium oxide (U3O8) have been produced from western Colorado. This amounts to 12 percent of the total United States' uranium ore production. In addition, 350,522,000 pounds of vanadium oxide (V2O5) have been recovered. The discovered ore reserves and the favorable geology for undiscovered potential resources are expected to maintain western Colorado as a significant source of uranium for years to come. (Auth)

<23>

Cherdynatsev, V.V., U.Kh. Asylbaev, D.P. Orlov, L.I. Shamonin, T.A. Isabaev, and N.B. Kadyrov, Academy of Sciences, Institute of Geology, Moscow, USSR; Kazakh State University, Alma-Ata, USSR

Uranium Isotopes in Nature: Actinium-Radium Ratios in Minerals. Geochimica et Cosmochimica Acta 25:700-706. (1961)

The actinium-radium ratio was determined in 34 minerals by means of alpha-ray spectrometry. Variations of the actinium-radium ratio up to Ac/Ra=8 were observed. Altered minerals tended to have the higher Ac/Ra ratios, possibly because of the loss of radium. There was an excess of actinium in other minerals, particularly cassiterites and molybdenites. This was thought to be due in part to radioactive decay. Occurrences of excess uranium 235 were observed in minerals with higher than normal actinon contents. (JMT)

GEOCHEMISTRY

<28>
Cherdyatsev, V.V., I.V. Kazachevskii, and E.A. Kuz'mina, Academy of Sciences, Geological Institute, Moscow, USSR

Isotopic Composition of Uranium and Thorium in the Supergene Zone. *Geochemistry* 3:271-283. (1963)

The ratio of thorium and uranium isotopes in natural waters, fossil bones, soils, and shells of fresh water mollusks at the Holodovo Paleolithic sites and other areas of the Dnestr region was investigated. The waters of the Holodovo sites are of two types. The first type originates from Saratian limestones and has a low U^{238}/U^{232} ratio. The second type includes waters with a gamma of 1.20 to 1.36 that issue from Paleozoic shales. Mineralization of fossil bones in the upper Paleolithic layers was accomplished by waters with low gamma value, and bones in the middle Paleolithic layers were mineralized by waters with high gamma values. The suggestion that uranium migrates so that upper layers are impoverished and lower layers are enriched in uranium was substantiated by the ratios of radioelements in fossil bones from the Holodovo sites. The migration process apparently did not affect the Mousterian layers at Holodovo I site so that the age of 130,000 years for these layers determined from the U^{238}/U^{232} ratio and gamma is close to the correct value. The age of the fossil soil of the lower horizon at Holodovo I is more than 260,000 years. Shells of fresh water mollusks from the terraces of the Dnestr river near Tiraspol showed an intensive migration of radioelements with a large supply of uranium and radium isotopes. (Astrh) (JMT)

<25>
Cobb, J.C., and J.L. Fulp, Brookhaven National Laboratory, Chemistry Department, Upton, NY

$U-Pb$ Age of the Chattanooga Shale. *Bulletin of the Geological Society of America* 71:223-224. (1960, February)

Three samples of the Gassaway Member of the Chattanooga Shale were analyzed by isotopic dilution techniques. The three samples contained 112 ppm, 90.6 ppm, and 68.3 ppm uranium. $U^{238}-Pb$ 206 ages for the three samples were 350 plus or minus 12-17 million years for two samples and 450 plus or minus 70 million years for the third. Radium measurements on these samples show that it is now in equilibrium with the uranium. This suggests that either alteration is negligible or, the radium is being moved about. It is therefore quite possible that the true age of the Chattanooga Shale is about 350 million years. These data would appear to set a firm minimum age for the Mississippian-Devonian boundary of 350 m.y. (JMT)

<26>
Coppens, P., and A. Bernard, Laboratoire de Radiogéologie de l'E.N.S. de Géologie, Nancy, France; Laboratoire de Métallogénie de l'E.N.S. de Géologie, Nancy, France

Displacements de l'Uranium dans les Poches Cristallines Application à la Prospection des Dépôts Uranifères. *Mineralium Deposita* 13(2):165-182. (1978)

It is possible to estimate uranium movement in granitic rocks through the variations of fixed to total uranium ratio of these rocks. Some

granites exhibit linear relations ($r=0.99$) between these two variables even for high grades, showing that uranium movement has been limited, if any took place at all. Granites devoid of uranium deposits belong in this class. Other granites do not yield such narrow linearity about 10 ppm. This means that once local traps have been saturated, they are not able to retain uranium in response to driving forces such as metamorphism and meteoric leaching. As a result of this leachable uranium may circulate eventually being concentrated in structural traps within the granitic mother-rock or in the surrounding formations. This occurs in many uranium-rich granites in France, and the distinction could be useful in exploration of granitic areas. (Astrh) (JMT)

<27>
Cundari, E., J.G.B. Rentad, and A.J.W. Gleadow, University of Melbourne, School of Earth Sciences, Parkville, Victoria 3052, Australia; Chevron Exploration Corporation, Melbourne, Victoria 3000, Australia

Uranium-Potassium Relationship and Apatite Fission Track Ages for a Differentiated Leucite Suite from New South Wales (Australia). *Chemical Geology* 22:11-20. (1978)

Detailed analysis of the uranium content and distribution in a differentiated leucite suite shows that uranium is negatively correlated with potassium and decreases with increasing differentiation. It is found that uranium is preferentially concentrated in the late-crystallized fractions of the lavas, but the uranium concentrations decrease with increasing proportions of these fractions in the bulk rocks. Perovskite strongly partitions uranium from the differentiated liquid and reverses the uranium-enrichment trend calculated from crystal fractionation models. This process may be important in other perovskite-bearing alkalic lavas in the East African Rift, Hawaiian and Marian volcanic provinces. The lavas discussed are related to an unusual mantle source composition in the low-velocity zone. (Astrh)

<28>
Dixon, P.E., University of Arkansas, Institute of Science and Technology, Fayetteville, AR

Radioactivity and Mineralization in Phyllite Porphyry. *Geophysics* 15(1):94-101. (1950)

Measurements of the hard gamma radiation from the Precambrian phyllite porphyry of the Bourton, Missouri, well core show a direct relationship between mineralization and radioactive content. Low activities are, in general, associated with high mineral density, whereas the mineral density is a function of the magnetite content. The low activities are most probably due to a leaching out of the potassium content. This indicates that gamma-ray well logs should be capable of accurately measuring the location of mineral deposits in potassium-rich rock. Potassium analysis of the core is planned by the Missouri Geological Survey. (Astrh)

<29>

GEOCHEMISTRY

<29>

Darley, A.G., E.R. Cameron, and K.A. Richardson, Canada Geological Survey, Ottawa, Ontario, Canada

The Federal-Provincial Uranium Reconnaissance Program. Geological Survey of Canada Paper 75-26, (pp. 89-63). (1975)

The overall objectives of the Federal-Provincial Uranium Reconnaissance Program are to provide industry with high quality reconnaissance exploration data to indicate those areas of the country where there is the greatest probability of finding new uranium deposits, and to provide government with nationally systematic data to serve as a base for uranium resource appraisal. The program will involve high sensitivity airborne gamma-ray spectrometry over areas of low relief and some outcrop, required geochemistry in mountainous terrain and in areas with extensive overburden, and special emphasis on hydrogeochemistry in flat-lying sedimentary basins. The administrative arrangements for the program are being modelled as closely as possible upon the Federal-Provincial Aeromagnetic Program which commenced in 1961. The Federal Government, through the Geological Survey of Canada and in consultation with the relevant provincial agencies, will be responsible for designing and administering contracts for the execution of this work which will be undertaken by Canadian contractors. The Geological Survey of Canada will be responsible for conducting limited airborne and ground pilot studies ahead of the contracted operation in order to verify the suitability of particular areas for the available methods, and in order to provide control data. Results from the program will be published as rapidly as they can be compiled. They will be released simultaneously by the Federal and Provincial authorities as has been the practice in the Aeromagnetic Program. (Auth)

Cited as a reference in NUPF Contractor Reports.

<30>

Davis, J.D., and J.W. Gilbert, University of Arizona, Department of Geosciences, Tucson, AZ

Distribution of the Radioelements Potassium, Uranium, and Thorium in Selected Porphyry Copper Deposits. Economic Geology 68(2):145-160. (1973, March)

The distribution and zoning of K, U, and Th in the porphyry copper orebodies at Ajo, Mineral Park, and Morenci, Arizona, and at Santa Pita, New Mexico were determined using a truck-mounted gamma-ray spectrometer. Chemical analyses of hand specimens were also performed. Conclusions of this study were that: K shows a zonal distribution in the 4 porphyry copper deposits examined, which is consistent with current alteration models. U and Th may be zonally distributed, but their relationship to established alteration zones is less clear. K highs are generally centrally located in the intrusive mass or ore-forming system. K is more abundant by factors of 1.2-3 in mineralized stocks than in nearby temporally and chemically similar

unmineralized stocks. Th and U are not significantly or systematically enriched. The measured anomalies are as valid over undisturbed surfaces as in open pit mines. Supergene enrichment mechanisms do not leach K sufficiently to eradicate K anomalies (Mineral Park and Santa Pita). Radiometric measurement of K is a valid exploration tool in the search for porphyry base metal deposits. J and Th analysis do not appear to be of any consistent value at present. Traverses over porphyry U deposits and airborne gamma-ray scintillometry over both porphyry U and Cu deposits should be carried out. (LKM)

<31>

Della Valle, R.S., and D.G. Brookins, University of New Mexico, Albuquerque, NM

Geochemical Studies of Grants Mineral Belt, New Mexico. AAPG Bulletin 63(4):687. (1979, April)

Several hundred clay mineral and whole rock samples of ores and barren rocks from the Grants mineral belt have been analyzed by instrumental neutron activation analysis (INAA) and delayed neutron activation analysis (DNAA). The DNAA method allows high precision and accuracy for uranium and thorium determination. Whereas the INAA method allows determination of 20 to 30 trace elements. The trace-element data can only be interpreted properly if the clay-mineral fraction is compared directly with whole-rock samples. The INAA data support mineralization of trend ore as due to southeast-flowing solutions; the DNAA determination of uranium suggests that the source of uranium in the Westwater Canyon Member of the Jurassic was not from the overlying Brushy Basin Formation. Local zonation of trace elements, especially the rare earth elements (REE), indicates fixation of many trace elements when uranium mineralization occurred. Thus, REE-depleted, oxidized ground can, with caution, be used for exploration purposes. Vanadics originally precipitated as V³⁺ in chlorites remains in the original sites after oxidation to V⁵⁺ and is thus also valuable as a pathfinder. Data for antimony suggest that it, too, may be useful. In general, trend-ore deposits are characterized by a high chlorite + illite, illite + illite-montmorillonite, or illite + chlorite + illite-montmorillonite, whereas ore near the redox front may contain primary kaolinite. The REE are concentrated greatly in all types of ore, primary or secondary, and, coupled with uranium haloes, are useful as ore guides. (Auth)

<32>

Dense'yev, V.S., and W.G. Syrosyntnikov, Academy of Sciences, Institute of Geological Sciences, Kazakh, USSR

Notes of Occurrence of Thorium Isotopes in Ground Waters. Geochemistry International 2(1):141-147. (1965)

The thorium content of ground waters is highest in waters of low salinity, hardness, and pH, and high organic content. These relationships indicate transport as colloidal suspensions and anionic complexes involving soil acids. Centrifuging the waters causes Th 232 to settle out more rapidly than Th 228 and Th 230. This and the difficulty of dialyzing Th 232 indicates a concentration of radiogenic isotopes in ionic solution and a concentration of Th 232 atoms in suspended particles. (JRT)

GEOCHEMISTRY

<33>
Dickinson, K.A., USGS, Washington, DC

Uranium and Thorium Distribution in Soils and Weathered Bedrock in South Texas. USGS OFR-77-760; 18 pp. (1977)

Uranium and thorium concentrations were measured by delayed neutron-activation for five weathering profiles in southern Texas. Four of the profiles were in the Jackson Group, two in McMullen County and two in Karnes County; one profile was in the Catahoula Tuff in Karnes County. The average uranium concentrations from the five profiles ranged from 2.7 to 17.3 ppm. Thorium contents ranged between 13.0 and 30.0 ppm with the average Th/U ratio ranging between 0.9 and 5.1. The uranium distribution in the soils resembled that of the Sc²⁺ and Ba²⁺ ions; a resemblance that suggested the uranium was transported as Sc²⁺. No systematic vertical deposition order, indicated by the layers of maximum concentration, was found. Thorium distribution in the profiles was similar to that of uranium. Since thorium does not form an ion chemically similar to uranium in the oxidizing uranium, this was considered unusual but no explanation was offered. Certain conclusions of importance in uranium exploration were derived from the study. Uranium was leached from the surface in the calichified soil and deposited deeper in the soil, possibly being adsorbed on clinoptilolite or montmorillonite. The data provided from the study support earlier conclusions that the uranium was mobilized during periods of dry-climate weathering. It also suggests that caution should be used in the interpretation of airborne radioactivity measurements, because these measurements are made on near surface soil material, which has suffered the greatest loss of uranium and thorium by leaching. (JAT)

<34>
Dickinson, K.A., USGS, Washington, DC

Uranium Potential of the Texas Coastal Plain. USGS OFR-76-879; 9 pp. (1976)

Uranium potential of the Eocene and younger Texas coastal plain rocks is being evaluated. The uranium areas consist of host rocks from the Whitsett formation (Eocene) of Karnes County, the Oakville sandstone (Miocene) in Live Oak County, and the Catahoula tuff (Miocene) in Duval County, and are the basis for this evaluation. The potential resources are discussed from several aspects: source rock, leaching, movement, host rock, chemical reductant, and preservation. The Catahoula tuff is thought to be the principal source for the uranium; its low uranium content, 3 ppm, and high thorium-to-uranium ratio, 5.6 suggest that uranium has been leached from the formation. Arid climatic conditions at the time of uranium deposition (post Eocene) played a major role. The uranium became mobilized as di- or tri-carbonate ions under oxygenated, mildly alkaline conditions. Uranium-bearing water moved as surface drainage of meteoric water and as ground water through porous rock units and along faults and joints. Fluvial channel deposits were especially important in directing the

uranium-bearing water into host rocks. The uranium host rocks (Whitsett, Pecos clay, Catahoula and Oakville) are well-sorted permeable sandstone units enclosed in mudstones and claystones, and are deposited in fluvial channels. Autogenic and allogenic reductants influenced deposition in the area; carbonized plant material is an example of the former, dissolved organic matter and epigenetic gases are examples of the latter. The dry climate acted as a primary component in preserving the uranium deposits, but a caliche cap present in most of the area restricted leaching of the uranium. There is a much greater potential for large new uranium deposits in the deeper subsurface in south Texas. The conditions for formation are nearly the same as for the present uranium-producing areas in south Texas, except for the depth of ore burial. In the study area, Karnes and Duval Counties contain most of the probable deposits. (JAT)

<35>
Dmitriev, L.V., and L.L. Leonova, V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow, USSR

Uranium and Thorium in the Granitoids of the Kaib Bassif (Central Kazakhstan). Geochemistry 8:769-777. (1962)

Uranium and thorium were found to be uniformly distributed in granites of the principal facies of the principal intrusive phase of the Kaib Bassif. The average uranium content in these granites was 2.8 ppm and the average thorium content was 24.6 ppm. The Th/U ratio of the principal facies was high running around 8. No correlation could be found between the composition of the rock and its uranium and thorium contents. Uranium was not transported from the central part of the intrusion to the marginal parts, and no enrichment of the marginal parts in uranium occurred because the country rocks contained less uranium than the bassif. Enrichment in uranium occurs only in greisenisation or high temperature silicification, where the average uranium content was about 6.5 ppm. (JAT)

<36>
Dodge, P.C.W., USGS, Denver, CO

Trace-Element Contents of Some Plutonic Rocks of the Sierra Nevada Batholith. USGS Bulletin 1318-P; 13 pp. (1972)

Trace element analyses of plutonic rocks of the Sierra Nevada batholith were conducted and the results were given in this report. In general, the average abundance of the elements determined are similar to the average abundances of high-calcium granites of the earth's crust. The large, highly coordinated trace elements are more abundant in Sierra Nevada plutonic rocks than in calc-alkaline Circum-Pacific andesites, whereas many other elements are about the same as, or slightly less abundant than in andesites. Lateral changes across the central Sierra Nevada batholith are well defined for beryllium, uranium, thorium, and rubidium, all of which systematically increase eastward. Over six hundred determinations were made on the samples for uranium and thorium content with the ranges running 0.31-29.56 ppm and 0.18-50.12 ppm, respectively. (JAT)

<37>

GEOCHEMISTRY

<37>

Doolley, J.B., Jr., C.W. Couwell, P. Berndsen, J.K. Otton, C.T. Pierson, W.D. Roisington, D.A. Vinishev, and J.N. Eosholt, USGS, Denver, CO

Examples of Uranium Distribution Graphics in Geologic Rock Specimens Illustrated with the Radioluxograph Induced Fission Tracks, and Other Track Methods. USGS Circular 753: Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977, J.A. Campbell (Ed.), (p. 32), 75 pp. (1977)

Fast photographic film along with the amplification provided by the Radioluxograph can provide autoradiographs which graphically illustrate the distribution of the uranium-series and thorium-series isotopes from sections of geologic specimens in a relatively short time. Radioluxographs of ore-grade material with as little as 1,000 ppm uranium can be made in a fine minutes to a few hours. Detection of sub-ore-grade material containing as little as 10 ppm uranium and thorium can generally be made with the Radioluxograph in several days, but homogeneous distributions require somewhat longer autoradiographic exposure times. This method is best suited for a quick and inexpensive reconnaissance view of the uranium and thorium distribution on a "macro" scale. Induced fission from a nuclear reactor or other high-flux source of neutrons can specifically detect uranium and, to a lesser extent, thorium from the fission tracks produced upon Lexan, sica, and other solid-state particle detectors. After being properly developed by chemical etching the detector serves as a fission-track map which can be viewed under the microscope and compared with the specimen which produced the tracks. Samples that are over-irradiated produce a high concentration of tracks which is visible to the unaided eye, and is somewhat similar to an autoradiographic image. Most reactors can only accommodate sample sections less than 2.5 cm in diameter and are generally used to study low uranium concentrations because of the reactor's capacity to produce high neutron fluxes. Alpha decay from the naturally occurring radionuclides and other induced nuclear reactions can be recorded on cellulose nitrate and used for "micro" autoradiography if exposure to light and other photographic effects can be avoided. Microscopic examination of alpha-particle tracks on these detectors and in nuclear photographic emulsions are almost always required and give better resolution than other "macro" methods of autoradiography. Radioluxographs were made of several rock sections and drill cores. Polished sections and uncoated thin sections can be used with induced fission tracks and other alpha track methods as well as with the Radioluxography. Homogeneous distribution of 7 ppm uranium and 11 ppm thorium was found in a tektite with a Radioluxograph. Nonhomogeneous distributions of uranium and thorium are categorized into single accessory minerals; aggregates; concentrations along bedding, vein or fracture fillings; and mineral zoning localizations. High levels of single grain radioactivity dispersed within lower levels of homogeneous or nonhomogeneous radioactivity are best demonstrated with two autoradiographs of different exposure lengths. Qualitative determination of uranium can be made from comparing successive autoradiograph exposures of different time lengths or different neutron flux intensities and quantitative determinations can be made from track counting. (Ruth) (JST)

<38>

Dostal, J., S. Capedri, and C. Dapay, St. Mary's University, Department of Geology, Halifax, Nova Scotia, Canada; Universita di Modena, Instituto di Mineralogia e Petrologia, Italy; U.S.T.L. Department de Geologie, Montpellier, France

Uranium and Potassium in Calc-Alkaline Volcanic Rocks from Sardinia. *Lithos* 9(3):179-183. (1976)

The uranium content of major rock-forming minerals in a suite of calc-alkaline volcanic rocks from Sardinia is very low and their partition coefficient of U is smaller than 0.1. The values of the partition coefficient of mineral phases decrease from basalt to dacite and, in all rocks, the bulk of U and K is present in the groundmass. This apparent close association between K and U in basic and intermediate rocks probably reflects the fact that most of their rock-forming minerals are relatively inert with respect to both of these elements. (Ruth)

<39>

Dyck, W., Canada Geological Survey, Ottawa, Ontario, Canada

The Mobility and Concentration of Uranium and its Decay Products in Temperate Surficial Environments. Uranium Deposits, Their Mineralogy and Origin, Short Course Handbook, Volume 3, H.H. Kistbom (Ed.). University of Toronto Press, Toronto, Canada, Ch. 2, (pp. 57-100), 521 pp. (1978, October)

Uranium is the most abundant element of the uranium decay series, with an average crustal abundance of about 2.6 ppm. Its high mobility in the surficial environment is due to oxidation to the uranyl ion which forms soluble carbonate complexes. Uranium-decay products generally do not form soluble compounds and thus secular disequilibrium of the series is commonly observed. Disequilibrium is almost invariably due to the removal of uranium under oxidizing conditions or uranium addition under reducing conditions. Reestablishment of radioactive equilibrium requires time spans of several half-lives of the daughter products. The stable end products (lead and helium) represent the extremes of mobility of the decay products; lead is relatively immobile and helium is able to escape to outer space. (Ruth)

GEOCHEMISTRY

<40>

Dyck, W., E.W. Garrison, G.S. Berlin, and G. Sodol. Canada Geological Survey, Ottawa, Ontario, Canada

Well Water Uranium Reconnaissance in Western Maritime Canada. Geological Survey of Canada Paper 75-1C, (pp. 313-315). (1975)

To test the feasibility of using ^{238}U as a means of tracing U occurrence in the Carboniferous basin of Eastern Canada, a survey of approximately 2000 wells was conducted in 1975. In addition, about 120 well water and 100 stream water and sediment samples were taken from the northern Acropolis Valley (Triassic). An overall sample density of 1/13 sq. km was sought, but in two areas, 665 sq. km between Sackville and Moncton and 390 sq. km near Pugwash, N.S., sampling at 1/6.2 sq. km and 1/2.5 sq. km, respectively, was carried out. Samples were analyzed for U, Ra, O₂, F, Eh, pH, alkalinity, conductivity, NO₃, SO₄, Cl, Ca, K, Sr, H₂, Cu, Zn, Pb, Fe, and Mn. The survey showed extensive U and Ra anomalies along the coast of Nova Scotia and New Brunswick between New Glasgow and Cape Tormentine. Values range up to 60 ppb U and 5700 pCi/l Ra, with the highest values near Baie Verte, Pugwash, Chisholm Brook, Fox Harbour, Tatamagouche, and River John; concentrations generally decrease inland. Granitic rocks of the Cobequid may be the source of the ground water U. The survey demonstrates the value of U and Ra as tracers in outlining U mineralization in the Carboniferous basin. As results are studied in more detail other aspects of the regional hydrogeochemistry may be recognized. (LKH)

<41>

Dyck, W., and I.B. Jonasson, Canada Geological Survey, Ottawa, Ontario, Canada

The Nature and Behavior of Gases in Natural Waters. Water Research 11(8):705-711. (1977)

Approximately 600 samples of lake, stream, and U-rich waters were collected from Gatineau Hills, Quebec; Carlsbad Springs, Ontario; Elliot Lake, Ontario; the New Inco copper deposit, Duparquet, Quebec; the Balfour uranium deposit (abandoned); and the Bancroft, Ontario area, and analyzed for dissolved gases. These included: H₂, He, Ne, N₂, O₂, H₂S, Kr, CO₂, and Ra. N₂, Ne, and Ar displayed no recognizable distribution patterns; an inverse relationship between CO₂ and O₂ was observed to reflect the biogeochemical environment of the samples. The concentration of dissolved He in frozen lakes from the Elliot Lake district was no greater than elsewhere (atmospheric equilibrium levels). Due to its high solubility, He, unlike U, is of limited value as a tracer for U-mineralization. There is an apparent inverse relationship between H₂S and dissolved N₂ in ground water sampled from drill holes in Cu-deposits. N₂ appears to be of little value as an indicator of buried sulfide mineralization; its chemical and biological activity restrict its solubility in ground water and effectively obscure its origins. (LKH)

<42>

Dyck, W., S.H. Whitaker, and R.A. Campbell, Canada Geological Survey, Ottawa, Ontario, Canada

Well Water Uranium Reconnaissance, Southwestern Saskatchewan. Geological Survey of Canada Paper 76-1C, Report of Activities, Part C, (pp. 249-253). (1976)

Approximately 940 well and 60 spring water samples were collected from a 17,500 sq. km area of southwestern Saskatchewan near Cypress Hills. An average density of 1 sample per 13 sq. km was sought. Samples were analyzed for U, Ra, F, O₂, Eh, pH, alkalinity, and conductivity. The following values were obtained: 0-280 ppb U, 0-4135 pCi/l Ra, 0-6.1 ppm F, 0.4-14 ppm O₂, -127 to 906 mV (Eh), 0-110-3300 $\mu\text{hos/cm}$ total alkalinity, and 110-3300 $\mu\text{hos/cm}$ conductivity. Well depths ranged from 2 to 157 m. Formations involved were the Cypress Hills, Ravenstraig, Frenchmen, Battle, Whitehead, Eastend, Bearpaw, and Judith River. It was concluded that none of the U or Ra values reflect ore-grade environments. Ra highs are more closely associated with the Cypress Hills Formation than are U highs. The short range of Ra in nature relative to U and the high relief in the western part of map area 72P suggest that the Cypress Hills Formation is the source of much of the U. Leaching of radioactive lignite in the Ravenstraig and older formations may contribute to the U values. The data also shows that for all formations deeper wells are lower in U and Ra. In general, the younger formations have higher Ra and lower U values than the older, and there is often a lateral shift of high-U sites downslope from high-Ra sites. This can be explained by the different mobilities and ranges of these elements in the near-surface environment. (LKH)

<43>

Eckelmann, W.R., and J.L. Kulp

Uranium-Lead Method of Age Determination: Part II: North American Localities. Bulletin of the Geological Society of America 68:1117-1140. (1957, September)

Many new isotopic age determinations by the uranium lead method have been made on most of the important North American localities from which primary uranium minerals have been reported. With the aid of other published isotopic U-Pb age measurements the writers attempted to interpret the most probable age for each locality and to assign a reasonable uncertainty to that age. The recognition of differential lead loss, the relation of alteration to mineral type, the importance of radon leakage for young samples, and the potential analytical errors make it timely to conduct such a re-evaluation. Among the well-established ages are: Spruce Pine district, North Carolina, 360 plus or minus 20 m.y.; Portland, Connecticut, 265 plus or minus 10 m.y.; Front Range, Colorado, 59 plus or minus 5 m.y.; Black Hills, South Dakota, 1620 plus or minus 20 m.y.; southeast Manitoba, 2650 plus or minus 100 m.y.; Lake Athabasca, Saskatchewan, 1900 plus or minus 50 m.y.; and the Wilber-force area, 1050 plus or minus 20 m.y. Other probable ages are Bedford, New York, 350 m.y.; Colorado Plateau, 60 m.y.; Coeur d'Alene, 1200 m.y.; and Great Bear Lake, Northwest Territories, 1500 m.y. Although there may have been several regional metamorphic events in the Appalachian Province in the Precambrian, the post-Cambrian effects appear at only two periods centering on 260 m.y. and 360 m.y. The Grenville metamorphism appears limited to a narrow time interval about 1050 m.y. ago. The Front Range and Colorado Plateau uranium mineralization may have been one event occurring about 60 m.y. ago. (Ruth)

<44>

GEOCHEMISTRY

<44>

Pelslee, J.K., and R.L. Cadigan, USGS, Denver, CO

Determination of Uranium in Source Rocks Using Radium in Crystal Springs, Great Salt Lake Area, Utah. USGS Circular 753; Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977, J.A. Campbell (Ed.), (pp. 49-50), 75 pp. (1977)

The amount of uranium in source rock that would be required to produce the radium in the water of Crystal Springs, north of Brigham City, Utah, has been calculated in order to determine whether the source rock may have potential for uranium concentrations of economic interest. Water samples were collected from 11 springs for radium, uranium, and major- and minor-element analysis. Precipitate samples were collected from 8 of the sites. Radium in the water has a positive correlation (0.82) with total dissolved solids and with most of the major and minor ions. The three springs having the lowest salinity also have the lowest radium content, less than 1 part per trillion (ppt), and one of the briny springs, Crystal Springs, has the most radium, 220-410 ppt. Some springs on faults within 20 km west of the Wasatch Range have moderately high salinity and radium content, 20-180 ppt. Others have moderately high salinity, but low radium concentrations (2-5 ppt). Such deviations reflect variations in unmeasured parameters, such as uranium content of the source rock, that affect the radium content of the water. The amount of radium in the water at Crystal Springs exceeds by several hundred times the amount of radium that would be in equilibrium with the amount of uranium in the water. The amount of enrichment, called the radium enrichment factor (REF), can be calculated by using the known equilibrium ratio for radium-226 and uranium-238 and by the measured radium and uranium per liter or minute at the spring. The REF at Crystal Springs is 430-450. The REF in the water depends on the difference in leach between radium and uranium when they are removed from the source and transferred to the spring. Differential leaching based on differences in response to such parameters as pressure, temperature, oxidation-reduction potential, ionic strength, and mineral phases, leads to disequilibrium within the rocks being leached. Differential leaching in favor of radium results in an excess of radium in the water and a corresponding depletion at the source. Continued differential leaching eventually leads to extreme disequilibrium in the leached part of the rock. The disequilibrium is actually between radium and its direct parent, Th-230, which is in relative equilibrium with uranium. Therefore, the uranium in the source rocks is calculated by assuming that disequilibrium in the rocks is extreme and that the only radium available for transport is the amount being produced each minute by Th-230. Crystal Springs contain at least 220 ppt [$10(2+12)$ g/l] radium and flows at 6,000 l/minute, yielding radium at $1.5 \times 10(2+6)$ g/min. By assumption, this rate of yield is equal to the rate of radium production at the source. A production rate of $1.5 \times 10(2+6)$ g/min radium is equivalent to the same decay rate of Th-230. The proportion of any amount of Th-230 [half life= $7.0 \times 10(2+8)$ years] decaying each minute is $1.7 \times 10(2+11)$. Assuming secular equilibrium [1 g uranium balanced by $1.7 \times 10(2+5)$ g Th-230], the amount of uranium required to maintain the present production of radium at Crystal Springs is at least $5.5 \times 10(2+9)$ g, or 5,500

metric tons. The total volume of rock involved in the flow to Crystal Springs is on the order of 10 cubic kilometers. The mass of rock, assuming an average density of 2.8 g/cubic cm, is thus about $10(2+16)$ g. Whether the uranium is disseminated or concentrated in the source rock is uncertain. If the calculated $5.5 \times 10(2+9)$ g uranium were disseminated in $10(2+16)$ g of rock, the content would be 0.55 ppm, but because porosity and permeability in the sedimentary-metamorphic terrane of the Wasatch Mountains are controlled mostly by joints and fractures, water flowing through these openings comes in contact with only a small percentage of the total rock. By assuming that the radium is derived from uranium in restricted zones adjacent to fractures and joints, considerably higher potential grades of uranium in the rock can be calculated. The grade would be 0.55 percent if the 5,500 metric tons of uranium were concentrated in 1 percent of a fracture system comprising 1 percent of the volume of rock assumed to be leached by the spring water. (JHT)

<45>

Filippov, N.S., and L.V. Kravlev, V.G. Khlopin Radium Institute, Leningrad, USSR

Uranium and Thorium in the Granitoids of the Middle Dnepr Region. Geochemistry 5:535-549. (1959)

In the Middle Dnepr region there are three granitoid complexes different in age, composition, and geochemical characteristics. The evolution in the composition of the granitoids of the three complexes from the older to the younger consists of a decrease in the sodium, calcium, and magnesium content and increase in the content of potassium, silica, uranium, and thorium. The granitoids of the oldest complex, grandiorites and plagiogranites, contain the smallest amounts of uranium and thorium. The granites of the second complex have uranium contents approximating the clark, and thorium contents higher than the clark. The third complex of siercoline alaskites is strongly enriched in the radioactive elements, especially thorium. The uranium content of these rocks is about twice the clark and the thorium content is four times the clark. According to the content of the most characteristic accessory minerals, the granitoids of the Middle Dnepr region are divisible into three types: a) the allanite-sphene type, b) the monazite-garnet type, and c) the thorite-solybdenite type. The allanite-sphene granites are the poorest in the radioactive elements. Uranium and thorium in these rocks are partially concentrated in the accessory minerals, with the rest apparently in the dispersed state, in essential minerals. The monazite-bearing granites are thorium-bearing; their high thorium content resulting from the accumulation of the accessory monazite. Zircon is also a chief concentrator of uranium and thorium in granites of this type. The thorite-bearing granites are still predominantly thorium-bearing rocks, but they also have a relatively high uranium content. Uranium and thorium in these granites are concentrated entirely in the accessory minerals, with thorite and zircon contributing 90 percent of the total content of these elements. (JHT)

GEOCHEMISTRY

<66>
Ploegsma, T. L. (Ed.), Australian Atomic Energy Commission, Research Establishment, Lucas Heights, Sidney, Australia

Uranium and Thorium. Proceedings of a Symposium, Lucas Heights, Sidney, Australia, May 7-8, 1970. Australia Atomic Energy Commission, Sidney, 102 pp. (1970)

Review papers are presented on the determination of uranium by radiometric, X-ray fluorescence, polarographic, spectrophotometric, fluorimetric, titrimetric, emission spectrographic, delayed neutron, gamma absorption, and gamma-excited X-ray techniques, and on the determinations of thorium by radiometric and spectrophotometric methods. In addition, detailed analytical procedures are given for the determination of uranium and thorium in ores, rocks, and waters by most of these techniques. (JET)

Each paper of the symposium has been abstracted and input separately.

<67>
Gabelman, J.W., AEC, Washington, DC

Uranium in the Appalachian Mobile Belt. ESR-6107; 41 pp. (1968, March)

The uranium occurrences in the Appalachian Mobile Belt comprise a belt of plutonic alkaline intrusives containing economic high-temperature uranium-thorium concentrations parallel to and southeast of the Grenville front; small concentrations associated with amphibole-schist-sulfide replacements in high-temperature iron zones; uraninite veins in gold-copper zones; low-temperature copper-uranium impregnations in late Paleozoic and Triassic sandstone superimposed on high-temperature iron and copper zones in hinterland basins; and small uranium impregnations in Paleozoic sandstone at the low-temperature ends of mineralization gradients along the foreland margin. These uranium occurrences in orogenic-related mineralization cycles, with metallogenic gradients generally similar to those in the Cordillera where uranium is most abundant at the low-temperature ends, indicate that uranium of Paleozoic or Mesozoic cycles in the Appalachian belt also may be most prominent in the lowest temperature metallogenic zone along the foreland margin. Although this zone is not now known to contain significant deposits, it may be a good exploration target. (JET) (RSW)

<68>
Gavshin, V.I., V.B. Bobrov, A.G. Syalling, and B.V. Kozakov, Academy of Sciences, Institute of Geology and Geophysics, Siberian Division, Novosibirsk, Siberia, USSR

The Two Types of Uranium Accumulation in Rocks by Sorption. *Geochemistry International* 5-6:692-699. (1970, June)

The accumulation of uranium by sorption in phosphate-bearing rocks is accompanied by largely uraniferous products, where the main uranium sorbents are minerals of the layer silicate group. Sometimes uraniferous calcian phosphates and layered aluminosilicates occur in the same stratigraphic section, with the phosphates (carbonate-fluorapatite) occurring in fine-grained lagoon deposits, while the layered aluminosilicates (mainly hydrosilicates and chlorites) occur predominantly in the red bed and essentially granitic continental strata. The uraniferous carbonate-fluorapatite has uniformly distributed uranium together with thorium, rare earths, strontium, and barium, which probably take up the positions of calcium in the lattice. The apatite structure retains the uranium and its decay products firmly, so phosphate-bearing rocks have little inclination and little deviation from equilibrium between uranium and radium, and only low concentrations of uranium in water interacting with the phosphates. The uranium in uraniferous layer silicates is associated with some elements of variable valency and readily hydrolyzed elements (titanium, vanadium, zirconium, chromite, molybdenum, etc.). The uranium and decay products are much less firmly bound, and the emanation is rapid, with marked deviations from radioactive equilibrium. Oxidizing and reducing solutions quickly take up the uranium, and these silicates produce uraniferous solutions from which uranyl minerals can be deposited in the supergene zone or the so called primary uranium minerals under reducing conditions. (JET)

<69>
Gavshin, V.I., and Ye.G. Lavrent'ev, Academy of Sciences, Institute of Geology and Geophysics, Siberian Division, Novosibirsk, Siberia, USSR

B-Ti Correlation in Cryptocrystalline Pelite. *Geochemistry International* 11(1):179-186. (1974)

Uraniferous pelite from Devonian sandstones is a mechanical mixture of finely divided particles of hydrosilicate, chlorite, albite, and quartz. Uranium atoms are randomly distributed in the pelitic material, and the titanium distribution is identical to that of the uranite. The uranium-titanium ratio in the pelitic material is higher than that in any known uranite-titanium mineral. The uranite accompanies the titanium throughout the pelite, and in places, gives rise to a dispersed uranite-titanium phase with a definite stoichiometric relation between the components. Metatitania acid can absorb uranite from dilute solutions, consequently, the cause of the uranium concentration in the pelite was a dispersed metastable titanium hydroxide which formed in the aluminosilicate material. (JET)

SEARCHER'S KEY

<51>

Berling, E.F., and Ye.A. Shakolyakov, Academy of Sciences, Laboratory of Precambrian Geology, Leningrad, USSR

Accumulation of Ar-39 in Uranium Minerals. Geochemistry 7:753-764. (1959)

The argon-39 content of 17 uranium minerals, ranging in age from 2×10^{10} to 2×10^{11} years, was investigated. The content of U, Th, rare earths, Ce, La, and Cl was also determined in the samples. Corrections for the argon-39 loss were made according to the data on the Sr and K losses. The calculated excessive quantity of argon-39 in minerals of the same age decreased with the increase of the Cl content. This may be explained by the reaction $\text{Cl-35} + \text{Cl-36} \rightarrow \text{Ar-36}$. Corrections were made for argon-39 according to the quantities of radiogenic argon-36. There is a proportionality between the U content and the argon-39 content. Between the quantities of argon-39 and neutron fission, a dependence of the type $\text{Ar-39} = \text{Ae}(\text{sub 36}) \times \frac{1}{\text{U}(\text{sub 36})}$ [Ae(sub 36) being excess of neutron fission]. Samples were found which at a complete absence of U(sub 36) contained noticeable quantities of argon-39. The possibility of argon-39 formation by the spontaneous fission of U-238 and the neutron fission of U-235 was assumed. The argon-39 formation goes through the hypothetical radioactive isotope with $T_{1/2} = 4.5 \times 10^{10}$ years. The yield of the latter by uranium fission must be 3 percent. (Kut) (JET)

<51>

Solthaber, W.B., and R.L. Reynolds, USGS, Washington, DC

Geochemical and Mineralogical Studies of a South Texas Roll Front Uranium Deposit. USGS Open-File Report 77-821; 38 pp. (1977)

Core samples from a roll-front uranium deposit in south Texas were analyzed for iron sulfide content and mineralogy, organic carbon content and abundance of carbonate, iron, manganese, and titanite. Sulfide occurred almost exclusively as the iron disulfides pyrite and marcasite, in concentrations as high as 2 percent of the coarse (9.5-14.5 micrometers) fraction. Marcasite was particularly abundant relative to pyrite in the vicinity of the roll front. Because marcasite precipitation requires acidic pH's and the most likely mechanism for generating low pH is oxidation of pyrite sulfide, it is suggested that the marcasite formation was related to the roll-front development. Organic carbon analyses from various representative parts of the deposit are uniformly low (less than 0.1 percent C). Carbonate minerals, such as calcite, are abundant, but appear to have formed after the ore. The overall abundance of iron was not found to be systematically related to position with respect to the roll front, whereas manganese probably was concentrated near the roll interface. Titanium like iron did not show a systematic relationship to position about the roll, but it was systematically more abundant in the fine fraction (less than 62 micrometers) relative to the coarse fraction with distance down-dip. This reflects a progressively more intense alteration of the precursor iron-titanium oxide minerals to fine-grained titanite. (JET)

<52>

Goldschmidt, V.M.

Uranium. Geochemistry, V.H. Goldschmidt. Oxford Press, London, (pp. 562-567). 733 pp. (1958)

The distribution of tetravalent uranium in the primary minerals of igneous rocks is determined by its radius (1.05 angstroms), which makes possible its capture by minerals containing calcium and trivalent rare earth ions, especially yttrium and the yttrium lanthanides. The similarity to the cerium lanthanides is not as close as is the case of the somewhat larger thorium minerals. Capture of uranium in primary calcium minerals of magmatic rocks probably occurs in apatites. Uranium also substitutes for calcium in feldspars, accounting for the radioactive varieties of feldspar such as those found at Wolsendorf in Bavaria. Uranium substituted for yttrium earth elements, especially in minerals of granite pegmatites, is found in a large number of minerals, especially niobates and titaniosilicates. The entrance of tetravalent uranium into minerals of the thorite group suggests the possibility of an unknown compound U_3SiO_8 which could probably be made synthetically. The same compound is also a hypothetical end member of uraniferous minerals in the zircon family. Pleochroic halos in biotite or amphibole around minute zircon crystals, is due to the isomorphous entry of uranium or thorium into Li_2SiO_5 . Primary uranium dioxide minerals relatively unchanged by secondary oxidation are seldom found. One of the processes concerned is intimately connected with the radioactive transformation of tetravalent uranium to divalent lead. Through this process, a number of oxygen atoms, equal in number to the uranium atoms transformed into lead, become available, and this surplus of oxygen is left to combine with SO_2 and thus to form the equivalent amount of SO_3 . The migration and distribution of uranium during weathering and sedimentation is intimately connected with processes of oxidation and reduction. The oxidation of tetravalent uranium takes place easily by weathering, giving rise to transformation of the blackish U_3O_8 and U_3O_6 minerals to the brightly colored yellow, orange, or green secondary minerals of the UO_3 and the uranyl salts. Solutions of compounds of hexavalent uranium have a much higher degree of geochemical mobility. Their local circulation and redistribution give rise to a number of important uranium deposits. (JET)

Some confusion exists in the literature as to the exact radius of the tetravalent uranium ion. Goldschmidt gives a figure of 1.05 angstroms, which is somewhat higher than the generally seen value of 0.97 angstroms. In actuality, the exact value for the radius for tetravalent uranium will vary according to the compound, co-ordination number, etc.

GEOCHEMISTRY

<53>
Goldschmidt, V. M.

Thorium. Geochemistry, V.M. Goldschmidt. Oxford Press, London. (pp. 827-831), 730 pp. (1958)

The geochemistry of tetravalent thorium is characterized essentially by its crystallochemical relationships with several elements having similar ionic radii. The ionic radius of tetravalent thorium is 1.16 angstroms. It is comparable in size with divalent calcium (1.06 Å), the trivalent rare earth elements, such as cerium (1.18 Å), and the trivalent yttrium group from gadolinium (1.11 Å) to lutetium (0.99 Å). Generally, the geochemistry of thorium in igneous rocks, like that of uranium, is closely connected with the later stages of the evolution of igneous magmas. The large radius of thorium makes it unfit to enter many of the important early crystallizes, such as the simple orthosilicates or metasilicates of magnesium and divalent iron. As a result, it is generally found concentrated in the light residual magmas from which are formed such rocks as syenites, trachytes, granites, and leiparites. Some nepheline syenites and phonolites, in particular, may have remarkable concentrations of the element. Thorium, like uranium, is generally concentrated in some of the lightest residual magmas, the relatively low specific gravity of which causes these heaviest known atoms to accumulate in the upper levels of the silicate crust, concentrating there the bulk of the heavy radioactive matter; a fact of great importance in the physics of the earth. Similar considerations hold for the zonal distribution of the radioactive alkali metals, potassium and rubidium, and also for the radioactive rare earth metal samarium. Thus, a very great part of the total radioactive matter of the earth is presumably concentrated in a comparatively thin surface shell, a distribution which is even more enhanced by the fact that the free energy of oxidation of the primary radioactive elements per unit oxygen greatly exceeds that of iron or even silicon, so that only very minor proportions of these elements can be pressured to be constituents of the iron core of the earth. Thorium substitutes for calcium in apatite and fluorite, but crystallizing monazite seems to be the most suitable collector of thorium ions from igneous magmas and hydrothermal solutions. It is interesting to note that tetravalent uranium (1.05 Å), which is only slightly smaller than the thorium ion, is found in monazite to a very small extent, the concentration of uranium being about 100 times less than the concentration of thorium. The close crystallochemical and geochemical relationships between thorium and uranium are illustrated in a most characteristic way by the thorium minerals of the thorianite group, essentially isomorphous mixtures of dominant ThO₂ and subordinate UO₂, and the minerals of the thorite group, essentially isomorphous mixtures of ThSiO₄ and USiO₄, with ThSiO₄ greatly preponderating. The minerals of the thorianite group constitute a series from almost pure ThO₂ to a mixture containing up to about 80 per cent UO₂. The minerals of the thorite family had primarily a crystal structure which corresponded closely to that of zircon, but are now according to all cases so far studied, transformed to an amorphous metasalt product, often modified by secondary hydration and also by secondary precipitation of iron oxide or hydroxide from percolating aqueous solutions. (JHT)

<54>
Goodfellow, W.H., and I.B. Jonasson, Canada Geological Survey, Ottawa, Ontario, Canada

Geochemical Distribution of Uranium, Vanadinite, and Polybdenum in the Tombstone Mountains Batholith, Yukon. Geological Survey of Canada Paper 77-13, Report of Activities Part 3, (pp. 37-85), 359 pp. (1977)

The Tombstone Mountains Batholith was the subject of a detailed geochemical investigation in the summer of 1976, during a uranium-geology survey of the north central Yukon. The area is underlain by an alkaline batholith of Cretaceous age, intruding Cretaceous Keno Hill Quartzite, felsite, and gabbro, and Jurassic sedimentary rocks. The core of the batholith is an alkali syenite surrounded by monazite, quartz monazite, and diorite; the syenite makes up the bulk of the intrusion, and is composed of phenocrysts of orthoclase set in a medium-grained allotriomorphic groundmass of microperthitic orthoclase, andesine, aegirine-augite, amphibole, biotite, and minor quartz. Accessory minerals include sphene, zircon, apatite, and opaques. Stream sediment and water analyses for As, Pb, Zn, Co, Ni, Ig, Mn, Fe, Ba, Mo, U, and F via AAS, colorimetry, fluorimetry, and specific ion electrode analysis are given. Whole rock analyses were also carried out. Most of the trace elements are mechanically rather than organically derived, and thus reflect well the chemistry of the batholith and immediately surrounding rocks. High U concentrations (16.4-24.7 ppm) associated with pseudoleucite-tinysite along the southern contact appear to result from U retention as a complex ion in a halogen and carbonate rich residual magma. The association of U with F is indicated by the presence of fluorite veins which intersect the tinysite and U veins. The area of U mineralization is outlined by high U, Mo, W, Pb, and Zn in stream sediments and U, F, and Pb in stream waters. A second area near the center of the batholith is also outlined by similar associations, although no tinysite has been mapped. However, in view of the geochemical data, it must be considered an area of high U and F potential. (LHH)

<55>

GEOCHEMISTRY

<55>
Goswami, H.D., Jr., Southern Methodist University, Dallas, TX

A Model for Uranium and Thorium Assimilation by Intrusive Seepages and Crystallizing Plutons through Interaction with Crustal Fluids. Ph.D. Thesis; 131 pp. (1977)

Evidence for interaction between intrusives and meteoric ground water, in addition to information on the occurrence and distribution of uranium and thorium in the continental crust, suggests that intrusive seepages may mobilize and assimilate uranium and thorium through interaction with crustal fluids. Investigations of the distribution of uranium, thorium, and potassium within and around eight epizonal plutons show mobilization and redistribution of uranium and thorium in the contact aureoles of plutons which have interacted with meteoric ground water. In these plutons uranium is shown by induced fission track radiography to be associated with both primary and secondary hydrous minerals and with secondary opaque minerals. Plutons which have not interacted with meteoric ground water show little association between uranium and hydrous or opaque minerals. Studies of epizonal, mesozonal, and catazonal plutons in the Idaho batholith show that the highly radioactive epizonal plutons contain much uranium in hydrous and secondary minerals, whereas the low radioactivity mesozonal and catazonal plutons do not. The apparent exponential vertical distribution of radiogenic heat production in plutonic rocks can be explained by an assimilation model in which the degree of assimilation increases toward the surface as a result of increasing accessibility of crustal fluids, particularly meteoric ground water. (Auth)

<56>
Granger, E.C., and C.G. Warren, USGS, Denver, CO; JSGS, Fort Collins, CO

Unstable Sulfur Compounds and the Origin of Boll-Type Uranium Deposits. *Economic Geology* 64(2):160-171. (1969)

Boll-type uranium deposits are formed by a supergene process that depends on limited oxidation of early formed pyrite in the host rock. Among the initial products of oxidation is a series of unstable soluble sulfur species, principally sulfite, which slowly decompose and ultimately form sulfate and sulfides. Because sulfate is kinetically inert to low-temperature no-biologic oxidation-reduction reactions, and because the unstable sulfur species and hydrides sulfide are strong and active reducing agents, the net result of limited oxidation is to produce a strongly reducing environment. Either some of the intermediate sulfur products or hydrogen sulfide may reduce iron under these conditions to form the iron sulfide minerals associated with the ores. Laboratory experiments and chemical theory suggest that the entire sequence of reactions can be carried out in a biologically sterile environment and that the sulfur isotopic composition of the reconstituted pyrite might be indistinguishable from pyrite formed by biogenic processes. These unstable intermediate sulfur species may also be involved in the formation of other supergene-enriched sulfide ores as well as in the transportation and deposition of elements such as barium and selenium. (Auth)

Cited as a reference in USGS Contractor Reports.

<57>
Gulakh, A.G., A.A. Nezalov, A.A. Saterin, and A.V. Bakhtiarov, Leningrad State University, Leningrad, USSR

Distribution of Uranium and Thorium in the Alkalic Rocks of the Turyi Peninsula (Kurmanst Region). *Geochemistry International* 9-10:1063-1065. (1974, August)

The alkalic massifs of the Turyi Peninsula are typical representatives of the Caledonian alkalic ultramafic formation. They are composed of two series of rocks: (1) an alkalic ultramafic series, including olivinites, peridotites and alkalic pyroxenites, and (2) an alkalic series, including nepheline pyroxenites, melteigites, ijolites, melilite-bearing rocks, rocks of the "mineralized complex" (forsterite-magnetite) and carbonatites. Thorium and uranium contents of the rocks in the central massif were determined by gamma-ray spectroscopy. In the series of magmatic rocks, thorium and uranium concentrations increase from pyroxenites ($Th=11.8$ ppm, $U=2.1$ ppm) to ijolites ($Th=19.3$ ppm, $U=8.4$ ppm). The main mass of thorium in alkalic rocks is concentrated by sorption in fractures, defects, and altered areas of crystals. A fraction of the uranium is also concentrated in this way in the rocks of the Central massif. In addition, uranium and thorium enter isomorphously into the accessory minerals schorlomite, perovskite, sphene, gortzenite, and others. The relatively high uranium and thorium contents are characteristic of ijolites rich in garnet. (JST)

GEOCHEMISTRY

<58>
Saughton, D.P., Saskatchewan Research Council, Geology Division, Saskatchewan, Canada

A Multiple Media Geochemical Survey of a Boulder Train Associated with the Duddridge Lake Uranium Deposit, Saskatchewan. Saskatchewan Research Council Report 17; 55 pp. (1976)

A geochemical survey was carried out in the summer of 1975 at the Duddridge Lake U deposit in the Wollaston Lake Fold Belt of northern Saskatchewan. 65 outcrop samples, 260 float samples, 992 overburden 10 samples, 896 overburden 51 samples, 448 muskeg 10 samples, and 796 lake sediment samples were collected and analyzed for Cu, In, Ni, Pb, Rb, U, Co, and Fe. U was measured in lake sediments. Outcrops are rare, but a gamma ray survey of K 40, U 238 (Bi 214), and Th 232 (Th 208) emissions revealed a northeast-southwest trending fold pattern in the bedrock which was supported by drilling evidence. Generalized bedrock geology consists of the following stratigraphic sequence from east to west: biotite gneiss (magnetite), meta-arkose with an intruded pegmatite and pegmatitic granite body, and meta-arkose grading into biotite-feldspar gneiss. Geochemical analysis successfully delineated a U-mineralized boulder train associated with a carbonaceous feldspathic quartzite (meta-arkose) horizon of Edzozian age, possibly of roll-front or diagenetic origin; overburden 10 and 51 were equally suitable for defining the mineralization. Cu and U positively correlated in all unconsolidated materials; no positive correlations were obtained between U and other elements in outcrop samples. U in finer grain size fractions of overburden 51 and 10 samples has higher metal values than those from coarser grain sizes. (LKH)

Seventeen maps are included in this report. Statistical analyses of element distributions in various sample groups and maps of their distribution are provided.

<59>
Henderson, P., University of London, Chelsea College, Department of Geology, London, England

Geochemical Indicator of the Efficiency of Fractionation of the Skaergaard Intrusion, East Greenland. Mineralogical Magazine 40:285-291. (1975, September)

When magmatic fractionation involves the settling and removal of crystals from the body of magma, the efficiency of the fractionation process may be defined as the degree of separation of the solid from the liquid phase. An expression is given that relates efficiency to the amount of mesostasis, or crystallized trapped liquid, in an igneous cumulate. The uranium content of samples from a 389 meter long drill core of part of the lower and hidden zones of the Skaergaard intrusion is used as a quantitative indicator of the amounts of mesostasis in the cumulates. There are marked changes in the amount of mesostasis over the length of the core, and the average efficiency of fractionation was 95 percent. (Auth)

<60>
Henderson, P., L. Jackman, and E.H. Gale, Chelsea College of Science and Technology, Department of Geology, Chelsea, England; Oxford University, Department of Geology and Mineralogy, Oxford, England

The Distribution of Uranium in Some Basic Igneous Cumulates and its Petrological Significance. *Geochimica et Cosmochimica Acta* 35:917-925. (1971)

The distribution of uranium in the minerals and rocks of the Skaergaard, Rhine, and Bushveld layer igneous intrusions was investigated by the delayed neutron analytical technique. The uranium concentration in the minerals depended in part on the nature of the cumulate from which they were separated. Of those minerals from cumulates, pyroxene contained the most uranium and olivine the least. The uranium content of a basic igneous cumulate is shown to be useful as an indicator of the relative amount of mesostasis in the rock, provided uranium-bearing cumulus minerals such as apatite are absent. The amount of mesostasis sometimes changed rapidly from one layer to another. (Auth) (JET)

<61>
Howard, J.H., III, University of Georgia, Department of Geology, Athens, GA

Geochemistry of Selenium: Formation of Ferroselite and Selenite Behavior in the Vicinity of Oxidizing Sulfide and Uranium Deposits. *Geochimica et Cosmochimica Acta* 41:1665-1678. (1977)

The geochemistry of selenite is largely controlled by that of iron, with which selenite is closely affiliated in both oxidizing and reducing environments. In aerated waters the Se(IV) oxyanions, HSeO_4^- and SeO_3^{2-} , are strongly adsorbed by hydrated surfaces of ferric oxides over the pH range 2-8; above pH 8 adsorption decreases to complete desorption at pH 11. This adsorption immobilizes Se(IV) in neutral-to-acid waters and increases the range of oxidation potential over which Se(VI) is stable. During experimental aeration of aqueous Fe-S-Se systems, the stability field of Se(IV) is attained, and elemental Se is slowly oxidized to this higher valence; oxidation potentials of the Se(VI) stability field were never reached, however, even by continued aeration of an alkaline system. Under reducing conditions, elemental Se either is incorporated within pyrite or forms the mineral ferroselite (FeSe_2). A stability field for ferroselite, constructed for a Gibbs free-energy value of -23.2 kcal/mole, is in accord both with its geologic occurrence and behavior and with conditions under which ferroselite has been synthesized. Traces on a diagram of pH-pF variation show the behavior of selenite during oxidation of associated iron-sulfide minerals. Such considerations also demonstrate the manner in which selenite migrates, is deposited, and is increasingly concentrated in roll-type sandstone uranium deposits, as well as the relative positions of the several forms of selenite within the deposit. (Auth)

<62>
Engerson, T., S. Valastro, Jr., University of Texas, Austin, TX

Geochemistry of South Texas Uranium Deposits. AAPG Bulletin 63(3):472-479. (1979, March)

During the past several years attempts have been made to unravel the geochemistry of south Texas uranium deposits by analyzing core samples obtained from several localities within the mineralized province and from various prospective mines. The core samples were taken from three different sections of the geochemical cell--the oxidation, ore, and protore zones. All samples selected for analysis belong to the same stratigraphic interval as the ore zone. Measurements of pH and Eh taken in the field range as follows: oxidation zone, pH 7.2 to 5.6 and Eh -60 mV to +50 mV; ore zone pH 4.1 to 3.6 and Eh +210 mV to +155 mV; protore zone, pH 2.6 to 0.2 and Eh +210 mV to +180 mV. Analyses of total organic carbon, pyritic sulfur, and uranium have also been conducted. The total organic carbon content is generally low, but increases toward the protore to approximately 0.273 percent. Although the occurrence of pyritic sulfur is low in the oxidation zone, it increases from 0.015 to 0.696 percent in the protore. Evidence also indicates an increase with proximity to the roll front. Uranium is most prevalent in the ore zone, with a maximum value of approximately 290 ppm for the samples studied. In the protore, it ranges from 37 to 45 ppm. Adsorbed hydrocarbon analysis shows little evidence of petroleum migration from the downdip section of the deposits thus far analyzed. (Ath)

<63>
Irvin, G.A., and C.B. Hutchinson, USGS, Tallahassee, FL

Reconnaissance Water Sampling for Radium 226 in Central and Northern Florida, December 1976 - March 1976. USGS/WRD/BPI-77/001; 16 pp. (1976, October)

One hundred fifteen water samples were collected from wells in the shallow sand aquifer and in the upper and lower parts of the artesian aquifer of northern and central Florida, and from surface waters of the Peace River drainage basin. Samples were analyzed by the radon emanation method. Waters from Polk, Hardee, Hillsborough, Manatee, and De Soto Counties, taken as a group, contained from 0.05-90 pCi/l Ra 226; activity greater than 3 pCi/l was found in all aquifers in wells from 7 to 850 m deep. All surface samples contained less than 3 pCi/l, with the exception of one from a slime pit. Of 77 sites sampled in these counties, 16 did not meet U.S. Public Health Service drinking water standards. The shallow sand aquifer had both the highest and lowest Ra values. Acidified samples from Hamilton, Suwannee, and Columbia Counties displayed a range of 0.9-13 pCi/l Ra. There is evidence that acidification of samples before analysis may cause higher Ra values in some cases. Surface water samples from the Peace River basin had 0.10-1.6 pCi/l Ra, with a mean of 0.98 pCi/l and a standard deviation of 0.91 pCi/l; the maximum value was in Little Charlie Creek, the only stream exceeding 3 pCi/l. Since this reconnaissance was limited mainly to areas of active phosphate mining, it is not known if similar Ra values occur in portions of the state without phosphate deposits. (LKH)

<64>
Isaeva, A.A., V.I. Golovanov, and O.E. Presnyakova

Spectrophotometric Determination of Uranium in Sea Water and Various Types of Synthetic Sorbents. Soviet Radiochemistry 19(1):76-78. (1977, September)

A method developed for the determination of uranium in sea water and synthetic sorbents and used in the study of the possibility of concentrating trace elements from sea water is discussed. The method is based on the extraction with hydrochloric acid, and the formation of a complex of the isolated uranium with arsenazo III. The accuracy of the proposed method of analysis is 10.6 percent rel. (Ath) (JMT)

<65>
James, G.W., Kansas Geological Survey, Lawrence, KS

Parts-per-Million Determinations of Uranium and Thorium in Geologic Samples by X-ray Spectrometry. Analytical Chemistry 49(7):967-969. (1977, June)

Low levels (0 to 100 ppm) of uranium and thorium in geologic samples may be determined rapidly and accurately by wavelength-dispersive x-ray emission spectrometry. Three sigma detection limits of 1.2 ppm U and 1.5 ppm Th can be achieved with a total counting time of 5 minutes on a powdered 10-g sample. The estimated standard errors of the analytical calibration curves are 0.7 ppm U and 1.2 ppm Th. The method is applicable to a broad variety of sedimentary and igneous rock types; matrix effects are sufficiently corrected by a peak-to-background ratio method of data reduction. The mean difference between values obtained fluorimetrically and by x-ray spectrometry for 36 exploration samples containing 1.0 to 20 ppm U was 0.8 ppm. (Ath)

<66>
Johnson, C., Michigan Technological University, Department of Geology and Geological Engineering, Houghton, MI

Uranium and Thorium Content in Igneous Rocks. GJBX-88(76); Uranium and Thorium Occurrences in Precambrian Rocks, Upper Peninsula of Michigan and Northern Wisconsin, with Thoughts on Other Possible Settings, J. Kalliskoski, (pp. 136-142), 294 pp. (1976, June)

Twenty-six granite gneiss samples were collected from the Watersmeet-Barenisco area, and analyzed for uranium and thorium by means of the Neutron Activation Analyses. Because the limit of detection for uranium and for thorium by the Neutron Activation Analysis method is approximately 2 ppm, fluorometric analyses for uranium were also performed on whole rock samples. The uranium contents of the rocks sampled ranged from 31 ppm to 1.5%. The thorium contents ranged from 70 to less than 2 ppm. High Th/U ratios in many of the samples indicate a possible uranium loss. (JMT)

GEOCHEMISTRY

(67)
 Jose, J.M., J.L. Benito, and I.A. Villoria,
 Dirección de Planta Piloto e Industriales, Junta
 de Energía Nuclear, Madrid, Spain

Spanish Radioactive Lignites: Nature and
 Solubility of the Uranium. Processing of
 Low-Grade Uranium Ores, Proceedings of a Panel,
 Vienna, June 27 - July 1, 1966. International
 Atomic Energy Agency, Vienna, (pp. 157-171), 287
 pp. (1967)

Seventy samples of radioactive lignites from
 various places in Spain are discussed. The
 uranium contents of the samples ranged between
 20 and 1200 ppm. Experiments on uranium
 extraction both by direct treatment and after
 roasting to eliminate organic matter and bring
 about concentrations were carried out. The
 acid method was considered for leaching the
 uranium using agitation and static bed
 techniques. Investigations were also carried
 out on the effect of the variables represented
 by grain size, amount of acid, temperature
 time and oxidants, in addition to those
 involved in the roasting process. (JET)

(68)
 Joshi, L.U., and A.K. Ganguly, Bhabha Atomic
 Research Centre, Division of Radiobiological
 Protection, Bombay - 400085, India

Anomalous Behavior of Uranium Isotopes in Coastal
 Marine Environment of the West Coast of India.
Geochimica et Cosmochimica Acta 40, (2): 1891-1896.
 (1976)

An anomaly between U 238 and U 234 activities
 was observed in the top layers of the coastal
 sediments along the western region of the
 Indian sub-continent. Sediment samples from
 Bombay to Kottulipad were leached with
 saturated ammonium carbonate solution to
 extract uranium isotopes from the surface
 layers of the sediment particles without
 attacking the mineral cores. The U 238/U 234
 activity ratios in these leachates are in the
 range of 1.12-1.14 while U 235/U 238 activity
 ratio is 0.046 which is the same as for other
 natural uranium. The surface organic matter
 from the sediment particles was removed by
 treatment with hydrogen peroxide in presence
 of 0.05 N hydrochloric acid. U 238/U 238 and
 U 235/U 238 activity ratios in the extract and
 the residues were determined. It is observed
 that disequilibrium between U 238 and U 234
 exists only on the surface of sediment
 particles. U 238/U 238 on the surface of the
 sediment particles is the same as in the
 ambient water and as the surface organic
 matter is removed from the particle surface,
 the cores show equilibrium activities.
 (Auth) (JET)

(69)
 Kalil, F.K., University of California, Los
 Angeles, CA

The Distribution and Geochemistry of Uranium in
 Recent and Pleistocene Marine Sediments. Ph.D.
 Thesis; 267 pp. (1976)

Uranium in Recent marine shelf sediments is
 generally thought to originate from two
 sources. A small part of the uranium is
 thought to come from the land, while the
 majority of the uranium is believed to be
 extracted from sea water by the sediments.
 High concentrations of organic matter and
 reducing conditions within the sediment appear
 necessary for uranium incorporation into the
 sediments. The mode of uranium incorporation
 in Recent marine sediment has been examined

by this study. The areal distribution of
 uranium both in surface and buried sediments
 was surveyed. Sediment samples, representing
 a wide range of oxidizing and reducing
 conditions and containing various amounts of
 organic carbon were analyzed. Organic
 isolates from the sediment were also examined.
 Sediments were collected from the Southern
 California Borderland, the Gulf of California,
 and the North Atlantic Ocean. Uranium was
 measured by standard alpha counting techniques
 and by counting delayed neutrons. An
 automated system was built at the JET nuclear
 reactor for counting delayed neutrons. This
 system accommodates 24 samples an hour with
 minimum radiation exposure to the operator.
 Sediment squeezers were designed and built to
 extract the pore waters from the sediment for
 chemical analysis. This enabled the
 measurement of the oxidation-reduction state
 of the sediments and the nature of diagenetic
 reactions. Results indicate that reducing
 conditions in the sediment are not important
 for extracting uranium from sea water. In the
 southern California shelf sediments, organic
 matter contains about one-third of the total
 sediment uranium. Much of this organic matter
 is probably land derived as is most of the
 uranium. The uranium distribution with depth
 depends on climatic fluctuations with maximum
 organic deposition occurring during glacial
 periods. The detailed uranium distribution
 profile provided in this study may prove to be
 a useful tool for time stratigraphic
 correlations. (Auth) (JET)

(70)
 Kipperley, N.E., University of Toronto, Brindale
 College, Department of Geology, Mississauga,
 Ontario, Canada

High-Temperature Uranium Geochemistry. Uranium
 Deposits, Their Mineralogy and Origin, Short
 Course Handbook, Volume 3, N.E. Kipperley (Ed.).
 University of Toronto Press, Toronto, Canada, Ca.
 3, (pp. 101-108), 521 pp. (1974, October)

High-temperature uranium geochemistry is not
 well known at present. The key question in
 the field is the effect of temperature on
 uranium solubility. Evidence that certain
 uranium ores have precipitated from
 high-temperature solutions largely consists of
 high homogenization temperatures for fluid
 inclusions in certain deposits. Pitchblende
 (fine-grained, thorium poor uraninite) is the
 dominant ore mineral in uranium deposits
 interpreted to have formed from hydrothermal
 solutions. Hematite, quartz, calcite,
 graphite, and chlorite are the most common
 gangue and wall rock minerals in the vein type
 deposits. The origin of pitchblende-vein
 deposits is currently highly controversial.
 (JET)

<71>

GEOCHEMISTRY

<71>

Kimberly, M. J. (Ed.), University of Toronto, Brindale College, Earth and Planetary Sciences, Mississauga, Ontario, Canada

Uranium Deposits, Their Mineralogy and Origin. Short Course Handbook, Volume 3; 521 pp. (1978, October)

"Uranium Deposits, Their Mineralogy and Origin", contains 21 chapters concerning the field of uranium geology, geochemistry, mineralogy, as well as papers concerning the origin of uranium deposits throughout the world. All 21 of these chapters have been abstracted for the EURE Bibliographic Data Base separately. (JET)

<72>

Kleeman, J. D., D. H. Green, and J. P. Lovering, Australian National University, Department of Geophysics and Geochemistry, Canberra, Australia

Uranium Distribution in Ultramafic Inclusions from Victorian Basalts. Earth and Planetary Science Letters 5:449-458. (1969)

The uranium distribution in all phases of nine lherzolite inclusions from the Never Volcanics of western Victoria has been determined using fission tracks. Primary clinopyroxene has a mean content of 0.30 ppm U in five of the inclusions, and two contain primary apatite with 35 ppm U. Secondary clinopyroxene and apatite crystallizing in equilibrium with glass formed from partial melting of the lherzolites have a much lower abundance. Partition coefficients calculated from the uranium contents in these secondary phases and the glass indicate that a liquid in equilibrium with the primary assemblage would have had to contain 25 to 75 ppm U. Since these abundances are at least ten times those of normal basalts, these inclusions could not have formed as accumulates from a basaltic magma, neither are they the residue from a previous episode of complete magma extraction. However other inclusions containing clinopyroxene with a low uranium abundance could be accumulates or residual. A model for the uranium distribution in the upper mantle is based on the uranium abundances in the high U primary assemblage. It is consistent with estimates of the upper mantle uranium content, and the uranium contents of basalt magma series calculated from it are consistent with the reported abundances. The petrology and geochemistry of inclusions illustrate a mechanism for limited wall rock reaction, and suggest that potassium may be moved without uranium. (Auth)

<73>

Koch, G.S., Jr., R.P. Link, and S.W. Hazel, Jr., Bureau of Mines, Washington, DC

Statistical Interpretation of Sample Assay Data from the Si Vida Uranium Mine, Big Indian District, San Juan County, Utah. Bureau of Mines Report of Investigations 6550; 40 pp. (1964)

The Si Vida uranium mine is located in the Big Indian District in northern San Juan County, Utah. The ore deposit is composed of uranites and vanadium minerals in the sedimentary beds of the Triassic Chinle Formation. Statistical analysis of assays of samples taken from the ore body affords an estimate of the grade of the ore body and provides a prediction about the direction of best mineralization beyond the sampled area. The basic data analyzed are assay results for uranites (U308), vanadium (V205), and lime (CaO) from 225 channel samples cut at 79 sample points. By using appropriate statistical methods, particularly regression analysis, the grade of ore may be estimated more precisely than by conventional means, and the favorable direction to extend the mine may be predicted. Frequency distributions of assay residuals for uranites, vanadium, and lime are compared to frequency distributions of assays without regard to trend. Correlations among these variables are obtained and interpreted. (Auth) (JET)

<74>

Kochenov, I.V., and V.V. Zinev'yev

Some Features of the Accumulation of Uranium in Peat Bogs. Geochemistry 2(1):65-70. (1965)

Supergene accumulations of uranium may form in a humid climate in the absence of high uranium concentrations in the surrounding bedrock. The content of uranium in circulating waters may be only slightly higher than the background content. The accumulation of uranium in peat requires a combination of several factors. Rejuvenation of relief as a result of neotectonic movements is essential because it introduces considerable masses of uranium dispersed in the bedrock into the supergene cycle and the uranium concentration in surface waters is increased. The geomorphic features of the provenance area and the hydrodynamics of ground water within the peat deposit are important factors in the localization of uranium concentrations. Only in a limited number of cases could all the favorable factors combine to cause supergene accumulations of uranium in peat. The fixation of uranium in peat is a result of combined action of sorption and reduction of uranium. The superposition of the oxidation-reduction reactions on the sorption processes results in the most stable association between uranium and organic matter and is the typical mechanism of accumulation of uranium in modern sediments. (JET)

GEOCHEMISTRY

<75>
Koval'chik, V.V., and I.Ye. Vorotnitskaya, V.I.
Vernadskii Institute of Geochemistry and
Analytical Chemistry, Moscow, USSR

Biogenic Migration of Uranium in Lake Issyk-Kul'.
Geochemistry 2(3):544-551. (1965)

The role of living organisms in the migration of uranium in Lake Issyk-Kul' was studied. The lake has no outlets, the weakly alkaline waters are of the sodium- and magnesium-rich chloride and sulfate types, and the waters have a relatively high uranium content. Physicochemical data suggest that uranium occurs in the waters in the form of uranyl-carbonate complexes. Some of the uranium is precipitated from the lake in the form of relatively insoluble calcium and magnesium carbonates as evaporation causes saturation. Within the lake muds, the content of uranium can be directly correlated with the content of organic matter. It was found that the algal genus *Chlorella* were the most efficient concentrators of uranium, with dried *Chlorella* containing up to 1000 times more uranium than the lake water. There was also a direct correlation between the content of uranium in the algae and in the underlying mud. Because algae absorb the uranium from the water and not from the mud and because uranium was shown not to be leached from dead algal remains, the uranium in the bottom muds was contained in the algal debris. The content of uranium in benthonic and planktonic organisms was found to be lower by a factor of ten than in algae, and in fish it was still lower, presumably because of partial uranium excretion. (JET)

<76>
Krylov, A.V., V.G. Khlopin Radiss Institute,
Leningrad, USSR

Radioactivity of Various Rock Complexes of the
Terskei Alm-Tau Mountains. Geochemistry
3:280-287. (1958)

Several thousand rock specimens of various complexes in the Tyan-Shan area were analyzed for uranium, thorium, and potassium. It was found that during the formation of the granitic batholiths, the radioelements were carried together with silicon and the alkalis. At the same time, calcium and magnesium were carried out in considerable quantities, along with iron, manganese, and titanium, although to a somewhat lesser degree. This tendency increased in second phase granites which represented the further development of the magmatic process. (JET)

<77>
Lambert, I.B., and K.S. Heier, Australian
National University, Department of Geophysics and
Geochemistry, Canberra, Australia

The Vertical Distribution of Uranium, Thorium,
and Potassium in the Continental Crust.
Geochimica et Cosmochimica Acta 31:377-390.
(1967)

Uranium, thorium, and potassium contents from approximately 500 rocks from the Australian shield were determined by gamma-ray spectrometry. Felsic amphibolite facies gneisses have uranium and thorium contents indistinguishable from those of hornblende granulite subfacies rocks and intrusive shield granites. Pyroxene granulite subfacies rocks of similar bulk chemical composition have

significantly lower abundances of uranium and thorium. In the mafic rocks studied, the uranium and thorium contents and the Th/K and U/K ratios show no variation with metamorphic grade. The lower uranium and thorium concentrations in the felsic pyroxene granulite subfacies rocks is related to the processes of metasomatism, including partial melting and upward movement of granitic material and vapor. The overall average contents of Th and K in the surface rocks of the West Australian basement shield appear to be similar to the overall average contents of these elements in the Paleozoic rocks outcropping in East Australia. However, the shield seems to be depleted in uranium relative to the younger orogenic region. It has been calculated that the surface heat production of the shield is only about 25 percent less than that of the Paleozoic rocks. This is compared with the difference of about 66 percent in the average heat flows measured in the two regions. (JET)

<78>
Lambert, I.B., and K.S. Heier, Australian
National University, Department of Geophysics and
Geochemistry, Canberra, Australia

Estimates of the Crustal Abundances of Thorium,
Uranium, and Potassium. Chemical Geology
3:233-238. (1968)

Radioactive element abundances in two crustal sections are estimated from surface heat flow, radioactive element abundances at the surface and in midies to high pressure granulite facies rocks, crustal thicknesses and assumptions of heat flow from the mantle. The abundances are 4.5 ppm Th, 0.7 (or 1.1) ppm U, and 1.5 percent K in the Archean shield of southwest Australia. In the Paleozoic crust of east Australia, radioclement abundances were 7 ppm for Th, 1.3 (or 1.7) ppm for U, and 1.7 percent for K. The radioactivity in the shield is strongly concentrated near the surface and the thickness of the surface layer is estimated at 0.5 km. (JET)

<79>
Lambertson, R.E., and R.E. Mueller, Argonne
National Laboratory, Metallurgy Division, Lemont,
IL

Uranium Oxide Phase Equilibrium Systems: III,
UO₂-ZrO₂. Journal of the American Ceramic
Society 36(11):365-368. (1953, November)

The UO₂-ZrO₂ phase equilibrium system was investigated and found to contain no new compounds. The system did, however, contain extensive solid solution. The UO₂ solid solution was cubic and extended up to 52 mole percent ZrO₂. Its lattice parameter varied from 5.46 to 5.32 atomic units with an increasing percentage of ZrO₂. The zirconia solid solution was examined by quenching techniques and found to be tetragonal and extended from 53 to 100 percent ZrO₂. There were some indications that ZrO₂ transformed to a polymorphic form other than monoclinic or tetragonal at approximately 1900 degrees C. (JET)

<80>

GEOCHEMISTRY

<80>
Langford, P.P., University of Saskatchewan,
Department of Geological Sciences, Saskatoon,
Saskatchewan, Canada

Mobile and Concentration of Uranium in Arid
Surficial Environments. Uranium Deposits, Their
Mineralogy and Origin, Short Course Handbook,
Volume 3, B.B. Kimberley, (Ed.). University of
Toronto Press, Toronto, Canada, Ch. 15, (pp.
383-394), 521 pp. (1978, October)

The association of uranium deposits with
terrestrial redbeds has focused attention on
the arid environment as one which may be
particularly favorable. At present, the most
important uranium deposits associated with
arid environment is at Yelirrie in Australia.
This ore deposit consists of carnotite in
fractures and as cavity coatings in valley
calcrete, which is a body of limestone and
dolomite that formed within the alluvium and
soil along the axis of a valley. Yelirrie is
typical of most uranium occurrences in
calcrete, of which there are locally a number
of small deposits. The only uranium mineral
in the deposits is carnotite. The calcrete
and associated calcareous alluvium are the
only host of significant uranium
mineralization. During the rainy season, the
calcrete area is subjected to fairly heavy
showers, and although evaporation is high,
sufficient waste descends below the zone where
evaporation takes place. In these areas,
there is complete flushing of the soils and,
in the absence of carbonate and clays, uranium
and vanadates are carried through the alluvium
to the calcrete zone. The precipitation of
carnotite can be caused by several chemical
environments. (JET)

<81>
Langhaar, D., The Pennsylvania State University,
Department of Geosciences, University Park, PA

Uranium Solution-Mineral Equilibria at Low
Temperatures with Applications to Sedimentary Ore
Deposits. Uranium Deposits, Their Mineralogy and
Origin, Short Course Handbook, Volume 3, B.B.
Kimberley (Ed.). University of Toronto Press,
Toronto, Canada, Ch. 1, (pp. 37-55), 521 pp.
(1978, October)

Thermodynamic data was collected, critically
evaluated, and estimated when necessary for 42
dissolved uranium species and 30 uranium solid
phases. The data indicate that the uranium in
natural waters is usually complexed. Near 25
degrees C in ground waters with typical
concentrations of carbonate, chloride,
fluoride, phosphate, and sulfate, under anoxic
conditions, uranous (U^{+4}) fluoride complexes
predominate below pH 3-8 and uranous hydroxy
complexes at higher pH's. However, because of
the extreme insolubility of uraninite and
coffinite [0 less than 10($\text{E}-13$) M or 10($\text{E}-8$)
ppb] at pH <5, concentrations of the uranous
hydroxy complexes are generally below
detection except in relatively alkaline
waters. In oxidized natural waters with
typical amounts of the same ligands: below pH
5, uranyl (UO_2^{+2}) fluoride complexes and $\text{UO}_2(\text{HPO}_4)^{2-2}$
predominate; from about pH 4-7.5, $\text{UO}_2(\text{HPO}_4)^{2-2}$
is the important species; while at higher
pH's, uranyl di- and tricarbonate complexes
predominate. Uraninite and coffinite are
extremely insoluble at normal ground water
pH's (4-8) making the uranium practically
insoluble in low pH environments. At
intermediate pH's, however, oxidation and
leaching of uraninite and coffinite are
greatly enhanced when phosphate and carbonate
are present to form the highly stable uranyl
complexes. The uranyl minerals carnotite,
tyuyamunite, autunite, potassium autunite, and
uranophane are least soluble at pH's within
the range 5-8.5. Solubilities of carnotite and
tyuyamunite are sufficiently low that in this
pH range less than 1-2 ppb uranium could be
present in a ground water saturated with them.
The autunites and uranophane are typically at
least one hundred times more soluble than
carnotite and tyuyamunite, and rarely
precipitate from ground water except near
uranium-rich source rocks such as granites,
low in U but high in P or silica. The pH
range of minimum solubility of the uranyl
minerals is also the pH range of maximal
uranyl sorption on most important natural
colloidal materials, including organic matter,
 $\text{Fe}^{(\text{III})}$ oxyhydroxides, Mn and Ti
oxyhydroxides, zeolites, and clays.
Solubility and sorption data show uranyl to be
least mobile in the pH range 6-8.5. Mineral
solubilities limit only maximal uranyl
concentrations whereas sorption limits uranyl
concentrations at all levels below saturation
with the least soluble uranyl mineral in a
given water. In contrast to solubility
control, the highest percentage of the total
uranium in a sediment-water system is sorbed
on the sediment at the lowest dissolved U
levels. (JET)

GEOCHEMISTRY

<82>

Langmuir, D., and K. Applin, The Pennsylvania State University, Department of Geosciences, University Park, PA

Refinement of Thermodynamic Properties of Uranium Minerals and Dissolved Species, with Application to the Chemistry of Ground Waters in Sandstone-Type Uranium Deposits. USGS Circular 753; Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977, J.A. Campbell (Ed.), (pp. 57-60), 75 pp. (1977)

Thermodynamic data was collected and critically evaluated for 25 minerals and 42 dissolved species of uranium. The data show that complexing of uranyl (UO_2^{2+}) and uranous (U^{4+}) ions is the rule in natural waters, and is more important than generally realized. The existence and stability of these complexes indicates that the mobility of uranium in water may be enhanced under a wide variety of conditions. The study also shows that the solubility of uraninite (and coffinite) is about 8 to 10 orders of magnitude less than was previously indicated. This suggests that, for a given Eh and pH, precipitation of these minerals can occur from ground waters far more dilute in uranium than usually assumed. The relative importance of different uranium complexes as a function of pH was assessed at 25 degrees C and $PCO_2=10^{2.2}$ or $10^{2.5}$ atm for some typical ligand concentrations in ground water ($F=0.2$ or 0.3 ppm; $Cl=10$ ppm; $SO_4=100$ ppm; and $PO_4=0.1$ ppm). Complexes were considered "important" if they exceeded 10 percent of the total concentration of uranous or uranyl species. A species is considered "predominant" if it comprises more than half the total of uranous or uranyl species. For uranous ion, calculations showed that fluoride complexes are predominant at pH's below 3-4, and that hydroxyl complexes are predominant at higher pH's. Uranyl ions formed important complexes with fluoride and sulfate at pH's below 4.5-5.5. The fluoride complexes predominated at pH's below about 3. The complex $UO_2(HPO_4)2-2$ was surprisingly stable, and was the predominant uranyl species between about pH 4.5 and 7.5. In the absence of phosphate, uranyl carbonate complexes predominate at all pH's above 4.5, but in the presence of $UO_2(HPO_4)2-2$ they only predominate above pH 7.5. (JAT)

<83>

Leach, D.L., and L.V. Benson, University of California, Lawrence Livermore Laboratory, Livermore, CA

Hydrogeochemistry of Uranium in the Walker River Basin, California and Nevada. USGS Circular 753; Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977, J.A. Campbell (Ed.), (pp. 68-70), 75 pp. (1977)

The Walker River Basin lies along the western margin of the Basin and Range province covering an area of approximately 11,000 square kilometers. East Walker River and West Walker River head in the Sierra Nevada Mountains of California, flow through several small valleys, and merge to form the Walker River which terminates in Walker Lake. The entire drainage basin is closed with no outlet to the sea. Intrusive, metavolcanic, and metasedimentary rocks of Mesozoic age are the basement rocks of the Walker Basin. Over much of the region they are buried by thick accumulations of Cenozoic sedimentary and volcanic rocks. Most of the exposed basement consists of quartz monzonite or granodiorite. A small number of granitic deposits are present along the East Walker River.

Uraninite, cassiterite, and various secondary uranium minerals occur in three closely related settings: (1) quartz veins in granitic rocks containing silver, lead, copper, and iron sulfides; (2) altered granitic rocks adjacent to quartz veins; and (3) fault gouge zones. Twenty six snow samples were collected from different sites in the east-central Sierra Nevada and 10 were analyzed for uranium. Of these only one sample contained detectable uranium indicating the insignificance of the flux of uranium via precipitation. With the onset of spring, snowmelt is released to the tributary system. Along this segment of the transport path the acidic fluid (pH approximately equal to 5.6) reacts with exposed granite, granodiorite, and felsic volcanics resulting in the release of uranium. In the Sierran headwater region, concentration of uranium was found to be less than 2 ppb; oftentimes only a few tenths of a ppb. In tributaries north of the Sierran headwater region, concentrations in excess of 2 ppb were common, with some as high as 50 ppb, suggesting the presence of a uranium anomaly. The East Walker River has only minor increases in uranite concentration, but the West Walker River show a more significant increase (from 1.8 to 6.2 ppb with increasing transport distance in June). Uranium is an extremely mobile component in the stream waters and does not appear to be effectively removed by interaction with the sediments. In terms of geochemical reconnaissance, tributary water is effective in indicating surficial uranium sources, whereas spring water is effective in locating buried deposits. Streams within the basin may not be effective in locating uranium anomalies, particularly if they receive little ground water input and are modified by reservoirs and irrigation procedures. (JAT)

<84>

Leonova, L.L., V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow, USSR

A Luminescent Method of Determination of Small Amounts of Uranium in Igneous. Geochemistry 8: 779-787. (1956)

A method for the determination of uranium in small amounts in igneous rocks is described. The method involves a complete decomposition of the rock by fusion with soda and separation of uranium from associated elements in the form of $U(HPO_4)2 \times NH_4Cl$ on the carrier, zirconium, and the subsequent determination of luminescence of $NaF-U$ beads on the fluorometer FM-42. The method is convenient for use in analyses of rocks and minerals containing less than 1 ppm uranium and for the analysis of water samples requiring great precision. The sensitivity of the method is 5 ppb uranium; its precision is plus or minus 5-10 percent; its speed is 2 to 3 analyses per working day of 6 hours. A faster method for uranium determination in igneous rocks with acid decomposition ($HCl + H_2O_2$) and precipitation of uranium as $U(HPO_4)2 \times NH_4Cl$ on the carrier, zirconium, and with visual determination of luminescence by comparison with standards. This method is applicable to statistical geological investigations where large numbers of analyses are to be handled. The sensitivity of this method is 1 ppm, its precision plus or minus 20 percent. Seven to ten analyses may be carried out per working day of 6 hours. (JAT)

GEOCHEMISTRY

<85>

Leonova, L.L., V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow, USSR

Uranium and Thorium in the Variscan Alkalic Intrusives of Southern Tien-Shan (Batcha and Turpi Massifs). *Geochemistry* 11:925-929. (1964)

The uranium and thorium contents of the alkalic syenite-granite intrusives of Tien-Shan are discussed. The uranium content varies from 0.3 to 9.1 ppm, the thorium content from 2.1 to 38.7 ppm, and the Th/U ratio from 3.2 to 7.0. The late granites contain more thorium and have a higher Th/U ratio than the earlier syenites, possibly as a result of the partial removal of uranium (and thorium) in the carbon dioxide produced during the assimilation of carbonate country rocks by the granitic magma. (JET)

<86>

Leonova, L.L., V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow, USSR

Uranium and Thorium in Hydrothermally Altered Rocks of the Kyzyl-Ompal Mountains (Northern Tien Shan). *Geochemistry* 6:566-571. (1963)

Hydrothermal alteration of the rocks of the Kyzyl-Ompal massif resulted in the sericitization of plagioclase, kaolinization and hematitization of potassic feldspar, chloritization of the dark minerals, and the introduction of considerable amounts of uranium into all the rocks. Among the altered rocks, only the syenites of phase I and the related fine-grained syenite dikes were enriched in thorium that was introduced by hydrothermal solutions. It was established that the enrichment of the altered rocks in uranium and thorium did not occur at the same time, but occurred in two stages: thorium was introduced after replacement of the syenites of phase I and their dikes and uranium was introduced after the replacement of the leucocratic granites of phase III. This indicates that there is a genetic relation between the hydrothermal solutions enriched in thorium and alkalic rocks and between the solutions enriched in uranium and the silicic rocks. (JET)

<87>

Leonova, L.L., V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow, USSR

Distribution of Thorium in Minerals of the Granites of the Sasyry Batholith (Central Tien-Shan). *Geochemistry* 6:571-578. (1962)

The distribution of thorium was studied in the minerals present in five samples of granitic rock from the Sasyry batholith. Thorium was present in all the minerals. Its lowest concentrations were found in the silicic minerals (4-5 ppm) and its highest were found in allanite (0.7-0.6 percent) and uranothorite (40 percent). The distribution of thorium among the essential minerals of the Sasyry granitoids showed 30 to 40 percent of the

total thorium content occurred in the essential minerals and 60-70 percent occurred in the accessory minerals. Among the accessory minerals, allanite

$[(Ce,Ca,Tl)(Al,Fe)3(SiO4)3(OH)]$ was always the principal concentrator and carrier of thorium in the rocks, generally containing from 50 to 70 percent of the total thorium. Thorium in these granites occurred in three forms: 1) as molecules dispersed through the light-colored minerals (quartz, potassic feldspar, and plagioclase); 2) in solid solution for the rare earths, Zr, and Ca in the accessory minerals (allanite, zircon, sphene, and apatite) and possibly in the dark minerals (biotite, hornblende, etc.); and 3) microscopic crystals of independent Th and U-Th minerals of the uranothorite type. (JET)

<88>

Leonova, L.L., R.D. Gavrilin, and V.V. Bagreyev, V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow, USSR

Behavior of Uranium and Thorium in a Highly Alkalic Intrusive Complex (the Kyzyl-Ompal Massif, Northern Tien-Shan). *Geochemistry* 12:1173-1179. (1961)

The distribution of uranium and thorium in three principal intrusive phases of the Kyzyl-Ompal massif was determined by luminescence and colorimetry. The average thorium content of the syenites, quartz syenites, leucocratic granites and alkali-silica granites was 50-60 ppm U. There is little variation in the thorium content in the rocks of different phases. The uranium content of leucocratic granites and alkali-silica granites (about 6 ppm) is similar to the uranium content of many granites. The uranium content of quartz syenites is near to that of the granites, but the coarsely porphyritic syenites contain twice as much uranium (13.7 ppm) as the younger quartz syenites and granites. The variations in the uranium content within individual phases of the quartz syenites and granites are small and as a rule lie within the limits of analytical error. The content of uranium in syenites varies considerably more from sample to sample, either because of the variable composition of the rocks or because of the irregular distribution of uranium during their crystallization. There is no increase in the uranium and thorium contents in the syenite-granite differentiation series from the older to the younger leucocratic rocks. The rocks of phase I have the highest uranium content, while in the coarsely porphyritic syenites and the younger quartz syenites and granites it is relatively low. The content of thorium is practically constant in all three phases. Such behavior of uranium and thorium is a rare exception to the general tendency of these elements to concentrate towards the end of the differentiation process. The Th/U ratio in the rocks of the massif varies slightly within each phase and increases progressively from 6.5 in syenites to 8.6 in quartz syenites and 9.2 in granites. (JET)

GEOCHEMISTRY

<99>
Leonova, L.L., and L.S. Pogilova, V.I.
Vernadskii Institute of Geochemistry and
Analytical Chemistry, Moscow, USSR

Uranium Minerals of the Intrusive Rocks of the
Kzyl-Ogap Mountains (Northern Kirgiziya).
Geochemistry 10:999-1004. (1961)

The distribution of uranium in the minerals of three syenites, three quartz syenites, and an alkali-feldspar syenite from the Kzyl-Ogap massif is discussed. The alkali-feldspar syenite was characterized by the type of uranium distribution found in granites, with about 50 percent of the uranium being found in the rock-forming minerals and the remainder in the accessory minerals. In the syenites, 76 percent of the uranium is contained in the rock-forming minerals. Quartz syenites had an intermediate type of uranium distribution. The same minerals from syenites and granites and alkali-feldspar syenite differ considerably in their uranium content, but are constant within a given rock type. Most of the uranium in syenite is immobilized during the first stage of crystallization, so it cannot accumulate in the vein derivatives of the syenite. (Auth) (JMF)

<90>
Leventhal, J.S., USGS, Denver, CO

Organic Geochemistry and Uranium in Grants
Mineral Belt. AAPG Bulletin 63(4):691. (1979,
April)

Organic material is closely associated with the primary uranium deposits of the Grants mineral belt. This organic material is now insoluble and nonvolatile, and most of it is lacking in physical structure. The mixture of organic matter and uranium coats sand grains and fills interstices, which seems to indicate that both the organic matter and uranium were introduced as soluble materials after sedimentation. The relation of organic matter and uranium can be shown physically, chemically and statistically. Pyrolysis-gas chromatography, mass spectrometry, and elemental analysis have been used to examine the organic matter from several ore deposits. The results show carbon-rich materials which have been severely degraded by radiation from uranium and daughter products. The organic material now resembles amorphous carbon, having lost most of its hydrogen and oxygen. From the uranium content and approximate age, the radiation dose is calculated to be $10(2+1)$ rads. The radiation damage has also produced an interesting new carbon-isotope fractionation effect, by which the carbon associated with ore is enriched in carbon-13 relative to the non-ore carbon. Laboratory model experiments using freshly extracted soluble organic material from recent sediments and uranium as $UO_2(CO_3)_2 \cdot 2$ show large enrichment of uranium by chelation and ion exchange, which are pH dependent. The greatest concentration factor for uranium is at slightly acid pH values. From model experiments and laboratory work on samples from the Grants district, the following hypotheses are made: first, the soluble organic matter (of unknown origin) coated or precipitated on the mineral grains; subsequently, the uranium-probable as $UO_2 \cdot 2$ or $UO_2(CO_3)_2 \cdot 2$ concentrated in and on this organic matter by ion exchange and chelation with functional groups. This cycle of organic coating and uranium concentration could have been episodic or continuous, but must have lasted at least $10(2+6)$ years based on calculations using assumed porosity, permeability, hydraulic gradient, uranium

content of water, and organic concentration factors. Finally, after $10(2+6)$ years, the radiation damage has created an amorphous carbon material which is deficient in hydrogen and oxygen but which helps protect the ore from mobilizing owing to its chemical inertness. (Auth)

<91>
Leventhal, J.S., J.K. Jennings, and R.J. Leske,
USGS, Denver, CO

Isotopic Occurrence of Uranium in Alpine Peaks,
Summit County, Colorado and Results of a Simple
Fractionation Procedure. USGS-OFR-78-235; 17 pp.
(1978)

Samples from Summit County, Colorado, were fractionated for analyses of organic content and uranium. The uranium is related to organic content, but not to type or organic matter. In one area, uranium values were around 100 ppm in bulk samples and as such as 200 ppm in certain separated fractions of the samples; this was much higher than the 1-10 ppm normal values for peat. (JMF)

<92>
Lik, B.G., L.N. Morozov, and V.P. Kirsov,
Academy of Sciences, Institute of Geochemistry,
Siberian Division, Irkutsk, USSR

Uranium and Thorium in the Paleozoic Granitoids
of the Central Part of the Eastern Sayans (The
Gal'y Tagel-Uda Interfluvium). Geochemistry
2(1):59. (1965)

Data of 155 analyses of intrusive rocks for Th and U are summarized by rock type and geologic occurrence. The amount of both elements are found to correlate positively with the amount of free quartz in the rocks and with decreasing age of emplacement. The Th/U ratio varies in the opposite sense. Apical parts of the intrusives are richer in both elements and uranium is enriched relative to thorium. Dike rocks are generally similar to their parent rocks in thorium and uranium content. (Auth)

<93>
Lisitsin, A.K., Academy of Sciences, Institute of
Geology of Ore Deposits, Petrography, Mineralogy,
and Geochemistry, Moscow, USSR

Form of Occurrence of Uranium in Ground Waters
and Conditions of its Precipitation as UO_2 .
Geochemistry 9:876-988. (1962)

Ionization constants of uranium in aqueous solution were used to estimate the forms in which uranium occurs in ground water, and the conditions necessary for its precipitation. It was determined that in normal weakly acid, neutral, and weakly alkaline ground waters of different mineralization characteristics, uranium occurs predominantly as uranyl di- and tricarbonate anions. The Eh values calculated for various theoretical compositions in equilibrium with solid UO_2 are in good agreement with appropriate hydrogeochemical data. The Eh value at the beginning of the precipitation of tetravalent uranium from ground waters ranges from approximately 0.0 to -0.2V depending on the concentration of uranium in the solution, the magnitude and character of the salts in the water, its pH, and the concentration of the CO_3^{2-} ion. The composition, temperature, Eh, pH, and total uranium content are given for 11 ground waters. (Auth) (JMF)

<98>

GEOCHEMISTRY

<94>
 Lisitsin, A.K., Academy of Sciences, Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Moscow, USSR

Uranium Content of Oxidizing Petroleum. *Geochemistry* 7: 761-768. (1960)

Uranium in deposits related to altered petroleum is intimately associated with strongly oxidized organic substances of the petroleum series - asphalts, asphaltites, and pyrobitumens. The purpose of this study was to determine the distribution of uranium in petroleum bitumens at the initial stage of their oxidation when they are transformed from light petroleum low in tars and paraffins to heavy, tar-rich oils approaching pitch in physical properties. Petroleum of different compositions from Paleogene deposits in the Pergana basin were used in this investigation. The results of the investigation established a clear relationship between the uranium content in petroleum and its specific gravity, with sharp increases in uranium content as the specific gravity of the petroleum increased. With the increase of specific gravity of petroleum, the concentration of uranium in the ash also increases, reaching tenths of one percent in the heavier varieties. The tendency towards increase in concentration of uranium with increase in the ash content of petroleum is also noticeable, although weaker. This relationship and increase in uranium concentration in ash with increasing specific gravity of petroleum indicate that uranium accumulates in oxidizing petroleum more intensively than in its initial inorganic components. The relationship between uranium content in the ash and the total ash content in petroleum is more complex. In weakly oxidized petroleum, there is a noticeable decrease in uranium concentration in the ash with increase in the ash content. In the zone strongly oxidized petroleum, no such regularity is observed. Relatively strongly oxidized heavy petroleum with a high concentration of tar-asphaltene components is capable of extracting uranium from water of different composition with large or small uranium concentrations. Light petroleum with less tar are practically incapable of this. The results of this investigation lead to the conclusion that the main enrichment of petroleum in uranium occurs during oxidation under the action of infiltrating ground water. The capacity of petroleum for extracting uranium from ground water increases with increase in the degree of their oxidation. The oxidizing petroleum inhibit migration of uranites in ground water, not only indirectly by creating an appropriate environment, but also by direct extraction of it from the waters. (JMT)

<95>
 Lovborg, L., H. Bollenberg, Poul Sorensen, and J. Hansen, Danish Atomic Energy Commission, Roskilde, Denmark; Copenhagen University, Institute of Petrology, Copenhagen, Denmark; University of California, Lawrence Berkeley Laboratory, Berkeley, CA

Field Determination of Uranium and Thorium by Gamma-Ray Spectrometry, Simplified by Measurements in the Ilissauksaq Alkaline Intrusion, South Greenland. *Economic Geology* 66: 164-184. (1971)

Gamma-ray spectrometry in the field was used in connection with an intensive study of the abundance and distribution of uranium and thorium in peralkaline rocks of the Ilissauksaq intrusion of south Greenland. Uranium and

thorium were determined from counts accumulated in the 1.76 and 2.62 keV intervals of a portable gamma-ray spectrometer. Calibrations for uranium and thorium were achieved by use of large concrete standards of known radioelement content, and having a gamma-ray mass absorption nearly equal to that of the rock to be measured. The accuracy of the field gamma-ray spectrometer, depending on standard errors associated with calibration equations, was about 2.5 percent for thorium and ranged from 2.5 to 7.5 percent for uranium, as Th/U varied from 1 to 5. The intensive measurements were made on several types of Nepheline Syenites and Gabbros. Distinct contrasts between uranium and thorium contents of the different rock types within single areas were noted. High uranium and thorium contents in the fine-grained aegirine Nepheline Syenites contrasted with significantly lower values in medium-grained aegirine Nepheline Syenites. Similar contrasts between massive Iujaviritized gabbro, sheared foliated gabbro, and sheared Iujaviritized gabbro were also observed. (JMT)

<96>
 Ludwig, R.B., C.W. Maeser, and J.T. Wash, USGS, Denver, CO

Uranium-Lead Ages of Uranium Ores From the Mimitite Mine, Washington. *Proceedings of the Joint Annual Meeting of the Geological Association of Canada, the Mineralogical Association of Canada, and the Geological Society of America*, Toronto, Ontario, October 23-26, 1978. The Geological Society of America, Boulder, Colorado, (p. 448), 531 pp. (1978)

The Mimitite Mine, located in eastern Washington, is one of the few producing hard-rock uranium deposits in the United States. The ores are localized in phyllites and calc-silicates of the Precambrian Rogo Formation, near the contact with a granitic pluton that yields zircon U-Th-Pb ages of approximately 76 million years. Eight high-grade, approximately 500 gram, unoxidized ore samples from drill-core and mine exposures yielded Pb 207/U 235 ages on the narrow range of 50 to 52 million years and define a Pb 207/U 235 isochron age of 51 plus or minus million years. This age coincides with that of the Sanpoil Volcanic, which unconformably overlie the pluton near the mine, and of associated dikes that cut ore. A fission-track age of 69 minus or plus 6 million years on apatite from the granitic pluton in the mine has not been reset and requires that the immediate area not have been heated to more than about 150 degrees C for a long (less than 1 million years) period of time. These data are consistent with pervasive redistribution of uranium into ore zones from an earlier protore by supergene fluids, possibly with thermal or hydrologic influence of overlying volcanic rocks. Pb 206/U 238 ages are lower and more scattered than the Pb 207/U 235 ages, and both types of ages are markedly scattered for very small (less than 1 mg) samples. These systematics reflect migration of both radiogenic Pb and radioactive daughters of U 238, but indicate that the Pb migration is largely restricted to scales of less than 10 cm. The ore minerals are intermixed uraninite and coffinite, with the coffinite occurring somewhat later in the paragenetic sequence. Both ore minerals contain very high concentrations of common Pb (as much as 655 ppm), which may relate to the unusually low degree of radiogenic-Pb migration in these ores. (Ruth)

GEOCHEMISTRY

<97>

Ludwig, R.L., and J.S. Stuckless, USGS, Denver, CO

Uranium-Lead Isotope Systematics and Apparent Ages of Zircons and Other Minerals in Precambrian Granitic Rocks, Granite Mountains, Wyoming. Contributions to Mineralogy and Petrology 65:243-258. (1978)

Zircon suites from the two main types of granite in the Granite Mountains, Wyoming, yielded concordia-intercept ages of 2,660 plus or minus 20 million years for a red foliated granite (granite of Long Creek Mountain) and 2595 plus or minus 40 million years for the much larger mass of granite of Lankin Dome. These ages are statistically distinct (60 plus or minus 20 million years difference) and are consistent with observed chemical and textural differences. From the U-Pb-isotope data presented in this paper, a plausible history for the Granite Mountains is as follows: (1) Intrusion of the granite of Long Creek Mountain 2,680 plus or minus 20 m.y. ago into a suite of rocks that had been metamorphosed 2,860 m.y. ago; (2) Intrusion of a much greater mass of granite of Lankin Dome 2595 plus or minus 40 m.y. ago; (3) Ductile or late-stage metasomatic alteration of zones within this granite shortly after intrusion of the granite of Lankin Dome; (4) Intrusion of diabase dikes; (5) A thermal event between 1,350 and 2,250 m.y. ago which caused a gain of radiogenic Pb by K-feldspars and loss of radiogenic lead from epidotes and apatites; and (6) Uplift and erosion related to Laramide tectonics 50-100 m.y. ago, which resulted in the loss of radiogenic lead by zircon, uranothorite, and apatite, and U loss by epidote and whole rock systems. (JET)

<98>

Lutts, B.G., and I.G. Nin'yeva, Academy of Sciences, Institute of the Physics of the Earth, Moscow, USSR

Uranium and Thorium in Siberian Kimberlites. Geochimica International 11-12:1278-1281. (1978, October)

Uranium and thorium contents of 10 samples of diamond-bearing and nondiamond-bearing kimberlites were analyzed. Uranium was determined by the luminescence method and thorium was determined by spectrophotometry. Although kimberlites are olivine-bearing ultramafic rocks, their thorium and uranium contents are many times higher than in the other ultramafic and mafic rocks, being comparable to granites in the content of these elements. The high Th/U ratio in kimberlites distinguishes them from all other rocks. The average Th/U ratio for the diamondiferous kimberlites and the nondiamondiferous kimberlites studied was 5.6 and 7.0, respectively. The characteristically high radioelement contents of kimberlites and their anomalous Th/U ratios can be used in prospecting for kimberlite bodies. (JET)

<99>

Lyons, J.E., USGS, Washington, DC

Distribution of Thorium and Uranium in Three Early Paleozoic Plutonic Series of New Hampshire. USGS Bulletin 1148-7; 42 pp. (1968)

Chemical uranite and thorite data were determined for the calc-alkaline Highlandcroft (Late Ordovician), Oliverian (Middle or Late Devonian) and New Hampshire (Late Devonian) Plutonic Series. Ten rock specimens were chemically and modally analyzed and their constituent minerals analyzed chemically for uranium and thorium and spectrochemically for minor elements. All series showed normal radioactivities, with progressive increases in uranite and thorite with increased content of felsic minerals, and no marked trends and Th/U ratios. Highlandcroft rocks showed a range of 2.6-5.0 ppm uranite and 10.6-18.9 ppm thorite; Oliverian rocks had 8.6-15.9 ppm uranite and 2.6-57 ppm thorite; New Hampshire rocks showed 1.5-26 ppm uranite and 2.4-24.5 ppm thorite. Pegmatites have abnormally low thorite to uranite ratios, and aplites have high but variable uranite and thorite contents. High uranite and thorite contents accompanied high SiO₂ and K₂O and low CaO contents in the rocks. The Highlandcroft and Oliverian Series, both of which are regionally metamorphosed, had as much as 67 percent of the uranite and 79 percent of the thorite held by sphene and epidote. Both minerals were absent or rare in the higher temperature unmetamorphosed New Hampshire Series, in which monazite and xenotime are characteristic accessories, and in which most of the uranite and thorite was dispersed in the major silicates. Enrichment of the plutonic residue in elements rejected by early crystallized silicates appears to be the simplest and best explanation of the uranite and thorite distribution patterns seen in these rocks. (JET)

<100>

Markava, S.N., and L.A. Kondr, V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow, USSR

Aromatic Monomers of Lignin in Lignites and Their Possible Role in the Concentration of Uranium, Germanium, and Vanadium. Geochimica 8:389-401. (1963)

Samples of wood that had been buried in peat for 500 to 3000 years and tertiary lignites were studied using ethanalysis, paper chromatography, and ultraviolet spectrophotometry. Quantitative determinations were made of the content of vanillin and vanillyl methyl ketone in wood in various stages of decomposition, and in the lignin and hemic acids extracted from the samples. Lignin undergoes profound changes after burial. The process of alteration is accompanied by the partial destruction of the polycyclic structure of lignin and the liberation of phenylpropane monomers. These monomers for hemic acids, and serve as the basis of condensed structures that are caused by the additional bonding between the carbon atoms of propane chains. Germanium, uranium, and vanadium accumulate most intensively in lignites in the early stages of decomposition of wood by reaction with active groups of aromatic lignin structures. Then these structures become condensed later, they hold the trace metals much more firmly but do not accumulate more metals. (Auth) (JET)

<101>

GEOCHEMISTRY

<101>

Millard, H.T., Jr., USGS, Washington, DC

Determination of Uranium and Thorium USGS Standard Rocks by the Delayed Neutron Technique. USGS Professional Paper 840, (P. 61-69), 192 pp. (1976)

Uranium and thorium were determined in 12 USGS standard rocks by the delayed neutron technique. Duplicates from three bottles of each standard rock were analyzed in random order. The averages are: AGV-1, 2.05 ppm U and 5.37 ppm Th; BCP-1, 1.61 ppm U and 5.26 ppm Th; BEVU-1, 0.28 ppm U and 0.49 ppm Th; C-2, 2.15 ppm U and 26.0 ppm Th; CEP-1, 2.56 ppm U and 106.9 ppm Th; EAC-1, 2.62 ppm U and 12.2 ppm Th; QLO-1, 2.01 ppm U and 3.28 ppm Th; RGR-1, 5.95 ppm U and 13.1 ppm Th; SCO-1, 3.15 ppm U and 9.52 ppm Th; SDC-1, 3.12 ppm U and 11.4 ppm Th; SGR-1, 5.60 ppm U and 7.66 ppm Th; and STE-1, 9.10 ppm U and 26.6 ppm Th. The thorium and uranium contents of the bottles of samples, except SCO-1, may be accepted as homogeneous at $P = 0.95$. The uranium content of SCO-1 may be declared heterogeneous at $P = 0.95$ or accepted as homogeneous at $P = 0.95$. (Aeth)

<102>

Sitcheff, W.S., V. Zecilli, and E.A. Taylor, Canada Geological Survey, Ottawa, Ontario, Canada; Dalhousie University, Department of Geology, Halifax, Nova Scotia, Canada

Distribution of Uranium in an Active Geothermal Area in the Azores. Geological Survey of Canada Paper 77-113, Report of Activities, Part B, (pp. 137-139), 253 pp. (1977)

Seventy-two samples taken from a 981 m borehole on the island of São Miguel, Azores were analyzed by the fission tract method for homogenized whole-rock uranium concentration. Uranium variations through a single flow unit were also investigated with a further 16 whole-rock U-analyses and distributions within several porphyritic basaltic units were mapped. The average U concentration in basalts was found to be 1.33 ppm, slightly higher in coarse flows (1.57 ppm) and brecciated portions of flows (3.53 ppm). Pillow basalts contain an average of 2.72 ppm U, and trachytes average even higher (5.78 ppm). These concentrations, which are an order of magnitude greater than those of oceanic tholeiites (0.10-0.29 ppm) or Serraia basalts (0.15 ppm), may be due to the alkalic nature of the Azores basalts or to hydrothermal enrichment. The relatively high U concentrations found at flow boundaries are believed due to migrating hydrothermal fluids, whether by introduction of U to the system or by its redistribution. There is evidence that U is strongly concentrated by weathering in the oxidized tops of subaerial flows (5.51 ppm average). (LKM)

<103>

Boore, S.C., and E.G. Lavery, Exxon Minerals Company, Albuquerque, NM; Exxon Minerals Company, Houston, TX

Sagittate and Variability of Disequilibrium in San Antonio Valley Uranium Deposit, Valencia County, New Mexico. ALRC Bulletin 63(4):691-692. (1979, April)

The San Antonio Valley deposit is a clay-lying tabular body of uranium mineralization in the Westwater Canyon Member of the Morrison Formation. The deposit is elongate northwest-southeast, is approximately 1.6 km long and 0.3 km wide, and averages from 2 to 8 m in thickness. The "tread-type" deposit has a chemically reduced mineralogy and occurs below the water table. The average disequilibrium factor for the deposit shows a 6 percent enrichment in chemical uranium. Variations occur throughout the deposit, however, with the northeastern edge being chemically excessive by 11 percent and the southwestern edge being chemically deficient. Three ore-reserve correction factors have been assigned, one to each of three longitudinal zones. The use of multiple correction factors will optimize mine planning and uranium recovery. Vertical profiles of radiometric and assay data through ore zones show dispersion of daughter isotopes away from uranium concentrations. Horizontal data plots show removal of daughter isotopes from the northeastern edge of the deposit and fixation of daughter isotopes in the central and southwestern parts of the deposit. Local loss of uranium is also suggested in the central and southwestern parts of the deposit. It is hypothesized that recent groundwater flow from east to west has redistributed the isotopic species. This flow system caused both the local vertical migration of daughter isotopes and also the transport of daughter isotopes and uranium in the direction of the hydrologic gradient. These conclusions are based wholly on chemical and gamma-equivalent uranium assays. (Aeth)

<104>

Subarakzad, S., P. Chaudhry, and F.I. Bagi, Nuclear Research Laboratory, Government College, Lahore, Pakistan

Absolute Determination of Uranium Concentration in Rocks by Gamma-Ray Spectroscopy. Nuclear Instruments and Methods 180:133-135. (1977, January)

A method for the measurement of uranium concentration in ore samples is presented. The 93 keV gamma rays emitted by the first decay product Th-230 are resolved using a 80 cubic centimeter Ge(Li) detector. The activity due to this gamma ray is measured. Th-230 is selected for measurement of its gamma activity because it is in equilibrium with its parent and this directly leads to information on the quantity of U-238 in the sample. (Aeth)

GEOCHEMISTRY

<105>

Surphy, M., W. Vollmer, B. Strisover, S. Bowes, S. Flexer, and T. Carlschael, Lawrence Berkeley Laboratory, Earth Sciences Division, Berkeley, CA

Uranium in Alkaline Rocks. LBL-7029; SJBX-78(78); 105 pp. (1978, April)

Alkaline igneous rocks are characterized by the presence of feldspathoids and/or alkali-pyroxenes and alkali-amphiboles. These rocks are divided into two broad categories: (1) mafic rocks and (2) aegitic rocks. In mafic rocks, the sum of the potassium and sodium contents is less than the aluminum content of the rock; in aegitic rocks this trend is reversed. In this study geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous. Sixty nine locations having alkaline igneous rocks were disclosed during a literature search. The rocks were nepheline syenites, alkaline granites, and carbonatites. A ranking system identified ten of the sites as the most likely to have uranium resource potential. (JST)

<106>

Nagase, K., and K. Wakita, Gakushuin University, Befjiro, Toshima-ku, Tokyo, Japan; Atomic Energy Research Institute, Radioisotope School, Nakomogone, Bunkyo-ku, Tokyo, Japan

Partition of Uranium and Thorium between Augite and Host Lava. *Geochimica et Cosmochimica Acta* 32:917-921. (1968)

Uranium and thorium concentrations were determined in pairs of samples representing a liquid and a solid phase under possible partition equilibria, such as groundmass of volcanic lava and Ca-rich clinopyroxene (augite) crystals separated from it. In addition, the partition of uranium and thorium between Ca-rich clinopyroxene (diopside), orthopyroxene and olivine coexisting in a peridotite was determined. From the data derived from this experiment, it was found that Th and U were enriched in clinopyroxene (diopside) by a factor of 10 to 20 compared with orthopyroxene (enstatite) in the same peridotite samples. On a basis of ionic substitution, the enrichment of thorium and uranium could be accounted for by the substitution of Ca^{+2} (0.97 Angstrom) by Th^{+4} (1.06 Angstrom) and U^{+6} (1.01 Angstrom) ions. Th/U ratios were greater in the groundmass than in the augite phenocryst of the lava. (JST)

<107>

Baumov, G.B., Academy of Sciences, V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow, USSR

Some Physicochemical Characteristics of the Behavior of Uranium in Hydrothermal Solutions. *Geochemistry* 2:127-147. (1961)

The characteristics of pitchblende parageneses are reviewed, leading to the conclusion that carbon dioxide, fluorine, sulfur, chlorine, and some form of silica were important components of uranium-bearing hydrothermal solutions. The solutions could not have been strongly acid, and the temperatures were in the range of 25 to 300 degrees C at pressures of less than 1000 atmospheres. The study of the physicochemical characteristics of the behavior of uranium in such systems showed that uranium could be transported in the form of complicated complex ions, among which complex carbonate and fluoride ions are the most probable. Most uranium is probably transported in the hexavalent form as complexes, and is deposited (and reduced) when the complexes are destroyed. The factors causing deposition of pitchblende are considered in detail in the article. (Aeth) (JST)

<108>

Bauov, G.B., and O.P. Bireanova, V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow, USSR

Oxidation-Reduction Equilibria in the System Uranium-Iron in a Carbonate Environment and its Significance to Geochemistry. *Geochemistry* 3:286-293. (1960)

Under certain conditions, it is probable that iron will have a regular effect on the valence state of uranium and, thus, on its migration in the crust of the earth. In an acid environment, in the absence of noticeable complex formation, the equilibrium in the system: $UO_2 \cdot 2 + 2Fe^{+2} + 4H^+ = U^{+6} + 2Fe^{+3} + 2H_2O$ is strongly shifted to the side of oxidation of uranium and reduction of iron. In an alkaline medium, however, the uranium and iron are present as hydroxides and the equilibrium is shifted to the side of reduction of uranium and oxidation of iron. For example, in a carbonate solution in equilibrium with precipitate containing oxides and carbonates of trivalent and bivalent iron, almost all uranium will be present in the hexavalent state. Since it is known that many uranium deposits were formed from carbonate hydrothermal solutions, interaction of the uranium-bearing carbonate solution and rocks containing hematite would result in hexavalent uranium in the ores because no important concentrations of tetravalent uranium could form. Carbonate solution passing through rocks containing hematite and uranium may become enriched in uranium not only by extracting hexavalent uranium, but by oxidizing the tetravalent form to the hexavalent state. Such reactions may also occur in the ore-bearing zones themselves. An increase in the concentration of carbonate ions may lead to the oxidation and solution of already precipitated pitchblende and a decrease, to the precipitation of UO_2 . Redeposition and even impoverishment of uranium ores may be governed by the carbon dioxide regime. (JST)

<105>

GEOCHEMISTRY

<103>

Kirschel, S.E., C.E. Barker, and C.L. Bush, USGS, Washington, DC; USGS, Denver, CO

Correlation of Uranium, Thorium, and Potassium with Aeroradioactivity in the Beres Area, Virginia. *Economic Geology* 66(2):302-309. (1971, March)

In the Beres area, Virginia, a small quartz monzonite pluton includes chlorite-actinolite schist and is overlapped by Coastal Plain sand and gravel deposits. A detailed aeroradioactivity survey of the area shows unusually high radioactivity (1,150 counts/second) over the quartz monzonite. A total of 22 auger samples were taken across all formations to a depth of 1 to 3 feet, and radioelement concentrations were determined by gamma-ray spectrometry. There is a general direct correlation of high radioactivity with increase in radioelement concentrations. Abundances of uranium and particularly thorium in the quartz monzonite are two and three times the average for rocks of this type. The major contributions to the aeroradioactivity intensity from the pluton are from uranium and its daughter products, although all radioelements emit measurable radiation. (Auth) (JET)

<111>

Sishimura, S., University of Osaka Prefecture, Department of Geological Sciences, Sakai, Osaka, Japan

Disagilibities of the U-238 Series in Recent Volcanic Rocks. *Earth and Planetary Science Letters* 9:293-301. (1970)

Concentrations of U-238, Th-232, and Ra-226 are given for recent volcanic rocks from various regions. Disagilibrium observed among U-238 series is interpreted in terms of chemical fractionations occurring during magmatic processes. The fractionation pattern "a" greater than or less than Th greater than U is observed in Hawaii, the Azores, and Japan in oceanic and island arc volcanic regions. The pattern Th less than U is seen in the Caucasus, Easchatska, and Italy for continental volcanic regions. (Auth) (JET)

<111>

Sishimura, S., Kyoto University, Institute of Earth Science, Kyoto, Japan

Partition of Uranium Between Peridotite Nodules and Host Basalt. *Chemical Geology* 10:211-221. (1972)

Contents of uranium in mineral fractions from some basic rocks and peridotite nodules were measured. The peridotite nodules ranged in uranium content between $6.8 \times 10^{(2-2)}$ to $6.2 \times 10^{(2-3)}$ ppm. Uranium content in the olivines ranged between $6.8 \times 10^{(2-2)}$ to $1.2 \times 10^{(2-3)}$ ppm. These values reflect the chemical fractionation that occurred in the magmatic processes. (Auth)

<112>

Khosla, I.P., and J.S. Pasholt, USGS, Denver, CO

A Lead-Isotope Age and U-Pb Discordance of Precambrian Gneiss from Granite Mountains, Wyoming. USGS Professional Paper 900-C, Geological Survey Research 1972, (pp. C169-C177), 281 pp. (1972)

Lead isotopic composition and concentration in six paragneisses, a granitic gneiss, and two granites from the Granite Mountains were determined on whole-rock samples and seven associated feldspars. Uranium and thorium contents were also determined for the whole rock and three of the feldspar samples. The $\text{Pb } 207/\text{Pb } 206$ versus $\text{Pb } 235/\text{Pb } 238$ data from the whole rock samples yielded a date of 2,950 plus or minus 120 million years for the gneiss. This date was in excellent agreement with a Rb/Sr date of 2,959 plus or minus 60 million years obtained previously and it may indicate the time of metamorphism of these rocks. The uranium-thorium incorporation into the crustal system was probably a contemporaneous occurrence. Because the crystallization of massive biotite granite probably occurred some 2,790 million years ago, the gneiss cannot be regarded as co-genetic with the granite. Lead-uranium and lead-thorium relations show marked discordance and cannot be used to calculate ages. In the whole-rock samples, uranium loss seems to have predominated during the Cenozoic. (JET)

<113>

Osipov, D.K., and S.S. Zhugayev, Academy of Sciences, Institute of Geology and Geophysics, Siberian Division, Novosibirsk, USSR

Uranium and Thorium in the Igneous Rocks of the Kuzbas. *Geochemistry* 2(3):373-395. (1965)

The extrusive rocks of the Kuzbas are characterized by relatively uniform distribution of uranium and thorium. Upper Paleozoic trachyandesites and trachybasalts contain, on the average, 3.77 ppm uranium and 13.8 ppm thorium. The Th/U ratio is 3.6. The Lower Mesozoic basalts on the Tom' River contain 2.66 ppm uranium and 9.48 ppm thorium, and on the Nizhnyaya Ters' River they contain 3.12 ppm uranium and 13.20 ppm thorium. The Th/U ratio ranges from 3.6 to 8.2. In the trachyandesites and trachybasalts the bulk of the uranium and thorium is held in feldspars. In the basalts, the uranium and thorium is concentrated in the glassy mesostasis. There was a positive correlation between uranium and thorium and these elements were positively correlated with SiO_2 and K_2O and negatively correlated with CaO and Na_2O . (JET)

GEOCHEMISTRY

<116>
Ossood, J.E., and J.B. Cowart, Florida State University, Geology Department, Tallahassee, FL

The Theory and Uses of Natural Uranium Isotopic Variations in Hydrology. Atomic Energy Review 18(4):621-679. (1976)

The dissolved concentration of uranium and the relative abundance of two uranium isotopes, ^{234}U and ^{238}U , vary over a wide range of values in natural waters. The concentration is controlled mainly by the redox potential of the environment and by CO_2 . The mechanism of isotope fractionation is thought to be entrainment of ^{234}U in the aqueous phase either by selective leaching of the solid phase or by direct recoil of the daughter nuclide. Ion exchange techniques and alpha-spectrometry permit the measurement of uranium at concentrations as low as pp 10 (± 11) and the isotopic ratio to a few percent. In oxidizing conditions the uranium isotopes behave in a chemically stable conservative manner such that separate groundwater sources may have identifiably different characteristics and mixing volume calculations may be made. Other potential uses of these isotopes include radiometric dating, tracing of hydrologic systems, ore prospecting and earthquake prediction. (Auth)

<115>
Ostrom, J.E., R.P. Hopkins, W.A. White, and L.D. McVicker, Illinois Geological Survey, Urbana, IL

Uranium in Illinois Black Shales. Illinois Geological Survey Circular 203; 15 pp. (1955)

175 samples of dark gray to black shale were taken from outcrops in 48 Illinois counties. The highest percent equivalent uranium, determined by radioisotopic assay, of any of the samples was 0.17 (in Gallatin County). The uranium oxide of 15 of the samples having the higher percent equivalent uranium ranged between .001 and .018. The uranium oxide averaged .002 percent lower than the percent equivalent uranium for these 115 samples. Phosphatic nodules and bands found in relatively small quantities in some black shale gave a higher percent equivalent uranium than the shales in which they occur. The maximum uranium oxide content of the phosphatic materials investigated was 0.75 percent. (Auth) (ME)

<116>
Overstreet, W.C., L.B. White, and J.J. Watt, Jr., USGS, Denver, CO

Uranium-Rich Monazites in the United States. USGS Professional Paper 700-D, Geological Survey Research 1970, (pp. D169-D175). (1970)

Uranium-rich monazites in the United States (defined here as being 0.95 percent or more U_3O_8) have been found only in parts of the Inner Piedmont province of North and South Carolina. These monazites are derived predominantly, if not entirely from granitic rocks and associated pegmatites that range in age from Ordovician to Permian. The most common sources of these uranium-rich monazites are the syntectonic Tolucu Quartz Monazite of Ordovician age and the post-tectonic Cherryville Quartz Monazite of Mississippian to Permian age. The latter is the source of the most uraniferous monazite known in the United States; 2.36 percent U_3O_8 . The analyzed monazites in this report are predominantly from stream placers, and they cannot be related positively to their source rocks. (JMT)

<117>
Pavstukov, V.V., L.V. Komlev, Ye. B. Anderson, and I.G. Sayslava, All-Union Geological Research Institute, Leningrad, USSR

X-Ray Microprobe Data on the State of the U-Pb System in Uranium Ores. Geochemistry International 12(2):251-261. (1975)

Uraninite retains radiogenic lead in the absence of superimposed processes, evidently because the lead is chemically bound in the lattice. Radiogenic lead in stibnite minerals of the coffinite and brannerite type is partially lost by diffusion and is sorbed by sulfide minerals. As a result of this, it is undesirable to isolate monomineralic fractions of these minerals for isotope age determinations. (Auth)

<118>

GEOCHEMISTRY

<118>

Pierce, I.P., and J.S. Rosolt, Jr., USGS, Denver, CO; USGS, Miami, FL

Radiation Damage and Isotopic Disequilibria in Some Uranium-Bearing Asphaltite Nodules in Back-Reef Dolomites, Carlsbad, New Mexico. USGS Professional Paper 424-D; Geological Survey Research 1961 - Short Papers in the Geologic and Hydrologic Sciences, Articles 293-435. (pp. 320-323). (1961)

Uraniferous asphaltite nodules

(asphaltite-filled vugs) have been studied in late Persian age marine carbonate-evaporite rocks of the Yates and Seven River Formations from the Rocky Arroyo area near Carlsbad, New Mexico. Distribution correlates well with that of asphaltic sandstones which transgress the back-reef facies changes of Capitan Reef and probably served as channels for mineralizing solutions. They may be responsible for abnormally high radioactivities logged along the flanks of the Delaware Basin north of Rocky Arroyo. A feature of the area is the abrupt lateral change in lithology from gypsum, red shale, and sandstone on the west to bituminous marine dolomite on the east. The facies change occurs progressively eastward in younger formations, and has acted as an important geochemical control on mineralization. Asphaltite nodules near the facies contact are surrounded by pyrite and marcasite; those at greater distances show only traces of sulfide. Distribution of asphaltite in the Rocky Arroyo area is locally controlled by fractures, bedding planes, stylolites, and fossil molds. U content is greatest near the center of the nodules. Apparent ages based on lead, lead isotope, and uranium analyses range from 203 to 270 million years depending on the process. Radiation damage in the organic phase of the nodules suggests they were fluid for a relatively long period - probably during the first 10-20 percent of their existence. Mineralizing sulfate solutions may have migrated laterally through the sandstones from the evaporite facies, and ascended through fractures into the petrolierous back-reef dolomite. Distribution of U shows that it could have been deposited gradually from surrounding solutions; this may account for the discordant isotopic ages. Thermoluminescence and isotope data indicate U and daughter products have been lost to the surrounding dolomite during at least recent history. Thermoluminescent halos surround the nodules, with an average width of 1.5 mm. With the exception of Th 230, U and Ac series daughters are impoverished in the nodule but enriched in the halo. This is interpreted as indicating (a) geologically recent U migration into the surrounding rock or (b) steady migration of daughter products into the surrounding rock. (LRH)

<119>

Place, J.T., N.M.R. Della Valle, and D.G. Brookins, Gulf Mineral Resources Company, Albuquerque, NM; University of New Mexico, Albuquerque, NM

Mineralogy and Geochemistry of Mariano Lake Uranium Deposit, Smith Lake District, New Mexico. AAPG Bulletin 63(8):692. (1979, April)

The Mariano Lake uranium deposit is located on the west side of the Smith Lake district of the Grants mineral belt. Mineralization is restricted to a basal arkosic sandstone of the Scruffy Basin Member of the (Jurassic) Morrison Formation. This sandstone, called the Polson Canyon sandstone (economic usage), consists of

a sequence of paleochannels in which mineralization has been deposited in a roll-type tabular deposit. This roll front is directly related to an oxidation-reduction interface. Chemically, the deposit is somewhat different from other Grants mineral belt deposits. Calcites and CO₃ content are low, but V, Ba, and S are relatively abundant. Sulfur found in pyrite is also possibly associated with uranium sulfates. Titanite is found as a secondary oxide, derived from titanomagnetites of the originally deposited mineral assemblage. Molybdenum, arsenic, and other trace elements show a regular zoning across the deposit, but cerium is slightly depleted. The mineralogy of the Mariano Lake deposit includes abundant disseminated pyrite in mineralized reduced areas and hematite in the oxidized barren areas. Calcite, barite, gypsum, and jordisite are rare. Clay mineralogy includes kaolinite, chlorite, illite, and mixed layer illite-montmorillonite. Contrary to what has been found in other deposits of the Grants mineral belt, zonation of the clays is reversed, with kaolinite being more abundant in the downdip reduced sediments. The phenomenon is thought to be the result of backwash off the south-dipping flank of the Mariano anticline. (Buth)

<120>

Pluman, I.I., Academy of Sciences, Institute of Geology and Geophysics, Siberian Division, Novosibirsk, USSR

Uranium Content of the Upper Jurassic Black Bituminous Argillites of the West Siberian Plate. Geochemistry International 8(6):845-851. (1971)

The uranium content in the Upper Jurassic black bituminous argillites of the West Siberian plate was determined from gamma-ray logs taken from more than 200 wells drilled during the exploration for petroleum and natural gas. The logs were analyzed quantitatively and the results were confirmed by luminescence analysis for uranium. The sedimentary beds studied were mainly dark-gray and black, slightly calcareous, platy argillites rich in organic matter (up to 10 percent). Abundance of phosphatized fish remains indicated the argillites had been deposited in a marine basin. Saponite derived from plankton is the major component of the organic matter. Pyrite was abundant in the argillites, occurring as microscopic globules and segregations. The relatively high radioactivity of the black argillites is mainly related to their uranium content. The highest uranium concentrations were found in the argillites with the highest content of organic matter. The thorium content ranged from 5 to 10 ppm and there was almost no increase in the black argillites. The content of mobile, leachable uranium in the argillites did not exceed 2 ppm, with the rest occurring in a relatively insoluble form bound to organic matter and phosphatized fish remains. According to the luminescence analysis, fish bones contained between 1000 and 3000 ppm uranium and fish scales averaged 200 ppm uranium. The uranium accumulated in the black argillites during their deposition as a result of abundance of organic matter in the sediments and conditions favorable for the precipitation of uranium from the water. Reducing conditions created by the generation of hydrogen sulfide in the deeper part of the basin played an important role in the precipitation of uranium from the sea water. (JMT)

GEOCHEMISTRY

<121>

PICHKIN, I.I., Academy of Sciences, Institute of Geology and Geophysics, Siberian Division, Novosibirsk, USSR

Uranium Content in the Upper Jurassic Black Argillites of the West Siberian Plate as a Criterion of Geochemical Conditions of Sedimentation. *Geochemistry International* 8(5):716-721. (1971)

In this paper geochemical data from oceanographical investigations are used in reconstructing the geochemistry of the Upper Jurassic Bazhenov Formation in West Siberia. The Bazhenov Formation is a series of black argillites characterized by a high (3-18 percent) sapropelic carbon and pyrite (1-15 percent) contents. Uranium content ranges from 1×10^{12} percent to 7×10^{12} percent; averages for other rocks of the region are less than 5×10^{12} percent. There is a pronounced correlation between organic carbon and uranium, which is not found in the carbon-rich rocks of lower-middle Jurassic and Cretaceous age in the area. Th/U ratios are generally less than 1 for the black argillites, 2-3 or more for the other sedimentary rocks. The geochemical characteristics of the Bazhenov argillites are very similar to those of modern Black Sea sediments from the hydrogen sulfide zone, which are also enriched in sapropelic carbon, sulfur, and uranium, and in which the Th/U ratio is less than 1 (oceanic sediments have Th/U ratios of 4-25), it is concluded that the Upper Jurassic argillites of the West Siberian plate were depicted in a eoxic basin. (LKB)

<122>

POLYAKOV, A.I., and G.L. KOT, V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow, USSR

Distribution of Thorium Among the Minerals of Nepheline Syenites of the Lovozero Massif. *Geochemistry International* 2(1):47-58. (1965)

Chemical analyses for Th in mineral separates, material-balance calculations, autoradiographic studies, and leaching experiments showed thorium in all minerals separated from the nepheline syenites of the Lovozero massif. There were two types of concentrations of the thorium in these rocks: (1) in accessory minerals, such as loparite and eudialyte, crystallized during the magmatic stage; and (2) in submicroscopic segregations of late formed minerals and in dispersions in the essential minerals. The thorium occurring in these submicroscopic inclusions and in the essential minerals is easily leached out with a 2 percent solution of ammonium oxalate. Thorium dispersed in the essential minerals does not appear to enter their crystal structures. In the early stages of a crystallizing melt, it is possible for thorium to be withdrawn, in which case, it substitutes for the rare earths in the structures of loparite, eudialyte, and rinkolite in artites and lajavrites. If the thorium is not withdrawn early in the history of the melt, it may accumulate in the residual magma and pass into the solid phase during the late postmagmatic stage of crystallization. In this case, it is bound in submicroscopic inclusions of radioactive minerals. (JNT)

<123>

POLYAKOV, A.I., and G.P. SOBOCHIKOV, V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow, USSR

Uranium, Thorium and Potassium in the Volcanic Rocks of Iceland. *Geochemistry International* 12(5):20-27. (1975)

The distribution of uranium, thorium, and potassium in Neogene-Quaternary volcanic rocks of Iceland was investigated by gamma-ray spectrometry. The radioelement content of the Tertiary plateau basalts of Iceland corresponded to the content of the radioelement in the plateau basalts. The young rift basalts are characterized by considerable variation in the content of radioelements: the alkali olivine basalts are rich in these elements, while tholeiites have lower uranium, thorium, and potassium contents than the oceanic tholeiites. The content of uranium, thorium, and potassium in the Holocene basalts of Iceland is inversely proportional to the volume of basaltic belts from which they crystallized. Mantle rocks are the source of the radioelements. The content of radioelements in the basalt-rhyolite series depends on the alkali content in the melt. Accumulation of radioelements in the felsic differentiates corresponds to separation of 5-10 percent of the rhyolite eutectic. There is significant positive correlation among the radioelements and between them and silica. (JNT)

<124>

POLYAKOV, A.I., and N.P. VOLYNETS, V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow, USSR

Distribution of Thorium in a Series of Ultrabasic Alkaline Rocks of the Kola Peninsula. *Geochemistry* 5:446-458. (1961)

Thirty-two determinations of thorium in rocks and minerals of three co-smagmatic ultrabasic alkaline massifs of the Kola peninsula were done by the ion exchange-colorimetric methods. It was found that the thorium content in the rocks of the ultrabasic alkaline series was relatively high as compared with the normal basic and ultrabasic rocks. The thorium content in a single series of ultrabasic alkaline rocks increased in the course of magmatic differentiation, paralleling an increasing content of a number of other lithophilic elements. The highest concentration of thorium was found to form during the pegmatitic and pneumatolytic stages. The content of the thorium in the accessory minerals from ultrabasic alkaline rocks was closely related to the total content of this element in the rocks. The thorium content in the ultrabasic alkaline series of rocks may serve as a geochemical indicator of the degree of magmatic differentiation. (JNT)

<125>

GEOCHEMISTRY

<125>
Porritt, R.E.J., and S.J. Bone

Determination of Uranium in Ores by Radioisotopic Assay. Analytical Chemistry of Uranium and Thorium. Proceedings of a Symposium, Lucas Heights, Sidney, Australia, May 7-8, 1970. Australian Atomic Energy Commission, Sidney, (pp. 2.1-2.12), 102 pp. (1970)

Beta and gamma radiations emitted by the naturally-occurring radionuclides are only suitable for radiometric assay. The beta-gamma method and gamma spectrometry are the most suitable for routine determination of the uranium content of ore. The beta-gamma method estimates the uranium from the beta activity emitted by the decay chain between U 238 and Ra 226. If thorium is present its contribution is automatically allowed for but the method does not correct for significant activity contributed by other isotopes. The gamma spectrometric method directly indicates the state of radioactive equilibrium, and corrects for any disequilibrium observed between U 238 and Ra 226. The method reveals the presence of thorium and can allow for its contribution to the assay. Interfering activities from other isotopes can also be identified. Of the two methods due gamma spectrometric method has a greater precision and lower detection limit. (PAG)

<126>
Price, V., R.B. Ferguson, and E.I. Baucus, Savannah River Laboratory, Analytical Chemistry Division, Aiken, SC

SRL Hydrogeochemical and Stream Sediment Reconnaissance - Raw Data Release III - Orientation Study in the Williamsport, Pennsylvania, Area. GJBY-53(76); DPST-76-141-3; 78 pp. (1976, September)

Data is presented for 66 surface sites and 67 ground water sites in the Williamsport quadrangle other than the Sonestown 7 1/2' quadrangle. Data is also presented for 38 surface sites and 23 ground-water sites in the Sonestown 7 1/2' quadrangle. Tabular data for each site include alkalinity; conductivity; temperature; pH; dissolved oxygen; Pb; sulfate, nitrate, and phosphate ions; ammonia; site descriptors; and analyses for supplementary elements. (PAG)

Data from the Sonestown 7 1/2' quadrangle may duplicate data presented by A.W. Rose, J.L. Keith, and W.H. Sut in "Geochemical Drainage Surveys for Uranium: Sampling and Analytical Methods Bases on Trial Surveys in Pennsylvania," GJO-1645-1 and GJBY-28(76).

<127>
Price, V., R.B. Ferguson, and E.I. Baucus, Savannah River Laboratory, Analytical Chemistry Division, Aiken, SC

SRL Hydrogeochemical and Stream Sediment Reconnaissance - Raw Data Release IV-Orientation Study in the Kings Mountain, North Carolina, Area. GJSX-66(76); DPST-76-141-4; 84 pp. (1976, November)

Ninety-nine surface sites and ninety-six ground-water sites were samples over an 800-square-mile area. Uranium concentrations ranged from 2 to 156 ppm in sediment and from

5 to 186,000 ppt in water. Symbol plots showing areal distribution of uranium and cumulative frequency plots of uranium concentrations in ground water, stream water, and stream sediment are presented. Tabular data for each site include temperature; alkalinity; conductivity; pH; dissolved oxygen; Pb; sulfate, nitrate and phosphate ions; ammonia; site descriptors; and analyses for 27 supplementary elements in sediment. (AETH) (PAG)

<128>
Rafalsky, E.P.

The Experimental Investigation of the Conditions of Uranium Transport and Deposition by Hydrothermal Solutions. Peaceful Uses of Atomic Energy, Vol. 2, Survey of Raw Material Resources, Proceedings of the 2nd International Conference, Geneva, Switzerland, September 4-13, 1958. United Nations, New York, (pp. 823-888), 883 pp. (1958)

Experimental data obtained from this investigation confirmed the possibility of the transport of hexavalent uranium by hydrothermal solutions and its deposition as result of the reduction process. The solubilities of its compounds are high enough to provide for its intensive migration under hydrothermal conditions. It has also been proved that, at elevated temperatures and pressures, uranium is reduced by ferrous iron and bivalent sulfur present in natural minerals or in solution. In addition, it was ascertained that an alkaline medium is less favorable for reduction than an acid one. The data available do not yet make it possible to draw a conclusion that considerable deposits of original uranium ores could be formed by the reduction and precipitation of uranium from alkaline solutions. On the contrary, the rate of reduction is sufficiently high in acid medium over a wide range of pH values. It should be stressed that in numerous experiments for the reduction of uranium, no visible nodules or pitchblende were observed on any occasion. Crystals of uraninite or amorphous precipitates, however, did form. Of considerable interest was the fact that pitchblende is often found in close association with sulfides. This is regarded as an evidence of simultaneous deposition of the minerals. These facts lead to a conclusion that, in hydrothermal solutions, uranium has been transported in its tetravalent form, for based on the results of the experiments, it can hardly be assumed that the uranyl ion could exist in solutions together with the sulfur anion. Furthermore, it should be noted that signs of oxidation-reduction reactions are indicated very poorly in a number of deposits. Many deposits are characterized by relatively large amounts of sulfides in pitchblende veins. This helps in concluding that uranites could readily go into solutions where sulfides were precipitated. In all probability this case also concerns the solution and transportation of principally tetravalent uranium. Thus a number of signs indicate that during the formation of at least some ore veins, uranium has migrated in the tetravalent state under hydrothermal conditions. In addition, it should be admitted that the up-to-date concept of the hexavalent form of uranium transport holds especially true of most deposits. (NET)

GEOCHEMISTRY

<129>

England, P.C., G.K. Billings, and J.A.S. Mass, Rice University, Houston, TX; University of North Carolina, Chapel Hill, NC

Chemical Fractionation and its Relationship to the Distribution of Thorium and Uranium in a Zoned Granite Batholith. *Geochimica et Cosmochimica Acta* 31:17-33. (1967)

Major element and radiometric analyses were performed on 79 samples from the Enchanted Rock Batholith, Llano Uplift, Texas. The major element data are in agreement with earlier work that the batholith is not zoned in the classical manner, from more mafic rocks along the margins to more felsic in the core, but rather in a more complex fashion. Evidence is offered to suggest that the magma fractionated before and/or during emplacement rather than after. Anomalously high uranium and thorium values can be correlated with the presence of allanite and abundant sphene, whereas the decrease in uranium content with increasing fractionation may be a result of increasingly effective oxidative processes during magmatic crystallization. Thus the distribution of thorium and uranium within the batholith is controlled by secondary, rather than primary processes. (Ruth)

<130>

Richardson, E.A., Rice University, Department of Geology, Houston, TX

Thorium, Uranium, and Potassium in the Conway Granite, New Hampshire. *The Natural Radiation Environment*, J.A.S. Adams and W.E. Louder (Eds.), University of Chicago Press, Chicago, IL, (pp. 39-50), 1069 pp. (1968)

The Conway granite is the most extensive and one of the youngest intrusive members of the Lower Jurassic White Mountain series in New Hampshire. An intensive study of this body has been carried out as part of research subcontracted by Oak Ridge National Laboratory to Rice University concerning the recovery of Th from common rocks. Gamma-ray Th analyses from the Conway granite, W. Osceola granite, and from associated syenite and prophyritic quartz syenite yielded mean concentrations of 56 ppm, 43 ppm, 23 ppm, and 38 ppm, respectively. Th is log-normally distributed in the Conway granite; thus it may be considered a low-grade Th resource containing about 3 million tons of Th per hundred feet of depth in the White Mountain Batholith. Uranium content of the granite is approximately 12-16 ppm; it is in the range of 3.5-5 percent Th and U concentrations appear to exhibit a well-defined linear relationship throughout the most of the body. Outcrop samples fall below this, suggesting U has been lost via weathering. No definite Th-U relationship was observed in one core, and this may be the result of redistribution of elements at a later basic dike intrusion (the core falls within 30 feet of the dike throughout most of its length). The same core showed a 15 percent deficiency of U-234 to U-238 in the upper 15 feet; in all other samples U-234 and U-238 were in equilibrium. The major radioactive accessory minerals identified by x-ray diffraction were allanite, buttonite, thorite, and zircon. The range of activity of "buttonite" grains observed in the Conway granite indicates extensive isomorphism exists between buttonite and sanidine. Variable alpha activity of zircon and thorite from grain to grain was also noted. The distribution of U and Th in the Conway granite, based on autoradiographic,

alpha-particle, and gamma-ray spectrometric determinations, is: allanite - 7 percent Th, 2 percent U; buttonite - 28 percent Th, 12 percent U; thorite - 37 percent Th, 9 percent U; zircon - 1 percent Th, 19 percent U; dispersed or unknown phases - 9 percent Th, 59 percent U. (Ruth)

<131>

Kosberg, S.R., Colorado School of Mines, Department of Geology, Golden, CO

Hydrothermal Transport and Deposition of Uranium, and the Origin of Vein Uranium Deposits. *Proceedings of the Joint Annual Meeting of the Geological Association of Canada, the Mineralogical Association of Canada, and the Geological Society of America, Toronto, Ontario, October 23-26, 1978*. The Geological Society of America, Boulder, Colorado, (p. 480), 531 pp. (1978)

The stabilities of various aqueous uranium complexes are evaluated at up to 330 degrees C using available thermodynamic data. The distribution of aqueous uranium species are plotted as a function of pH and log oxygen fugacity to determine the complexes responsible for the transport, and the mechanisms for deposition, of uranium in natural hydrothermal systems. When these results are considered along with the hydrothermal alteration and mineral assemblages observed in vein uranium deposits, the following conclusions are reached: 1) Carbonate complexes become less important at elevated temperatures and are not significant in the transport of uranium in hydrothermal systems. 2) In deposits containing fluorine, uranyl fluoride complexes are most important in uranium transport. 3) Chloride complexing is not significant even where chloride activities exceed 1. 4) Under certain conditions phosphate complexing may be important in transporting uranium. 5) The solubility of pitchblende decreases as temperature increases, and therefore cooling is not an adequate mechanism for deposition. 6) Uranium is deposited by an increase in pH or a decrease in activity of complexing anions. These changes may occur as a result of reaction with wall rocks, boiling and loss of volatile components, or mixing with ground waters. 7) Oxidation of iron in wall rocks may be an effect of, rather than a cause for, uranium precipitation. 8) Pitchblende can precipitate under conditions where pyrite or hematite are stable, or where iron is mobile, resulting in the bleaching of wall rocks. (Ruth)

<132>

Fennell, R.T., J.A. Schleicher, and H.S. Van Nostrand, Kansas Geological Survey, Lawrence, KS

Composition of Some Uranium-Bearing Phosphate Nodules from Kansas Shales. *Kansas Geological Survey Bulletin* 102, Part 3, (pp. 98-108). (1953)

Detailed analyses of uranium-bearing phosphate nodules from 11 localities in eastern Kansas are reported. Seven Pennsylvanian shales were sampled. Graphs showing relationships between phosphate content and several constituents, including uranium, are presented. Combined evidence suggests that the nodules consist of collophane and dahlite with varying mixtures of impurities, primarily quartz and clay. The average composition of the 11 samples was 30.2 percent P2O5, 0.017 percent U3O8, and 3.2 percent fluorine. (Ruth)

<133>

GEOBIBLIOGRAPHY

<133>
Russell, W.L., Stanolind Oil and Gas Company, Tulsa, OK

The Total Gamma Ray Activity of Sedimentary Rocks as Indicated by Geiger Counter Determinations. *Geophysics* 10(2):180-216. (1945, April)

Geiger counter determinations of the gamma ray intensity of 510 rock samples have been made to determine the average radioactivity and frequency distribution of radioactivities of the various types of sedimentary rocks. The results, expressed in units of gamma ray intensity, show that limestones, sandstones and dolomites are of relatively low radioactivity, shales much higher, and black bituminous shales highest of all. The new data on the gamma radiation of the sediments may be used to improve the interpretation of radioactivity logs and to determine the value of surface radioactivity surveys. (AETH)

<134>
Hyndman, R.S., and E. Bonatti, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, FL

Uranium in Submarine Benthic Liferous Deposits. *Geochimica et Cosmochimica Acta* 37, 2557-2565. (1973, December)

Hydrothermal submarine metalliferous deposits, common in areas of ocean floor with high heat flow, generally contain about 10 ppm uranium as an order of magnitude. The U-238/U-232 ratio is in the majority of cases close to that of seawater; only in a few cases is it anomalously high. Anomalous U-238/U-232 ratios are coupled with low U concentrations. These data are explained by a model where thermal water (essentially heated seawater) in its sub-bottom circulation often is able to leach uranium from the basaltic oceanic crust; in fact, these thermal waters may in some cases lose uranium. The leaching of uranium from the basalt does take place (probably during the shallow stages of the sub-bottom circulation) the resulting anomalous U-238/U-232 ratio can be preserved in the hydrothermal deposit only if mixing with "seawater" uranium is prevented. (AETH)

<135>
Rye, D.E., and R.F. Boy, Yale University, Department of Geology and Geophysics, New Haven, CT; Purdue University, Department of Geosciences, West Lafayette, IN

The Distribution of Thorium, Uranium, and Potassium in Archean Granites from Northeastern Minnesota. *American Journal of Science* 278(3):358-378. (1978, March)

The uranium, thorium, and potassium distributions in 2700 million year old granitic rocks from northern Minnesota were investigated via gamma-ray spectrometry. A comparison of the Giants Range and Vermilion massif revealed that the Vermilion massif is higher in all radioelements, including potassium, within the plutonic phase than is the Giants Range. This is consistent with, but not proof of, the Vermilion and Giants ranges having formed in a plate tectonic type regime with the Vermilion massif having formed farther from the plate boundary than the Giants Range. The highest concentrations and largest variations of thorium and uranium occur in both the Vermilion and Giants Range in rocks of the mafic melt composition. Uranium loss in the Vermilion granite apparently occurred as the result of leaching

by late magmatic fluids and not as the result of weathering. Even when the rocks of a particular complex have diverse origins the Th, U, and K data seem to behave in a systematic way. The authors believe this is because thorium and uranium concentrations are low in almost all rocks formed by primary magmatic processes, regardless of potassium content. For thorium and uranium concentrations to be high the rock must have undergone a concentration process. In the case of the northeastern Minnesota rocks, the most effective concentration process was the attainment and maintenance of a granite mafic melt composition by partial melting of graywackes. The net result is that when thorium and uranium are plotted against potassium, there is a dramatic increase in thorium and uranium at the mafic potassium content of the complex. (JHT)

<136>
Sachdev, S.C., Gulf Research and Development Company, Pittsburgh, PA

Mineralogical and Geochemical Zonation Across Roll-Type Uranium Deposits - Mariano Lake Type. *ASPG Bulletin* 63(8):690. (1979, April)

The mineralogy and chemistry of samples from the cores obtained across Mariano orebody were determined and used to develop exploration tools for roll-type uranium deposits. Preliminary interpretations regarding the physicochemical conditions of ore deposition were made on the basis of paragenetic relations. The host sandstones are confined between the basaltic rock units, and contain scattered intercalations of detrital montmorillonitic material in the form of clay galls, stringers, and lenses derived from these bentonites. Authigenic clay minerals identified in the host rocks include cellular montmorillonite, platy chlorite, and pseudohexagonal "books" of kaolinite. The cellular montmorillonite is concentrated in the oxidized zone and appears to have formed prior to ore deposition. Authigenic chlorite is most abundant in the ore zone and has formed at the expense of cellular montmorillonite; its formation is interpreted to be related to the ore-forming processes. Kaolinite in sandstones is the last clay mineral to form, and is enriched in the reduced zone. Calcite, considered typical of such deposits, is found to be lacking in this orebody. Iron-titanium oxides and their alteration products are the most abundant heavy-mineral species in the host rocks. In addition to anatase and rutile, the alteration products include hematite in the oxidized zone and pyrite in the ore and reduced zones. Carbonaceous material introduced later into the potential ore zone appears to have been responsible for the decomposition of Fe-Ti oxides and formation of pyrite. The oxidation of pyrite by mineralizing solutions, resulting in reduction and subsequent deposition of uranium, is indicated by the paragenetic relationship. The positive correlation between organic carbon and uranium suggests that carbonaceous material also acted as a reductant for uranium. A discriminant analysis was run using the chemical data to distinguish the geochemical zones (oxidized, ore, and reduced). Of the 15 variables used in this analysis, it was determined that the three zones could be separated using only six variables (Th, U, V, Zr, Ti, and Mn). The discriminant functions thus formulated could possibly be used to classify unknown samples in the areas studied. (AETH)

GEOCHEMISTRY

<137>
Sackett, W.B.

Geochemical Behavior of Uranium and Thorium Series Nuclides—Annual Progress Report (1976-1975). OHO-3852-20; CONF-750503-25; Fourth National Symposium on Radiorecology, Proceedings of a Symposium, Corvallis, OR, May 12-14, 1975, 12 pp. (1975)

Data cited in last year's annual report indicating 50 percent more Ra 228 present in the Gulf of Mexico than found by Kauffman, et al. (1973) is being rechecked. Ra 226 has been determined on several brines samples from Gulf of Mexico oil production areas; preliminary Ra 228 values for two of them are 1013 plus or minus 67 dpm/l and 1053 plus or minus 67 dpm/l. The discharge of production brines cannot account for more than about 10 percent of the difference between 1972 and 1968 Ra 228 concentrations. It was therefore decided not to continue brine measurements in relation to a Ra budget. Freshwater inputs of Ra have been determined to be negligible, based on Texas State Department of Health surveys. Data was collected in July, 1975, on a transect across the continental shelf and into the Gulf, including samples for vertical Ra profiles. Ra 228, Ra 226, Ra 222, and Cs-137 values will be used to determine the magnitude and rates of advection of coastal waters into the Gulf. Other cruises are planned for October and February. A subsurface pumping system has been built in conjunction with Tm-fiber/Ra sampling. This system is a significant advancement in Ra sampling. The study of Ra and U in livestock feed supplements and phosphate fertilizers has been completed. The 24 feed supplements analyzed fall into two groups: the first averages 73 percent of the equilibrium Ra 226 values, the second has Ra 226 values averaging only about 7 percent of equilibrium. From the first group, it was possible to identify three sources: PROPOS, a defluorinated phosphate manufactured by the Olin Co., and VAS-SC and VAS-PC, two mineral supplements manufactured by Vit-A-Day, Inc., using PROPOS extensively in their manufacture. PROPOS is believed to be a major parent phosphate source. Parent phosphate material for the second group of samples has not been identified; it is suggested that monocalcium and dicalcium phosphates are the parent material. The U and Ra contents in phosphate feed supplements, although high in some cases, is not a potential hazard to humans. (LKH)

<138>
Sauzier, A.E.

Tertiary Oxidation in Westwater Canyon Member of Morrison Formation. AAPG Bulletin 63(4):694. (1979, April)

Hematitic oxidation in the Westwater Canyon Member of the Morrison Formation extends along the outcrop from the Pipeline fault northeast of Gallup, New Mexico, to the San Mateo fault north of Grants, New Mexico. The hematitic sandstone forms a broad lobe in the subsurface to a depth of 730 m (2,400 ft). The down-dip edge arcs eastward from northeast Church Rock through Crownpoint, and southeastward to the west edge of the Ambrosia Lake district. The red sandstone is bordered on the down-dip side by a band of limonitic oxidation which interfingers with reduced sandstones

basinward. The limonitic oxidation forms a relatively narrow band along the north and west sides of the hematitic lobe, but expands progressively on the east and southeast. Weak limonitic oxidation, as indicated by the absence of pyrite and a bleached to faint yellowish-gray color, appears to extend from the San Mateo fault eastward under Mount Taylor to the Rio Puerco. The hematitic oxidation is epigenetic and is believed to be of late Miocene to early Pliocene age. The limonitic oxidation follows the present groundwater flow pattern and probably dates from late Pliocene to recent. The oxidation patterns are important in uranium exploration because the hematitic area is essentially barren, whereas the limonitic areas contain ore deposits which are in the process of being destroyed by oxidation. (Auth)

Author is a consultant in Albuquerque, NM

<139>
Serebrennikov, V.S., and I.G. Maksimova, Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Academy of Sciences of the USSR, Moscow, USSR

The Deposition Mechanism of Uranium from Mineral Waters Containing CO₂. Geochemistry International 13(5):167-174. (1976)

The uranium distributions in carbonated waters and travertine are discussed. The uranium content in the travertine shows a direct correlation with that in the water. Fission-fragment radiography indicates that the uranium is almost uniformly distributed in the carbonates. Uranium is taken up by travertine as a result of co-precipitation with sorption on carbonates which are produced on account of the shift in the equilibrium in carbonated water consequent on gas loss. Nonstoichiometry in the carbonates can be used to demonstrate genetic relationships to carbonated water, and also as a basis for evaluating such uranium deposits. (Auth)

<140>
Serikov, Yu.I., Academy of Sciences, Institute of Petroleum and Gas Industry, Moscow, USSR

Anomalous Radioactivity of Clays. Geochemistry 5:535-536. (1963)

An investigation of the radioactivity of clays from drill holes in the Khadus Formation in the Caucasus-Crismer region showed that zones of anomalous radioactivity contained 19 to 20 pps uranium, along with normal amounts of potassium and thorium. The unusually high concentration of uranium (six times that of normal clays) results from specific physicochemical conditions during sedimentation. The environment of deposition of the radioactive Khadus sediments was reducing and highly saline, and both organic matter and uranium accumulated under the same conditions. Uranium may have been deposited along with carbonates as calcareous clays are more radioactive than normal clays. (Auth) (JST)

<141>

GEOCHEMISTRY

C

<141>

Sharp, R.E., Jr., and P.L. Aamodt, Los Alamos Scientific Laboratory, Los Alamos, NM

Hydrogeochemical and Stream Sediment Survey of the National Uranium Resource Evaluation Project, October - December 1975. LA-6346-PB; GJST-38(76); 85 pp. (1976, May)

The third working quarter of the Los Alamos Scientific Laboratory National Uranium Resource Evaluation (Hydrogeochemical and Stream Sediment Survey) Project has been devoted to continued planning activities, developing standardized field procedures, final testing and selection of field equipment, and procurement of sufficient materials and equipment to complete field work planned for the remainder of FY76. Analytical techniques and equipment continue to be developed, with emphasis on rapid, accurate processing using fluorimetry and automated delayed-neutron counting. Computerized data handling and evaluation systems have been developed and implemented. Field sampling in New Mexico, Colorado, and Alaska has provided several thousand water and sediment samples, and their analyses are nearing completion. (Anth)

<142>

Shultz, W.W., and C.H. Cunningham, Canada Geological Survey, Ottawa, Ontario, Canada; University of Massachusetts, Department of Geology, Amherst, MA

Anomalous Uranium Concentrations in Till North of Baker Lake, District of Keewatin. Geological Survey of Canada Paper 77-113, Report of Activities, Part B, (pp. 291-292), 350 pp. (1977)

Samples of Pleistocene till and till-derived sediments from the vicinity of the Keewatin Ice Divide near Baker Lake, District of Keewatin, Northwest Territories, Canada, have been found to contain anomalously high concentrations of U, as well as Zn and Mo, in the less than 2μ fraction. Most of the samples are till, but those from the vicinity of Whitehills Lake and the west end of Baker Lake appear to represent marine sediments or marine-reworked till. Anomalous values are confined almost exclusively to the area east of Thelon River and north of Baker Lake. Tills in the area generally contain more Fe than those outside the area. Concentrations range as high as 130 ppm U and 24 ppm Mo. Explanations proposed for the high values are: 1) derivation from rocks intruding or forming the Archean basement (shattered fluorite-bearing granites or syenites), 2) derivation from presently unknown U-bearing beds in the Archean quartzites, etc., or 3) anomalies may be caused by enhanced cation exchange capacity due to some mineralogical difference in the till (unlikely because of non-enrichment of Cu, Ni, Co, Pb, Sn, and Cd, which would be expected in such a case). The authors favor the second hypothesis; two gossans near Archean quartzite outcrops in the area were found to be enriched in Mo. Similar quartzites are known to be associated with U-mineralization in the Aker Lake area and elsewhere in the Aker Lake area and elsewhere in Keewatin. The pattern of anomalies may represent a complex dispersal train and possibly several sources. (LKH)

<143>

Sidorenko, G.I., All-Union Scientific Research Institute of Economic Minerals, Moscow, USSR

X-Ray Investigations of Natural Oxides of Uranium. Geochemistry 1:26-50. (1958)

It has been established that the CaF₂ type structure is the only crystalline form in which uranium oxides occur in nature. As the tetravalent uranium oxide is oxidized into hexavalent uranium, the size of the elementary cell of the oxide changes. The character of dependence of the elementary oxide cell on the degree of its oxidation state is expressed by the value of the hydrogen coefficient "Y". It was found that the chief reason for the diffusivity of the diffraction lines of the x-ray patterns of highly oxidized pitchblende and sooty pitchblende is due to the high degree of their dispersivity which increases as the mineral is further naturally oxidized. The study of these transformations which the natural uranium oxides undergo in the process of their oxidation and ignition in the air has shown that their initial crystalline structure is more stable than the structure of the synthesized uranium oxides and that the coarse of phase transformations differs from the coarse of the latter. Among the ignition products of the mineral uranium oxides a new phase, named phase I, was detected. (Kath) (JST)

<144>

Sibirnov, V.I.

Uranium and Thorium in Igneous Rocks of Western Transbaikaliya. Geochemistry 11:1115-1122. (1962)

Data on the distribution of uranium and thorium in the Lower Paleozoic and Mesozoic igneous rocks of the sobile zone of central Western Transbaikaliya are summarized in this article. In all but one of the magmatic phases and complexes investigated, uranites and thorium tend to be most abundant in the younger silicic and alkalic differentiates. As the content of radioactive elements increases, the Th/U ratio tends to increase, although in some complexes the last differentiates contain less radioactive elements and have a lower Th/U ratio than earlier differentiates. The last differentiates are also richest in fluorite, and cause more hydrothermal alteration. It is probable that saturation of the magmas with volatile components noticeably increases the role of sobile uranites and reactivity of the magmas. (JST)

GEOCHEMISTRY

<185>
Sayslov, A.A., All-Union Geologic Research Institute, Leningrad, USSR

Radioactive Elements in Igneous Rocks of Northern Kazakhstan. *Geochemistry* 3:248-258. (1958)

Radioactive element concentrations were determined for intrusive and effusive igneous rocks of Northern Kazakhstan. It was found that there was a gradual increase in radioactive elements and in the Th/U ratio in the younger rocks, up to the end of the intermediate stages. In the late stage rocks, there was a decrease in the radioactive elements and in the Th/U ratio. The phenomenon or enrichment of radioelements in the roofs of intrusive bodies was noted in only one massif, and it was apparently formed in an environment of intense tectonic activity. The absence of uranium holes in host rocks, as well as the enrichment of radioactive elements in the central parts of the massifs, indicates probably a certain downward migration of uranites and possibly also of thorium during cooling of the plutonic body. Later on there was a migration of radioelements into the upper horizons, concurrent with the entry of granitoids of the second intrusive phase and of dikes. (JNT)

<186>
Sonayajala, B.L.K., and E.D. Goldberg, University of California, Department of Earth Sciences, Scripps Institution of Oceanography, La Jolla, CA

Thorium and Uranium Isotopes in Seawater and Sediments. *Earth and Planetary Science Letters* 1:102-106. (1966)

Thorium concentrations in three open Pacific Ocean water samples had values of $\approx 10(2-10)$ grams/liter. These concentrations were similar to those previously measured in the Atlantic. Radioactive disequilibrium exists between the dissolved forms of Th-228 and Th-232 and the dissolved, excess unsupported Th-228 is apparently introduced by the input of Ra-228 from the particulate phases containing Th-232. The Th-230/Th-232 ratios in seawater are similar to those taken from the surface sediments in the same area. Differences in Th-230/Th-232 ratios in barite and foraminifera extracted from the same levels in sediments are suggestive of differences in the ratio between surface and deep ocean waters. (JNT) (JNT)

<187>
Spalding, R.F., Texas A & M University, College Station, TX

The Contemporary Geochemistry of Uranium in the Gulf of Mexico Distributive Province. Ph.D. Thesis; 253 pp. (1972)

The Gulf of Mexico Distributive Province is composed of a sediment source area of 2,130,000 square miles, a distribution system of 99,370 miles of rivers, and a depositional area (the Gulf of Mexico) with an area of 618,000 square miles. The Gulf of Mexico receives runoff from more than half the area of Mexico and two-thirds the area of the United States, resulting in an addition of an estimated 775 million tons of detrital material and 208 million tons of dissolved solids yearly. The United States Gulf of

Mexico Distributive Province has the distinction of being one of the most agriculturally advanced regions of the world. As a result, it has been speculated that the high concentration of uranites in rivers draining the agricultural regions was due to the dissolution of phosphate fertilizer. A major portion of the research described in this thesis has been devoted to ascertaining whether or not the anomalously high uranium concentrations in contemporary drainage into the Gulf of Mexico do, in fact, have such an origin. Additional investigations completed in the course of this work included the isotopic analyses of uranites in the salinity gradient of selected rivers, the seasonal analysis of soluble uranites and phosphate in the Brazos and Navasota Rivers, isotopic uranium and phosphate analyses in estuaries within apatite mining regions, a baseline study of uranites in Brazos River organisms, the assessment of rivers flowing through high uranium-bearing strata, the effects of impoundments on soluble uranite concentrations in rivers, analyses of uranites in various rock types and the investigation of uranite concentrations in phosphate detergents and feed supplements. (JNT)

<188>
Starik, I.P., L.V. Atrosheva, and A.V. Krylov, V.G. Khlopin Radiotekhnika Institute, Leningrad, USSR

Luminescent Determinations of Uranium in Rocks and Minerals. *Geochemistry* 9:773-776. (1958)

The presence of most elements and compounds in small concentration does not affect the uranium luminescence in Bay. This makes it possible to determine uranium quantitatively in rocks and minerals usually containing uranites not less than 10 ppm without its preliminary isolation, using the dilution of these rocks and minerals in the flux. Besides pure Bay, its mixtures with $33\bar{3}0\bar{0}7$, KOH , K_2CO_3 , K_2CO_3 , and K_2SiO_3 may be used as fluxes. The admissible limit Bay ratio with these fluxes has been determined. The luminescent method without preliminary chemical treatment has been used for uranium determination in rocks (granite, limestone, coal, and clay) in the primary rock forming minerals (quartz, feldspar, calcite, mica, biotite, dolomite, and phosphorite) and in some accessory minerals (zircon, sphene, apatite, allanite, monazite, fluorite, garnet, rutile, wolframite, and scheelite). The dilution of the flux does not exceed 1:30 for rocks which show a minimum of determinable uranium content of 15 ppm. The required dilutions are rather different for different minerals; however, only single ones show a uranium content exceeding $\approx 10(2-5)$ g/g. This method may be of greater use with minerals with a high uranium content. (JNT) (JNT)

<149>

GEOCHEMISTRY

<149>

Starik, I.E., and L.B. Kolyadin, V.G. Khlopin
Radioactive Institute, Leningrad, USSR

The Occurrence of Uranium in Ocean Water.
Geochemistry 3:245-256. (1957)

The adsorption on glass, cationite or anionite, the ultrafiltration and electrophoresis of hexavalent uranium in ocean water and solutions containing $2-50 \times 10^{(2-6)}$ and 0.1 g U/l were studied. It was found that when the content of carbonate ion in ocean water exceeds $a \times 10^{(2-6)}$ (pH greater than 7.5, $\text{pCO}_2=5 \times 10^{(2-4)}$ atm) uranium exists in ocean water in the form of $[\text{UO}_2(\text{CO}_3)_3]^{4-}$ complex. In this state, it is incapable of passing into the bottom sediments in significant amounts. When the content of the carbonate ion in ocean water is less than $a \times 10^{(2-6)}$ (pH less than 7.5, $\text{pCO}_2=5 \times 10^{(2-4)}$ atm), uranium exists in ocean water in the form of the products of hydrolysis absorbed on silica-bearing colloidal particles. It is deposited on the ocean bottom at the rate determined by the rate of sedimentation of these particles. At Eh values lower than approximately 0.1 V, uranium in ocean water may be reduced to the tetravalent state and very quickly pass into bottom sediments. (JET)

<150>

Starik, I.E., I.P. Batner, B.I. Passick, and F.L. Ginsberg

Determination of Plutonium-Uranium Ratio in Pitchblende. Geochemistry 2:170-176. (1957)

Plutonium 239 was isolated from 2 kg of pitchblende. The chemical yield of the plutonium was 33.3 percent and it was shown that the ratio of plutonium 239 to uranium in the pitchblende investigated as 2.0 plus or minus $0.3 \times 10^{(2-11)}$. (BETH)

<151>

Sultankhodzhayev, A.N., A.I. Spiridonov, V.G. Tysinskii, and R.I. Tanayev, Academy of Sciences, Institute of Hydrogeology and Engineering Geology, Uzbek, USSR

Nonequilibrium Uranium in Ground Waters of the Tashkent Artesian Basin. Soviet Hydrology: Selected Papers (3):285-287. (1970)

An analysis of $\text{U}^{234}/\text{U}^{238}$ ratios in 22 groundwater samples from the Tashkent Artesian Basin allows the basin to be divided into three zones - I infiltration zone, II transitional zone, and III deep circulation zone. Zone I occupies the feeding area and adjacent regions, has a $\text{U}^{234}/\text{U}^{238}$ ratio of 2-2.5 (average 2.1), an average N^{2} concentration of 0.93, and is characterized by active water exchange. Zone II lies at the basin margins, has a $\text{U}^{234}/\text{U}^{238}$ ratio of 2.6-1.3 (average 1.9), and average N^{2} value of 1.00, and is characterized by slow water flow. Zone III occupies the center of the basin, has the slowest water flow and the lowest $\text{U}^{234}/\text{U}^{238}$ ratios (1.3-1.8, average 1.6); average N^{2} concentration is 1.02. These data show a negative correlation between $\text{U}^{234}/\text{U}^{238}$ and age, and positive correlations of $\text{U}^{234}/\text{U}^{238}$ with N^{2} concentration and coefficient of water migration. (LKH)

<152>

Syromyatnikov, N.G., Academy of Sciences, Institute of Geological Sciences, Kazak, USSR

Interphase Isotopic Exchange of U^{234} and U^{238} . Geochemistry 3:320-327. (1960)

A method of experimental investigation of interphase isotopic exchange of uranium 234 and 238 was proposed and the first data obtained. A relationship was established between the isotopic exchange and the solubility of uranium compounds of the solid phase. The isotopic exchange occurs, first, at the expense of interaction between the solution and the easily soluble part of uranium in the solid phase. The half exchange period is directly proportional to the concentration of uranium in the liquid phase and inversely proportional to the concentration of the easily soluble uranium in the solid phase. (JET)

<153>

Szabo, B.J., USGS, Denver, CO

Uranium-Series Systematics in Natural Materials from the Newport Area, Oregon. USGS Professional Paper 800-C, (pp. C199-C201), 281 pp. (1972)

Analysis of uranium, thorium, and protactinium isotopes in recent and fossil wood and kelp samples from the Newport area, Oregon, indicate that migration of these radioelements has been extensive. Because of this, such material is unsuitable uranium-series dating. The analytical data from a shell sample from the same area showed evidence of recent uranium assimilation, which contributed only to a minimum age estimate. (AETH)

GEOCHEMISTRY

<150>

Szalay, S., and Z. Sansoni

Investigation of the Leaching of Uranium from Crushed Erogenic Rock. *Geochemistry International* 6(3):613-622. (1969)

Conditions of uranium leaching from crushed granite, andesite, gabbro, and basalt samples from various localities were investigated by laboratory experiments. It was observed that the uranium content of crushed granite exhibits an anomalously greater solubility than the other rocks tested. The uranium content of water in contact with rock detritus was found to be more of an indication of the amount of leachable uranium than that of the existence of a highly concentrated, hidden uranium vein. According to the authors' results, the final equilibrium concentration of uranium in water in contact with crushed rock is established within 3 to 5 hours. As a result of this, the examination of water samples provides information only concerning the immediate vicinity of the water within the last 3 to 5 hours. Uranium may become enriched over a longer period of time in fine-grained soils of a continuous supply of water with a high uranium content from deeper uranium rich zones occurs, in addition to adequate surface evaporation. Because of the adsorption capacity of sediments, the movement of the UO_2^{+2} ions is hindered until the adsorption capacity is at least partially saturated. Due to the adsorption effect, the migration of the uranyl ions is significantly slower than that of the water, but after a suitably long period of time, it will appear in surface layers also. This explains the formation of aureoles with locally high uranium concentrations which may be considered an indication of the establishment of equilibrium at a larger scale. (JNT)

<155>

Szoghy, I.R., and L. Kish, Laval University, Department of Physics, Quebec, Canada; Mineral Deposits Service, Department of Natural Resources, Quebec, Canada

Determination of Radioactive Disequilibrium in Uranium-Bearing Rocks. *Canadian Journal of Earth Sciences* 15(1):33-48. (1978, January)

A method is presented to determine the radio-equilibrium of the uranium-actinium series in rock samples by low energy photon spectroscopy. The equilibrium pattern is indicated by the relative abundance of the isotopes U-238, Pa-231, Ra-226, Rn-222, and Pb-210. For whole rock analysis no elaborate sample preparation is needed and the measurements can be performed in the field. On chemically separated material, the uranium-238, -235, and -234 ratio can also be determined by the method. A practical table for radioactive rock analysis, listing intense photons below 250 keV energy, is also included. Measurements on uranium-bearing rocks indicate that radioactive disequilibrium is common, especially in near surface specimens. This should be taken into consideration in calculating equivalent uranium (eU) values from scintillometric measurements, and in interpreting anomalies by radon geochemistry. The deduced isotopic ratios can be used for age determination and to monitor industrial enrichment of uranium-235. (JNT)

<156>

Tanner, R.E., R.E. Gorham, and P.E. Sealts, USGS, Boston, MA

Assay for Uranium and Measurement of Disequilibrium by Means of High-Resolution Gamma-Ray Borehole Sensors. *USGS Circular 753: Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977*, J.L. Campbell (Ed.), (pp. 56-57). 75 pp. (1977)

In-hole assay has been done by measurement of gamma radiation since the early days of uranium exploration. Because detectors used are most sensitive to the nuclides far down the decay chain of the uranium and thorium series, radioactive disequilibrium or significant concentrations of thorium result in assay errors that can be significant. Gamma-ray detectors made of germanium are capable of resolving most of the numerous X-rays and gamma rays, and in principle, they can measure uranium directly, without regard to the state of radioactive equilibrium. Reluctance to use these high-resolution detectors in the field has resulted because they are expensive, require sophisticated electronics and data reduction, and must be cooled to liquid-nitrogen temperature for operation. High-resolution gamma-ray spectrometry is unique because it offers an in situ method of determining the state of equilibrium in the U-238 and U-235 series by simultaneous measurements using a single detector. Of the six isotopes or groups capable of independent behavior over geologically important periods of time, five can be evaluated unambiguously by at least one gamma ray; the remaining one, Ra-226, can be evaluated if a correction is made for U-235. (JNT)

<157>

GEOCHEMISTRY

<157>

Yassov, L.V., Academy of Sciences, Institute of Geochemistry, Siberian Division

Geochemical Behavior of Rare Elements During Crystallization and Differentiation of Granitic Magmas. *Geochemistry International* 8:1967-1975. (1967)

In granitic rocks, there are two tendencies in the behavior of rare elements: (1) crystallochemical dispersion and (2) residual concentration. The distribution of the rare elements is determined by the size of the granitic intrusive, its depth of formation, and composition. Intrusives may be classified as abyssal, mesabyssal, and hypabyssal with high and low volatile contents. The distribution of rare elements in abyssal batholiths is regulated primarily by crystallization differentiation, resulting in a considerable difference in the concentration of rare elements in the extreme members of the differentiated series. In mesabyssal batholiths, formed at shallow depths in a tectonically active environment, differentiation is inhibited and crystallochemical dispersion plays the dominant role in the rare element distribution. Hypabyssal intrusives with low volatile contents are weakly differentiated, and the difference in the content of rare elements in the early and late differentiates is small. Crystallochemical dispersion is the predominant factor in the distribution of the rare elements. In hypabyssal intrusives with high volatile contents and steep pressure gradients, the elements with a strong affinity for volatiles become concentrated in the late differentiates. Crystallization differentiation is inhibited in the intrusives of this type, but leaching of the deeper parts of intrusive, especially during the late magmatic and early post-magmatic stages, results in intensive migration of the rare elements. Concentration of a number of rare elements (including uranium) in the upper parts of the intrusives is characteristic, and dispersion of their contents 1.15 to 20 times greater than in the hypabyssal intrusives with low content of volatiles. (JET)

<158>

Tsvetinov, A.I., S.I. Zykov, and Z.V. Bibikova, V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow, USSR

Determination of the Age of Sedimentary Rocks by the Lead-Uranium Method. *Geochemistry* 3:288-300. (1963)

Determination of the lead isotopic ratios in uranium-bearing sediments after the separation of detrital minerals allows for the dating of the time of sedimentation of sedimentary rocks by the lead-uranium method. Among the most satisfactory materials for such age determinations are uranium-bearing sulfides, apatites, and the siliceous cement of sandstones and conglomerates. Application of this method in three regions of the Soviet Union showed that the deposition of Archean strata occurred in much more ancient times and occupied a greater time interval than suggested by the $\text{K}-\text{Ar}$ ages measured on silicas and shales from the same rocks. The accumulation of the Krivoi Rog series covered a period between 2600 and 1900 million years with most of the sediments being deposited between 2300 and 1900 million years ago. (JET)

<159>

Turovskii, S.D., Academy of Sciences, Geological Institute, Kirgizia, USSR

Geochemistry of U and Th-Distribution of Radioactive Elements in Intrusive Rocks of Northern Kirgizia. *Geochemistry* 2:199-215. (1957)

Igneous rocks of different tectono-magmatic epochs or of the same epoch, but of magmatic stages different in age in northern Kirgizia differ substantially in their uranium and thorium contents. Intrusive rocks of Variscan tectono-magmatic epoch, as compared to similar rocks of Caledonian and even older magmatic complexes are characterized by increased uranium and thorium contents, with thorium predominating over uranium. The character of quantitative distribution and quantitative ratios of uranium and thorium in magmatic complexes to different tectono-magmatic epochs in northern Kirgizia show the existence of an independent protomagmatic source during each epoch, which is characterized by specific and peculiar geochemical characteristic, which later were inherited by all the derivatives separated from it during its evolutionary development. These peculiarities of uranium and thorium distribution in different magmatic complexes denote the absence of a single, general magmatic chamber. Magmatic differentiation of thorium and uranium exhibits a marked similarity in the behavior of the two elements. The uranium accumulation of both elements took place in the final petrochemical (acidic, ultra-acidic, and alkaline) differentiates. However, there are some definite principal differences in their behavior, which condition the geochemical differences between these two elements even as early as during the magmatic stage and more so during the postmagmatic processes. These differences consist in that uranium accumulates in the final differentiates in larger amounts than thorium due to its greater mobility. The empirical regularity in the uranium affinity toward potassium-rich magmas, and of thorium toward mostly sodium magmas is not always demonstrated. In definite physico-chemical conditions (mostly the amounts and composition of volatile components) thorium and uranium concentrate in essentially potassic magmas. Northern Kirgizia is a type locality in this respect. (JET)

GEOCHEMISTRY

<160>
Vine, J.B., and E.B. Tourtelot, USGS, Boston, MA
Geochemical Investigations of Some Black Shales and Associated Rocks. USGS Bulletin 1318-1; 43 pp. (1969)

The distribution of chemical elements in nine sets of samples of black shales and associated rocks were examined statistically to learn which elements accompany the major rock-forming constituents, such as detrital minerals, carbonate minerals, and organic matter. The rocks sampled range in age from Precambrian to Eocene and in environment of deposition from epigenetic to carbonate lake. Equivalent uranium contents were determined in three sample sets; one each from the Shoshone Springs Member of the Pierre Shale and the upper part of the Niobrara Formation, the Eagle Ford Shale and Buda Limestone, and a unnamed equivalent to the Heath (?) Formation. The uranium contents ranged from less than 0.001 percent to 0.003 percent. The author believes that the more noble elements - chromium, cobalt, copper, lead, molybdenum, nickel, silver, uranium, vanadium, yttrium, and zinc - should be given primary consideration in any search for "metal-rich" black shale deposits because their mobility may allow them to focus epigenetic deposits or to be concentrated with organic matter in concentrations high enough to form ore-grade deposits. (JBT)

<161>
Vine, J.B., and E.B. Tourtelot, USGS, Denver, CO
Preliminary Geochemical and Petrographic Analysis of Lower Eocene Fluvial Sandstones in the Rocky Mountain Region. Wyoming Sandstone, P.L. Eayert (Ed.), Proceedings of the 22th Field Conference, 1970. Wyoming Geological Association, Casper, WY, (pp. 251-263), 292 pp. (1970)

A geochemical and petrographic study of lower Eocene fluvial sandstones in the Rocky Mountain region was made to determine their average composition and geochemical history. From 19 basins of deposition, 228 samples were collected according to a random sampling plan. The 228 samples range from highly arkosic sandstones derived from the Precambrian core terrain of the central Rocky Mountains to calcareous quartz sandstones derived from Paleozoic and Mesozoic thrust sheets in western Wyoming and Utah. The average major element composition is (in percent) SiO₂, 73.4; Al₂O₃, 4.0; Fe₂O₃, 1.1; FeO, 0.42; MgO, 1.3; CaO, 5.5; Na₂O, 1.1; K₂O, 1.9; MnO, 2.1; TiO₂, 0.27; P₂O₅, 0.04; ZnO, 0.07; CO₂, 4.5. Minor elements detected include (in ppm) Ba, 490; Co, 5.5; Cr, 22; Cu, 11; Ga, 11; Ni, 12; Sr, 390; V, 32; Zr, 140; Th, 7.0; U, 2.4.

These values are relatively high for Al₂O₃, K₂O, CO₂, Cr, Sr, V, Ni, Pb, Co, and U, but low for Fe₂O₃, FeO, Ti, Z, and La compared with several estimates of the average composition of sandstones. Nearly all samples show distinct chemical and mineralogic changes resulting from diagenetic and, locally, hydrothermal alteration. Authigenic minerals include carbonates, noclites, montmorillonite, kaolinite, mixed-layer clays, and locally epidote and amphibole. Many samples show corrosion of quartz and silicate minerals. Hornblende was probably present in the original arkosic sediments but has since been dissolved. Alkaline carbonate solutions capable of transporting uranium were probably responsible for the alteration observed in many basins. A possible source for such waters in some basins is the carbonate waters expelled from the intertonguing Green River formation. (Reth)

<162>
Walker, G.B., USGS, Washington, DC

Age of Uranium-Bearing Veins in the Coextensive United States. USGS Professional Paper 455-B, (pp. 29-35). (1963)

Isotopic age determinations as well as geological interpretations related to age of host rocks and confining structures indicate that the dominant age of uranium mineralization in veins in the coextensive United States is Late Cretaceous or Tertiary. Deposits of this age are widely distributed throughout the western United States and include virtually all the veins from which significant amounts of uranium ore have been produced or which contain large ore reserves. Other periods of uranium mineralization in veins in the coextensive United States are Precambrian, Paleozoic, and possibly Mesozoic in age. Dominant periods of uranium mineralization in other parts of the world seem to be mainly Precambrian or Paleozoic in age. (Auth)

<163>
Weaver, P., Gulf Oil Corporation, Houston, TX

A Theory of the Distribution of Radioactivity in Marine Sedimentary Rocks. Geophysics 7(2):192-193. (1942, April)

Gamma-ray measurements of marine sedimentary rocks indicate that in general the slower the rate of deposition the greater the radioactivity. The most recent measurements of the radioactivity of sea water suggest an increase with depth, which indicates a very slow settling of small particles. It is believed that a geologic time-scale of sedimentation can be established, subject to certain corrections due to fixation of radioactive minerals by organisms. (Reth)

(164)

GEOCHEMISTRY

(164)

Yermolayev, N.P., I.P. Zhdikova, and V.I. Zaritskiy, V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow, USSR

Transport of Uranium in Aqueous Solutions in the Form of Complex Silicate Ions. *Geochemistry* 2(8):629-641. (1965)

Under certain conditions uranium may be transported in nature in the form of an aqueous solution of a hydroxy-uranyl-silicate complex of the $(\text{UO}_2\text{OH})\text{U}_2\text{SiO}_3$ type. The hydrosilicate ion may be considered either as a group stabilizing the hydroxyuranyl ion in solution or as a ligand of a weak complex. The particle size of this complex is intermediate between the characteristic of ionic solutions and of colloidal suspensions. Uranium migrates in this form in nearly neutral or weakly alkaline solutions, at temperatures up to 200 degrees C, if the concentration of strong electrolytes in the solution is relatively low (not higher than their equilibrium concentration with the uranyl and silicate ions). In carbonate solutions the uranyl silicate complex is decomposed and the uranyl ion forms a carbonate complex. (JST)

(165)

Yershov, V.M., Academy of Sciences, Institute of Geophysics, Ural Scientific Center, Sverdlovsk, USSR

A Method of Examining the Diffusion Parameters of Lead in Uranium Minerals. *Geochemistry International* 11(5):1093-1101. (1975)

A distillation method is used to determine the diffusion parameters of lead in uranium minerals. Lead distillation isotherms for uraninites indicate that lead occurs in two different positions: disordered and stable domains, which should be taken into account in calculating the diffusion coefficient. (Auth)

(166)

Yeshkova, Z.K., D.I. Sineyev, and I.G. Sineyeva, Academy of Sciences, Institute of Mineralogy, Geochemistry, and Crystal Chemistry of Rare Elements, Moscow, USSR

Uranium and Thorium in Alkaline Rocks of the Urals. *Geochemistry* 9:985-990. (1962)

The average thorium content in nepheline syenites of most of the alkaline massifs studied was similar to its content in igneous rocks in general. Unlike thorium, however, uranium is strongly concentrated in these rocks and its average content is higher than that of granites. Typically, the thorium content in alkaline rocks is higher than the uranium content, but in the micaschists of the Borsuk-Sai massif this relation is reversed. The variations in the Th/U ratio in alkaline rocks are caused mainly by variations in the uranium content with the thorium content remaining fairly constant. A direct correlation of the total uranium and thorium contents was found with the content of rare earth elements. A less direct correlation was found between the sum of uranium and thorium contents and the niobium and zirconium contents. (JST)

(167)

Yevseyeva, L.S., and B.P. Posina

Oxidation-Reduction Properties of Sedimentary Uranium-Bearing Rocks. *Geochemistry* 11:1093-1098. (1963)

The oxidation-reduction (Eh) properties of sedimentary rocks are among the most important geochemical factors responsible for the precipitation and concentration of uranium from ground waters. Investigation of the oxidation-reduction properties of rocks as a part of complex hydrogeochemical investigation broadens the possibility of evaluating sedimentary rocks as carriers of uranium. The Eh of a series of samples from a uraniferous sandstone-shale formation and a uraniferous carbonaceous-carbonate formation was measured by the $\text{E}^{2\text{Cr}207-\text{E}2504}$ method or by a modification of this method using $\text{K}_2\text{CrO}_4-\text{K}_2\text{Cr}_2\text{O}_7$ solutions. The uranium and pyrite contents were found to be directly proportional to the change of Eh. The greatest change in Eh took place in rocks that contained organic matter. The uranium content is low despite a large change in Eh if the permeability of the rock is low. This fact confirms the uranium is epigenetic. (JST)

GEOCHEMISTRY

<169>

Zentilli, M., W.S. Mitchell, K.L. Taylor, and P.F. Taylor, Canada Geological Survey, Ottawa, Ontario, Canada; Dalhousie University, Department of Geology, Halifax, Nova Scotia, Canada

Studies of Distribution of Uranium in Selected Ore Environments Using Nuclear Track Techniques. Geological Survey of Canada Paper 77-18, Report of Activities, Part B, (pp. 181-183), 350 pp. (1977)

Over 350 belt analyses for U were carried out on mineral separates, whole-rock, and ore samples from a variety of ore environments in Canada. Polished thin sections of several rocks and ores were prepared for U-track mapping. Preliminary results are reported. Analyses of fluorites from St. Lawrence, Newfoundland found the highest U concentrations (5.76 ppm) in white, milky fluorites at a vein wall in contact with granite containing 7.8 ppm U. At Gays River, Nova Scotia, fluorites with 2.59 ppm U were obtained. No correlation between U concentration and purple color or hydrocarbon association was observed. Possible positive correlations of U content with crystallization temperature will be investigated using fluid inclusions. Analyses of massive sulfide and barite deposits found 3-10 ppm U in ore specimens from the Bacchus orebody, Bacchus, Newfoundland, although galena or barite ores are generally much lower (0.00-0.09 ppm). Associated volcanics ranged from 0.09 ppm U (amygdular andesitic basalt) to 2.6 ppm U (dacite rhyolite). Specimens from the King deposit, Baabler Mine, Newfoundland, had up to 4.5 ppm U; the schistose metavolcanic host was only 0.5 ppm U. Barites from Magnet Cove, Nova Scotia, range as follows: massive white barite - 0.03 ppm U; yellow-strained barite with hydrocarbon-rich nodules - 0.36 ppm U; barite with erythrite - 2.17 ppm U; massive orange barite - 13.57 ppm U (U concentrated in small, unidentified inclusions). Specimens of banded sulphides from the site contained 1-2.6 ppm U. The Pb/Zn deposits of Pine Point and Polaris Mine, Northwest Territories, Newfoundland, and Gays River, Nova Scotia yielded values of 0.002-0.012 ppm U for galena, 0.006-0.068 ppm U for sphalerite, 0.775-1.068 ppm U for marcasite, and 0.011-0.472 ppm U for associated calcite and dolomite (2.438 - 3.435 ppm at the Polaris Mine); the host carbonates contain 0.9-2.3 ppm U. These results are being evaluated in relation to geochemical and genetic considerations for Mississippi Valley-type deposits. U content in a suite of 16 samples from a felsic porphyritic pluton associated with No mineralization at Deep Cove, Nova Scotia, varies from 0.65 to 6.07 ppm U (average 2.76). Highest values are in the groundmass of coarse porphyritic phases and in mineralized zones with phyllitic alteration; values are lower in phases rich in hydrothermal biotite, K-feldspar, quartz, and molybdenite. (LKH)

<169>

Zhil'tsova, I.G., L.N. Karpova, G.A. Sidoresko, and A.I. Valuyeva

Formation of Metastable and Stable Modifications of Iridinite by the Action of Uranium-Bearing Solutions of Povellite. *Geochemistry International* 7(8):688-692. (1970)

Acid (pH 3.15-3.75) solutions of uranyl nitrate containing 0.1-1.0 percent uranium act on synthetic povellite ($\text{Ca}_3\text{Si}_2\text{O}_5$) under normal conditions to produce a metastable modification of iridinite $\text{UO}_2(\text{NH}_4\text{O})_2 \times 3\text{H}_2\text{O}$, whose deposition requires a considerable excess of uranium over molybdenum in the solution. This metastable form has properties intermediate between those of iridinite and calcium uranium molybdate. Nitrate solutions containing over 3 percent uranium act on synthetic povellite under normal conditions to replace the povellite spherulites by cleavages of grains with a cryptocrystalline structure. The new phase is stable iridinite, which closely resembles the natural material. (Ruth) (JST)

<170>

Zhukova, A.S., Academy of Sciences, Institute of Geochemistry and Mineral Physics, Kiev, USSR

Uranium Contents of Precambrian Formations in the Ukrainian Shield. *Geochemistry International* 10(7-8):930-938. (1974, July)

The uranium contents of igneous, sedimentary, and metamorphic rocks from different tectonic settings in the Ukrainian Shield are presented. The mean uranium content for these rocks was calculated to be 4.1 ppm. The magmatic and ultrametamorphic formations on the whole have higher uranium contents (6.4 ppm) than the sedimentary and volcanic formations (3.1). The mean uranium content for the shield as a whole is higher than that for the Earth's crust. This is attributed to formations dating from the late orogenic and postorogenesis periods of the geosynclinal and the platform stages which are enriched in uranium. (JST)

<171>

GEOCHEMISTRY

<171>

Zhukova, A.N., I.A. Bergman, and G.V. Zhukov, Academy of Sciences, Institute of Geochemistry and Mineral Physics, Kiev, USSR; V.I. Vetrinskii Institute of Geochemistry and Analytical Chemistry, Moscow, USSR

Distribution of Uranium in the Geological Formations of the Ukrainian Shield. *Geochemistry International* 12(3):103-116. (1975)

The uranium content of igneous, metasedimentary, and metavolcanic formations of the Ukrainian Shield was determined by fission-science and radiochemical methods. There was little variation in the uranium content in the volcanic formations and in most cases it does not exceed 5 ppm. The lowest uranium contents were characteristic of formations related to mafic volcanism of the geosynclinal stage. The uranium content in the metasorophosed volcanic rocks depended on the composition of the primary rocks, and increased from mafic to felsic volcanics. In the sedimentary formations, the lowest uranium concentrations were found in the ferruginous siliceous rocks. In the iron-rich zones, the uranium content ranged between 1 and 1.3 ppm, but in the schists often reached 4 to 2.6 ppm. The distribution of uranium in the sedimentary iron deposits was determined by differences in the facies and composition of the initial sediments. Somewhat higher uranium contents characterized the lower terrigenous formations of the orogenic stage of development. In the lower formation of the Krivoy Rog series the average uranium content was 12.5 ppm and increased regularly downward in the section. The increase was partially dependent on the grain size of the clastic rocks, i.e., increasing from 5.2 ppm in phyllites to 15.6 ppm in the coarse-grained basal rocks. The enrichment of the coarse-grained rocks in uranium is believed to be related to the presence of organic matter. The content of uranium in the sedimentary and sedimentary-volcanic formations was controlled by several factors. Sometimes the content was due to the presence of felsic volcanics, sometimes to the presence of organic matter, accessory minerals, or the structural position of the formation. (JMT)

<172>

Zhuravlev, E.S., and D.K. Osipov, Academy of Sciences, Institute of Geology and Geophysics, Siberian Division, Novosibirsk, USSR

Uranium in Basic Rocks of the Patyn and Bol'shaya Kul'tayga Massifs of Gornaya Shoria. *Geochemistry* 2(2):308-312. (1965)

The average uranium content in the basic rocks of the Patyn and Kul'-Tayga regions of Gornaya Shoria is 0.43 ppm. In the process of emplacement of the basic massifs, the concentrations of uranium decreased up to the stage of formation of alkalic and silicic. During the crystallization of the alkalic and silicic rocks, there was a gradual increase in uranium content, and a maximum was reached during the formation of the dikes. There is no direct correlation between the contents of potassium and uranium in the rocks. During the early stages of emplacement of the Patyn gabbros, the content of potassium remained constant but the content of uranium decreased, while in the later stages the content of uranium increased but the content of potassium decreased until the complete disappearance of its only carrier, biotite. The principal carrier of uranium in the basic rocks was plagioclase, which generally contains most of the uranium present in the rock. In granite massifs, the earlier rocks contain less uranium than the later, but in gabbro massifs, the earlier rocks are richer in uranium than the later. In both cases, plagioclase becomes gradually enriched in uranium. The basic intrusive rocks were not Palingenetic and did not obtain uranium from the pre-existing rocks except by mechanical assimilation. Increase in the concentration of uranium in the enclosing rocks near the contact depended on the degree of metamorphism. The strongest enrichment occurred during the regressive hydrothermal metamorphism. (JMT)

<173>

Zhuravleva, L.N., L.A. Berezina, and Ye.V. Gulin

Geochemistry of Rare and Radioactive Elements in Apatite-Magnetite Ores in Alkali-Ultrabasic Complexes. *Geochemistry International* 13(5):167-166. (1976)

Apatite-magnetite ores have the specific element association characteristic of the accompanying carbonatites (Ta, Nb, U, Th, Zr, Ti); hachettolite, pyrochlore, zirkelite, and baddeleyite are the main concentrators of the rare and radioactive elements, since they contain 36-96 percent of the total amount in the rock. The rare and radioactive elements behave similarly during the formation of alkali ultrabasic complexes containing carbonatites and also ones containing apatite-magnetite ores. The latter are syncarbonatite deposits. There are close correlations between the rare and radioactive elements in tantalum-bearing apatite-magnetite ores containing calcite and also in the carbonatites, which means that gamma spectrometry can be used to map ore bodies and make rapid measurements of niobium and tantalum contents of bedrocks, samples, and dressing products. (Auth)

SECRET//STBY

<174>
 Zielinski, E.A., USGS, Denver, CO

Uranium Abundance and Distribution in Associated Glassy and Crystalline Rhyolites of the Western United States. Geological Society of America Bulletin 89(3):809-818. (1978, March)

The abundance and distribution of uranium in 11 units of rhyolitic lava and ash-flow tuff of calc-alkaline and transitional composition were analyzed. All samples came from the western United States. The study was initiated in order to evaluate the potential of rhyolitic glass as a source of uranium ores. The samples consisted of obsidians, perlites, and felsites that ranged in age from Pleistocene to Oligocene. Uranium concentrations in the obsidians ranged from 5 to 86 ppm, with the coexisting perlites having identical (plus or minus 5 percent) uranium contents. This fact indicates that little or no uranium is lost during the hydration of these glasses. Felsites, however, show uranium depletion as high as 80 percent relative to coexisting obsidians and perlites. Combination of this data with the results of earlier work on peralkaline rhyolites indicates that uranium depletion seems to increase with age, with different rates of depletion from calc-alkaline (slowest) to peralkaline (fastest) compositions. Uranium distribution is inhomogeneous in felsites. Electron microprobe analyses of the least-depleted felsites indicate that uranium is associated with concentrations of Fe-Ti-Mn oxides or is in accompanying accessory minerals. Secondary Fe-Mn oxides in older, depleted felsites are uranium-bearing, especially along fractures or flow layers. Uranium loss from felsites seems to be largely controlled by low-temperature solution over long periods, with some precipitation in secondary phases. (Ruth) (JET)

<175>
 Zielinski, E.A., K.R. Ludwig, and D.A. Lindsey,
 USGS, Denver, CO

Uranium-Lead Apparent Ages of Uraniferous Secondary Silica as a Guide for Describing Uranium Mobility. USGS Circular 753; Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977, J.A. Campbell (Ed.), (pp. 39-40). (1977)

Case studies of the Shirley Basin in Wyoming and the Thomas Range in Utah were presented to illustrate the use of U-Pb isotope systematics to investigate the timing of migration of uraniferous silica saturated solutions. The investigation was based upon the assumption that the time of uranium mobilization is reflected in the U-Pb apparent ages of secondarily precipitated, uraniferous, cryptocrystalline silica. Apparent ages of secondary silica can be compared with ages of host rocks and nearby uranium deposits to further describe the timing of uranium migration in a particular area. (JET)

EXPLORATION

<176>

State of Alaska, Department of Natural Resources,
Division of Geological Survey, College, AK

Uranium Prospecting in Alaska. Alaska Geological
Survey Information Circular 8; 5 pp. (1968,
March 7)

During the '950's, a considerable amount of exploration was done by the AEC and by private prospectors in Alaska. The work was aimed almost entirely at discovering hydrothermal deposits in the old highland areas. The Ross-Adams deposit, which was discovered near Ketchikan by prospectors, was the only mine found as a result of this effort. The AEC work consisted of testing old prospects for radioactivity and of sampling of concentrates from stream sediments and placer deposits below areas likely to contain ore deposits. The results indicated that Southeastern Alaska and the Seward Peninsula are the most favorable regions for prospecting for vein-type deposits. Strata-bound uranium deposits found in relatively flat-lying deposits in porous permeable sedimentary rocks are the most productive source of uranium. Such deposits are most likely to occur "down stream" from exposures of acid intrusive or extrusive rocks (granites or rhyolites). In Alaska, such areas are most likely to be found in the Cenozoic basins which form great lowlands and possibly on the Arctic Slope. Deposits would likely be found where acid igneous rocks are present over large areas of the surrounding hills (e.g. Western Copper River basin, Eastern Susitna River valley, and Bristol Bay area). The likely host rocks would be sandstone or conglomerate of Tertiary or possibly of Quaternary age and the deposits would be expected to occur within a few tens to hundreds of feet from the surface. Locally, the higher beds in the great Cretaceous conglomerate basins are non-eruptive and younger than nearby granites. Some of these beds may have been favorably situated at some time in their history to act as host rock for uranium deposits. The abundance of granitic intrusive rocks in Southeastern Alaska, the Interior, and elsewhere in the state suggests that prospecting of such areas for hydrothermal type deposits has a reasonable chance of success. Direct sensing of gamma rays is one of the principal means of detecting uranium deposits, but their limited range and penetration power through a thin cover of rock or water seriously limits the effectiveness of radiometric surveying from air or ground. Stream sediment and soil sampling offers a means of detecting uranium deposits which might be missed by aerial radiometric surveying. Analyses of the sediment samples would be sensitive down to a few ppm uranium to detect all anomalies. (JET)

<177>

International Atomic Energy Agency, Vienna,
Austria

Radioactive Reporting Methods and Calibration in
Uranium Exploration. IAEA Technical Reports
Series No. 178; 57 pp. (1976)

The radiometric methods and calibration utilized in uranium exploration are reviewed in this report, and the following recommendations are made in order to standardize these methods: (1) A standardized system of reporting all radiometric measurements, and a standardized method of calibrating instruments used to make such measurements are essential in order to increase the comparability and consistency of

radiometric surveys and establish a simple basis of judging the significance of the results. (2) All reports of radiometric measurements should contain an adequate description of the methods and instrumentation used. (3) All measurements of total radioactivity should be reported in terms of a new unit, to be known as a unit of radioelement concentration, abbreviation ur, which is defined in terms of the instrument response to one part per million uranium in equilibrium. (4) Where circumstances justify the use of total count measurements to indicate the abundance of a specific radioelement, the abundance will be expressed in terms of potassium, equivalent uranium (eu), equivalent thorium (eth), in either per cent or parts per million as appropriate. (5) All measurements made by gamma-ray spectrometry should be reported in terms of dry weight radioelement abundance, thus percent potassium (percent K), parts per million equivalent uranium (ppm eu), parts per million equivalent thorium (ppm eth). (6) The correlation between count rate and concentration and any relevant correction factors for each instrument should be determined by the use of standard calibration sources of compositions and dimensions outlined in this paper, and fully reported. (JET)

<178>

Lawrence Livermore Laboratory, Livermore, CA

Hydrogeological and Stream-Sediment Reconnaissance Survey of the National Uranium Resource Evaluation (NURE) Program - Western United States: Quarterly Progress Report, October through December 1977. GJBX-71(78); 16 pp. (1978, April 1)

During the quarter, October-December 1977, weather and the death of a contractor stopped four field projects that were in progress. Revisits to these areas are planned for the spring. A 6500 square kilometer (2500 square mile) reconnaissance project in southern Nevada was completed and site selection and planning for three projects that will cover 165,000 square kilometers (65,000 square miles) in Nevada and Arizona in the spring and summer of 1978 was finished. Ground water progress in Nevada, Arizona, and Washington are continuing on schedule. Orientation sampling in Idaho and Arizona was completed, and plans for a southern California study early next quarter were finalized. Sediment processing contractors performed acceptably. Neutron activation analysis of routine samples began and nearly 1200 samples were analyzed. Final raw-data reports for two orientation studies in Nevada were prepared and work began on three others. Computer codes were written to provide interactive generation of multivariable correlation plots and tables. (JET) (JET)

<179>

EXPLORATION

<179>

Lawrence Livermore Laboratory, Livermore, CA

Hydrogeochemical and Stream-Sediment Reconnaissance (HSR) Survey of the National Uranium Resource Evaluation (NURE) Program - Western United States: Quarterly Progress Report, July through September 1977. GJ91-65 (78); 13 pp. (1978, January 20)

During the quarter, July-September, 1977, reconnaissance sampling projects in Washington, Idaho, and Nevada covering 130,000 square kilometers were initiated. In addition, Bendix Field Engineering Corporation personnel collected sediment and surface water samples from major portions of the three project areas: covering 175,000 square kilometers in the aforementioned states and Arizona. Orientation studies in east-central Idaho (Idaho Basins) were also initiated and the third and final phase of the Arizona orientation study in the Sierra Nevada region was completed. Groundwater sampling in the Great Basin by Desert Research Institute (DRI) continued on schedule, and new groundwater sampling contracts were placed with Washington State University and the University of Arizona. Full-scale operation of the sample analysis systems were delayed until the next quarter by a number of unexpected hardware reliability problems. Computer codes and equipment became available for preparing the hard copy data tables, microfiche, statistical summary plots, and map overlays required for reporting. (Auth) (JST)

<180>

Nuclear Techniques for Mineral Exploration and Exploitation. COWP-691224; Proceedings of a Panel, Krakow, Poland, December 8-12, 1969. International Atomic Energy Agency, Vienna, 197 pp. (1971)

Nuclear techniques, which have become accepted for routine use in the oil industry and in uranium prospecting, are gaining wider recognition for applications in the exploration for and exploitation of the more conventional mineral resources. The International Atomic Energy Agency convened a Panel in Krakow, Poland, from December 8 to 12, 1969 on Nuclear Techniques and Mineral Resources in the Developing Countries to review the present status and to identify those techniques most suitable for adoption by developing countries. A summary of the finds of this Panel is presented in this proceedings, together with individual contributions prepared from the working papers presented by the panel members. (JRT)

Five of the fifteen papers presented in this panel proceedings have been abstracted and are listed separately.

<181>

Oak Ridge Gaseous Diffusion Plant, Oak Ridge, TN

Hydrogeochemical and Stream Sediment Reconnaissance Basic Data for Mid STMS Quadrangle, Oklahoma. GJ91-7(78); K/UR-114; 138 pp. (1978, December 8)

Groundwater data indicate that the most promising area for potential uranium mineralization occurs in the western part of the quadrangle. Rocks in this area belong to the Pennsian Garber Sandstone and Hennessey Group. Many areas of high-uranium concentration also occur in the west-central part of the quadrangle in rocks of the Pennsian age Wellington Formation. The associated elements indicate that anomalous uranium in groundwater is probably derived from continental sandstone facies. Stream sediment data show high-uranium values occurring primarily in the north central area of the quadrangle. Rocks cropping out in this area belong to the Pennsylvanian Ada Group through the Pennsian Garber Sandstone, but high-uranium concentrations do not appear to be limited to any one geologic unit. The associated elements indicate that anomalous uranium may be derived from phosphatic rocks and from heavy and resistate minerals. (Auth) (PAC)

Field and laboratory data for 677 groundwater and 516 stream sediment samples are presented in the appendices.

<182>

Oak Ridge Gaseous Diffusion Plant, Oak Ridge, TN

Hydrogeochemical and Stream Sediment Reconnaissance Basic Data for Ardmore STMS Quadrangle, Oklahoma. GJ91-142(78); K/UR-111; 38 pp. (1978, October 20)

Results of a reconnaissance geochemical survey of the Ardmore Quadrangle, Oklahoma are reported. Field and laboratory data are presented for 765 groundwater samples and 762 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate that the most promising areas for potential uranium mineralization occur in the western part of the quadrangle. Geologic units in this area include the Oscar Group of Pennsylvanian age, the Hennessey and El Peno Groups, Garber Sandstone, and Wellington formations of Pennsian age. Several high values of uranium occur in groundwater near known asphaltite deposits in the folded Paleozoic rocks of the Arbuckle Mountains. Stream sediment data indicate that high values of uranium are associated with the folded and faulted Paleozoic rocks in the Arbuckle Mountains, the Pennsylvanian-Pennian rocks in the western third of the quadrangle, and the Lower Cretaceous rocks in the southeastern part of the quadrangle. Most of the high-uranium values occurring in these rocks appear to be associated with heavy and resistate minerals. (Auth)

Three appendices are included giving data on the water analyses, stream sediment analyses, and computer codes used for the data.

EXPLORATION

<183>
Ullman, W.J.

Exploration on the Increase at Last. *The Northern Miner* 62(52):21, A19-219. (1979, March 9)

Expenditures for uranium exploration in Canada in 1979 is projected to increase considerably over the past year. Much of the exploration is in Saskatchewan. In 1978, over 70 million dollars was spent by 120 companies in Saskatchewan, and it is expected that over 80 million dollars will be spent in 1979. At the end of 1978, 29,769,216 acres were held under disposition, 18,686,585 acres of which had been acquired during the year. The increase reflects the influence of the conclusions of the Bayda commission and the greater interest in the deeper parts of the Athabasca sandstone basin. Active uranium exploration is also going on in the Northwest Territories, particularly west of Coppermine, and west of Baker Lake. Exploration in Manitoba is increasing due to recent changes in the mineral regulations and royalty and tax acts. In Ontario, exploration is still much less than in years past, but an increase in claim staking did occur in 1978. Active uranium exploration is going on south of Lake Bipigon and in the Tissina district. A uranium discovery on Consolidated Durban Mines and Resources antimony mine property in southern New Brunswick has resulted in increased interest in that province and uranium exploration in Nova Scotia has been stimulated by a discovery near Deer Lake. (JET)

<184>
Arendt, J.W., Oak Ridge Gaseous Diffusion Plant, Oak Ridge, TN

Hydrogeochemical and Stream Sediment Reconnaissance Program in Central United States: Semiannual Progress Report, April 1 Through September 30, 1978. E/UR-21, Part 1; 13 pp. (1978, October 6)

Union Carbide Corporation, Nuclear Division, under contract with the U.S. Department of Energy, is continuing to conduct its survey of 158 National Topographic Series 1 degree by 2 degree quadrangles which cover approximately 2,500,000 square kilometers (1,000,000 square miles) of the Central United States. A progress report on quadrangle sampling, analyses, and reporting by the Uranium Resource Evaluation Project is presented in this report. (Auch) (JET)

<185>
Baltz, E.H., Jr., USGS, Washington, DC

A Reconnaissance for Uranium in Parts of New Mexico and Colorado, 1958. TES-929; 46 pp. (1955, June)

Reconnaissance investigations for uranium in parts of New Mexico and Colorado were undertaken in 1958 with portable Geiger counters, scintillators and carboree scintillation equipment. Samples of copper-bearing arkosic sandstone of the Cutler Formation collected in the northwestern part of Jemez Plateau, Rio Arriba County, New Mexico, contained 0.002-0.10 percent uranium. The Bandelier Tuff of Pleistocene age contains traces of radioactive material throughout much of this region. Samples of intrusive and extensive igneous rocks of Tertiary and Quaternary ages from the Chico Hills, eastern Colfax County, New Mexico contained 0.0016-0.0024 percent uranium. Radioactivity was detected in igneous rocks of intermediate composition at all localities examined, but no radioactivity was detected in basic igneous rocks or in sedimentary rocks which enclose the intrusives. Precambrian, Pennsylvanian, Permian, and Tertiary rocks were examined in the Sangre de Cristo Mountains in northern New Mexico. A sample of limestone from a fracture in Precambrian metamorphic and igneous rocks in Gallinas Canyon, San Miguel County, contained 0.022 percent uranium. Samples of carbonaceous sandstone and conglomerate of the Chinle Formation of Triassic age collected south of the Canadian Escarpment, San Miguel County, New Mexico, contained 0.004-0.370 percent uranium. Several prospects near the town of Sabinoso contained uranium deposits of possible economic value. The extent of these deposits has not been determined. No significant radioactivity was detected in Permian, Cretaceous, and Quaternary sedimentary rocks and Tertiary intrusive rocks examined at places in Lincoln and Otero Counties, New Mexico. Radioactivity estimated to be 0.008 percent equivalent uranium was detected in limestone of the Wanakah Formation of Jurassic age near Cochran Camps, Huerfano County, Colorado. A sample of acidic tuff of the Devil's Hole Formation of Miocene age collected in northern Huerfano County contained 0.0011 percent uranium. (Auch)

<186>
Barthel, P., Bundesanstalt fur Geowissenschaften und Rohstoffe, Hanover, Federal Republic of Germany

Methods of Prospecting for Uranium in Deposits. *Kerntechnik Atompraxis* 18(10):621-626. (1976)

A brief review of the forms of concentration of uranium in the earth's crust is followed by a discussion of the most important prospecting methods. In radiometric prospecting the separate recording of the radiation from uranium, thorium and potassium (spectrometry) is of the greatest value in addition to determining the total radiation. The track etch method uses measuring capsules to determine the concentration of radon gas in the soil air. Borehole logging indicates the thickness and depth of mineralized horizons. Radioactivity, electric resistance and conductivity are generally measured. In geochemical prospecting the distribution of uranium in water, soil and river sediments is used to delineate uranium bearing areas. (Auch)

<187>

EXPLORATION

<187>

Bivens, H.H., D.H. Jensen, W.B. Balston, and W.L. Stephenson, Sandia Laboratories, Albuquerque, NM

Direct Measurement of Uranium by Prompt Fission Neutron Method of Pulsed Neutron Borehole Logging. AAPG Bulletin 63(8):686. (1979, April)

The capability provided by neutron logging techniques for the direct measurement of uranium is extremely valuable, especially in low-grade uranium mineralization not in equilibrium. Sandia Laboratories is developing one of these techniques which is based on the detection of epithermal prompt fission neutrons that result from the irradiation of uranium by 14 MeV neutrons from a pulsed neutron generator. A 70-mm O.D. development-model logging probe has been used in a limited field evaluation of the prompt fission neutron method of logging. From this evaluation has evolved a prototype logging probe and the basis for log interpretation. Additional logs required for interpretation are a caliper log and a density log. Additional probe development is under way including a neutron generator with a neutron output greater than 10^{20} n/s. A vendor is being developed as a commercial source for the neutron generator. A definition of the interior logging system has been released and the system eventually developed will be defined in the open literature. (Asth)

<188>

Bolivar, S.L., Los Alamos Scientific Laboratory, Los Alamos, NM

Uranium Hydrogeochemical and Stream Sediment Reconnaissance of the Aztec MTS Quadrangle, New Mexico. GJBR-129(78); LA-7238-MS; 75 pp. (1978, October)

A total of 338 water and 1784 sediment samples were collected from 1876 locations in the Aztec quadrangle, New Mexico. Water samples were collected from wells, springs, streams and artificial ponds. Sediment samples were collected from springs, streams, and artificial ponds. The uranium concentrations in waters ranged from below the detection limit of 0.2 ppb to 67.3 ppb. The mean uranium concentration for all water types is 2.68 ppb. Because of the lack of available surface waters and the uneven distribution of wells, interpretation of water data was difficult. Only one small cluster of three water samples containing anomalous uranium concentrations is noted. These samples, collected about 50 km north of Cuba, were taken from drainages that cut the San Jose formation. Several individual water samples with anomalous uranium concentrations are associated with fault zones. Sediments collected in this study had uranium concentrations that ranged between 0.3 ppb and 30 ppb, with a mean concentrations of 4.23 ppb. The majority of anomalous sediment samples were collected from areas underlain by either the Facimiento or San Jose formation in the San Juan basin. Just northwest of Cuba a small cluster of sediment samples with anomalous uranium concentrations occurs surrounded by several known uranium deposits. (Asth) (PAG)

Appendix A - Summary of Standard Field and Analytical Procedures, Appendix B - Listings of Data for Water Samples, Appendix C - Listings of Data for Sediment Samples, Appendix D - Code to Data Listings

<189>

Bolivar, S.L., Los Alamos Scientific Laboratory, Los Alamos, NM

Uranium Hydrogeochemical and Stream Sediment Reconnaissance of the Bozeman MTS Quadrangle, Montana. GJBR-8(79); LA-7504-MS; 98 pp. (1978, November)

A total of 1251 water and 1536 sediment samples were collected from 1586 locations over a 17,400 sq km area at a nominal density of one location per 10 sq km. Samples were collected predominantly from surface streams although 38 ground water locations were also sampled. The uranium concentrations in waters sampled range from below the detection limit of 0.20 ppb to 41.35 ppb. The mean uranium concentration for all water types is 1.17 ppb. Waters with anomalous uranium concentrations were found in tributaries of the Boulder River which drain Precambrian rocks in the Beartooth Mountains and in tributaries of the Three Forks basin which are underlain predominantly by Tertiary-Quaternary sediments. The two areas appearing most favorable for future exploration on the basis of water data are in the Three Forks basin in the vicinity of the Madison plateau and in a district about 20 km due west of Three Forks. Sediment samples from the quadrangle were found to have uranium concentrations that range from 0.90 ppb to 94.30 ppb, with a mean concentration of 3.71 ppb. The majority of anomalous sediment samples were collected from areas underlain by Precambrian rocks. Based on the data from sediments, the areas appearing most favorable for future exploration include the tributaries of the Boulder River in the Beartooth Mountains, the northern part of the Madison Range, and the Tobacco Root Mountains just north of Virginia City. The uranium concentrations in the sediments from these areas are probably associated with uraniferous siliceous veins or pegmatites. (Asth) (PAG)

Appendix A-Summary of Standard Procedures, Appendix B-Listings of Field Data and Uranium Concentrations for Water Samples, Appendix C-Listings of Field Data and Uranium Concentrations for Sediment Samples, Appendix D-Code to Data Listings, Appendix E-Cumulative Frequency Plots of Uranium Concentrations in All Waters, Spring Waters, and Stream Waters, Appendix F-Cumulative Frequency Plot of Uranium Concentrations in Sediments

PUBLICATIONS

<190>

Botova, E.M., D.P. Salyuga, and U.I. Boisseyenko, Ministry of Geology and Conservation of Mineral Resources, Moscow, USSR; V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow, USSR; Academy of Sciences, Institute of Geology and Geophysics, Siberian Division, Novosibirsk, USSR

Experimental Use of Biogeochemical Method in Prospecting for Uranium Under Desert Conditions. *Geochemistry* 4:379-388. (1963)

Geologic maps and sections were utilized to plot the results of biogeochemical prospecting for uranium in Persian sandstones and argillites from an arid region. It was found that the ash of plants that grew over a uranium deposit in sandstone usually contained more uranium than the soil; in some cases containing as much as 8.000 percent uranium. The uranium aerosole determined from plant ashes was found to be greater in area than the aerosole determined by radiometric surveying. The aerosole was detectable in plants that grew over ore bodies lying at depths as great as 25 meters. Different plants accumulate different amounts of uranium. The oldest portion of a given plant accumulates the most uranium; leaves and the growing tips of branches contain the least uranium. (Auth) (JET)

<191>

Brady, B.T., and E.S. Rice, USGS, Washington, DC

Helium Determination as an Exploration Technique at the Aboskie Lake Uranium District, McKinley County, New Mexico. USGS OFR-77-669; 8 pp. (1977)

Measurements of helium in soil gas, well water and mine air were made from samples collected near a roll-type uranium deposit in the Aboskie Lake district, New Mexico. The purpose of this survey was to evaluate the potential of helium detection as an exploration technique in an area of known uranium mineralization. High helium values, which locally exceeded the volumetric atmospheric helium level by 400 ppb were measured from soil-gas samples collected during detailed sampling above Kerr-McGee Corporation's section 30 mine (1968, 1978). Small amounts of excess helium in soil-gas and well water are easily detected, and may indicate the presence of previously unknown uranium-enriched horizons. In addition to the soil-gas and water samples, five samples of mine air were collected at a maximum depth of 230 m from well ventilated areas in the section 30 mine. The concentration of helium in the mine air exceeded the atmospheric level of 5239 ppb by 118 to 190 ppb. These data provide evidence that the helium concentration in the mine atmosphere is enriched by helium emitted from uranium orebodies, and from degassing mine waters which circulate through zones of uranium mineralization. (Auth) (JET)

<192>

Bristol, B.

Uranium: The Exploration Rush Is On. *Western Miner* 49(5):12-24. (1976, May)

With prices for uranium oxide (U3O8) in the \$30/lb and higher range, uranium exploration in Canada is rapidly increasing. Increased interest in uranium is focusing exploration attention on producing and non-producing areas in Saskatchewan, Ontario, Quebec, Manitoba, as well as in most of the other provinces and territories. This article details the exploration efforts in Canada, province by province, and the companies involved. (JET)

<193>

Broxton, D.E., Los Alamos Scientific Laboratory, Los Alamos, NM

Uranium Hydrogeochemical and Stream Sediment Reconnaissance of the Dillon STS Quadrangle, Montana/Idaho, Including Concentrations of Forty-Three Additional Elements. GJER-38(79); LA-7347-DS; 228 pp. (1979, March)

A total of 1148 water and 1721 sediment samples were collected from 1796 locations in the Dillon quadrangle, Montana/Idaho. Samples were collected at a nominal density of one per 10 sq km except in the Boulder batholith area where the density was approximately one sample per 2 sq km. Surface waters were taken from flowing streams; ground waters were taken from springs and wells. All water samples were analyzed for uranium and 12 other elements. Sediment samples, collected from streams and springs, were analyzed for uranium, thorium, and 41 additional elements. The uranium contents of water samples range from below the detection limit of 0.02 ppb to 79.31 ppb. Most water samples having anomalously high uranium contents were collected in areas underlain by felsic rocks of the Boulder, Pioneer, and Idaho batholiths. Other groups of anomalous waters are associated with belt metasediments in the Beaverhead and Salmon River Mountains and with Tertiary strata in intermontane basins. The uranium contents of sediment samples range between 0.95 and 130.50 ppm. Anomalous uranium values are associated with felsic rocks of Cretaceous batholiths and belt quartzites near the Montana-Idaho border. Samples having uranium contents significantly above local background levels also occur in Tertiary strata adjacent to the anomalous areas in the crystalline terranes. Thorium concentrations in sediment samples range from 3.40 to 351.00 ppm. The average uranium/thorium (U/Th) ratio of samples with less than 20 ppm uranium is 0.37, whereas samples with uranium concentrations greater than 20 ppm have an average ratio of 1.85. The association of high uranium values with relatively high U/Th ratios may be a useful tool for identifying uranium-enriched terranes. (Auth) (JET)

Uranium data for the Idaho portion of the quadrangle as well as multielement data for the entire quadrangle are open files in this report for the first time. Uranium data for the Montana portion of the quadrangle were previously open filed in earlier reports by Broxton (1978) and Assadi (1978). Listings of Field Data and Elemental Concentrations for Samples are contained in Appendix I. Histograms of Uranium Concentrations in Water and Sediment Samples and Thorium Concentrations in Sediment Samples are contained in Appendix II. Appendix III contains Standard Procedures and Codes used in this report.

<196>

EXPLORATION

<196>

Chaney, D.S., and S.L. Bolivar, Los Alamos Scientific Laboratory, Los Alamos, NM

Grizzly Hydrogeochemical and Stream Sediment Reconnaissance of the Elk Lake NTMS Quadrangle, Montana. GJBI-55(78); LA-7069-25; 71 pp. (1978, March)

A total of 710 water and 951 sediment samples were collected from 1347 locations at a nominal density of 1 location per 10 sq km. 111 water samples were analyzed by fluorometry and those with greater than 10 ppb uranium were reanalyzed by delayed-neutron counting. Sediment samples were analyzed by delayed-neutron counting. A value nominally twice the standard deviation above the mean was selected as the "anomaly threshold." By this criterion, 27 waters (19 wells, 5 springs, and 3 surface waters) and 33 sediments (26 dry streams, 4 wet streams, 2 wet springs, and 1 dry artificial pond) or about 4 percent of the combined water and sediment samples contained anomalously high uranium concentrations. Areas with anomalous uranium concentrations generally appear best delineated by a combination of water and sediment samples. The study delineated most known uranium occurrences. In addition, several areas of interest were identified. These are: (a) in the Belle Fourche shale formation and alluvium along Thompson Creek near the Black Hills uplift; (b) in the vicinity of Bay Horse/Moorhead in the Powder River basin; and (c) in the Long Pine Hills area in the Williston basin. A broad oval of anomalous sediment and water samples is found around the Elk Lake Hills and Long Pine Hills. The known radioactive mineralization is quite localized and low grade. The anomalous water samples indicate the presence of soluble uranium-bearing minerals. The principal hosts for the known deposits are arkosic sandstones (Fort Union or associated formations) and lignite beds. (PAG)

<195>

Chandler, J.W., Jr., Los Alamos Scientific Laboratory, Los Alamos, NM

Data Management and Handling for the Hydrogeochemical and Stream Sediment Reconnaissance Program at the Los Alamos Scientific Laboratory. GJBI-22(78); 3 pp. (1978, January)

Since the spring of 1975, the Energy Systems and Statistics Group (G-12) at the Los Alamos Scientific Laboratory (LASL) has been involved in the data management aspects of the National Uranium Resource and Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program. The HSSR program is administered at LASL by the Geochemical Applications Group (G-5). This report is a description of the data management performed for G-5. (Muth)

<196>

Chenoweth, W.L., DOE, Grand Junction, CO

Exploration in Grants Uranium Region Since 1963. AAPG Bulletin 63(4):687. (1979, April)

The Grants uranium region is the largest uranium area in the United States. From 1951 through 1977, underground and open-pit mines produced 126,537 tons of uranium oxide U3O8. This amounts to 80 percent of the total United States uranium production. Ore reserves estimated by DOE for the region are 366,200 tons U3O8, or 53 percent of the domestic reserves in the 30 dollars forward-cost category. Since 1963, production in the Grants uranium region has expanded to the north and east largely owing to the efforts of exploration programs of major oil companies. During this period, average drilling depths have increased from approximately 200 to nearly 1,600 ft (60 to 960 m). Application of various geologic models is expected to assist in finding additional deposits, and the Grants uranium region is expected to maintain its position as the nation's principal source of uranium for years. (Muth)

<197>

Clayton, C.-T., United Kingdom Atomic Energy Authority, Wantage Research Laboratory, Wantage, Berks, United Kingdom

Applications of Radioisotope X-Ray Fluorescence Analyzers in Metalliferous Mineral Exploration and in Mining. CONF-691229; Nuclear Techniques for Mineral Exploration and Exploitation, Proceedings of a Panel, Krakow, Poland, December 8-12, 1969. International Atomic Energy Agency, Vienna, Austria, (pp. 59-72), 187 pp. (1971)

Equipment based on non-dispersive radioisotope X-ray fluorescence techniques is proving valuable in many analytical applications in mineral exploration and mining. Simplicity of operation, low cost, rugged construction, low radiation hazard, and acceptable limits of detection are among the factors which make this equipment practical. The continued development of radioactive sources and radiation detectors is enabling the range of applications to be extended and the introduction of solid-state detectors promise to allow simultaneous multi-element analyses to be carried out in the field or in a field laboratory. High-performance, battery-operated portable analyzers for field use are available commercially and sufficient work has now been completed using the instruments on powdered artificial and natural ores to establish their value for routine use. Their true value for the analysis of rock faces and drill cores is still to be assessed. The development and application of radioisotope X-ray fluorescence bore hole probes, although still at a very early stage, appears to be very promising. (JMT)

EXPLORATION

<196>
Cook, J.C., Southwest Research Institute, San Antonio, TX

An Analysis of Airborne Surveying for Surface Radioactivity. *Geophysics* 17(4):687-706. (1952, October)

Quantitative estimates of the gamma radiation field intensities expected to be encountered in flight over various geologic bodies are presented. Scattering effects are included in the calculations, but several simplifying assumptions were necessary, such as assigning equal energies to all photons. Results are compared with geiger counter measurements of three kinds: near a small natural carnotite deposit, near a tenth-curie of radium, and soundings made over normal terrain at various times. It appears that anomalies from most outcrops of radioactive ores will exceed the normal fluctuations of background radiation due to topography, variations of composition of the surface, etc., only at altitudes of less than about 35 feet. However, such anomalies can probably be detected under favorable conditions by their characteristically pointed shape, allowing flight at higher elevations. Requirements on flight plan and instrumentation are discussed.

<197>
Dawson, H.E., and T.L. Weaver, Los Alamos Scientific Laboratory, Los Alamos, NM

Uranium Hydrogeochemical and Stress Sediment Reconnaissance of the Durango 30'x30' Quadrangle, Colorado. GJRI-10(79); LB-7386-NS; 111 pp. (1979, January)

A total of 1519 water and 1608 waterborne sediment samples were collected from 1608 locations. The uranium concentrations in waters ranged from less than the detectable limit of 0.2 ppb to 25.7 ppb, with a mean value of 6.84 ppb. The concentrations in sediments ranged from 1.0 ppb to 71.6 ppb, with a mean value of 4.2 ppb. Thirty-four water samples (approximately 2.2 percent of the total water population) had uranium concentrations above 5.00 ppb, the highest of which were well water samples from the San Luis Valley. Thirty-seven sediment samples (approximately 2.3 percent of the total sediment population) had uranium concentrations above 12.0 ppb. The majority of these were taken from sites in Precambrian rocks, but several came from Paleozoic and mesozoic strata and Tertiary volcanics. The majority of the sediment samples with high uranium concentrations were stream sediments clustered in the Precambrian rocks exposed in the Needle Mountains. They were particularly high in the Vallecito Creek drainage area. (PSC)

Appendix A-Summary of Standard Procedures, Appendix B-Listings of Data for Water Samples, Appendix C-Listings of Data for Sediment Samples, Appendix D-Code to Data Listings, Appendix E-Individual Uranium Occurrences in the Durango Quadrangle

<200>
Devoto, R.R., Colorado School of Mines, Department of Geology, Golden, CO

Uranium in Phanerozoic Sandstone and Volcanic Rocks. Uranium Deposits, Their Mineralogy and Origin, Short Course Handbook, Volume 3, R.E. Kimberley, (Ed.). University of Toronto Press, Toronto, Canada, Ch. 11, (pp. 293-306), 521 pp. (1976, October)

Uranium deposits in sandstones and volcanic rocks are discussed and exploration guides to uranium deposits in both rock types are given. In sandstone, the major exploration guides are: (1) fluvial sandstone, indigenously reduced, containing carbonaceous matter and pyrite; (2) abundant tuffaceous material or other uranium source within the host rock or nearby; (3) basin-margin uplift concurrent with sedimentation; (4) spatial proximity to an oxidizing environment. In volcanic rocks, the following exploration guides presently seem most important: (1) chalcocite or other acidic or alkaline rocks; (2) stratigraphic control on mineralization; (3) synvolcanic ground water hydrology, surface terrain, and topography; (4) pre-volcanic paleotopography; (5) early diagenetic ground water chemistry; (6) distribution of permeable beds and of fractures; (7) alteration patterns in the volcanic rocks. (JTG)

<201>
Prescott, G., and E.J. Zeller, University of Kansas, Lawrence, KS

Uranium Resource Evaluation in Antarctica. IAPG Bulletin 63(3):441. (1975, March)

The continent of Antarctica is the only large land area on earth that has been left almost totally unexplored for uranium resources. In 1976 the first systematic uranium resource evaluation was started as part of the Antarctic International Radioisotopic Survey. Two areas in the Transantarctic Mountains and one area in Marie Byrd Land have been examined by airborne gamma-ray spectrometric methods. Most flight operations are conducted using Bell 212 helicopters. The equipment in use is a Geometrics GSI-830 gamma-ray spectrometer with a GAI 512 detector and a GAI 6 analog-recorder. The equipment has proved to be satisfactory, and no plans have been made to increase detector size or to alter data acquisition systems owing to the extremely rigorous nature of the Antarctic field operations. (Ruth)

<202>
Duncar, D.C., USGS, Washington, DC

Results of Reconnaissance for Uranium in Nonmarine Carbonaceous Rocks in Parts of California, Idaho, Nevada, Oregon, Utah, and Washington During 1951 and 1952. TIG-844A; 26 pp. (1953)

Nonmarine carbonaceous rocks, including lignitic shales, coal, and peat were tested at about 30 localities in California, Idaho, Nevada, Oregon, Utah, and Washington. Rocks ranging in age from Carboniferous to Tertiary were examined, although the principal attention was given middle and late Tertiary lignites of the northern part of the Great Basin. Most carbonaceous rocks examined contained essentially no uranium, but lignitic shales in the Goose Creek District, Idaho, a thin carbonaceous shale near Haegerman, Idaho, and small peat deposits Davis County, Utah contained more than 0.001 percent uranium. (Ruth)

<203>

EXPLORATION

<203>

Deacon, R.E., Canada Geological Survey, Ottawa, Ontario, Canada

Uranium Resources of the Penns-Carboniferous Basin, Atlantic Canada. Geological Survey of Canada Paper 77-1B, Report of activities Part 3, (pp. 361-368), 350 pp. (1977)

As part of the Uranium Resource Evaluation Program of the Canadian Geological Survey, a geological reconnaissance of the Penns-Carboniferous sedimentary basin of Atlantic Canada was conducted during 1976 to assess the potential U resources of the area. Several surface radioactive occurrences were discovered, some of them economic, but none of these surface sites may indicate subsurface economic deposits. A description and preliminary classification of the main occurrences were made: three types of deposit - Sandstone, Bituminous Shale, and Volcanogenic - and three styles of the Sandstone Type - Magdalen Islands, Prince Edward Island, and Pugwash-Tatamagouche - are represented. The Magdalen Islands Style of U mineralization is associated with elongate lenses of green-grey indurated sandstone occurring at the bases of thick sequences of poorly cemented red sandstones of the Penns-Carboniferous Cap-aux-Meules Formation (foliation). U is directly associated with hydrocarbons filling fractures and pore spaces in the lenses. Specimens contain up to 2.75 percent U. The Prince Edward Island Style is restricted to that island and to the Cape Tormentine area of New Brunswick. Host rocks are upper Pictou Group (late Pennsylvanian) fluvio-deltaic sandstones and mudstones; mineralization is in the basal, coarse grained units, and reaches 250 ppm U in outcrop. The Pugwash-Tatamagouche Style is similar to the other two, but radioactivity is associated with coalified plant debris and with Cu mineralization. Occurrences are in the basal Pictou Group of northern Nova Scotia, Prince Edward Island, northwestern New Brunswick, and in southwestern Newfoundland (in the North Banch Formation, Codicly Group). The Bituminous Shale Type deposit is based on one outcrop near Hampton, N.B. and on geochemical and geophysical anomalies near Sussex. Mineralization is in the lower Carboniferous Albert Formation, which is composed of locally bituminous black shales, siltstones, sandstones, and minor limestones, with salt occurring locally near the top. Specimens of albertite from Hampton contain as much as 819 ppm U. Volcanogenic type deposits occur in Mississippian porphyritic rhyolite, foliated tuff, and volcanogenic clastics of southwestern and northern New Brunswick. Mineralization is always associated with host rock alteration and the presence of a permeable conduit. Samples from Mt. Pleasant, N.B. contain up to 235 ppm U. Two other unclassified outcrops are along Ridge Brook, N.B., where concentrations of 92.7 ppm U have been found in grey, iron-stained argillites, and at Overfall Brook, Newfoundland, where a carbonaceous sand (Overfall Brook Formation) has been shown to contain up to 323 ppm U. (LKH)

<204>

Ferguson, R.B., Savannah River Laboratory, Analytical Chemistry Division, Aiken, SC

SRL-ESSR-Preliminary Raw Data Release - Greenville 1 Degree by 2 Degree STMS Area, Georgia, North Carolina and South Carolina. GJER-87(78); DPST-78-146-2; 101 pp. (1978, March)

Stress sediment samples were collected from small streams at 1613 sites and ground water samples were collected at 731 sites. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Key data from stream sites include (1) water quality measurements (pH, conductivity, and alkalinity) (2) elements that may be related to potential uranium and thorium mineralization in this area (U, Th, U, Zr, and Pb), and (3) elements useful for geologic classification of the sample area (Ti, V, Fe, Mn, Al, and Sc). Supplementary data from stream sites include sample site descriptors (stream characteristics, vegetation, stream width, etc.) and additional elemental analyses that may be useful (P, Ba, Sr, La, Th, and Lu). Key data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity) and (2) elemental analyses (U, Ba, Cl, Hg, Al, Mn, Sr, V, and Pb). Supplementary data include site descriptors, information about the collection of the samples (well age, well depth, frequency of use of well, etc.), and analytical data for dysprosium. One uranium occurrence in the Greenville quadrangle is at the contact between the Toraway gneiss and the Tallulah Falls Formation in the Blue Ridge Region of South Carolina. Uranium also occurs on the extension of the Barrovian lineament but appears to be related to the unconformity between the two rock units. The locality in Towns County, Georgia, is in a pegmatite and is a vein of radioactive garnet. (PAG)

<205>

Ferguson, R.B., E.L. Bacon, and V. Price, Savannah River Laboratory, Analytical Chemistry Division, Aiken, SC

Hydrochemical and Stream Sediment Reconnaissance: Raw Data Release 7: Orientation Studies in the Spruce Pine, Roane, and Johnston, North Carolina Areas. GJER-17(78); DPST-77-141-1; 92 pp. (1977, December)

The report presents raw data from the Spruce Pine, Roane, and Johnston, North Carolina, areas. Data from the Brush Creek study area are repeated in this report for user convenience. Uranium analyses were by neutron activation analyses. Other parameters measured are: alkalinity, conductivity, sulfate, nitrate and nitrite, orthophosphate, pH, Eh, dissolved oxygen, and temperature. Tables of water quality and field measurement data, tables of uranium and other elemental concentrations, sample locality maps, statistical summaries, and uranium distribution maps are included. (PAG)

EXPLORATION

<206>

Ferris, C.S., and S. Bennett, Ferris and Bennett Consulting, Arvada, CO

Geochemical Prospecting at the Ladwig Uranium Mine, near Golden, Colorado. USGS Circular 753; Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977, J.A. Campbell (Ed.), (pp. 66-69), 75 pp. (1977)

The Ladwig uranium mine is located approximately 4.8 km northwest of Golden, Colorado in the Colorado Front Range. Country rock consists of gneisses and schists of the 1.8-2.0 b.y. old Idaho Springs Formation and a pegmatite, the 1.8 b.y. old Silver Plume Granite. The mine is within the northwest trending Hurricane Hill breccia reef fault zone, but no fault has been mapped within 600 m of the mine. The principal vein in the mine strikes northwest and is roughly at the contact of the pegmatite and garnet-biotite-quartz gneiss. A 1,000 square foot area on each side, centered on the old Ladwig shaft, was sampled for radioactivity and soil polybdenum content on a 25-foot grid. The central grid was surrounded by a zone 500 feet wide, in which samples were taken at 100-foot intervals. Anomalies in parts of this zone led to further sampling at 25-foot intervals. Soil samples were analyzed for polybdenum, a known associate of pitchblende in Front Range uranium deposits and a more stable element than uranium in the weathering environment. There was a degree of correlation between radioactivity and polybdenum in some areas, but some polybdenum anomalies showed no significant radioactivity. The presence of polybdenum without radioactivity may be assumed to mean that soil cover retains or acquires polybdenum more easily than it retains or acquires the radioactive daughters of uranium. Trenching of polybdenum anomalies showed that most are related to narrow radioactive veins. Most veins were vertical and strike northwest. The strongest soil polybdenum anomaly corresponded to the westernmost northwest vein. Drilling showed that the vein extends farther southeast than the surface anomaly. This principal vein, not found by the original prospectors showed a polybdenum geochemical expression more prominent than the radiometric expression. (JNT)

<207>

Fitch, D.C., Ranchers Exploration and Development Company, Albuquerque, NM

Exploration Geology Methods in the Grants Mineral Belt. New Mexico State Bureau of Mines and Mineral Resources Circular 114; Selected Papers from 1970 Uranium Symposia at Socorro, New Mexico, E.J. Rosat and R.L. Baker, Jr., Compilers, (pp. 13-28), 61 pp. (1971)

The paper summarizes uranium exploration methods for ore deposits in sandstone in the Morrison formation. The Grants mineral belt includes the deposits in the Laguna, Lubbock Lake, Smith Lake, and Church Rock districts. The Morrison formation was deposited in a continental environment and consists of the Recapture Member, Westwater Canyon Member and Brushy Basin Member in the Grants mineral belt. The ore guides of general use in this area are: anomalous mineralization, color of host rock, position of area with respect to mineralized trends, presence of carbonaceous material and pyrite, bleaching of mudstone at base of host rock, relative host rock thickness, and stratigraphic environment of host rock. Current exploration practices involve using these criteria to outline favorable areas by drill data, and to a lesser extent, outcrop studies. (PMG)

<208>

Fitch, D.C., Ranchers Exploration and Development Company, Albuquerque, NM

Exploration for Uranium Deposits in Grants Mineral Belt, New Mexico. AAPG Bulletin 63(5):688. (1979, April)

Uranium ore deposits in the Grants Mineral Belt, New Mexico, occur in fluvial sandstones in the Jurassic Morrison Formation. Uranium mineralization is concentrated by a dark-gray to black substance that has been identified as humate derived from decaying vegetation. Black ore is truncated by overlying sandstone in at least two ore deposits, documenting an early age of mineralization. Ore deposits in the Grants Mineral Belt vary greatly in size and shape, generally occur in clusters, and often are difficult targets for drilling. Current exploration is largely a process of drilling in stages to (1) delineate favorable from unfavorable ground on a wide-spacing, (2) seek mineralization in favorable ground, and (3) conduct closely spaced drilling in mineralized areas. Criteria for favorability differ among exploration groups but generally includes (1) the presence of a host sandstone; (2) anomalous mineralization, (3) color of host rock, (4) presence of carbonaceous matter, and (5) position of area with respect to mineralized trends. A description of the sequence of drilling, from ore discovery to a mine on a one-square mile area at the Johnny G uranium deposit located in the east part of the Ambrosia Lake District, provides an example of the problems of predicting ahead of discovery where in a certain area, orebodies may occur. A study of the drill data at the Johnny G indicates that uranium ore is not related to specific features other than the presence of humate which is commonly associated with coalified plant fragments in sandstone-rich parts of the host sandstone. (Roth)

<209> □

EXPLORATION

<209>

Fleischer, R.L., and L. Rogocaspero, General Electric Research and Development Center, Schenectady, NY

Radon Emanation Over Orebody: Has Long-Distance Transport of Radon Been Observed?. AIP Bulletin 63(4):662. (1974, April)

A major hope for discovering subsurface uranium ore is that measurable concentrations of the radioactive gas Ra 222 can be recognized near the surface of the earth. Integrated measurements, made over several weeks, show promise of giving greater reproducibility than short-term measurements, which are more subject to meteorologic variability. The use of improved methods of integrated radon measurements--free of Ra 226, of thermal-track fading, and of moisture-condensation effects--allow readings to be made that generally are highly stable over time. At a site 16 km north of Thoreau, New Mexico, readings at a depth of 63 cm, taken over a 9-month interval for a set of 55 positions, give different but nearly constant monthly readings at each position, the typical standard deviation being 18 percent. Superimposed on that stable pattern have been two periods during which spatially grouped radon readings increased by a factor of two or more over their normal values. The simplest tenable description of the source of the increases is sporadic puffs of upflowing gas, originating at as yet unknown depths. The measurements are consistent with an upward velocity of flow of approximately 10³ cm/sec. (Auth)

<210>

Foy, E.F., and J.E. Gingrich, Terraferex Corporation, Walnut Creek, CA

A Stream Sediment Orientation Program for Uranium in the Alligator River Province, Northern Territory, Australia. Journal of Geochemical Exploration 9:357-368. (1977)

Sediment samples were collected from streams draining the Koongarra uranium deposit and the small uranium mines in the South Alligator Valley. Determinations for uranium, copper, and lead on various size fractions taken from each of the samples indicated that the best results were obtained for uranium from the minus 200-mesh fraction, but the train from the Koongarra ore deposit was very short. Copper and lead were not found to be very useful as indicator elements for uranium. Alpha-track films were used to determine the radon content of each sample and the ratio of alpha-track film reading to uranium content was found to define anomalous drainage areas around the mineralization in the Koongarra area. The areas so defined were of sufficient magnitude to be defined in a reconnaissance stream sediment program. (Auth)

<211>

Foy, E.F., and I. Vieziris, Atomic Energy Commission, Uranium Branch, Exploration Division, Lucas Heights, S.S.L., Australia

Uranium Mineralization at Anomaly 23, South Alligator Valley, Northern Territory, and its Significance Concerning Regional Structure and Stratigraphy. The Australian Institute of Mining and Metallurgy Proceedings 261:1-11. (1977, March)

A weak air-borne radiometric anomaly was examined in the field and the presence of uranium confirmed. Rotary-percussion drilling showed the presence of uranium but a subsequent programme of diamond and rotary-percussion drilling indicated that the concentration of uranium was anomalous. Within the tuffs and volcanics of the prospect the uranium existed as uranyl phosphates within the oxidized zone. Geological mapping and the diamond drill core showed that the Star Creek Volcanics are part of the Lower Proterozoic Basson Formation, probably with member status, rather than the expression of an Archaean basement ridge. This change in the interpretation of the fundamental structure of the Pine Creek Geosyncline has led to a reexamination of the stratigraphy and to suggestions which differ from the current concept. (Auth)

<212>

Fraser, H.J., Australian Atomic Energy Commission, Research Establishment, Lucas Heights, Australia

Direct Current Stabilization of Scintillation Counters used for Uranium Prospecting. Nuclear Instruments and Methods 196(3):513-516. (1976, August)

A simple system for stabilizing a scintillation counter is described which uses a dc light source (green light-emitting diode) to illuminate the photo-cathode of the photomultiplier used to detect gamma-induced light pulses from the scintillator. Basically, the photomultiplier anode current due to the light-emitting diode light is held constant by an automatic control loop acting on the voltage to keep the gain of the photomultiplier tube constant. However, because the temperature coefficient of the scintillator does not in general match that of the light emitting diode, further compensation is required to achieve constant gamma pulse gain. This is provided by adding to the control circuit a current derived from the light emitting diode voltage which is an excellent measure of temperature; the use of this technique results in gain constancy to within (plus or minus) 1 percent in the 10-50°C ambient temperature range. Noise and countrate limitations are discussed and it is concluded that the system is generally applicable to uranium prospecting equipment. (Auth)

EXPLORATION

<213>
Galipeas, J.S., and P.C. Bagland, Savannah River Laboratory, Aiken, SC

A Radiometric Study of Rocks in Three Selected Drainage Basins in the Spruce Pine Area, North Carolina. DP-145a; GJBI-30(78); 79 pp. (1977, December)

Pilot studies to investigate the areal extent of U dispersion halos in stream waters and sediments were conducted in three drainage basins near Spruce Pine, NC. The Big Crabtree, Brush, and North Harper Creek basins are underlain by Precambrian and lower Paleozoic metamorphic and igneous rocks. Topography is mature, drainage dendritic. Work consisted of a field survey of total gamma activity, rock sample analyses for U, Th, and K, autoradiography, and petrographic and mineralogic studies. It was found that total radioactivity correlated better with lithology than soil group, soil parentage, or topography. Data was grouped into three populations based on lithology: they are: (1) mica gneiss and hornblende gneiss, mean activity 60.23 cps; (2) mica schist, alaskite, pegmatite, and Grandfather Mountain Formation, mean activity 98.18 cps; and (3) Wilson Creek Gneiss, mean activity 203.46 cps. Populations 2 and 3 may actually each consist of two populations. U concentrations were 0.05-67.5 ppm for the Big Crabtree Creek, 0.32-251 ppm for the Brush Creek, and 1.99-50.5 ppm for the North Harper Creek basins. Gamma anomalies coincided with known areas of U-mineralization. The U/U⁴⁰ ratio was found to be the best parameter for identification of U-mineralized samples. Autoradiographic studies indicate that uraniumiferous minerals in most of the rocks from these basins are primary, and will therefore tend to accumulate in detrital sediments as placers rather than being leached and transported. (LKH)

<214>
Givens, W.V., R.L. Caldwell, and R.R. Mills, Jr., Mobil Oil Corporation, Dallas, TX

In-Situ Assaying for Uranium in Rock Formations. U.S. Patent 3,686,503; 7 pp. (1972, August)

A new technique of in site assaying for ore-grade uranium by detection of delayed fission neutrons is described. A device consisting of a 14 Mev neutron source and detector is lowered into an exploration hole. The formation of interest is cyclically irradiated with neutrons, and a record made of delayed neutrons emitted by neutron fission of uranium. In this way, a measure of U can be obtained which is unaffected by disequilibrium. Induced Th emission will normally be minor. To reduce the effects of activated O 17, the procedure of first establishing an O 17 background from a known non-uranium-bearing rock unit is used. (LKH)

<215>
Gorski, L., Academy of Mines and Metallurgical Sciences, Institute of Nuclear Techniques, Krakow, Poland

Solid-State Detectors and Electronics in Gamma and X-Ray Spectrometry. CONF-691229; Nuclear Techniques for Mineral Exploration and Exploitation, Proceedings of a Panel, Krakow, Poland, December 8-12, 1969. International Atomic Energy Agency, Vienna, Austria, (pp. 103-118), 187 pp. (1971)

The superior energy resolutions of solid-state detectors offers an excellent advantage for

gamma and X-ray spectrometry. At present only two types of solid-state detectors are generally available, namely the lithium-drifted germanium and lithium-drifted silicon semiconductors, and both require cryogenic cooling. The high resolution potential of these detectors is being realized more fully through recent improvements in the design of the associated electronic circuitry and cooling devices. The need for cryogenic cooling of the present detectors and the first amplifier stage is not considered as a significant practical drawback, although it imposes a certain degree of limitation on field applications. Some basic knowledge of the techniques is reviewed. (LKH)

<216>
Grasty, R.L., Canada Geological Survey, Ottawa, Ontario, Canada

Uranium Measurement by Airborne Gamma-Ray Spectrometry. Geophysics 40(3):503-519. (1975, June)

When window-type gamma-ray spectrometers are used in the airborne measurement of uranium, it is necessary to correct for scattered high energy radiation from thorium 228 in the thorium decay series. This radiation can be scattered in the crystal, in the ground, and in the air. A theory is presented that can adequately explain the spectrum buildup in the uranium window for a point source of thorium oxide immersed to different depths in water and for a detector above the water. The theory is extended to predict the buildup as a function of altitude for detectors of different sizes and shows that errors in the airborne measurement of uranium can be significant if no allowance is made for radiation scattered in the ground and in the air. (LKH) (77)

<217>
Gregg, C.C., IEC, Grand Junction, CO

Reconnaissance and Investigational Drilling on Hoskinnini and Nokai Mases, San Juan County, Utah, and Navajo County, Arizona. RMO-987; 9 pp. (1952, November)

Uranium reconnaissance drilling was conducted on Nokai Mesa, Arizona and Hoskinnini Mesa, Utah in 1952. Strata intersected ranged from the Cedar Mesa Sandstone member of the Cutler Formation (Permian) to the Navajo Sandstone (Jurassic). The inconsistency and low-grade nature of the mineralization makes further work unavoidable, though the extensive channels in the Shinarump Formation may merit future investigation. Mineralization is in a paleo-channel at the contact between the Moenkopi Formation and the Shinarump Conglomerate. The channel bottom is a conglomerate of chert, jasper, and other pebbles, with occasional copper coloring and sometimes with alteration or carbonization. The channel sands are up to 160 feet thick and several hundred feet wide. In a few places the conglomerate contains pyrite, chalcopyrite, chalcocite, and bornite. U-mineralization usually occurs in a roll or gouge where logs and organic trash collected; important associations appear to be organic carbon and copper, usually as malachite. A muddy siltstone layer of the Moenkopi Formation underlies every U show, and may be an important ore control. One hole on Nokai Mesa showed carnotite-copper mineralization. (LKH)

EXPLORATION

<219>

Harms, T.F., and F.B. Ward, USGS, Washington, DC

Determination of Selenium in Vegetation. USGS Bulletin 1808; New and Refined Methods of Trace Analysis Useful in Geochemical Exploration, F.B. Ward, (pp. 37-42). (1975)

The amount of selenium concentrated in vegetation can be a useful indicator of concealed uranium ore bodies in soils or rocks supporting the vegetation and it can provide a basis for studying the effect of the natural environment on man and animals. When selenium content of forage crops is below 0.08 ppm, animals suffer from a selenium deficiency, and when the selenium content exceeds 8 ppm, animals suffer from selenium toxicity. These limits indicate the range for which any method of determining selenium in vegetation has to be useful. In this report, selenium in vegetation was determined, after wet ignition under reflux with a hot mineral-acid mixture, by the reaction of selenium with 2,3-diaminophthalalene to form a,5-benzopiazselenol, whose fluorescence is proportional to the selenium concentration. The reaction is sensitive to about 0.02 microgram of selenium and, accordingly, the lower limit of the method is 0.02 ppm. Recoveries of added selenium are about 90 percent, and the relative standard deviation is on the order of 10-15 percent. (JMT)

<219>

Reffner, J.D., and R.B. Ferguson, Savannah River Laboratory, Analytical Chemistry Division, Aiken, SC

Preliminary Raw Data Release, Charlotte 1 Degree x 2 Degree WMS Area, North Carolina and South Carolina. DPST-78-146-1; GJBR-40(78); 31 pp. (1978, January)

The report presents preliminary results of stream sediment and ground water reconnaissance in the Charlotte National Topographic Map Series 1 degree x 2 degrees quadrangle. Stream sediment samples were collected from small streams at 1258 sites for a nominal density of one site per 13 square kilometers in rural areas. Ground water samples were collected at 759 sites for a nominal density of one site per 25 square kilometers. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included. (Auth)

<220>

Jacobsen, S.I., P.L. Kavodt, and R.P. Sharp, Jr., Los Alamos Scientific Laboratory, Los Alamos, NM

Uranium Hydrogeochemical and Stream Sediment Reconnaissance of the Lime Hills and Tyonek WMS Quadrangles, Alaska, Including Concentrations of Four Y-Three Additional Elements. GJBI-29(79); LA-7348-MS; 228 pp. (1979, January)

Water and sediment samples were collected from 1250 streams and small lakes in the Lime Hills and Tyonek quadrangles, Alaska. The uranium contents of the 671 waters from the Lime Hills quadrangle range from below the detection limit of 0.02 ppb to a high of 11.19 ppb. Uranium contents of the 667 sediments from this quadrangle range from a low of 0.1 ppm to a high of 94.9 ppm. Both waters and sediments containing relatively high uranium concentrations are found to cluster in association with plutonic rocks in the Alaska Range, and particularly so in the vicinity of the Tird Pop batholith and Mount Estelle pluton. The uranium contents of 575 waters from the Tyonek quadrangle range from below detection limit to 13.13 ppb. Relatively high uranium concentrations in waters were found to cluster near the Mount Estelle pluton and undifferentiated igneous, metasedimentary, and volcanic rocks in the Alaska Range and in Pleistocene deposits along the Castle Mountain fault. Uranium contents in 502 sediments from the Tyonek quadrangle range from 0.1 ppm to 58 ppm. Most sediment samples having high uranium concentrations are from locations near the Mount Estelle pluton and Styx River batholith in the Alaska Range. Data for samples collected in the Alaska Range and the two flanking lowlands were also examined separately. Water samples from all source types in the Alaska Range had a higher mean uranium concentration (0.85 ppb) than those from the Western Lowland (0.38 ppb) or the Susitna Lowland (0.51 ppb). The mean uranium concentrations for lake water samples from the Alaska Range and the lowland areas are similar. Sediment samples from streams and lakes in the Alaska Range have a markedly higher mean uranium concentration (7.00 ppm) than sediment samples from either the Western Lowland (2.45 ppm) or the Susitna Lowland area (1.73 ppm). (Auth) (PAG)

Water samples were analyzed for uranium and 12 additional elements; sediment samples were analyzed for uranium and 42 other elements. This report addresses only uranium and thorium. Appendix I - Listings of field data and elemental concentrations for samples from the Lime Hills quadrangle. Appendix II - Listings of field data and elemental concentrations for samples from the Tyonek quadrangle. Appendix III - Listings of dissolved oxygen in waters measured at sample locations in the Lime Hills and Tyonek quadrangles. Appendix IV - Histograms of uranium concentrations in waters and sediments from three physiographic provinces covered by the Lime Hills and Tyonek quadrangles. Appendix V - Summary of standard procedures, explanation of codes, and key to sample types listed in Appendices I and II.

EXPLORATION

<221>

Killsgaard, T.H., V.L. Freeman, and J.S. Coffman, USGS, Washington, DC

Mineral Resources of the Sawtooth Primitive Area, Idaho. USGS Bulletin 1319-D; 178 pp. (1970)

A mineral survey of the Sawtooth Primitive Area and vicinity, Idaho, was made in 1966, 1967, and 1968 by the USGS and the U.S. Bureau of Mines. The area studied was in the rugged Sawtooth Range of south-central Idaho and consisted of about 318 square miles of the officially designated Sawtooth Primitive Area, plus adjoining areas that aggregate an additional 120 square miles. An unexpected result of the geochemical sampling in the area was the discovery of concentrations of uranium in many stream-sediment samples. A high proportion of these samples came from the headwaters of the South Fork Payette River; from streams draining the rocks of the Sawtooth batholith. Visual and radiometric examinations of the Sawtooth outcrops disclosed minor showings of accessory minerals that could contain uranite, but no veins or concentrations of uranium-bearing minerals were found. Uranium in the Sawtooth batholith seems to be present partly in the mineral euxenite and probably also in some other form. Euxenite was tentatively identified as the fine-grained radioactive mineral found in a pegmatite within the Sawtooth batholith. Another type of uranium occurrence is represented by the unusual amounts of uranium found in black muds and clays, and in bog samples high in organic matter. (JRT)

<222>

Lesure, P.G., J.W. Motooka, and P.L. Weis, USGS, Reston, VA; USGS, Denver, CO

Exploration Geochemical Studies of Some Sandstone Copper-Uranium Deposits, Bradford, Columbia, and Lycoming Counties, Pennsylvania. Journal of Research of the USGS 5(5):609-621. (1977, September)

Semiquantitative spectrographic analyses of mineralized and unmineralized sandstone, siltstone, and claystone from the Catskill formation of Devonian age in Bradford, Columbia, and Lycoming Counties, Pennsylvania, suggest that copper, silver, and uranium are the principal metallic elements concentrated in the mineralized rock. Lead, mercury, and molybdenum may be concentrated slightly in mineralized rock but values are too low to be of use in exploration. The deposits are too small to make large anomalies in stream sediments except in drainage basins of less than a few acres. However, if a large deposit were exposed to weathering, it would probably be detectable by stream sediment sampling. (Auth) (MSB)

<223>

Lueck, S.L., D.D. Daniels, and G. Barker, University of Colorado, Department of Geological Sciences, Boulder, CO

Computer Modelling of Uranium Species in Natural Waters: Applications to Exploration. Proceedings of the Joint Annual Meeting of the Geological Association of Canada, the Mineralogical Association of Canada, and the Geological Society of America, Toronto, Ontario, October 23-26, 1978. The Geological Society of America, Boulder, Colorado, (p. 348), 531 pp. (1978)

The WAT2QP computer program has been modified to include 21 aqueous species and 17 minerals of uranium. Input consists of quantitative chemical analyses of the waters of interest, together with field measurements of Eh, pH, and temperature. In absence of field Eh data, estimates are made. This form of modelling may find use in geochemical exploration, solution mining, and pollution control. Calculated saturation indices permit immediate application of the program to hydrogeochemical exploration for deposits of uranium. Analyses of groundwaters from known uranium deposits in Wyoming and Texas were supplied by Wyoming Minerals Corporation. Calculated saturation indices show supersaturation of the groundwaters with respect to uraninite and coffinite. Widespread haloes of other minerals are also indicated around the deposits, serving as a guide to ore. (Auth)

<224>

Maxwell, J.C., Los Alamos Scientific Laboratory, Los Alamos, NM

Results of Uranium Hydrogeochemical and Stream Sediment Reconnaissance of the San Juan Area, Southwestern Colorado. LI-UG-77-1152; 29 pp. (1977, March)

Over 1700 water samples and nearly 2000 sediment samples were collected from 1995 sites in the San Juan Mountains, Colorado, during June and July, 1976, by the Los Alamos Scientific Laboratory for the ERDA National Uranium Resource Evaluation project. Most of the water samples were fluorometrically analyzed for uranium, a few of the higher uranium concentrations (greater than 10 ppb) of water samples and all the sediment samples were analyzed by delayed neutron counting. Average uranium values for the water samples taken from mountains was less than 0.5 ppb, from plateaus was 1-2 ppb, and from Mancos shale areas exceeded 2 ppb. Anomalous sediment samples came from the Stora King Peak area and upper Vallecito Creek, with values of 40 ppb. The Lake City mining district area contained samples with 8-30 ppm uranium in the sediment and 3-30 ppb in the water. (MSB)

<225>

EXPLORATION

<225>

Morris, W.A., H.E. Bunker, and D.W. Steinhaus, Los Alamos Scientific Laboratory, Los Alamos, NM

Hydrogeochemical and Stream Sediment Reconnaissance of the National Uranium Resource Evaluation Program - The Rocky Mountain States of New Mexico, Colorado, Wyoming, and Montana and the State of Alaska, October-December 1977, A Progress Report. LA-7175-PR; GJBY-77(78); 10 pp. (1978, May)

During the first part of the quarter, October-December 1977, the scope of the Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR) survey was expanded by the Department of Energy (DOE) to include the analysis of thorium and lithium in sediment and several other elements selected by the Los Alamos Scientific Laboratory (LASL) in either sediment or water. Development of the LASL multielement capabilities in the x-ray fluorescence, spectrochemical, and neutron activation techniques was accelerated to achieve the required throughput rate of 200 samples per day by each method early in FY 1978. The LASL will report data for 43 elements in sediment samples and 13 elements in water samples. During the quarter, uranium analyses were determined for 7360 sediment samples and 7100 water samples. The priorities and format for HSSR reconnaissance reports were changed to reflect the new DOE guidance received early in the quarter. Reconnaissance report boundaries will coincide with those of the NTMS 1:250,000 scale topographic map sheets; existing data bases are being split and combined to conform to these boundaries. Computer output formats and headers for the multielement listings to be used in LASL HSSR reports were developed and are ready for use on the first multielement report. One reconnaissance report was open filed through the DOE Grand Junction Office. Two NTMS quadrangles were sampled as part of pilot studies; 39 of the 66 quadrangles assigned to the LASL in the lower 48 states have been completely sampled, and bid quotations were requested for sampling all of the remaining parts of the other 27 quadrangles during FY 1978. Sampling specifications to be released for the next quarter were prepared for the 35 quadrangles to be sampled in Alaska in FY 1978. (Auth)

<226>

Thorham, R.R., USGS, Washington, DC

Geologic Evaluation of Airborne Radioactivity Survey Data. Peaceful Uses of Atomic Energy, Vol. 2, Survey of Raw Material Resources, Proceedings of the 2nd International Conference, Geneva, Switzerland, September 1-13, 1959. United Nations, New York, (pp. 815-819), 303 pp. (1959, September)

Recent development of large-volume crystal detectors for aerial radioactivity surveying and application of semiquantitative analytical techniques now permit geologic evaluation of regional surveys whereas previous qualitative surveying methods were generally limited to direct ore-finding techniques. Data obtained by the U.S. Geological Survey's airborne detector are discussed and the conclusions drawn are generally valid for any scintillation detector of comparable crystal volume and energy response. (JMT)

<227>

O'Connor, L.J., and B.D. Smith, USGS, Denver, CO

Total-Field Magnetic Surveying as an Exploration Tool for Sedimentary Uranium Deposits. USGS Circular 753; Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977, J.A. Campbell (Ed.), (pp. 13-15), 75 pp. (1977)

Total-field magnetic surveying is a relatively simple and inexpensive geophysical exploration method. In order to test applications in the exploration for sedimentary uranium deposits, ground surveys were conducted over several areas of known mineralization. Two surveys were conducted in northern Colorado over roll fronts in the Upper Cretaceous Larasie Formation. One survey was made on exposed Larasie with a roll front occurring in a sand unit approximately 15 m below the surface. A strong correlation was found between a sharp 15-gamma negative anomaly and the mineralized zone. This anomaly probably resulted from the relative depletion of magnetic minerals in the vicinity of the roll front. A second survey was made where approximately 45 m of the White River Formation unconformably overlies the Larasie. Here mineralization occurs in the Larasie about 75 m below the surface. No magnetic anomalies could be directly associated with the ore. The lack of any distinctive magnetic pattern may have been due to the greater depth of the deposit, or to the absence of those conditions that produced the relatively low magnet values of in the previous case. Two surveys were also conducted in the Powder River Basin of Wyoming. One survey in the central portion of the basin was directed at uranium deposits 45-50 m deep in the Eocene Wasatch Formation. A small negative anomaly correlated with the oxidized side of the zone mineralization. The other area surveyed had uranium mineralization in the Fort Union and Wasatch Formations, ranging from near surface to deeper than 150 m. Here the magnetic pattern was complex and uranium deposits were not marked by any consistent magnetic pattern. The depth, size, and magnetic properties of mineralization and the influence of local geologic features are controlling factors on the magnetic patterns observed in the surface surveys. Despite the complexities introduced by these local factors, total-field magnetic surveying, involves only one or two people with commercially available instruments and it is a rapid and inexpensive exploration tool for sedimentary uranium deposits. (JMT)

EXPLORATION

<228>
Parslow, G.P., and I. Duairi, University of Regina, Department of Geological Sciences, Regina, Saskatchewan, Canada

Extraction of Uranium Ions from Water: A Rapid and Convenient Method Using Prepackaged Ion Exchange Resins. *Journal of Geochemical Exploration* 8:541-547. (1977)

A new method of extracting and concentrating ions from aqueous solutions in the field using ion exchange resins in teabags is described. Field extraction saves shipping costs and avoids problems with "aging" of water samples. Teabags are the only commercially available containers that fulfill the requirements for field use of resins. The resin used is Dowex 1 X8, converted to either the hydroxide or sulfate form and stored as batches of 50 teabags, 3g of damp resin per bag, in sealed polyethylene bags. Resin particles should be no smaller than 60-80 mesh, 20-50 mesh being the most convenient. Water samples are acidified to 1-2 pp, extracted, the teabags agitated and eluted. It is possible to determine U values of less than 0.1 ppb using this technique. The technique is useful in extraction from acid digests of lake sediments; Fe quench effects are essentially eliminated. The method also has application in other fields simply by changing the resin and reagents. (LHN)

<229>
Peters, G.I.

Méthodes Nucléaires Utilisées Pour la Prospection et l'Exploitation des Ressources Minérales non Pétrolières. CONF-691229; Nuclear Techniques for Mineral Exploration and Exploitation, Proceedings of a Panel, Krakow, Poland, December 8-12, 1969. International Atomic Energy Agency, Vienna, Austria, (pp. 37-57), 187 pp. (1971)

The applicability of nuclear borehole methods for non-petroleum mineral resources prospecting is now being recognized. The information obtained through these methods is an aid to geological studies for the discovery and evaluation of ore and mineral salt deposits. In general, the borehole methods for these types of investigation could be adapted from those most commonly employed in the petroleum industry. Nuclear borehole methods are based on one or more of the following techniques or disciplines: measurement of natural radioactivity, gamma-ray scattering, photo-neutron reactions, radioisotope X-ray fluorescence, thermal and fast neutron activation, fast neutron inelastic scattering, thermal neutron capture and cyclic activation. An analysis is given on the performance and limitations of the methods and their applicability for deposit prospecting of potash salt, coal and ores of low, medium and high atomic mass elements. (Auth)

<230>
Price, V., and R.B. Ferguson, Savannah River Laboratory, Analytical Chemistry Division, Aiken, SC

Preliminary Basic Data Release - Ground Water in Winston-Salem 1 Degree by 2 Degree STNS Area, North Carolina, Virginia, and Tennessee. GJBI-58(78); DPST-78-146-3; 95 pp. (1979, March)

Ground water samples were collected at 788 sites in the Winston-Salem STNS quadrangle for a nominal density of one site per 25 sq km. Uranium and other elements were determined by neutron activation analysis. Key data from ground water sites include (1) water quality measurements (pH, conductivity, and alkalinity) and (2) elemental analyses (U, Na, Cl, Mg, Al, Mn, Br, V, and F). Supplementary data include site descriptors, information about the collection of the samples, and analytical data for dysprosium. Maximum reported uranium concentration was 4.01 ppb, minimum reported value was 0.001 ppb and the mean value was 0.116 ppb. Standard deviation is 0.30. (PAG)

This report is a supplement to GJBI-66(77), DPST-77-146-1, which contained a geologic description of the area and analytical results for stream sediment samples.

<231>
Price, V., and P.L. Jones, Savannah River Laboratory, Analytical Chemistry Division, Aiken, SC

Orientation Study Data Release VI: Leesville, South Carolina Area. GJBI-61(78); DPST-78-141-1; 39 pp. (1978, March)

Water and stream sediment samples were collected from the upper Coastal Plain, Modoc Fault Zone, Kiowee Belt, and the Carolina State Belt. Cuttings were collected from water wells being drilled in the area. This report includes sample locality maps, uranium distribution maps, tables of water quality and field measurement data, and tables of uranium and other elemental concentrations. (PAG)

This paper presents only raw data. Field data are presented in two parts: Tables 1 and 2 contain a record of site description data and Tables 3 and 4 contain a listing of field analytical data.

<232>

EXPLORATION

<232>

Porter, J.D., and R.D. Warren, Los Alamos Scientific Laboratory, Los Alamos, NM

Uranium Hydrogeochemical and Stream Sediment Reconnaissance of the La Junta MTS5 Quadrangle, Colorado. Including Concentrations of Forty-Three Additional Elements. GJEK-41(79): La-7343-85; 182 pp. (1979, February)

Totals of 1351 water and 656 sediment samples were collected from 1532 locations. Water samples were collected from wells, streams, and springs; sediment samples were collected from streams and springs. The uranium concentrations in water range from below the detection limit of 0.02 ppb to 789.40 ppb, with a mean uranium concentration for all water types of 7.22 ppb. Five clusters of samples containing relatively high uranium values are defined; they are associated with the Dakota sandstone-Purgatoire formations, the Morrison formation, or alluvium near the Arkansas River. The cluster associated predominantly with the Morrison formation has the most favorable lithologic and structural setting for possible uranium mineralization. Sediments collected in this study have uranium concentrations that range between 1.60 ppm and 52.20 ppm, with a mean of 6.54 ppm. The majority of sediment samples with relatively high uranium concentrations were collected in four areas that are associated with either the Dakota-Purgatoire formations or the Graneros shale-Greenhorn limestone-Carlile shale formations. The cluster of samples containing the highest uranium values for sediments and the cluster containing the highest uranium values for waters are coincident and are located in the west-central portion of the quadrangle. (Keth) (PLG)

Appendix I-A: Listings of Field Data and Elemental Concentrations for Water Samples, Appendix I-B: Listings of Field Data and Elemental Concentrations for Sediment Samples, Appendix II: Histogram of Thorium Concentrations in Sediments, Appendix III: Summary of Standard Procedures and Codes Used and Key to the Sample Types Listed in Appendix I

<233>

Beede, R.L., Jr., Resource Associates of Alaska, Fort Collins, CO

Grover Uranium Deposit: A Case History of Uranium Exploration in the Denver Basin, Colorado. The Mountain Geologist 13(1):21-31. (1976, January)

In the northwestern portion of the Denver Basin, Weld County, Colorado, exploration was successful in the discovery of "Wyoming-type" solution front uranium deposits in sandstones of the Upper Cretaceous Fox Hills and Laramie formations. These deposits, although low in grade and small in size, varying from a few thousand to one million pounds of U3O8, are commercially significant due to price increases for uranium. The Grover uranium deposit, discovered in 1970, contains an estimated reserve of 1,007,000 pounds with an average grade of 0.14 percent U3O8. This deposit occurs in a medium- to fine-grained carbonaceous, feldspathic, fluvial, channel

sandstone of the Laramie Formation.

Exploration in the Grover area was guided by a system of radioisotopic log interpretations similar to that developed in the Powder River Basin, Wyoming. This system was used because alteration of the sandstone was not readily identified in well cuttings. Sand impact maps were also utilized to control exploration because mineralization was found to be related to changes in sand thickness. The configuration of the geochemical cell in the Grover area established that radioactive fluids moved in a northwest direction. Uranium precipitation was caused by the downward migration of oxygenated groundwater high in uranium content that moved through the Grover Sandstone, a highly carbonaceous, pyritic sandstone. (WAT)

<234>

Reynolds, R.L., and R.B. Goldhaber, USGS, Denver, CO

Recognition of Oxidized Sulfide Minerals as an Exploration Guide for Uranium. Journal of Research of the USGS 6(4):683-689. (1978, July)

The difference in color between oxidized and reduced sandstones has been used as an exploration guide for roll-type ore deposits. The grey zones of reduced sandstone as a rule contain pyrite and marcasite as skeletal to euhedral crystals and crystal aggregates, as interstitial cements, and as replacements and overgrowths of detrital Fe-Ti oxides and fossil vegetal matter. These are oxidized to limonite by groundwater during ore formation. Processes other than oxidation of sulfides, however, can cause reddening of clastic sediments without the creation of a redox boundary. Other sources include intrastatal alteration of Fe-bearing silicates and oxides and deposition of clay size ferric oxides. Therefore criteria for distinguishing ferric oxides and hydroxides formed by oxidation of Fe-sulfides are needed. Samples from 4 districts were tested: Morrison Formation (upper Jurassic), Graneros Shale, N.M.; Wasatch Formation (Eocene), Powder River Basin, WY; Whitsett Formation (Eocene), Kayes Co., TX; and Catoosa Shale (mid-Tertiary), Webb Co., TX. All except Morrison contain a roll-type ore body. Samples were studied as polished grain mounts and thin sections in reflected light. Diagnostic features of limonite from sulfide oxidation are: (1) limonite pseudomorphs after Fe-sulfides; (2) limonite from sulfidized plant debris; (3) limonite from sulfidized Fe-Ti oxide minerals showing retention of characteristic textures of the original detrital grain titanomagnetite (commonly has ilmenite along the $\{111\}$ crystallographic planes - sulfidization commonly leaves relicts of ilmenite lamellae with characteristic $\{111\}$ orientation); (4) characteristic internal textures in limonite indicative of oxidized sulfide cement (limonite formed by replacement of Fe-sulfide cement is characterized texturally by convolute patterns composed of intergrowths of different Fe-oxides and hydroxide phases - polished sections from 3 unmineralized sandstones reddened by intrastatal alterations show no convolute textures). At least two of these diagnostic features was found in each of the deposits studied. (LKH)

EXPLORATION

<235>

Rosar, R.J., (Comp.), and D.H. Baker, Jr., (Comp.), New Mexico State Bureau of Mines and Mineral Resources, Socorro, NM

Selected Papers from 1970 Uranium Symposia at Socorro, New Mexico. New Mexico State Bureau of Mines and Mineral Resources Circular 118; 61 pp. (1971)

Six papers presented at the symposium are published in this circular. Three papers present aspects of uranium exploration: 1) Uranium exploration in Southwest Texas, 2) Exploration Geology Methods in the Grants Mineral Belt, and 3) Hydrometallurgical Aspects of Mineral Exploration. The remaining three papers explore areas of uranium production: 1) The Beneficiation and Refining of Uranium Concentrates, 2) Production of Uranium Tetrafluoride and Uranium Metal, and 3) Microbiological Leaching of Uranium. (PAC)

Each paper has been abstracted and input separately.

<236>

Wood, R.E., Bendix Field Engineering Corporation, Grand Junction, CO

Preliminary Geologic Investigation of Uranium Favorability in the Red River Valley of North Dakota and Minnesota. GJRE-57(77); 12 pp. (1977, August)

A study was made of Precambrian through Upper Cretaceous rocks in a 20,000-sq-mi area of eastern North Dakota and western Minnesota to determine their favorability for uranium deposits. The study was confined to a review of literature, maps, and well logs. During most of post-Precambrian time, this area served as a transitional zone between the dominantly positive Canadian Shield to the east and the generally negative Williston basin to the west. Periodically, marine transgressions onto the shield margin resulted in the deposition of over-stepping or onlapping clastic wedges, which in places rest directly on eroded and highly weathered rocks of Precambrian age. Such onlapping units include the Deadwood Formation (Cambrian), the Winnipeg Formation (Ordovician), and the Inyan Kara Group (Cretaceous). There are no known uranium deposits in the project area; but the clastic onlapping units do contain thick, coarse-grained sandstones, varying amounts of organic material, and considerable detrital material from Precambrian crystalline rocks. They are believed to be relatively permeable, very widespread, and are not far from areas of anomalous uranium concentration in Precambrian rocks. It is postulated that uranium derived by weathering of the Precambrian rocks could have been transported westward in detritus or in solution in ground or surface waters. Solutions could have traveled through fractures in crystalline rocks or through permeable clastic rocks and uranium may have precipitated where favorable reducing conditions existed. Evidence of possible uranium favorability includes anomalous uranium concentrations, basic materials, and other evidence of the presence or former presence of uranium. (Auth)

<237>

Ruiz Reyes, J.A., Universidad Nacional Autonoma de Mexico, Facultad de Ingenieria, Mexico

La Exploracion Magnetica Como Guia Para Localizar Uranio. SP-20304; Ph.D. Thesis; 46 pp. (1978)

In the Hier area the magnetometer method revealed the contrast between the magnetic expression of the favorable horizon and adjacent layers, thus proving that the method has the possibility of detecting zones of oxidation in strata favorable to uranium deposits. The width of the zone of oxidation can be delimited in a fairly approximate way using this method. It is concluded that magnetometry is a good source of aid as a preliminary tool in regional surveys, thus helping radiometry to localize favorable zones in distinct types of lithology, and together with radiometry, can also be a means of delimiting hydrothermal zones which would be favorable for a deposit. Magnetometry can also be utilized when the objectives are placer deposits by locating the placers and focusing the drilling on these spots. (PAC)

<238>

Sachdev, S.C., Gulf Science and Technology Company, Pittsburgh, PA

Clay Minerals as Uranium Tracers for Roll Front-type Deposits. Proceedings of the Joint Annual Meeting of the Geological Association of Canada, the Mineralogical Association of Canada, and the Geological Society of America, Toronto, Ontario, October 23-26, 1978. The Geological Society of America, Boulder, Colorado, (p. 884), 531 pp. (1978)

The mineralogy of samples from five cores obtained across a uranium roll-front deposit in the Grants Mineral Belt, New Mexico, was determined. The ore body occurs in the Brushy Basin Member (Poison Canyon Sandstone) of the Morrison Formation (Late Jurassic), lies at redox interface in a structural depression, and is confined between fine-grained "sandstone" rock units. Detailed mineralogical, chemical, and textural data confirms some of the earlier suggestions that these sandstones are, in fact, the altered products of volcanic tuffaceous material. These rocks are composed primarily of montmorillonite clays having tobacco-leaf morphology, and are referred to as "beatonites" in this paper. The host sandstones contain scattered intercalations of non-montmorillonitic material in the form of clay galls, stringers, and lenses derived from bentonites. A second-generation authigenic cellular montmorillonite is also identified in the host rocks. Distinction between the two genetically different types of montmorillonites for quantitative purposes was made using scanning electron microscope, x-ray diffraction and size analysis. The cellular montmorillonite is most abundant in the oxidized zone and decreases toward ore and reduced zones. Authigenic chlorite has formed later than, and at the expense of, cellular montmorillonite; it is concentrated in the ore zone. Kaolinite in sandstones is the last clay mineral to form, and is most abundant in the reduced zone. The characteristic authigenic clay-mineral suites of different geochemical zones suggest these to be related to the ore-forming process; their use as uranium-tracers is apparent. (Auth.)

EXPLORATION

<239>

Sainsbury, C.L., T. Hudson, T. Kachadoorian, and T. Richards, USGS, Washington, DC

Geology, Mineral Deposits, and Geochemical and Radiometric Anomalies, Serpentine Hot Springs Area, Seward Peninsula, Alaska. USGS Bulletin 1312; Contributions to Economic Geology, 1969, (M1-212), 320 pp. (1969)

During 1968, detailed mapping of the Heisolt Creek and adjacent areas in the Serpentine-Kosgorok area was carried out as part of a program that included detailed geochemical studies and airborne geophysical surveys. An airborne magnetic and radiometric survey was made for the USGS by Lockwood, Kessler, and Bartlett, Inc. and several radiometric anomalies were outlined. None of the anomalies were checked in the field, but several factors were considered significant. First, although several broad anomalies within the granite tend to correspond to topographic highs, the area with the highest radiation lies along the southeastern edge of the granite in an area not checked in detail previously. The single uranium deposit known on the Seward Peninsula, at Brooks Mountain, about 80 miles west, consists of secondary uranium minerals that are associated with a lobe of granite. The similarity of geology and location of radiometric anomalies may be significant and recent work has shown the granite in the area may be a late-stage differentiator. Secondly, the radiometric anomaly does not coincide with known mineralized bedrock; hence, no direct correlation can be made between anomalies and ore deposits. And thirdly, all the anomalies occur above the granite or the orthogneiss, which suggests that radioactive accessory minerals may be the principal source of the radiation. The second and third factor tend to lessen the possible importance of the first factor. (JPG)

<240>

Shannon, S.S., Jr., Los Alamos Scientific Laboratory, Los Alamos, NM

Detailed Uranium Hydrogeochemical and Stream Sediment Reconnaissance of the Tallahassee Creek, Badger Creek, Castle Rock Gulch, and Buffalo Gulch Areas in the Northwestern Part of the Pueblo NM Quadrangle, Colorado. GJ81-42(79); LI-7593-HS; 109 pp. (1979, February)

A total of 62 water and 620 sediment samples was collected from 626 locations within four areas totaling 400 sq km in the northwestern part of the Pueblo quadrangle, Colorado. Water and sediment were collected from streams and springs at an actual density of one sample location per 0.65 sq km in the Tallahassee Creek, Badger Creek, Castle Rock Gulch, and Buffalo Gulch areas. Only 25 ground-water samples were collected. Mean uranium values for both water and sediment samples are highest for the Tallahassee Creek and Castle Rock Gulch areas. The ten spring samples collected from these two areas contain the highest mean uranium concentrations for both water and sediment and the highest U/Th ratios in sediment. Because the Tallahassee Creek conglomerate and Echo Park alluvium contain uranium orebodies, the association of high uranium content and high U/Th ratios with waters and sediments collected from springs is an indication that ground-water and spring sediments may be the most effective media for the detection of blind ore deposits. Most samples which contain high uranium values in both water and sediment from the Tallahassee Creek and Castle Rock Gulch areas have a provenance from granodiorite of Precambrian I age. The association of high uranium values with high U/Th ratios, especially in the Castle Rock Gulch area, indicate that granodiorite may be a source or even a host rock for uranium. Other units associated with a number of relatively high uranium concentrations in water or sediments are the Echo Park alluvium and the Tallahassee Creek conglomerate in the Tallahassee Creek area and the Badger Creek tuff in the Badger Creek area. High thorium values also are associated with both the Echo Park alluvium and Badger Creek tuff but not with the granodiorite. There may be uranium ore deposits in the Castle Rock Gulch area comparable to those already discovered in the Tallahassee Creek area because their geologic and geochemical settings are similar. High uranium concentrations and high U/Th ratios for sediments derived from granodiorite of Precambrian I age are indications that granodiorite may be an important major source of uranium in the Tallahassee Creek area. If so, the relatively high uranium values and high U/Th ratios might be useful guides to uranium ore in the Castle Rock Gulch area. (PAC)

Field and analytical data for each sample site in the Tallahassee Creek area are given for waters in Appendix A-I and for sediments in Appendix A-II. Similar data for the Badger Creek, Castle Rock Gulch, and Buffalo Gulch areas are given in Appendices B-I and B-II, C-I and C-II, and D-I and D-II, respectively. Appendices E-I, E-II, and E-III describe sampling and analytical procedures, codes used in the data listings, and provide a key to sample types in the data listings.

EXPLORATION

<281>

Sharp, R.E., Jr., and D.E. Hill, Los Alamos Scientific Laboratory, Los Alamos, NM

Uranium Hydrogeochemical and Stream Sediment Reconnaissance Data from the Area of the Teller, Bendeleben, Candle and Katsel River Quadrangles, Seward Peninsula and Vicinity, Alaska. GJBY-75(78); Li-6848-ES; 161 pp. (1978, May)

A total of 2026 natural waters and 2085 bottom sediments were collected from 2209 sample locations (at a nominal density of one location each 23 sq km) on streams and small lakes throughout the Teller, Bendeleben, Candle, and western one-third of the Katsel River BMS quadrangles, Alaska. Total uranium was measured in the waters by fluorometry and in the sediments and some few waters by delayed-neutron counting. The uranium content of the waters ranged from below the detection limit of 0.02 parts per billion (ppb) to a high of 14.50 ppb, averaging 0.88 ppb, and that of the sediments ranged from a low of 0.2 parts per million (ppm) to a high of 107.6 ppm, averaging 3.93 ppm. The areal distribution of uranium in surface water appears to depend strongly on the following factors: 1) local topography, 2) ground and surface water mobility and mixing, 3) distribution and solubility of uranium in the ground, 4) presence or absence of fault and fracture systems, and 5) water chemistry. Also, it may depend on the type and extent of vegetation and possible evaporative concentration. Ten of the 23 uranium occurrences reported within the area are associated with contoured clusters of water samples which contain relatively high (1-2 ppb) uranium contents. These are all associated with granitic or sialic rocks. The areal distribution of uranium in sediment appears much more simply related to the geology and known uranium occurrences. Two distinct-sized areas of increased uranium content in sediment are located in the Bendeleben and Candle quadrangles, 1a and around the Bendeleben and Darby Mountains in the former and around Hunter Creek and Granite Mountain in the latter. These areas are associated with granitic and associated sialic rocks, radioisotopic anomalies, and a corresponding increased uranium content in waters. (PAG)

<282>

Sharp, R.E., Jr., and D.E. Hill, Los Alamos Scientific Laboratory, Los Alamos, NM

Uranium Concentrations in Stream Waters and Sediments from Selected Sites in the Eastern Seward Peninsula, Koyukuk, and Charley River Areas, and Across South-Central Alaska. Li-6849-ES; GJBY-79(78); 43 pp. (1978, April)

During the summer of 1975, 517 water and 647 stream sediment samples from 591 locations, and bedrock samples, were collected from the eastern Seward Peninsula, from north of Koyukuk River, from the Charley River area, and from across south-central Alaska. The samples obtained were sent to the Los Alamos Scientific Laboratory (LASL) for analysis of uranium. The report contains the LASL uranium determinations by fluorometric analysis (the water samples) and delayed-neutron counting (the stream sediments) of the 1265 samples. The objective of the report is to make public the standard computer format of the uranium determinations used in 1972 Hydrogeochemical and Stream Sediment Reconnaissance reports, previously published and open-filed in a Geop. Junction Office (Department of Energy) publication - GJBY-28(77). Area uranium concentration overlays are also provided, which provides an explanation of differences between the uranium values for sediment as determined by acid dissolution/extraction/fluorometry and delayed-neutron counting. (HSH)

<283>

Sherrington, G.R., Geopko Limited, Chatswood, N.S.W. 2067, Australia

Some Aspects of Natural Gamma Radiation in Ore Search. Journal of Geochemical Exploration 8:325-335. (1977)

Natural gamma radiation from the decay chains headed by U-235, U-238, Th-232 and K-40 can be detected and measured by a variety of instruments. Hand-held total count scintillometers indicate a portion of the gross gamma radioactivity. Portable four-channel differential spectrometers allow some discrimination between contributions from the U, Th and K series. Similar discrimination is possible with downhole and airborne gamma-ray spectrometers. Laboratory spectrometers using high-resolution germanium detectors show the contribution of many individual isotopes. The most obvious and widespread use for all of these instruments is in exploration for U deposits. Deposits which are radioisotopically simple, such as Ranger 1, Northern Territory, need less complex instrumentation than deposits such as Mary Kathleen, Queensland, which has significant Th-232 series activity. Radiometric complexity is also caused by disequilibrium in the U decay series. Exploration for base metal deposits can also be assisted by gamma spectrometry. The weak radiometric expression can show character attributable to recognizable events (such as fission products) or can give an empirical pattern correlative with lithology. There is increasing attention being given to airborne gamma surveys as a guide to geological mapping. A current resurgence of interest in natural gamma applications is being assisted by the development of better, more compact instrumentation. (Huth)

<244>

EXPLORATION

<244>
 Simon, S.D., International Atomic Energy Agency, Vienna, Austria

Recognition and Evaluation of Uraniferous Areas. Atomic Energy Review 14(1): 187-191. (1976, March)

The migration and concentration of uranium depends primarily on its crystal chemistry and those of other elements that build up the earth's crust and provide framework of varying stability but suitable for the accommodation of the mobile uranium atom. Uranium has a cation/anion ratio with oxygen of 0.92, slightly higher than that characteristic for the ideal cubic coordination, typically represented in fluorite and pyrochlore type structures, which are the most favorable for accommodating the $U^{(4)}$ ion. Hexavalent uranium is the most awkward ion as far as atomic substitution in the crystal structures of minerals is concerned, being invariably found as the uranyl group, $UO_4^{(2-)}$, with dimensions of 2.68 angstroms \times 6.08-6.84 angstroms. Uranium possesses amphoteric or slightly alkaline properties and in both the quadrivalent and the hexavalent state has pronounced tendencies to form complexes with water, organic compounds and anions such as $CO_3^{(2-)}$, $PO_4^{(3-)}$, $AsO_4^{(3-)}$, $SiO_4^{(4-)}$, etc. Because of its peculiar crystal chemistry, uranium was concentrated in the earliest rock types, most probably first in a dispersed manner. It is also possible that preliminary concentration of uranium took place in melts subjacent to the primeval earth's crust, and during extrusions or post-extrusive hydrothermal activity this uranium had been appropriately introduced in the already existing rocks. Zirconium and uranium are concentrated in highly alkalic rocks, especially in syenites unsaturated with respect to silica. Zircon may include considerable amounts of uranium in its structure; $U^{(4+)}$ substituting for $Zr^{(4+)}$ in eight-fold coordination. The distribution of uranium in bedrock is being used as a guide to the recognition of potential uranium ore areas. This method gives an opportunity for the preliminary evaluation of the uranium-ore favorability of areas, but once a region with high uranium content in rocks is recognized, then more detailed studies must be undertaken to find out the other important features of that area and those adjacent to it, such as tectonic pattern and geochemical environment, which can help in selecting the best district for prospecting. Plate tectonic theory still has not found application in uranium exploration geology, and there is some doubt concerning the application of the theory to identify uranium ore provinces. A good exploration target for uranium is the areas built up by Precambrian rocks. It was reported that about 90 percent of uranium reserves occur in Precambrian rocks or in sediments immediately overlying a Precambrian basement, as in the case of the Colorado-Wyoming province. Favorable locations for uranium mineral formation are uplifted geoblocks within or outside Precambrian platforms that have been subject

to thermal reworking. The best example of this is the uranium deposits of the Colorado Plateau, an originally uplifted and thickened geoblock. Areas adjacent to or overlying oil deposits or evaporites are also considered as favorable uranium exploration targets.

Uranium deposits related to oil and gas-bearing structures are known in Texas, Wyoming, Utah, New Mexico and Oklahoma. There are often inclusions in minerals containing organic matter, gas, and oil. A very good technique for preliminary evaluation of uranium ore potential of areas is airborne gamma-ray spectrometry. (JMT)

<245>
 Skidmore, J.H., Union Mines Development Corporation, New York, NY

Preliminary Reconnaissance Survey of Idaho Placer Deposits. E800-81; 17 pp. (1944, March)

Seven major and minor Idaho auriferous gravel-bearing areas were examined for uranium. The Bergdorf, Elk City, Idaho City, Pioneville, Centerville, and Garden Valley districts are indicated as having some uranium mineralization. The Boise Basin area, where black sand concentrates were tested, was found favorable. The investigation showed that uranium is present in insignificant quantities - 10,000 lbs U3O8 is the estimated tonnage for the ten districts. (PA7)

<246>
 Soosavala, H.H., McGill University, Department of Mining and Geophysics, Montreal, Quebec, Canada

Data Processing Techniques for the Radon Method of Uranium Exploration. Canadian Mining and Metallurgical Bulletin 67(788):110-116. (1974, April)

Radon-222 is often used as a detecting agent in the exploration for uranium mineralization. Being the only gaseous isotope in the uranium-238 series, radon is endowed with a mobility not associated with the other members. Provided a satisfactory environment exists for its transportation, it can travel over distances larger than the normal gamma-ray range in solid materials, and thus its detection can enable one to detect the presence of mineralization covered with relatively thick overburden. The maximum depth of mineralization which can normally be detected with this method varies between 10 and 50 ft, and is thus a distinct improvement on the few inches possible with the gamma detection technique. The half-life of radon is 3.8 days. As a result of this, significant concentrations of radon cannot be encountered at too large a distance from the source. The radon technique is unique in that it is the only uranium exploration method, with the exception of established geochemical techniques, capable of giving some degree of depth penetration. (JMT)

HYDROXYLIC

<287>
Staatz, B.H., C.J. Becker, and C.L. Push, USGS, Denver, CO

Geochemical Prospecting for Thorium Veins by Stream-Sediment Sampling, Lemhi Pass Quadrangle, Idaho and Montana. USGS Professional Paper 750-C, Geological Survey Research 1971, (pp. C136-C140). (1971)

In an area that contains many thorium veins, 67 stream-sediment samples were collected to determine whether the thorium content of the samples would aid in locating the veins. The thorium content of most of the samples ranged between 6 and 70 ppb. The results obtained from the geochemical prospecting method were disappointing. Thorium from poorly exposed veins does not tend to collect in the sediments, and the most anomalous sample collected had a thorium concentration only 3 times the average background. The samples that were clearly above average background values came from streams that were a short distance below exposed veins; in two of the samples the stream actually cut across the toe of a mine dump on these veins. Thorium veins which have workings on ridges or which are covered with alluvium where they cross streams furnished only minor amounts of thorium to the stream sediments. (JET)

<288>
Taucher, L.H., Atlantic Richfield Company

Uranium Exploration in Southwest Texas. New Mexico State Bureau of Mines and Mineral Resources Circular 118; Selected Papers from 1970 Uranium Symposium at Socorro, New Mexico, R.J. Rossen and D.H. Baker, Jr., Compilers. (pp. 3-121, 61 pp. (1971)

Intensive exploration is being conducted along an arcuate band parallel to the Gulf Coast some 50 miles wide and 400 miles long, extending from the Mexican border at the Rio Grande River northeastward to the Trinity River north of Houston. The method of entrapment of uranium deposits in SW Texas is not fully understood. It is apparent that many accumulations are fault controlled and others appear to be deposited in channel sands. Hydrogen sulfide probably played a leading role in deposition where it was present in small structures and along faults. Reducing environments created in coaly sedimentary sequence probably promoted precipitation of uranium. Exploration methods employed in SW Texas include gamma-ray logging of wildcat, development and work over wells, water sampling, radon sampling, airborne radiometrics, photogeology, and other prospecting techniques. (PAG)

<289>
Thompson, D.T., Gulf Research and Development Company, Pittsburgh, PA

Geophysical Experiments at the Mariano Lake Uranium Orebody. AAPG Bulletin 63(4):695. (1979, April)

Several geophysical experiments were performed over the Mariano Lake orebody before mining began, including surface self-potential methods, surface-to-hole induced-polarization methods, and reflection seismic methods. These geophysical techniques are interesting from an exploration point of view, and they also provide some data which relate to our conceptual model of this orebody. Currents

generated in the productive formation by oxidation-reduction reactions do not generate measurable potential anomalies at the surface. Surface-to-hole induced-polarization measurements appear to be capable of detecting an oxidation-reduction front in the vicinity of an exploration borehole. Reflection seismic techniques can provide information concerning the paleostructure of the area. (BETH)

<290>
Tolmie, E.W., Atomic Energy of Canada Limited, Ottawa, Ontario, Canada

Portable Equipment for Cobalt-60 Neutron Activation and X-Ray Fluorescence Analysis. CANS-691229; Nuclear Techniques for Mineral Exploration and Exploitation, Proceedings of a Panel, Krakow, Poland, December 8-12, 1969. International Atomic Energy Agency, Vienna, Austria. (pp. 7-26), 187 pp. (1971)

Thermal neutron activation analysis and X-ray fluorescence analysis are practical, complementary techniques for analyzing mineral samples. By one or the other of these techniques most of the elements having atomic numbers greater than 8 can be analyzed, with sensitivity limits that are determined by interelement interferences in most cases. Radioisotope sources can be used to excite the radiations and, if it is necessary to measure silicon which is an important constituent of most rocks, a small radioisotope fast neutron source can be added to the system. Although each of the three means of excitation generally requires that a different kind of detection be used, the remainder of the system, comprising the data acquisition and computation facilities, can be shared. A mobile facility is described in which the data-handling facilities incorporate a small computer. Some details of the analytical techniques employed and the results obtained are given with brief comments on the economics of using such a facility in mineral resources exploitation. (BETH)

<291>
Trexler, P.L., Los Alamos Scientific Laboratory, Los Alamos, NM

Uranium Hydrogeochemical and Stream Sediment Reconnaissance of the Cheyenne Quadrangle, Wyoming. GJBX-106(78); LA-2737-45; 67 pp. (1978, June)

From 1493 locations in the Cheyenne quadrangle, 1138 water and 653 sediment samples were collected and analyzed for total uranium. The uranium concentration in waters ranged from 0.01 to 296.30 ppb, with a median of 3.19 ppb and a mean of 9.38 ppb. The uranium in sediments ranged from 0.3 to 93.0 ppb with a median of 3.6 ppb and a mean of 6.5 ppb. Twenty-three water samples above 56.50 ppb and twelve sediment samples above 18.0 ppb were considered anomalous. High uranium concentrations were detected in waters from the northeast corner of the Cheyenne quadrangle. Most wells in this area penetrate aquifers in the carboniferous Cretaceous Lance formation. Some deeper wells in the area may penetrate aquifers in the Wind River formation, which is known to be uraniumiferous in other parts of Wyoming. High uranium concentrations were detected in sediments from locations in the southern and central Laramie Mountains and along the southeast and east-central edges of the study area. (PAG)

REPORTS

<252>
Todegraff, D.E., University of Denver, Denver Research Institute, Denver, CO

The Relationship of Microorganisms to Uranium Deposits. AEC Research Contract Report 17(J5-1)-932; 73 pp. (1966, May 11)

Microbiological studies were carried out on 63 samples of uranite ore and associated sediments collected from three different areas: Grants, New Mexico; Gas Hills, Wyoming; and Gravel Area, Colorado. Some of the samples from each area were high grade uranite ore, and others were barren sediments collected nearby. The samples from Grants and Gas Hills were subjected to qualitative microbiological studies in 12 different kinds of culture media under both stationary and agitated aerobic conditions. Cultures were also made in three different culture media and incubated anaerobically. In an attempt to isolate all possible kinds of microorganisms present, media included nutrient broth, casein-yeast-glucose media, glucose-salts media, several kinds of FERROBACTERIUS and THIOBACILLUS media and Czapek's media for fungi. Each medium was incubated at 26, 30, 37 and 45 degrees C. The samples from the Gravel area were worked up by direct plating of dilutions in order to obtain quantitative counts, and pure cultures were isolated and studied as before. A total of more than 500 cultures was isolated and studied. The conclusions from these studies may be summarized as follows: (1) The samples contained remarkably few microorganisms, as well as very few different kinds of microorganisms compared to what would be found in surface soil samples. (2) Some samples contained no detectable microorganisms at all in a 1 gram sample. (3) Seventy-two percent of the pure cultures isolated belonged to the genus *FERROBACTER*. Other bacterial genera identified were *SACILLUS* and *STREPTOMYCES*. No obligate or facultative anaerobes were found. *FERROBACTERIUS* and *THIOBACILLUS* were not found. Fungi were found in occasional samples only. The most abundant genus was *FERROBACTER*. (4) There was no significant difference in flora between samples high in uranium and those low in uranium. (5) There is no indication from these studies that microorganisms can be used as a geomicrobiological prospecting tool for uranite, but it is likely that microorganisms had a good deal to do with the original migration and deposition of uranium. (Author) (JAT)

<253>
Van Eckhout, F.J., P.G. Warren, and D.E. Hill, Los Alamos Scientific Laboratory, Los Alamos, NM

Uranium Hydrogeochemical and Stress Sediment Reconnaissance of the Redfish and Mt. McKinley NTMS Quadrangles, Alaska, Including Concentrations of Forty-Three Additional Elements. GJB1-30(79); LA-7351-N; 210 pp. (1979, February)

Each of the 1270 water samples was analyzed for 13 elements, including uranium and each of the 1216 sediment samples was analyzed for 43 elements, including uranium and thorium. Uranium values in water samples from the combined Redfish and Mt. McKinley quadrangles ranged from below the detection limit of 0.02 ppb to 8.11 ppb, with a mean of 0.31 ppb. Generally, pond waters have substantially lower uranium contents than stream waters. Relatively high uranium concentrations in water are associated with four reconnaissance airborne radiometric anomalies reported for the Mt. McKinley quadrangle (the Redfish

quadangle had not yet been reported upon). Uranium values in sediment samples ranged from 0.25 ppb to 39.32 ppb, with a mean of 2.89 ppb. Generally, the uranium contents of pond sediments are substantially lower than those of stream sediments; this may be due to dilution of the inorganic component in a large fraction of pond sediments by highly organic-rich material. Three areas of high uranium concentrations in sediment are associated with geologic features which indicate potential uranium mineralization. These areas are in granitic rocks of the Susthite Hills and in Paleozoic metamorphic rocks marginal to the Santishna Hills mining district and to the exposures of the Mt. McKinley granodiorite in the Alaska Range. (Author) (PAC)

All field and analytical data are listed in the appendices; only uranium data are discussed in this report. Appendix I - Listings of Field Data and Elemental Concentrations for Samples from the Mt. McKinley quadrangle, Appendix II - Listings of Field Data and Elemental Concentrations for Samples from the Redfish quadrangle, Appendix III - Listings of Dissolved Oxygen in Waters from the Redfish and Mt. McKinley quadrangles, Appendix IV - Histograms and Statistical Data for Uranium Concentrations in All Water and All Sediment Samples from the Redfish and Mt. McKinley quadrangles, Appendix V - Histograms and Statistical Data for Thorium Concentrations in All Sediment Samples from the Redfish and Mt. McKinley quadrangles, Appendix VI - Standard Procedures, Codes, and Keys

<254>
VanAllstine, C.L., and D.L. Curry, AEC, Casper, WY

The Economics of Mining Uranium in Wyoming Sandstones. Wyoming Sandstone, D.L. Bayart (ed.), Proceedings of the 22th Field Conference, 1970, Wyoming Geological Association, Casper, WY, (pp. 45-50), 292 pp. (1970)

Uranium mining has been significant in Wyoming sandstone since the 1950's. The outlook is for continued important production for years to come. The principal known uranium deposits occur as rolls in sands of early Eocene, Paleocene, and Early Cretaceous age in districts such as the Gas Hills, Shirley Basin, Crook's Gap, Powder River Basin, and Northern Black Hills. The chief mining method has been the open-pit, although underground mining is likely to become increasingly important with discovery of progressively deeper deposits. Open-pit mining has definite advantages over underground mining, chief of which are lower costs and higher realization of ore reserves. However, stripping has a practicable depth limitation, presently about 600 feet, below which underground mining is usually less costly. The increase during the last decade of geological knowledge regarding the occurrence of roll-ore bodies in Wyoming has resulted in improvements in mining techniques, and has been especially helpful in exploring for, discovering, and eventually mining small ore rolls that might once have been left behind by underground mining operations. Minor uranium production has been obtained from in-situ leaching in the Shirley Basin district of Wyoming, but the process has not yet become competitive with conventional methods as an important mining method. (Author) (HWW)

EXPLORATION

<255>
Wagener, J.L., Lawrence Livermore Laboratory, Livermore, CA

Hydrogeochemical and Stream Sediment Reconnaissance Basic Data Report for Billett MTMS Quadrangle, Nevada. GJBR-39(79); UCRL-52641; 79 pp. (1978, December)

Wet and dry sediment samples, and water samples at available streams, springs, and wells were collected and analyzed for uranium by delayed neutron counting. Samples were divided into nine general rock types, according to the source rock from which the sediment was derived. The acidic volcanics and Tertiary clastics have the highest background uranium concentrations. Western assemblage sediments have moderate background uranium. Eastern assemblage sediments have the lowest background uranium concentrations. Uranium correlates best with the rare earths, hafnium, and thorium in most of the samples, suggesting that uranium exists predominantly in the resistate phase. Uranium is the best indicator of uranium mineralization. Water samples are best for identifying areas of known uranium mineralization, suggesting that the uranium is readily leachable in the deposits. Sediment samples containing the highest uranium concentrations occur near Tertiary rhyolite flows and silicic ash-flow tuff. Water samples having the highest uranium concentration are located near intrusive-metasedimentary contacts in the Toiyabe Range. Th/U ratios are used to differentiate anomalous and background uranium concentrations. Anomalous low Th/U ratios with greater than 5.0 ppm uranium are located near Tertiary silicic volcanics and near the Jurassic Austin Pluton in the Toiyabe Range. (PAG)

Appendix A - Data Organization and Definitions, Appendix B - Numerical Results of Reconnaissance Survey

<256>
Warren, R.G., D.E. Hill, and F.R. Sharp, Jr., Los Alamos Scientific Laboratory, Los Alamos, NM

Uranium Hydrogeochemical and Stream Sediment Reconnaissance Data from the Area of the Shishmaref, Kotzebue, Selavik and Shungnak Quadrangles, Northern Seward Peninsula and Vicinity, Alaska. GJBR-86(78); LA-6845-MS; 94 pp. (1978, May)

From 1356 streams and small lakes or ponds within the Shishmaref, Kotzebue, Selavik, and western portion of the Shungnak MTMS quadrangles in western Alaska 1336 water and 1251 sediment samples were collected. Both a water and sediment sample were generally obtained from each location at a nominal location density of one per 23 sq km. Total uranium was measured in waters by fluorometry and in sediments and some few waters by delayed neutron counting. Uranium concentrations in waters have a mean of 0.31 ppb and a maximum of 9.23 ppb, and sediments

exhibit a mean of 3.44 ppm and a maximum of 37.7 ppm. A large number of high-uranium concentrations occur in both water and sediment samples collected in the Selavik Hills, an area underlain by a large silicic pluton of the Hogatza alkaline series. At least two locations within the Selavik Hills appear favorable for further investigation of possible uranium mineralization. Also, a cluster of high-uranium sediments is seen in the Warieq Mountains. These sediments are probably derived from a lower Cretaceous conglomerate unit which is associated with known airborne radiometric anomalies. Apparently less favorable areas for further investigation of possible uranium mineralization are also located in the Warieq Mountains and Kiana Hills. (Bath) (PAG)

<257>
Warren, R.G., and H.P. Nunes, Los Alamos Scientific Laboratory, Los Alamos, NM

Uranium Hydrogeochemical and Stream Sediment Reconnaissance Data Release for the New Mexico Portions of the Hobbs and Brownfield MTMS Quadrangles, New Mexico/Texas. GJBR-103(78); LA-7182-MS; 61 pp. (1978, June)

A total of 1082 water and 914 sediment samples were collected from 1926 locations within the New Mexico portions of the Hobbs and Brownfield quadrangles. The area lies within the Great Plains geologic province and is characterized by nearly flatlying, undeformed strata. The Llano Estacado is a caliche-cemented surface developed on the Ogallala formation of late Miocene and Pliocene age. The Ogallala formation is about 30-60' thick and generally overlies the Triassic Dockum group; the latter consists of red mudstone and channel sandstone. Major petroleum production occurs from sandstones in the Permian section. Thick Permian evaporite deposits are mined commercially in the Carlsbad Potash District in the southwestern part of the area. At least four known uranium occurrences are associated with sandstone of the Dockum group; however, there has been no metallic mineral production within the area. The uranium concentrations in waters approximate a lognormal distribution with a mean of 4.73 ppb. The highest uranium concentration was 139.7 ppb. The water samples having the highest uranium content are from wells and ponds in the western and northwestern portion of the Brownfield quadrangle. Most waters containing greater than 20 ppb uranium were collected from areas in which the Dockum group underlies a thin veneer of surficial deposits, near the edge of the caprock, or from saline ponds. The uranium concentrations in sediments approximate a normal distribution with a mean of 2.18 ppm for the 914 sediment samples. The highest uranium value found in a sediment sample is 19.3 ppm. A cluster of seven sediments containing more than 3.0 ppm uranium is centered at 33 degrees 38 minutes N, 103 degrees 53 minutes W, where a uranium occurrence is reported at the Hoffacker test hole in the middle of the Dockum group. (PAG)

<258>

EXPLORATION

<258>

Weaver, T.A., W.L. Morris, and P.K. Trexler, Los Alamos Scientific Laboratory, Los Alamos, NM

Uranium Hydrogeochemical and Stream Sediment Reconnaissance of the Rawlins NMNS Quadrangle, Wyoming. LA-7179-MS; 6JBN-81(78); 73 pp. (1978, April)

During the spring and winter of 1976 and January and June of 1977, 570 natural water and 1281 waterborne sediment samples were collected from 1369 locations in the Rawlins, Wyoming, NMNS quadrangle. The samples obtained were analyzed at the Los Alamos Scientific Laboratory for total uranium. The uranium concentrations in waters ranged from less than 0.2 ppb to 448 ppb. The mean value was 6 ppb. The concentrations in sediments ranged from 1.2 ppm to 60.8 ppm, with a mean value of 4.1 ppm. Based on simple statistical analyses of these data, arbitrary anomaly thresholds were set at 50 ppb for water samples and 9 ppm for sediment samples. As a result, eleven water and 44 sediment samples were considered anomalous; 1 anomalous water and 25 anomalous sediments could be associated with four of the five major uranium occurrences in the quad. Only the Ketchum Buttes area did not show up in the data. Twelve minor reported occurrences could not be identified by the data. Eleven anomalous samples (8 water and 3 sediment) and 13 near-anomalous samples (10 water and 3 sediment) outline a broad area in the northeast corner of the quadrangle (the drainage area of the Medicine Bow River) where two airborne radiometric anomalies were discovered in an earlier study. (Auth) (MSB)

<259>

Wenrich-Voorbeek, K.J., USGS, Denver, CO

Uranium and Coexisting Element Behaviour in Surface Waters and Associated Sediments with Varied Sampling Techniques used for Uranium Exploration. Journal of Geochemical Exploration 8:337-355. (1977)

Optimum sampling methods in surface water and associated sediments for use in uranium exploration are being studied at thirty sites in Colorado, New Mexico, Arizona and Utah. For water samples, filtering is recommended to increase sample homogeneity and reproducibility because for most elements studied water samples which were allowed to remain unfiltered until time of analysis contained higher concentrations than field-filtered samples of the same waters. Acidification of unfiltered samples resulted in still higher concentrations. This is predominantly because of leaching of the elements from the suspended fraction. U in water correlates directly with Ca, Mg, Na, K, Ba, Sr, Li and As. In stream sediments, U and other trace elements are concentrated in the finer size fractions. Accordingly, in prospecting, grain size fractions less than 90 micrometers (170 mesh) should be analyzed for U. A greater number of elements (21) show a significant positive correlation with U in stream sediments than in water. Results have revealed that anomalous concentrations of U found in water may not be detected in associated sediments and vice versa. Hence, sampling of both surface water and coexisting sediment is strongly recommended. (Auth)

<260>

West, J.P., Union Mines Development Corporation, New York, NY

Report on the Southern Black Hills Mineral Area, South Dakota. RMOC-122; 69 pp. (1944, June 19)

The mineral deposits of the Southern Black Hills include a large number of pegmatites and a few gold deposits and lead-silver deposits. Sixty-eight pegmatites, one pyritic deposit, and two feldspar grinding plants were examined and reported on in the area. Of this number 7 pegmatites were found to contain uranium minerals in small quantities. The best prospect for uranium examined is the Bob Ingersoll mine which is estimated to contain between 500 and 2,000 pounds of recoverable U3O8. In all of the other 6 pegmatites in which uranium minerals found, the exposures indicate only a few pounds of recoverable U3O8. Hence the uranium reserves of the area are practically limited to those of the Bob Ingersoll mine, which are too small to warrant any special installation for their recovery. (Auth) (PAC)

Appendix A contains detailed descriptions of properties examined. Appendix B contains a list of samples, assays, and mineral identification. Appendix C contains mineral identifications by D'Arcy George of the New York Office.

<261>

West, J.P., Union Mines Development Corporation, New York, NY

Report on the Northern Black Hills Mineral Area, South Dakota. RMOC-123; 59 pp. (1944, March 20)

Twenty-six mines in the gold and silver mineralized area of the Northern Black Hills were examined for uranium minerals. Autunite and torbernite specimens have been contributed from this area in the past. Uranium minerals occur as rare accessory minerals in a few gold-silver replacement deposits, both in the primary ore and in the oxidized zone. It was concluded that no recoverable quantities of uranium could be produced from the area at that time and no further work should be done in the area. (PAG)

Appendix A contains a list of samples and assays. Appendix B contains detailed descriptions of properties examined.

EXPLORATION

<262>
 Winchester, J.W., University of Michigan,
 Department of Meteorology and Oceanography, Ann
 Arbor, MI

Activation Analysis in Mineral Prospecting.
 COSP-691229; Nuclear Techniques for Mineral
 Exploration and Exploitation, Proceedings of a
 Panel, Krakow, Poland, December 8-12, 1969.
 International Atomic Energy Agency, Vienna,
 Austria, (pp. 1-6), 187 pp. (1971)

Neutron activation analysis has earned a
 reputation as being one of the most sensitive
 and reliable methods for trace element
 determination in a wide variety of materials.
 In geologic applications, activation analysis
 is now the method of choice for obtaining
 high-quality analytical data for trace element
 composition of rocks and minerals. In this
 paper some of the current techniques of
 activation analysis are reviewed and some
 comments on the selection of geochemical
 problems relevant to mineral prospecting are
 presented. (JET)

<263>
 Zietz, L., B.C. Beara, Jr., H.W. Higgins, G.D.
 Robinson, and D.A. Swanson, USGS, Washington, DC

Interpretation of an Aeronagnetic Strip Across
 the Northwestern United States. Geological
 Society of America Bulletin 82:3347-3372. (1971)

This report discusses the results of an
 aeronagnetic survey bounded by latitudes 45
 degrees 30 minutes N. and 47 degrees N., and
 extending from the Rocky Mountains to
 approximately 120 miles offshore in the
 Pacific Ocean. East of the Rocky Mountains, a
 larger area has been surveyed in the Great
 Plains, bounded approximately by latitudes 46
 degrees 50 minutes N. and 48 degrees 10
 minutes N. and by longitudes 104 degrees W.
 and 110 degrees W. Throughout the area of the
 survey, the magnetic map is marked by
 conspicuous northeast and northwest anomaly
 trends, lineaments, and breaks in the anomaly
 pattern. Their regional distribution,
 over-all magnetic character, and geologic
 evidence suggest that they are major
 structural features in the basement rocks.
 The close correspondence of structural and
 geologic features in younger rocks with these
 basement magnetic and structural trends
 suggest that basement trends controlled or at
 least greatly influenced intrusion,
 deposition, and structural history of younger
 rocks. In some cases, evidence suggests that
 basement structures have been reactivated
 during later tectonic activity. Perhaps even
 more striking than the northeast- and
 northwest-trending features are large
 east-west magnetic discontinuities which, in
 some cases, extend completely across the strip
 to the edge of the shelf, and which, in some
 cases, can be correlated with large-scale
 discontinuities dating back to the
 Precambrian. (Auth)

Cited as a reference in NURE Contractor Reports.

MINERALOGY

<265>

Axelrod, J.H., F.S. Grimaldi, C. Milton, and K.J. Murata, USGS, Washington, DC

The Uranium Minerals from the Hillside Mine, Yavapai County, Arizona. *The American Mineralogist* 36 (1):1-21. (1951, January)

A small deposit of uranium minerals was found as coatings on gypsum on the 300-foot level of the Hillside Mine in Yavapai County, Arizona. The deposit was made up of schroekingerite along with several previously unknown minerals that have been named andersonite, swartzite, and bayleyite. These new species are, respectively, hydrous uranyl carbonates of sodium and calcium, of calcium and magnesium, and of magnesium, all of general formula $[UO_2(CO_3)_{3n}H_2O]$ where n represents respectively Na_2Ca , Ca_2 , and Mg_2 , and n , respectively, 6, 12, and 18. Analyses, optical data, x-ray patterns, and crystallographic data of these new species are given, with x-ray patterns of two naturally occurring dehydration products for bayleyite and swartzite. (JMT)

<265>

Barczak, V.J., Kerr-McGee Oil Industries, Inc., Oklahoma City, OK

Schroekingerite from Ambrosia Lake Uranium District. *The American Mineralogist* 51 (5-6):929-930. (1966, May)

Schroekingerite was found in the Kerr-McGee section 22 mine in McKinley County, New Mexico. The samples were encrustations on sandstone from a mine wall, with gypsum being the predominant mineral with lesser amounts of andersonite and schroekingerite. Another sample that formed on the metallic chisel of a light bulb contained the minor amounts of a zirconite-like mineral in addition to the above minerals. The schroekingerite described occurred as poorly developed crystals, typically around 10 microns in diameter, intimately mixed with the other minerals. Indices of refraction in white light are $\alpha=1.492$ and $\gamma=1.540$. (JMT)

<266>

Bowles, C.G., USGS, Denver, CO

Economic Implications of a New Hypothesis of Origin of Uranium- and Copper-Bearing Breccia Pipes, Grand Canyon, Arizona. USGS Circular 753; Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977, J.A. Campbell (Ed.), (pp. 25-27), 75 pp. (1977)

Uranium and copper ores have been found in the Grand Canyon from breccia pipes developed within Mississippian to Permian formations, including the Sedwall Limestone (Mississippian), Supai Group (Pennsylvanian and Lower Permian), and Hermit Shale (Lower Permian); weak mineralization occurs as well in the upper part of pipes within the lower Permian Coconino Sandstone, Toroweap Formation and Kaibab Limestone. Some breccia pipes formed during Mesozoic time, but collapse may have begun as early as Late Permian time. Other pipes apparently were formed during erosion of the Grand Canyon and may be as old as middle to late Cenozoic. Recurrent collapse has also occurred in the older breccia pipes. The breccia pipes in the Grand Canyon are generally believed to be either cryptovolcanic structures or collapse structures formed by solution of limestone by hydrothermal waters. Copper and uranium deposits in these structures are attributed to hydrothermal mineralizing solutions. The author, however, proposes that formation of the breccia pipes and primary mineralization resulted from low-temperature hypogene solutions that consisted either dominantly or entirely of artesian ground water, with secondary enrichment, either by supergene or mesogene solutions, causing the metals to be concentrated in medium- to high-grade orebodies. Canyon cycles of erosion strongly influenced or controlled the secondary enrichment. The typical mineralized pipe developed in four stages: (1) initial solution and collapse in the Sedwall Limestone; (2) stoping into the overlying Supai Group and alteration by bleaching and carbonate cementation; (3) continued stoping and primary mineralization, consisting predominantly of pyrite, chalcocite, and uraninite; and (4) secondary enrichment. Limestone solution and collapse within the Sedwall Limestone began during the Mesozoic when tilting of the Colorado Plateau permitted ground water to recharge the Sedwall. During the second stage, dissolution of the Sedwall extended the collapse structure into the Supai. Ground water probably contained dissolved hydrogen sulfide, bisulfite, and sulfide ions, as well as organic carbon and dissolved carbon dioxide. Primary mineralization of the pipe started the beginning of the third stage. Ground water carrying high valence copper and uranium ions then entered the pipe in the Supai causing the iron, copper, and uranium ions to be reduced, and pyrite, chalcocite, and uraninite were precipitated in the pipe above the point of recharge by aquifers in the Supai. The consequence of Grand Canyon erosion initiated the fourth stage, in which secondary enrichment of uranium and copper in a supergene or mesogene environment was accompanied by renewed collapse in the breccia pipe. Damsing of the Colorado River by lava flow in the western part of the canyon during the late Pliocene (?) may have contributed to the supergene development of the ores by establishing water tables at or below the extensive erosional surface. (JMT)

<267>

MINERALOGY

<267>

Bowyer, B., AEC, Washington, DC

Yellow Chief Uranium Mine, Juab County, Utah. Guidebook to the Geology of Utah, No. 17, (pp. 15-22). (1963)

The Yellow Chief Mine is located in central Juab County, Utah. Uranium ore was discovered there in 1953, and open pit mining began in 1959 by the Topaz Uranium Company. The host rock of the orebody is composed of a heterogeneous assemblage of poorly indurated fluvial material derived primarily from the erosion of older Tertiary volcanic rocks and secondarily from the erosion of carbonate and quartzite rocks of probable Paleozoic age. This assemblage has been classified as a massive, poorly sorted, conglomeratic, tuffaceous sandstone with a thickness of approximately 120 feet at the mine. The host rock is underlain by a water-laid tuff and by a bentonitic tuff. The mine is located on the north flank of a west- to southwest-plunging anticline. Stratigraphic relationships indicate the folded host rock has been faulted down at least several hundred feet relative to the older, adjacent volcanic rocks. The Yellow Chief mine ranks with those containing over 100,000 tons of ore. The grade of the ore is erratic and varies from ore body to ore body, as well as laterally and vertically within a single ore body. Beta-uranophane [$\text{Ca}(\text{UO}_2)_2(\text{SiO}_3)_2(\text{OH})_2(\text{H}_2\text{O})_5$] is the only known uranium mineral in the zone. It fills pore spaces in the sandstone and conglomerate and coats individual particles. Weeksite, a potassium uranyl silicate, occurs in a limestone conglomerate overlying the host rock, and shroeckingerite has been noted in veinlets in a nearby pit. The ore is in numerous lenticular layers confined to a block of the host rock over 2,000 feet long and 500 feet wide. The block is limited on its northwest and southeast sides by faults. The source of the uranium deposit has been suggested to be the uraniferous fluorspar at nearby Spot Mountain. It is believed that the Yellow Chief deposit was formed either by: (1) the erosion of uraniferous fluorspar bodies and the subsequent concentration of the uranium by vadose and ground waters in the permeable host rock, or (2) fluids rich in fluorine, uranium, and perhaps beryllium, which rose along fractures and faults from a magmatic source and deposited their uranium content in the host rock, probably as coffinite or uraninite, which later was altered to beta-uranophane. (JMT)

Cited as a reference in NURE Contractor Reports.

<268>

Brooker, E.J., and E.W. Muffield, Canada Geological Survey, Ottawa, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada

Studies of Radioactive Compounds: IV-Pitchblende from Lake Athabasca, Canada. The American Mineralogist 37(5-6):363-385. (1952, May)

Six specimens of pitchblende from the Lake Athabasca region of Canada were analyzed for their tetravalent and hexavalent uranium content and x-ray powder photographs were obtained before and after heat treatments. The cell edges of the pitchblende ranged continuously from 5.470 to 5.395 angstroms.

The decrease was due to oxygen entering interstitial positions in the UO_2 structure with a consequent change of tetravalent uranium to the smaller hexavalent uranium ion. The lowest cell edge represents a composition of near $\text{UO}_2.6$; the solid solution range of laboratory prepared cubic oxides ceases at about $\text{UO}_2.2-2.3$. Oxidation is not uniform throughout a pitchblende specimen and this together with a reduction in grain size results in low definition in the powder pattern. The term metastaite is not applicable in this connection. The cell dimensions of U_3O_9 increase as oxygen enters the structure. (Auth)

<269>

Butler, J.R., and E. Hall, Imperial College, Department of Geology, Pure Geochemistry Section, London, England

Chemical Characteristics of Davidite. Economic Geology 55(7):1541-1550. (1960, November)

Twelve davidites from several localities and of different parageneses were analyzed for uranium and individual rare earths. Davidite is a titanate of iron with rare earth elements and uranium as essential constituents, and vanadium and chromies as common accessory constituents. The abundance of the total lanthanans exceeded that of yttrium, and the distribution of the individual lanthanans was similar for all specimens analyzed. Both the heavy and light lanthanans were more abundant than the medium lanthanans. Lanthanum generally exceeded cerium and it can exceed the sum of the remaining lanthanans. (Auth) (JMT)

<270>

Chase, A.B., and J.A. Ossmer, Aerospace Corporation, El Segundo, CA

Synthesis of Thorianite Crystals from Bismuth Oxide-Lead Fluoride Melts. The American Mineralogist 49(10):1869-1871. (1964)

The growth of large thorianite crystals by long continued fusion of ThO_2 is discussed. ThO_2 crystals can be readily synthesized from $\text{PbO-}\text{Pt} \cdot 2$, $\text{Bi}_2\text{O}_3\text{-PbF}_2$, and PbF_2 flux systems. The melts from which the largest ThO_2 crystals were grown contained 7 mole per cent ThO_2 , 15 mole per cent Bi_2O_3 , and 78 mole per cent PbF_2 . Melts containing 13 mole per cent ThO_2 and 90 percent PbF_2 also produced large crystals. The crystals obtained from a typical melt ranged from 2 to 6 mm, with the largest crystals occurring on the bottom of the crucible. The crystals also occurred on the top surface of the melt and attached to the walls of the crucible. Typically, the crystals were subhedral with (100) being the dominant habit. Microscopic examination revealed the outline of dendrites within some of the crystals. The arms of the dendrites extended along (111) directions. The material outlining the dendrites is finely divided and appears to be flux that was trapped during growth. The crystals are usually colorless and appear to be of good optical quality. It has been found that crystals grown by this technique are easily doped with the rare earth sesquioxides and UO_2 . (JMT)

MINERALOGY

<271>

Chernikov, A.A., G.A. Sidorenko, and A.A. Valsyev

New Data on Uranyl Minerals in the
Ursilite-Weeksite Group. International Geology
Review 20(11):1347-1356. (1978, November)

The uranyl silicates include a large group of minerals in which the U/Si ratio is less than one. Included in this group are urasilite, calcium urasilite, magnesium urasilite, gautierite, ranoquinite, parafan, haiveelite, and weeksite. The three urasilites are formed in the final oxidation stages of uranium ore, with calcium urasilite being the most common, since it occurs in the oxidation zone of granites, quartz porphyries and limestones. Urasilite and magnesium urasilite has been found only in the oxidation zone of a quartz porphyry. Weeksite and haiveelite have also been found in very restricted amounts in granites and quartz porphyries, as well as in Quaternary drifts. Gautierite has not been found in the Soviet Union, but the mineral does occur in Arizona and Texas as radiate-fibrous aggregates in chalcedony and in cavities in tuff-lavas, as well as in the form of pseudomorphs after uraninite in close association with sulfumite, vanadinite, cuprite, lisonomite, uranophane, and stilodorskite. Ranoquinite is similar to one of the calcium urasilite specimens and occurs in Argentina in association with calcite, gypsum, and lisonite. (JST)

<272>

Christ, C.L., and J.R. Clark, USGS, Washington, DC

Crystal Chemical Studies of Some Uranyl Oxide
Hydrates. The American Mineralogist
45:1026-1061. (1960, September)

Mineralogical and crystal-chemical studies were made of the closely related uranyl oxide hydrates, bequerelite, billietite, foenarielite, sassoyite, schoepite, and vanadadiesscheite. Carefully selected single crystals were used to determine accurately the crystallographic constants, the symmetry, and the structural relations of the minerals. The results obtained on the physical properties, the x-ray crystallography, the x-ray powder data, and the optical properties are listed and compared with the work of other investigators in the 23 tables of this paper. (JST)

<273>

Christ, C.L., J.R. Clark, and R.T. Evans, Jr.,
USGS, Washington, DC

Crystal Structure of Rutherfordine, UO₂CO₃.
Science 121:872-873. (1955, April 1)

Crystals of the mineral rutherfordine, UO₂CO₃, used in this study were pale yellow to brown and lathlike along [001], with large {100} and somewhat less dominant {010}. Cleavage parallel to {010} is perfect. Precession and Weissenberg patterns yielded the following data: orthorhombic, space group - Pm2_(sub 1)n [C_(sub 2)2_(sub 7)] or Pmn [D_(sub 2)2h13]; cell contents, 2UO₂CO₃; $a = 4.84$ plus or minus 0.010 Å; $b = 9.20$ plus or minus 0.008; $c = 4.29$ plus or minus 0.006; density (calculated) = 5.78 g/cubic cm. All of the observed reflections obeyed the criterion $h+k+l=2n$, except a very weak set that appears only on strongly exposed photographs; for this set when $h+k=2n$, $l=2n+1$, and when $h+k=2n+1$, $l=2n$. (JST)

<278>

Cohenour, R.E., Utah Geological and Mineralogical
Survey, Salt Lake City, UT

The Beryllium Belt of Western Utah. Guidebook to
the Geology of Utah, No. 17, (pp. 8-7). (1963)

The "Beryllium Belt" of western Utah is 15 miles wide and extends 60 miles between the Sheeprock Mountains and the Honeycomb Hills. In the Sheeprock Mountains, beryl is widely disseminated as granules and rosettes within the "white facies" of the Sheeprock granite. Uranium and fluorine minerals are present as thin, non-commercial vein fillings in sheared granite along the south flank of the range. The next beryllium occurrence is in the topaz rhyolite of Topaz Mountain in the southern part of the Thomas Range. minute crystals of pink beryl are associated with the topaz dispersed in the rhyolite which is of Tertiary age. Non-commercial traces of uranium minerals are present on the east side of the mountain and commercial amounts are found in the Yellow Chief Mine on the east flank of Spot Mountain. The Honeycomb Hills lie on the western end of the belt and contain sparse amounts of beryllium, uranium, and fluorine minerals. The parent mass is principally Tertiary rhyolites, both flows and pyroclastics. Portions of the flow contain an abundance of lithia. (JST)

Cited as a reference in NURE Contractor Reports.

<275>

Cohenour, R.E., Utah Geological and Mineralogical
Survey, Salt Lake City, UT

Beryllium and Associated Mineralization in the
Sheeprock Mountains. Guidebook to the Geology of
Utah, No. 17, (pp. 9-13). (1963)

The Sheeprock Mountains are principally composed of tilted Precambrian and Paleozoic rocks which have been folded and overridden by thrust blocks. The mountain mass was subsequently intruded by monzonite and granite. Beryllium, in the mineral beryl, was first discovered in the Sheeprock granite in the early 1940's. The beryl occurs in thin veinlets and as disseminated particles and nodular replacements in the Sheeprock granite. The beryl-bearing granite is of lighter color than the surrounding granite and is referred to as the "white facies". Associated with the beryl are fluorite, chalcopyrite, pyrite and sanguine, and locally, uraninite. (JST)

Cited as a reference in NURE Contractor Reports.

<276>

MINERALOGY

Curtis, L., Urangessellschaft Canada Limited, Toronto, Canada

Uranium in Volcanic and Volcano-Sedimentary Rocks. Proceedings of the Joint Annual Meeting of the Geological Association of Canada, the Mineralogical Association of Canada, and the Geological Society of America, Toronto, Ontario, October 23-26, 1978. The Geological Society of America, Boulder, Colorado, (pp. 384-385), 531 pp. (1978)

Comparative data from deposits and prospects of uranium in volcanics or their volcano-sedimentary derivatives reveal similarities which are attributed to a common genesis. The uranium occurrences have a worldwide distribution and range in age from Proterozoic to Quaternary. They are characterized by the geochemical association of U-7 or U-8a-7 and have high U/Th ratios. Above average amounts of Pb, Ba, Zn, Sr, Ti, Cr, and P may also be present. The associated volcanics and tuffs are generally though not exclusively acid in composition. Magmatic intrusives may contain anomalous amounts of Ba, U, Zn and Sr. The uranium is also concentrated within fluvial sediments intercalated with the volcanics or subaqueous sediments peripheral to the volcanic centers. Uranium is concentrated in permeable or structurally disrupted zones within these hosts and in some instances has been remobilized and in others concentrated by supergene processes. A wide spectrum of deposits is developed in this environment, ranging from proximal synvolcanic hydrothermal types, to more distal deposits contained within tuffaceous or clastic sediments. The uranium is considered to be of magmatic origin, transported by U and CO₂ rich low to moderate temperature hydrothermal fluids which have percolated through the volcanic pile. Additional uranium may have been scavenged during transport of these fluids or during metasomatism. Submarine venting of such fluids may also have provided a source for more distal varieties contained within reducing sedimentary facies. These facies are often rich in sulphur or pyrite and precipitation of uranium may have been influenced by H₂S exhalation. The deposits are small, containing 1000 to 10,000 tons U₃O₈ and although neglected will become increasingly more important as exploration targets. (Auth)

<277>

Deliens, H., Bureau Royal de l'Afrique Centrale, Département de Géologie et de Minéralogie, Tervuren, Belgique

Review of the Hydrated Oxides of U and Pb, with New X-Ray Powder Data. Mineralogical Magazine 51:51-57. (1977, March)

New X-ray powder data are presented for vendendriesschite, fourquierite, masuyite, and volvendorfite. Literature data on the known U-Pb hydrated oxides is reviewed and suitable criteria for their distinction are set forth. (Auth)

<278>

Dyakov, Yu. L., and N.G. Bazarova

Coffinite and the Nature of Pitchblende Pseudocrystals. Geochemistry 6:348-358. (1962)

Pitchblende pseudocrystals and coffinite from the Radzyne Mountains were examined by mineralogical and X-ray methods. The pitchblende pseudocrystals were found to be isotopic coffinites or pseudomorphs of pitchblende or "hydrocosteans" after coffinite. The possibility of the existence of various intermediate compounds in the uranium oxide-uranium hydroxide-uranium silicate series is considered. (Auth)

<279>

Emerson, D.O., The Pennsylvania State University, Department of Mineralogy, University Park, PA

Secondary Uranium Minerals at the W. Wilson Mine near Clancy, Montana. E.S. Thesis; 73 pp. (1955, June)

Meta-autunite, meta-uranocircite, meta-torbernite, meta-zirconomite, uranophane, beta-uranophane, phosphoranylite, gummite, and an unknown mineral were found in the W. Wilson Mine, near Clancy, Montana. Pitchblende was the primary uranium mineral in the deposit, and it was altered and leached by ground water to form the secondary minerals. The secondary minerals show a distinct zonation about primary uranium concentrations. Compositional variations in the solutions from which these minerals were precipitated, together with the differences in solubility of the secondary minerals is thought to have caused the zonation. No conclusive evidence as to the possible role of supergene enrichment in the secondary uranium deposition could be found, but the apparent limited movement of most of the secondary uranites from a primary uranium source suggest that enrichment by supergene solutions was not a major factor. (JET)

<280>

Emerson, D.O., and R.D. Wright, The Pennsylvania State University, University Park, PA

Secondary Uranium Minerals at the W. Wilson Mine in the Boulder Batholith, Montana. The American Mineralogist 42:222-239. (1957)

Secondary uranium minerals found in the W. Wilson mine, near Clancy, Montana, include meta-autunite, meta-uranocircite, uranophane, beta-uranophane, phosphoranylite, gummite, and an unidentified mineral, possibly a complex uranium silicate. Uraninite in the "siliceous reef" deposit has been leached and altered by ground water to form the secondary minerals. The deposition of autunite and torbernite as the meta-I hydrate, apparently at normal ground water temperatures, would appear to lower the range of temperature stability previously reported for these minerals. Isosomorphic substitution among the four minerals of the meta-torbernite group may be responsible for this difference in stability. Although isostructural with uranophane, the W. Wilson material of this composition has minor discrepancies in its optical character which may be due to the extra Cu, Ba, or Pb in the mineral. (Auth)

MINERALOGY

<281>

Brickman, R.P., University of Utah, Salt Lake City, UT

Volcanic Geology at Western Juab County, Utah. Guidebook to the Geology of Utah, No. 17, (pp. 23-35). (1963)

Volcanic flows, ignimbrite layers, and air-fall pyroclastics of rhyolitic, latitic, andesitic, and basaltic composition are widely distributed in western Juab County. In four separate areas, eruptive centers can be recognized or inferred and each center appears to have supplied most of the volcanic material in the area in which it is located. The four areas of volcanic rocks are separate, elevated physiographic units, with intervening lower portions of valley fill. They constitute the Thomas Range, the Keg Mountains, the Honeycomb Hills, and Puerole Butte. Several volcanic units of different ages are found in the region though no one area contains all units. Some units are widespread and others are more localized. In some cases the apparently widespread units may have been erupted contemporaneously from different vents. The volcanic series rest, with marked angular unconformity, on Paleozoic sedimentary rocks. They have not participated in the general folding which affected the Paleozoic and Mesozoic rocks of the region and therefore are post-Mesozoic in age. Within the volcanic series there are distinct unconformities which indicate erosion intervals of long duration between some of the units. Inferences based on comparisons with other nearby areas, topographic evidence, and relationships with Quaternary gravels and lake deposits indicate ages of early Tertiary, late Tertiary, and Quaternary for different units of the volcanic series. (JHT)

Cited as a reference in BURE Contractor Reports.

<282>

Pinket, F.C., and B. Heyrowitz, USGS, Washington, DC

Brockite, a New Calcium Thorium Phosphate from the Wet Mountains, Colorado. The American Mineralogist 47:1346-1355. (1962, November)

Brockite, a calcium thorium phosphate mineral from the Wet Mountains of Colorado, is found as massive reddish aggregates and as earth yellow coatings in veins and altered granitic rocks. The mineral is similar in composition to grayite, but it corresponds in hexagonal symmetry to rhabdophane. Brockite is a red-brown to pale yellow, translucent mineral with a greasy luster and a specific gravity of 3.9 plus or minus 0.2. In transmitted light it is moderately birefringent or opaque due to hematite stain, uniaxial (+), with parallel extinction and positive elongation: $\nabla=1.680$ plus or minus .002; $\epsilon=1.695$ plus or minus .002. The formula is $\text{Ca}(\text{sub} 0.83)\text{Sr}(\text{sub}$

0.03)\text{Ba}(\text{sub} 0.02)\text{Th}(\text{sub} 0.41)\text{RE}(\text{sub} 0.11)(\text{PO}_4(\text{sub} 0.83)(\text{CO}_3)(\text{sub} 0.17)\text{J}0.9\text{Si}20; \text{Zr}3. An analysis of the rare earth content shows an unusually high proportion of $\text{Nd}203$ with respect to $\text{Ce}20$, $\text{La}203$, and $\text{Y}203$. The low ratio $\text{Ce}/(\text{La}+\text{Nd})$ of 6.58 is believed to reflect the formation of brockite under oxidizing conditions. The x-ray diffraction pattern is nearly identical to that of rhabdophane; thus distinct from grayite, which is pseudohexagonal. The cell dimensions are $a=6.98$ angstroms, $c=6.48$ angstroms, $V=270$ cubic angstroms. Upon heating brockite acquires a sonazite-type structure, with spacings close to those of cheralite. (Ruth) (JHT)

<283>

Frondel, C., Harvard University, Cambridge, MA

Mineralogy of Uranium. The American Mineralogist 42(3-4):125-132. (1957, March)

Approximately 70 different minerals are known that contain uranium as an essential constituent. Only a few of these elements are important as ores of the element. Uranite is the most important ore mineral of uranium. Its ideal chemical composition is uranium dioxide (UO_2), but typically variable and often large amounts of hexavalent uranium ions are found in the mineral. Coffinite, a silicate of tetravalent uranium, is widespread in the unoxidized deposits of the Colorado Plateau. It is isostructural with zircon and a member of the nesosilicate group. (JHT)

<284>

Frondel, C., Harvard University, Cambridge, MA

Studies of Uranium Minerals (II): Saleeite and Novacelite. The American Mineralogist 36:680-686. (1951)

Novacelite, from Schneeberg, Saxony, has the composition $\text{Ug}(\text{UO}_2)2(\text{NaO})2-\text{H}_2\text{O}$ and it probably forms a complete series to the phosphate analogue, saleeite. Analyzed material with As:P approximately 1:1 is tetragonal with $a(\text{sub} 0)=7.12$ angstroms, $c(\text{sub} 0)=20.18$ and gravity of 3.3. Optically this material, like other members of the series, has an anomalous biaxial negative with $\text{nx}=1.620$, $\text{ny}=2=1.637$, $2V=0$ to 15 degrees; gravity 3.6. An analysis is given of a new occurrence of saleeite, $\text{Ug}(\text{UO}_2)2(\text{PO}_4)2-\text{H}_2\text{O}$, at Mina da Quarta Seira, Sabugal, Portugal; tetragonal with $a(\text{sub} 0)=7.01$ angstroms, $c(\text{sub} 0)=19.86$; biaxial negative with $\text{nx}=1.565$, $\text{ny}=1.582$, $\text{nz}=1.595$, $2V$ is approximately 65 degrees and ϵ greater than ν . Saleeite from Shinkolobwe, Belgian Congo, has $a(\text{sub} 0)=7.02$ angstroms, $c(\text{sub} 0)=19.81$; $\text{nx}=1.554$, $\text{ny}=2=1.571$, $2V=0$ to 10 degrees. Novacelite and saleeite closely resemble and are isostructural with fully hydrated actunite. The indices of refraction vary with the content of zeolitic water within the limits of stability of the fully hydrated phase. (Ruth) (JHT)

<285>

MINERALOGY

<285>

Frondel, C., Harvard University, Cambridge, MA; USGS, Washington, DC

Mineral Composition of Gunnite. *The American Mineralogist* 41(7-8):539-550. (1956, July)

The name Gunnite has been widely used for more than 100 years as a generic term to designate fine-grained yellow to orange-red alteration products of uraninite. A study of about 100 specimens of Gunnite from world-wide localities was made by γ -ray, optical and chemical methods. Almost all of the specimens were identified as already known uranium minerals. Typically, Gunnite occurs as an alteration product of uraninite crystals in pegmatite. Such specimens usually show a characteristic sequence of alteration products: (1) A central core of black or brownish-black uraninite. (2) A surrounding zone, yellow to orange-red, composed chiefly of hydrated lead uranyl oxides. (3) An outer silicate zone. The second zone constitutes traditional Gunnite. Chemically the formation of the orange-red Gunnite zone is characterized by oxidation of tetravalent uranium to hexavalent uranium and hydration. There is usually little or no addition of material other than H_2O at this stage, but leaching of uranium relative to lead may be a factor. The outermost silicate zone is due to reaction of the hydrated oxides of Gunnite zone with meteoric or possibly hydrothermal waters carrying silica and usually also calcium. The Th and rare earths contained in the original uraninite are usually completely removed during the formation of the silicates. (JNT)

<286>

Frondel, C., Harvard University, Cambridge, MA

Hydroxyl Substitution in Thorite and Zircon. *The American Mineralogist* 38:1007-1018. (1953)

The thorite-like minerals, thorogunnite, nicolaysite, hydrothorite, saitlandite, mackintoshite, and hybilite, were found to be minor chemical variants of a single phase, for which the name thorogunnite has priority. Thorogunnite is isostructural with thorite and has the same unit-cell dimensions. It differs in being secondary in origin, in being formed by the alteration of primary thorite minerals including thorite itself, in occurring as fine-grained aggregates that are not metasitic but crystalline, and in containing essential water. Chemically, thorogunnite seems to be a hydroxy-containing variant of thorite, ThSiO_4 , in which there is a serial substitution of $(\text{OH})_4$ for SiO_4 with the formula $\text{Th}(\text{SiO}_4)_{1-x}(\text{OH})_x$. Cryotolite has an analogous relation to zircon. (JNT)

<287>

Frondel, C., Harvard University, Cambridge, MA

Studies of Uranium Minerals (V): Phosphuranylite. *The American Mineralogist* 35:756-763. (1950)

An ill defined uranium mineral, phosphuranylite, until now known only from North Carolina is re-described from twelve new localities. Phosphuranylite is isostructural with devindite, $\text{Pb}_3(\text{UO}_2)_5(\text{PO}_4)_4(\text{OH})_4$ -10 H_2O , and its ideal formula is presumed to be $\text{Ca}_3(\text{UO}_2)_5(\text{PO}_4)_4(\text{OH})_4$ -10 H_2O . Analyses show much less calcium than required by this

formula. It occurs as dense, golden yellow films composed of microscopic rectangular plates, and is found principally in the weathered zone of pegmatites containing uraninite. Crystallization is tetragonal or orthorhombic. Phosphuranylite is optically negative with somewhat variable indices: $\text{N}1=1.660$ to 1.690 (colorless to pale yellow), $\text{N}2=1.656$ to 1.728 (golden yellow), $\text{N}2=1.698$ to 1.728 (golden yellow); $2V=0$ to 35 degrees. Lead substitutes for calcium in some varieties with accompanying increase in indices of refraction. (JNT) (JST)

<288>

Frondel, C., Harvard University, Cambridge, MA

Studies of Uranium Minerals (VII): Sabugalite, an Aluminosilicate. *The American Mineralogist* 36:671-679. (1951)

Sabugalite is a member of the astnauite group and it has a composition of $\text{Na}_1(\text{UO}_2)_4(\text{PO}_4)_4\text{-16H}_2\text{O}$. It is a secondary mineral found associated with meta-astnauite, galosite, and phosphuranylite. Sabugalite occurs as crests of yellow platy crystals with perfect cleavage {001}, a hardness of $2\frac{1}{2}$, and a gravity of 3.20. Optically, air dried sabugalite has an anomalous biaxial negative character with $\text{N}1=1.564-1.565$ (colorless), $\text{N}2=1.581-1.583$ (yellow), $\text{N}2=1.582-1.584$ (yellow), and $2V=0$ degrees to moderate. X-ray study indicates a tetragonal cell with a $a_{\text{sub} 0}=6.96$ angstroms, $c_{\text{sub} 0}=19.3$; $a_{\text{sub} 0}:c_{\text{sub} 0}=1:2.773$. Sabugalite is isostructural with fully-hydrated astnauite, $\text{Ca}_2(\text{UO}_2)_4(\text{PO}_4)_4\text{-16H}_2\text{O}$, with $\text{Al}^{+++}+\text{H}^+=2\text{Ca}^{++}$. Sabugalite breaks down between 68 and 101 degrees to a new phase which is isostructural with the artificial meta-II hydrate of astnauite. The water content of the fully-hydrated and meta-II hydrates of sabugalite varies zonally with accompanying variation in the indices of refraction. (JNT)

<289>

Frondel, C., Harvard University, Cambridge, MA

Studies of Uranium Minerals (I): Parsonsite and Bandite. *The American Mineralogist* 35:205-250. (1950)

Parsonsite, $\text{Pb}_2(\text{UO}_2)_5(\text{PO}_4)_2\text{-2H}_2\text{O}$, from the Ruggles pegmatite of New Hampshire and from Wolsendorf, Bavaria is described. The New Hampshire material occurs as crusts of microscopic monoclinic crystals that are elongated on [001] and flattened on [010], with [001] as the terminal face and beta equaling 99 degrees. The Parsonsite is citron-yellow in color, with a hardness of $2\frac{1}{2}$ to 3, a specific gravity of 5.37, and a $c_{\text{sub} 0}$ of 6.8 angstroms. Analysis gave PbO 47.43, UO_3 34.68, P_2O_5 18.46, and H_2O 3.63 for a total of 100.00 after the deduction of 5.64 percent quartz. The indices of refraction vary with the water content; most crystals having $\text{N}1$ of about 1.670, $\text{N}2$ of approximately 1.690, and an angle of extinction of approximately 19 degrees. Bandite, originally described from Philadelphia, Pennsylvania, in 1918 as a carbonate of calcite and uranite is described as a mixture consisting principally of calcite and beta-uranite with some tytanumite. (JNT)

MINERALOGY

(290) Prondel, C., Harvard University, Cambridge, MA

Studies of Uranium Minerals (I): Uranopilitite. *The American Mineralogist* 37:950-959. (1952)

The status of a number of natural uranium sulfates that have been reported in the literature is reviewed. Of the nineteen different names given as species or generic designations for uranium sulfates, only three (johannite, zeppeite, and uranopilitite) can be adequately defined on the basis of existing data. Of the remaining sixteen reported uranium sulfates (Alpha-uranopilitite, Basichesche Schneefelsaurer Uranosynd, Basichesche Uranosynd, Beta-uranopilitite, Calcioraconite, Cuprotite, Dusobrite, Edjolite, Uraconite, Uraconite, Uranobite, Uranite, Uranochalcite, Uranotect, Uranvitriol, and Vogelinite) little is known and many were set forth as distinct species on the basis of chemical analysis which were made by faulty analytical procedures, or which were made on mixtures. (JNT)

(291) Prondel, C., and P. Cottitta, Harvard University, Cambridge, MA; USGS, Washington, DC

Studies of Uranium Minerals (II): Resardite. *The American Mineralogist* 39:448-451. (1954)

A new chemical analysis of resardite from Katanga has confirmed the formula $Pb(UO_2)_6(Po_4)_2(OH)_4 \cdot 7H_2O$. X-ray single crystal study established the unit cell as orthorhombic with the dimensions $a=16.07$ angstroms, $b=17.50$, $c=13.7$. Resardite is isostructural with both devindite ($a=16.07$, $b=17.50$, $c=13.62$) and phosphuranylite. The chemical composition of devindite, however, cannot be reconciled with that of resardite on this basis. Phosphuranylite is probably the calcium analogue of resardite, with the formula $Ca(UO_2)_6(Po_4)_2(OH)_4 \cdot 7H_2O$. (Auth)

(292) Prondel, C., and R. Meyroitz, Harvard University, Cambridge, MA; USGS, Washington, DC

Studies of Uranium Minerals (III): Rutherfordine, Diderichite, and Clarkeite. *The American Mineralogist* 41:127-133. (1956)

Rutherfordine, diderichite, and a synthetic uranyl carbonate obtained by heating UO_3 in water under 15,000 psi $C92$ at 300 degrees C gave identical x-ray powder patterns, and on analysis yielded the same formula $(UO_2)(CO_3)$. The name rutherfordine has priority. Two new localities are recorded for rutherfordine at Seryl Mountain, N.W. and Henry, Maine, where it occurs as crusts and aggregates of orthorhombic (?) fibers; biaxial positive, with $\alpha=1.720-1.723$, $\beta=1.728-1.730$, $\gamma=1.755-1.760$; Γ along the fiber length. Clarkeite is described from its second known locality, the Ajmer district, Rajputana, India, where it occurs as a microcrystalline, chocolate-brown alteration product of uraninite in pegmatite. Analysis yielded the formula $(Na, Ca, Pb, Th, H_2O)_{202}(O, K_2O)_7$; isostructural with $Na_2O_2O_7$ and $Ca_2O_2O_7$. Specific gravity is 6.29, mean index of refraction 1.98-1.97. (Auth) (JNT)

(293) Prondel, J.E., Harvard University, Cambridge, MA

Studies of Uranium Minerals: Zunerite. *The American Mineralogist* 36:249-255. (1951)

X-ray study by the Seimonsberg method on zunerite from Tistic, Utah, gave a space group $P(mn\bar{3})/mnc-9(\bar{m}\bar{3}m\bar{3})7$ and cell dimensions $a(\text{sub }0)=7.13$ angstroms, $c(\text{sub }0)=4.63$, with $a(\text{sub }0):c(\text{sub }0)=1:1.23$. The unit cell contains one $Ca(UO_2)_2(H_2O)_2 \cdot 8H_2O$. The calculated specific gravity is 3.79; the measured specific gravity of Seimonsberg material is 3.64. Study of synthetic zunerite indicated the existence of two and possibly three hydrates, one with 16 to 18 H_2O , one with 8 to 5 H_2O , and possibly a still lower hydrate. In this respect, the synthetic material is similar to autunite and to covellite, both of which have been found in fully hydrated forms and as lower hydrates, note I and note II. Natural zunerite corresponds in water content and x-ray structure to meta-autunite I and to synthetic zunerite with 8 H_2O . Variation in water content affects both the optical and fluorescent properties of the material. (JNT)

(294) Prondel, J.E., and P. Cottitta, USGS, Washington, DC

Studies of Uranium Minerals (IV): The Status of Billietite and Bequerelite. *The American Mineralogist* 36:1019-1026. (1951)

Billietite ($Na_6-6H_2O-11H_2O$) was found to be a valid mineral species and isostructural with bequerelite ($7H_2O-1H_2O$). Chemical analyses and Seimonsberg x-ray studies on two specimens of billietite gave: (1) Na_6 6.88 percent, SiO_2 82.76 percent, H_2O 8.37 percent, SiO_2 0.76 percent, CaO 0.30 percent, for a total of 99.67 percent; $a(\text{sub }0)$ 18.25 angstroms, $b(\text{sub }0)$ 12.04, $c(\text{sub }0)$ 15.06 with four formula units per unit cell; $\alpha=1.730$, $\beta=1.810$, $\gamma=1.815$; sp. gr. 5.32 (meas.), 5.33 (calc.); (2) Na_6 7.11 percent, SiO_2 84.39 percent, H_2O 8.68 percent for a total of 100.58 percent; $a(\text{sub }0)$ 13.99 angstroms, $b(\text{sub }0)$ 12.06 angstroms, $c(\text{sub }0)$ 15.06 angstroms; $\alpha=1.725$, $\beta=1.780$, $\gamma=1.790$; sp. gr. 5.36 (meas.), 5.40 (calc.). Space group $Pm\bar{3}a$. Billietite is orthorhombic with $2V(-) 35$ degrees; Γ pale yellow, Γ and $\bar{\Gamma}$ golden yellow. A new analysis and x-ray study of bequerelite gave Na_3 69.51 percent, SiO_2 8.95 percent, SiO_2 1.82 percent; $a(\text{sub }0)$ 13.92 angstroms, $b(\text{sub }0)$ 12.45 angstroms, $c(\text{sub }0)$ 15.09 angstroms; $\alpha=1.730$, $\beta=1.805$, $\gamma=1.820$; sp. group 5.3 (measured), 5.6 (calculated). From this new analysis the old formula for bequerelite ($2H_2O-3H_2O$) has been revised to $7H_2O-1H_2O$, analogous to the formula for billietite, and there are four formula units per unit cell. Space group $Pm\bar{3}a$. Bequerelite is orthorhombic, $2V(-) 30$ degrees; Γ yellow, Γ and $\bar{\Gamma}$ deep golden yellow. (Auth) (JNT)

<296>

THERMOLOGY

<297>

Froodel, J.W., and F. Cuttita, USGS, Washington, DC

Studies of Uranium Minerals (VI): An Alteration Product of Ianthinite. *The American Mineralogist* 39:1019-1029. (1954)

A specimen from Batanga labeled as ianthinite in the Harvard University mineral collection was analyzed. The mineral resembled ianthinite in hand specimen, but chemical analysis gave only a trace of UO₂ and a formula of UO₃-2H₂O, whereas ianthinite reportedly contains only tetravalent uranium. The mineral was thought to be an alteration product of ianthinite in which the tetravalent uranium was almost completely oxidized to hexavalent uranium. X-ray Weissenberg study, using copper radiation, gave sharp lattice patterns with $a(\text{sub } 0)=7.17$ angstroms, $b(\text{sub } 0)=11.86$, and $c(\text{sub } 0)=15.20$; $a(\text{sub } 0):b(\text{sub } 0):c(\text{sub } 0)=0.6257:1:1.311$. The measured specific gravity of the specimen was slightly less than 3.5 and the calculated specific gravity was 3.367, assuming 9 formula units of UO₃-2H₂O. (JMT)

<298>

Pach, L.E., and E. Terholt, Argonne National Laboratory, Lemont, IL

X-Ray Studies of Synthetic Coffinite, Thorite and Uranothorite. *The American Mineralogist* 43:243-248. (1958, March)

X-ray data are presented for synthetic coffinite, thorite, and several uranothorites. The cell constants obtained for coffinite are $a=6.491$ plus or minus 0.004 \AA , $c=6.250$ plus or minus 0.035 \AA ; for thorite $a=7.124$ plus or minus 0.018 \AA , $c=6.314$ plus or minus \AA . Intermediate constants determined for several uranothorites indicate a continuous solid solution between USiO₄ and ThSiO₄. Coffinite and thorite are isostructural with zircon. The oxygen positions for coffinite are $u=0.180$ plus or minus 0.010, $v=0.347$ plus or minus 0.010 and for thorite $u=0.166$ plus or minus 0.010, $v=0.387$ plus or minus 0.010. No changes were observed either in line intensities or in cell constants with OH removed from the hydrothermal preparations. (Ruth) (JMT)

<299>

Tabeling, J.W.

Fixation of Uranium. Migration of Uranium and Thorium - Exploration Significance, J.W. Tabeling. *The American Association of Petroleum Geologists, Tulsa, Oklahoma, (pp. 75-76), 168 pp.* (1977)

Although generally mobile in the hexavalent state, uranium can be stabilized by precipitation as arsenate, phosphate, or vanadate. Uranium reduction and precipitation of primary uranous silicate or uranous oxide require an external agent, most commonly organic material of which coals of bituminous

or lower rank are the most efficient. Uranium migrating in continental groundwater has little opportunity for fixation. Even in arid climates, the relatively insoluble hexavalent vanadates are never from carbon "trash" concentrations, and these have been oxidized from primary unoxidized pitchblende deposits at shallow depths. The exact mechanisms of reduction and fixation by organic matter have been extensively investigated, but still are not well understood. Bacterial H2S has been put forth as the reductant, but some investigators have failed to find bacteria in uranium deposits and the distribution geometry of uranium and organic matter in unoxidized deposits is more commonly noncorrelative than correlative. (JMT)

<298>

Gorman, D.H., University of Toronto, Toronto, Ontario, Canada

Studies of Radioactive Compounds: V-Soddyite. *The American Mineralogist* 37(5-6):386-393. (1952, May)

Soddyite is a rare hydrous uranium silicate. It occurs as idiomorphic crystals often in groups or clusters, which are sometimes divergent. Soddyite is greenish-yellow for the cross-fibre type, canary yellow for the opaque material and amber yellow for the transparent crystals. The density of a clean cluster of crystals was 4.70 plus or minus 0.01, and two cleavages were noted: (001) perfect and (111) good. Soddyite's chemical formula is UO₃.2SiO₂.6H₂O. The mineral is orthorhombic with $a=8.32$, $b=11.21$, and $c=18.71$ angstroms. The space group is Pddd. Soddyite is optically negative, pleochroic, I colorless, Y very pale yellow, and Z pale yellow-green. (JMT)

<299>

Gorman, D.H., and E.B. Buffield, University of Toronto, Toronto, Ontario, Canada

Studies of Radioactive Compounds: VII-Uranophane and Beta-Uranophane. *The American Mineralogist* 40(7-8):634-645. (1955, July)

Uranophane [CaO.2UO₃.2SiO₂.6H₂O] is the most common uranium silicate mineral. It occurs as idiomorphic crystals which are prismatic or acicular, sometimes reticulate, but more often in divergent clusters or tufts. The color is variable, typically lemon yellow, canary yellow, orange yellow, and very often, pale yellow. Uranophane and beta-uranophane are dimorphous with composition. Uranophane is monocline with $a=15.87$, $b=7.05$, and $c=6.66$ angstroms. Beta is equal to 97 degrees and 15 minutes. Beta-uranophane is monoclinic and $a=6.64$, $b=15.55$, and $c=18.01$ angstroms. Beta is equal to 91 degrees. (JMT)

MINERALOGY

<300>

Sotman, Ya. D., V.N. Polyakova, and A.K. Bigata

Another Variety of Brannerite. Doklady Akad Nauk SSSR, Earth Sciences Section 179:124-125. (1967)

A uranite titanate has been found in the USSR that has much in common with minerals of the brannerite group. Unlike ordinary hydrothermal brannerite, however, its new variety is a product of hydrothermal activity at moderate and low temperatures. The mineral occurs as continuous masses and, less commonly, accumulations of prismatic elongate crystals up to 0.08 mm in length in the cement of a fault breccia of metamorphic or granitoid rocks, where it is closely associated with pyrite and micasilite. The formation of the titanate-bearing breccia was preceded by intense metasomatism, with replacement of host rock by an aggregate of pyrite, andesite, dolomite, and potassium feldspar. The uranite titanate is black but becomes dark brown in powder. It has a strong resinous luster, a conchoidal fracture, a specific gravity of 4.32, and a hardness of 5.1 on the Mohs scale. Optically the mineral is isotropic and when x-rayed in the natural state, the mineral is amorphous. (JMT)

<301>

Gritsenko, G.S., L.N. Belova, R.V. Getseva, and K.T. Savelyeva

Mineralogical Types of Oxidation Zones of Hydrothermal Uranium and Sulfide-Uranium Ores of the USSR. Peaceful Uses of Atomic Energy, Vol. 2, Survey of Raw Material Resources, Proceedings of the 2nd International Conference, Geneva, Switzerland, September 1-13, 1958. United Nations, New York, (pp. 466-479), 283 pp. (1958)

For uranium deposits there can be distinguished two mineralogical types of oxidation zones: 1) Hydroxide-siliceous type, and 2) Siliceous type proper. For uranium-sulfide deposits three types of oxidation zones can be distinguished: 1) Siliceous-sulfaceous, 2) Sulfaceous proper, and 3) Sulfaceous-limonitic and limonitic proper. Among the oxidation zones studied, the sulfaceous zones are distinguished by the greatest variety of mineral composition. The distribution of secondary uranium minerals in the oxidation zone in a number of instances shows a definite secondary zonation which is different for uranium proper and sulfide-uranium deposits. Oxidation zone types, as determined by secondary uranite mineralization can also serve as the principal outcrop types. Oxidation zones of the hydroxide-siliceous type most easily lend themselves to assessment of deposits by the outcrops. Outcrops of phosphate-arsenate ores (oxidation zone of the sulfaceous type) characterize heavily depleted sections of the deposit and do not go beyond low-grade noncommercial ores. Considering uranium's high migratory ability and the comparatively low stability of its hydrometallurgical materials, highly significant for assessing its outcrops is the identification of such uranium-bearing minerals which firstly should be extensively distributed and preserved in all oxidation zones, and secondly would permit judgment of the relative concentration of this element in ore bodies. These requirements are satisfied primarily by iron hydroxides. The establishment of the dependence between the uranium content of limonites and the character of the mineralization of zones increases the

significance of mineralogical criteria in assessing a deposit, especially in the case when oxidation zones are poor in uranium minerals or do not contain them at all. Along with minerals and mineral associations considered, some significance may also be of some modern new formation (sulfates, carbonates, and polybromates of uranium which in some instances can be used for reassessing old mine workings and dumps for uranium content. (JMT)

<302>

Gruener, J.W., University of Minnesota, Minneapolis, MN

Concentration of Uranium by Carbon Compounds. Economic Geology 50:532-543. (1955)

It is suggested that the carbon responsible for precipitation of 3 minerals is derived from more complex carbon compounds including resins (bitumens?), based on the evidence of numerous unmetamorphosed sediments ranging in age from Permian to Tertiary and of world-wide distribution. Another evidence is the common replacement of fossil plant cell walls by reduced 7 minerals and the association of asphaltite with fossil plants, whereas petroleum, when found with carbonized plants or asphaltite, contains only traces of U (example: Temple Mountain, Utah). There is no visible gradation between oil and asphaltite. The fact that graphitic carbon has no influence on 3 precipitation is predictable from its inertness; if the carbon were of organic origin and metamorphosed after contact with U, there could be an association. This may be the case in the Algoma-Blin River District, Ontario, though it is doubtful whether brannerite would have formed with the aid of organic carbon. The low solubility of Th would require more than a hot aqueous solution to produce the variety of U-Th minerals found in pegmatites. Examples of hydrocarbon polymerization by irradiation to form thucholite or asphaltite in metamorphosed rocks are difficult to find. (LKH)

<303>

Hoekstra, H.B., and L.H. Fuchs, Argonne National Laboratory, Lemont, IL

Synthesis of Coffinite - USiO₄. Science 123:105. (1956)

A procedure of synthesizing coffinite (USiO₄) by a hydrothermal process is discussed. One milli- mole each of uranium tetrachloride and sodium metasilicate are dissolved in 10 ml of water. Sodium hydroxide solution is added dropwise to the uranium silicate solution until a stiff gel forms near the neutral point. Enough additional base is added to make the mixture slightly alkaline (pH 6 to 10). The gelatinous precipitate is then centrifuged and transferred to a vitreous silica tube, which is placed in an Inconel bomb tube. These operations are carried out in a nitrogen atmosphere to prevent oxidation of the uranium. The sealed Inconel tube is heated 4 to 5 days at 250 degrees C to crystallize the USiO₄. The synthetic coffinite appears as a bluish-green solid in the reaction products. The material prepared to date appears to be isotropic under the microscope, but x-ray powder patterns confirm the presence of tetragonal crystals of coffinite. Quartz or cristobalite have also been identified as contaminants in all coffinite preparations. (JMT)

<304>

MINERALOGY

<305>

Boeve, J., and T.I.I. Sibbald, Saskatchewan Research Council, Saskatoon, Saskatchewan; Saskatchewan Geological Survey, Regina, Saskatchewan

Mineralogy and Geological Setting of Unconformity-Type Uranium Deposits in Northern Saskatchewan. Uranium Deposits, Their Mineralogy and Origin, Short Course Handbook, Volume 3, R.M. Kimberley, (Ed.). University of Toronto Press, Toronto, Canada, Ch. 19, (pp. 475-478), 521 pp. (1978, October)

The period of 1.25 to 1.0 billion years ago is believed to be the interval at which time the unconformity-type uranium deposits formed throughout the Athabasca basin. This interval post-dates the deposition of the Athabasca Formation and is approximately coincident with an episode of Grenville-age magmatic activity within the basin. The mineralization of these deposits is spatially related to the unconformity which underlies the Athabasca Formation, but is unrelated to pre-Athabasca weathering. Frequently, the mineralization is associated with reverse faults that parallel the bedding planes in pre-Athabasca host rocks of amphibian (Early Proterozoic) age and it commonly is associated with graphitic amphibian rocks. Host-rock alteration, characterized by intensive chloritization and, at least locally, by tourmalinization, accompanied mineralization. This host-rock alteration involved the leaching of silica, calcium, iron, alkali elements and the introduction on a large scale of magnesium and probably also boron. Mineralogical and geochemical characteristics of the deposits are similar to those of vein deposits of complex mineralogy in the Beaverlodge district. Redox reactions, as exemplified by oscillations between oxidizing and reducing conditions in the Rabbit Lake orebody have probably played an important role in the formation of the deposits. (JTT)

<305>

Boeve, J., and T.I.I. Sibbald, Saskatchewan Research Council, Saskatoon, Saskatchewan; Saskatchewan Geological Survey, Regina, Saskatchewan

Uranium Concentration Related to the Sub-Athabasca Unconformity, Northern Saskatchewan, Canada. Uranium Deposits, Their Mineralogy and Origin, Short Course Handbook, Volume 3, R.M. Kimberley, (Ed.). University of Toronto Press, Toronto, Canada, Ch. 20, (pp. 475-488), 521 pp. (1978, October)

Several uranium deposits have been discovered within the Middle Proterozoic Athabasca Basin of northern Saskatchewan during the past decade. These deposits display a spatial association with the sub-Athabasca unconformity and also with graphitic basement rocks. Although a number of studies of the deposits have been made, their genesis is still widely debated. Two broad schools of thought have emerged: (1) the near-surface-supergene school, and (2) the magmatic-hydrothermal or metamorphic-hydrothermal school. The spatial association between the uranium mineralization and the sub-Athabasca unconformity provides the main argument in support of a near-surface-supergene origin. Those who support such an origin generally equate the alteration observed in and around the orebodies with

pre-Athabasca weathering. Uranium is thought to have been leached by oxidizing ground waters from weathered basement rocks and/or pre-existing Edsonian vein-type deposits and to have been redeposited in suitable traps by chemical reduction. The magmatic-hydrothermal and metamorphic-hydrothermal theories are attractive because they are compatible with the fluid inclusion and age dating studies, and also the distinctly epigenetic relationship of mineralization to the Athabasca Formation. The main shortcoming in this theory is the lack of an adequate explanation for the undeniable spatial association with the sub-Athabasca unconformity. The authors put forth another theory: the diagenetic-hydrothermal hypothesis. This theory relates mineralization to diagenetic processes within the Athabasca Formation and attributes the spatial association of deposits with the sub-Athabasca unconformity to interaction of heated diagenetic solutions with metamorphic rocks of the basin floor. (JTT)

<306>

Heribert, C.S., Jr., Harvard University, Cambridge, MA

Studies of Uranium Minerals (IV): Schroeckingerite from Argentina and Utah. The American Mineralogist 39(11-12):901-907. (1954, November)

Schroeckingerite [$\text{NaCa}_3\text{UO}_2(\text{CO}_3)_3\text{SO}_4\cdot 10\text{H}_2\text{O}$] samples from the Shinareasp No. 3 Mine, near Roaib, Utah and from San Isidro, Argentina were studied. Samples from both areas had physical properties similar to those of the mineral as described from other localities, with the exception that both had somewhat higher specific gravities. Unit space cell dimensions, space group, physical and optical properties of the schroeckingerite are discussed. (JTT)

<307>

Kisberley, R.H., University of Toronto, Earth and Planetary Sciences, Eindale College, Mississauga, Ontario, Canada

Origin of Stratiform Uranium Deposits in Sandstone, Conglomerate, and Pyroclastic Rock. Uranium Deposits, Their Mineralogy and Origin, Short Course Handbook, Volume 3, R.M. Kimberley, (Ed.). University of Toronto Press, Toronto, Canada, Ch. 18, (pp. 339-381), 521 pp. (1978, October)

The origin of stratiform uranium deposits in sandstone, conglomerate, and pyroclastic rock, through the world is discussed. Phanerozoic stratiform deposits in Quaternary deposits in Italy, in Persian mineralization in the Austro-Italian Alps, in Niger, Africa, and in the Colorado Plateau are compared with the Middle Precambrian Witwatersrand and Elliot Lake stratiform uranium deposits. This comparison indicates that chemical processes may have been essential in all cases. Dissolution of volcanic gas in Middle Precambrian groundwater may have produced the observed concentrations of pyrite in clastic sedimentary rocks. Weathering of pyrite may, in turn, have mobilized uranium, thorium, and either gold or rare-earth elements into shallowly-buried fluvial sediments. Subsequent intrabasinal erosion could have resulted in some placer sedimentation of ore mineral aggregates, even if the earth's atmosphere had been oxygenic.

MINERALOGY

<308>

Langford, P.P., University of Saskatchewan, Department of Geological Sciences, Saskatoon, Saskatchewan, Canada

Origin of Unconformity-Type Pitchblende Deposits in the Athabasca Basin of Saskatchewan. Uranium Deposits, Their Mineralogy and Origin, Short Course Handbook, Volume 3, H.H. Kimberley, (Ed.), University of Toronto Press, Toronto, Canada, Ch. 21, (pp. 485-499), 521 pp. (1978, October)

A number of theories have been put forth in attempt to explain the origin of the Athabasca Basin unconformity-type uranium deposits. These hypotheses can be divided into two major schools of thought based upon whether the uraniumiferous solutions ascended or descended. Ascending uraniumiferous solutions have two possible sources: (1) from magmatic or anatetic sources and (2) from metamorphic sources. The advocates of descending uraniumiferous solutions differ as to the time the mineralizing ground water solutions. One group of theories proposes mineralization came after the deposition of a thick sequence of cover rocks, while another group of theories put the mineralizing ground water during the early deposition of the first 30 meters of cover rocks. The favored hypothesis is that pitchblende vein deposits were formed by the fluvial processes which formed the initial sandstone above the unconformity and that the deposits subsequently were subjected to diagenetic recrystallization during deep burial. This hypothesis explains many of the features of these deposits, and it explains why these deposits only occur at unconformities overlain by sandstone of fluvial origin. (JST)

<309>

Lindsey, D.L., USGS, Denver, CO

Mineralization Halos and Diagenesis in Water-Laid Tuff of the Thomas Range, Utah. USGS Professional Paper 818-B; 59 pp. (1975)

Pliocene water-laid tuffs are widespread in western Utah and provide the host rock for beryllium-fluorite mineralization at Spur Mountain. A systematic study of the mineral and chemical composition of the tuff in the southern part of the Thomas Range was undertaken to examine regional effects of mineralization at Spur Mountain and to differentiate these from the effects of other petrologic processes. Important factors in tuff petrogenesis are beryllium-fluorite mineralization, three stages of diagenetic alteration of glass, concentration of calcite versus silica, and concentration of detrital heavy minerals. Diagenesis has been of major importance in changing the chemical composition of the tuff. Soda, K2O, P, Rb, U, Mn, and Pb are depleted during zeolitization and K2O, Ba, Cr, and Sr are concentrated. Potassium feldspar diagenesis did not affect the chemical composition of the tuff. Possible release of P, U, and Mn during zeolitization suggests a potential diagenetic contribution of these elements to ore deposits, notably the sedimentary uranium deposits found nearby. (JHT)

<310>

Bakarov, E.S., and L.I. Anikina, V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow, USSR

Crystal Structure of Umohoite $[\text{U}(\text{OH})_6(\text{H}_2\text{O})_2 \times 2\text{H}_2\text{O}]$. Geochimica 1: 14-21. (1963)

The parameters of the monoclinic unit cell of umohoite are $a=6.32$ angstroms, $b=7.50$ angstroms, $c=57.8$ angstroms, and $\beta=94$ degrees. The space group is $P2_1(\text{sub} 1/\text{c})$ and $Z=16$. The crystal structure has been determined with R approximately 20. The coordinates of the atoms are given in a table. Umohoite has a well defined layer structure with pseudohexagonal layers of ordered uranium, polydymium, and oxygen atoms arranged normal to the z axis and parallel to the cleavage. The spaces between the layers are occupied by 0 to 2 molecules of zeolitic water. The crystallochemical formula of umohoite is $[\text{U}(\text{OH})_6(\text{H}_2\text{O})_2 \times 2\text{H}_2\text{O}]$. (Akh)

<311>

Bakarov, E.S., I.B. Lipova, I.P. Dolmanova, and L.A. Melik'yan, V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow, USSR

Crystal Constitution of Uraninites and Pitchblendes. Geochimica 3: 229-252. (1960)

Petrographic studies of minerals of the uraninite-pitchblende series were carried out to determine the chemical composition, density, and lattice constants of these minerals. In addition, the numbers of atoms and formula units in the unit cell were calculated, the crystal structure was determined, and the manner of alteration of the structure by oxidation was studied. Uraninites and pitchblendes were found to have a primitive cubic lattice related to the space group Fm-3m rather than a face-centered lattice of the fluorite type, as has been previously assumed. For all the specimens studied, the number of atoms in the unit cell was lower than 12. This value was in line with a fluorite type of structure. Atomic coordinates for UO₂.33 pitchblende having 3.15 formula units in the unit cell are listed. According to the new structure, the hexavalent uranium atoms in uraninites and pitchblendes form UO₂⁺ uranyl groups, and the uraninite-oxygen distance is 1.90 angstroms. Excess oxygen atoms occupy the $\frac{1}{2}$ (a) and $\frac{1}{2}$ (b) interstices of the lattice to compensate the charge of the uranyl groups. The number of these atoms is equal to the number of hexavalent uranium atoms. With increased oxidation of the uraninites and pitchblendes, the numbers of uranyl groups and excess oxygen atoms in the structure increase while the number of atoms and corresponding formula units in the cell are decreased. As a result, the cell dimensions and the density decrease. On the basis of this study and literature data, the chemical composition of uraninites and pitchblendes is best expressed by the formula $(\text{U}_0.6, \text{U}_0.6, \text{Pb, Th, RE, Ca})_3$ (sub 1.90-2.50). (Akh) (JHT)

<312>

MINERALOGY

<312>

Hoench, R.H., USGS, Denver, CO

Properties and Paragenesis of Coffinite from the Woodrow Mine, New Mexico. The American Mineralogist 47:26-33. (1962, January)

The Woodrow mine is in the central part of the Laguna uranium mining district, about 45 miles west of Albuquerque, New Mexico and 10 miles north of Laguna Indian Pueblo. The deposit occupies a nearly vertical sandstone pipe, or cylindrical collapse structure in the Morrison Formation of Jurassic age. Unoxidized ore is composed of coffinite and granatite, which typically are extremely finely divided and intimately sized with a carbonaceous substance. Pyrite and marcasite are also abundant, and small amounts of chalcopyrite, galena, wurtzite, cobaltite, barite, and carbonate minerals are present. The uranium deposit is small but of high grade, averaging more than 1 percent U₃O₈ and the vanadium content is very low, with a uranium-vanadium ratio of about 50:1. Well crystallized coffinite found as a vein filling in the mine is botryoidal with radially fibrous internal structure. In polished surfaces the mineral is hard, gray, isotropic, and has a reflectivity of 7.5 percent in orange light. In transmitted light it is anisotropic, showing parallel extinction, with the optic and crystallographic "c" axes parallel to the fibers. It is brown and slight pleochroic, from pale yellow brown parallel to the fibers to brown normal to the fibers. The refractive indices are near 1.74 and the birefringence is less than 0.01 and variable. Textural relations, combined with data from other specimens of Woodrow ore, suggest that sulfide and uranium mineralization were related in time as well as space. (JRT)

<313>

Morton, P.D., University of Alberta, Department of Geology, Edmonton, Alberta

The Identification of Uraniferous Minerals. Uranium Deposits, Their Mineralogy and Origin, Short Course Handbook, Volume 3, H.R. Kimberley (Ed.). University of Toronto Press, Toronto, Canada, Ch. 5, (pp. 181-183), 521 pp. (1978, October)

Sequential identification procedures of uranite minerals are discussed briefly in this chapter. Following the discussion, four extensive tables are provided for use in uranite mineral identification. (JRT)

<314>

Olson, J.C., and W.C. Overstreet, USGS, Washington, DC

Geologic Distribution and Resources of Thorium. USGS Bulletin 1208; 61 pp. (1968)

Concentrations of thorium are mainly found in four geologic environments: (1) placer deposits consisting of beach, fluvial, and residual concentrations of heavy thorium-bearing minerals; (2) epigenetic deposits, which include vein or lode deposits and contact-metamorphic or replacement bodies; (3) sedimentary rocks, which comprise ancient placers, thorium-bearing dolomite, and deposits in conglomerates; and (4) igneous and metamorphic rocks which include thorium-rich granite, alkalic rocks, carbonatite, fenite, pegmatite and pegmatitic migmatite, and thorium-rich zones in metamorphic rock. Known thorium reserves of the United States are estimated at about 100,000 tons of ThO₂, but total resources are probably much larger owing to the lack of exploitation that has been done for it in comparison with other metals. Known world reserves of high-grade deposits and easily mined placer deposits are about 740,000 tons of ThO₂. (JRT)

<315>

Reynolds, P.L., and M.B. Golhaber, USGS, Denver, CO

Iron-Titanium Oxide Minerals and Associated Alteration Phases in Some Uranium-Bearing Sandstones. Journal of Research of the USGS 6(6):707-718. (1978, November)

Detrital Fe-Ti oxide minerals of the ilvöspinel-magnetite and ilmenite-hematite solid solution series are common in uranium-bearing sandstones and it is believed these minerals may record important information on the geochemical environment of deposition of uranite in sandstone. Samples from five mineralized formations in three of the major uranium-producing districts of the western United States were examined for Fe-Ti oxide minerals and their alteration products. Alteration of Fe-Ti oxide minerals in oxidizing environments formed secondary products that are distinct from those produced under reducing conditions. Oxidation of sulfidized Fe-Ti oxide minerals, by the processes that formed uranite rolls, produced ferric oxide minerals (limonite) having textures that mimic those of the iron disulfides. Titano-magnetite and titanohematite have been severely depleted in the ore-bearing zones of some uranium deposits. The alteration of detrital Fe-Ti oxide minerals near uranite ore deposits may produce characteristic signatures in the magnetization of the sandstone. Knowledge of the distribution and magnetic properties of these minerals can aid in interpreting data from total magnetic-field and magnetic-susceptibility surveys of uranium deposits. (JRT)

MINERALOGY

<316>

Reynolds, R.L., H.B. Goldhaber, and R.I. Grauch, USGS, Denver, CO

Uranium Associated with Iron-Titanium Oxide Minerals and Their Alteration Products in a South Texas Roll-Type Deposit. USGS Circular 753; Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977, J.A. Campbell (Ed.), (pp. 37-39), 75 pp. (1977)

Electron microprobe and petrographic studies have been conducted on a suite of ore-bearing samples from a roll-type uranium deposit in south Texas. Each sample from the nose and lower limb of the roll was separated into size fractions less than and greater than 44 μ , and each size fraction was further subdivided by bromoform density separation into heavy and light mineral groups. Uranium in the light, fine-grained fraction appeared to be predominately associated with silicon, calcium, potassium, and aluminum. Uranium in the heavy fractions occurred primarily with titanium and iron, and to a lesser extent with sulfur, calcium, and silicon. Uranium was frequently observed in association with a TiO₂ phase that originates largely, if not exclusively, from the alteration of iron-titanium oxide minerals. It is possible that some uranium occurs as a silicate (coffinite?). The TiO₂ phase in the ore-bearing zones originated primarily by expulsion of Ti during the replacement of detrital Fe-Ti oxides (titanosilicate and titanohematite) by iron sulfide minerals. Uranium occurs in association with TiO₂ on the margins of relict Fe-Ti oxide grains in various stages of conversion to FeS₂. Where replacement is complete, uranium-bearing TiO₂ surrounds the sulfides. Uranium occurs not only in authigenic TiO₂ surrounding altered Fe-Ti oxides, but also in TiO₂ within the altered grains. Alteration of Fe-Ti oxide minerals has not led in every case to the segregation into discrete phase. In some titanosilicate and titanohematite grains in mineralized rock, the authors observed other alteration phases petrographically distinct from TiO₂, that contain abundant titanium, iron, and sulfur together with lesser amounts of uranium, silicon, and calcium. (JNT)

<317>

Riese, W.C., D.G. Brookins, and R.S. Della Valle, Gulf Mineral Resources Company, Albuquerque, NM; University of New Mexico, Albuquerque, NM

SEM Investigation of Paragenesis of Uranium Deposits, Grants Mineral Belt, New Mexico. AAPG Bulletin 63(4):693. (1979, April)

Scanning electron microscopy (SEM) study of authigenic minerals in the Westwater Canyon Member of the Morrison Formation (Late Jurassic) indicates that mineral compositions vary within and adjacent to sandstone-type uranium deposits. Montmorillonite is the dominant clay mineral in the reduced ground down-dip of the orebody; chlorite is enriched in the ore zones; and kaolinite and altered montmorillonite dominate in the "oxidized" ground up-dip of the ore. Our data also

suggest that clay minerals, not pyrite or hematite, may locally be the iron-bearing species of importance. Although it is not possible to make positive identification of organic materials in SEM photomicrographs, materials deduced to be organic in nature postdate the beginning of authigenic clay formation. This implies that these materials may be carriers of uranium in the groundwater system from which the ore deposits precipitated. Identification of these patterns of clay-mineral alteration and the role that organic materials may play as transporting media may significantly alter our exploration techniques. These patterns may be especially useful tools in areas where the orebodies are known to be removed from the iron species redox interface. (Auth)

<318>

Hinsaite, J., Canada Geological Survey, Ottawa, Ontario, Canada

Mineral Assemblages at the Rabbit Lake Uranium Deposit, Saskatchewan: A Preliminary Report. Geological Survey of Canada Paper 77-113, Report of Activities, Part B, (pp. 235-246), 350 pp. (1977)

Uranium mineralization at the Rabbit Lake deposit, northeastern Saskatchewan, occurs in the hanging wall of a northeasterly-trending thrust fault in Archean metasediments of the Wollaston Lake Fold Belt, just below the unconformity with the overlying Athabasca Formation. The metasediments - quartzite, meta-arkose, biotite paragneiss, calc-silicate rocks, and marble - are brecciated and transected by pegmatites. A mineralogical-geochemical investigation of specimens collected in 1975 yielded the following information: Radioactive elements occur in nine mineral groups and various modes; together with Co, Ni, Cu, Se, Th, and REE minerals, they demonstrate the mineralogical complexity of the deposit. Contacts between "primary" pitchblende and host rock are unclear and are commonly marked by recrystallization and alteration. In the high-grade ore, pitchblende is the main U-mineral; its fracturing and partial resorption and alteration along those fractures may indicate that all secondary U-minerals were derived from it. Below the thrust fault, radioactive minerals include "yttrialite" grains containing U, Th, and REE, and type 5 pitchblende, which rims Ti-minerals. Marked differences observed in Pb/U ratios in the U-minerals are attributed to (a) temporal differences in crystallization of primary and secondary U-minerals and in the natural accumulation of radiogenic lead, (b) migration and depletion of Pb during recrystallization of pitchblende, and (c) recrystallization of liberated U and Pb in different proportions to form secondary U-Pb minerals. The pyroxene- amphibole-biotite layers in the gneisses and their alteration products are similar in composition above and below the main thrust fault. (LKH)

MINERALOGY

<319>
Ross, V., Harvard University, Cambridge, MA

Studies of Uranium Minerals (XIII): Synthetic Calcias and Lead Uranyl Phosphate Minerals. *The American Mineralogist* 41:915-926. (1956)

The uranium minerals phospheranite, xenardite, "devindtite," desoatite, parsonite, and the phase lead-autunite were investigated synthetically to establish identity and the conditions of deposition. In the acid range, autunite and parsonite predominate. Under neutral and alkaline conditions, there exist a number of xenardite-type phases of variable lead content with closely related x-ray spectra and properties. It is suggested that "devindtite" be discredited as a distinct mineral species. A phase has been prepared that corresponds chemically, but is not identical to desoatite on the basis of limited, existing data on the mineral. The methods of synthesis and resultant phases in the systems calcias- and lead-uranyl-phosphate-water are described. Chemical, optical and x-ray data are included. (Auth)

<320>
Sharp, B.J., AEC, Washington, DC

Uranium in Fluorite, Spor Mountains, Utah. Guidebook to the Geology of Utah, No. 17. (pp. 18). (1963)

The fluorite pipes of Spor Mountain contain variable quantities of uranium associated with the fluorite. These pipes are described in detail by H.H. Staatz and F.W. Osterwald in USGS Bulletin 1069. The U.S. Atomic Energy Commission sampled many of the pipes for uranium and the results indicated that some of the fluorite contained nearly commercial quantities of uranium. Yellow secondary minerals occur locally in the fluorite, but for the most part, the uranium ion apparently substitutes for the calcium ion in the crystal lattice of the fluorite. Although this intimate association renders the uranium non-accessible in existing uranium mills, it may be possible to extract some as a byproduct in a hydrofluoric acid mill. The fluorite pipes at the southern end of Spor Mountain contain about 4 times as much uranium as those at the north end and those in between show a general gradational increase in a southern direction. The Bell Hill pipe is the most significant fluorite pipe as far as uranium is concerned. Near commercial grade uranium samples have been taken from the lowest levels of the pipe, as well as near the surface and from many places in between. The Bell Hill pipe is considered to be near the center of a high uranium zone in fluorite, and any pipes which may be discovered in this area would probably be high in uranium content. (Auth)

Cited as a reference in NURE Contractor Reports.

<321>
Stoeff, L.R., T.W. Stern, and A.R. Sherwood, USGS, Washington, DC

Coffinite, a Uranous Silicate with Hydrosilicate Substitution: A New Mineral. *The American Mineralogist* 41(9-10):675-688. (1956, September)

Coffinite $[U(SiO_4)_{1-x}(OH)_8x]$ is a uranous silicate that shows substitution of $(OH)_8$ for $(SiO_4)_8$. The mineral was named for Reuben Clare Coffin. Along with uraninite,

coffinite is a major uranium mineral in the unoxidized ore of the Colorado Plateau. In hand specimens, coffinite is black with many samples having an adamantine luster, resembling that of a high rank coal. X-ray diffraction powder studies indicate that coffinite is tetragonal and isostructural with zirconia. The specific gravity of coffinite-bearing material is variable, with a maximum of 5.1. Chemical analyses of selected and concentrated impure coffinite material indicated 46.37 to 68.29 percent uranium (UO_2) and 5.20 to 8.50 percent silica. Heating, leaching, and alpha-plate studies demonstrated that vanadium, aluminum, and arsenic are present in many samples, probably in place of silicon. (JET)

<322>
Stokes, W.E., University of Utah, Department of Geological and Geophysical Sciences, Salt Lake City, UT

Pelation of Fault Trends and Mineralization, Eastern Great Basin, Utah. *Economic Geology* 63(7):751-759. (1968)

The association of mineralization with the northeasterly to easterly trending faults in the eastern Great Basin of Utah is considered graphically and statistically. The proximity test was based upon 376 faults in the near vicinity of 94 known mines, and supports the conclusion that the mineralization is strongly associated with the faults. Most of the ore bodies in the Great Basin are genetically related to the relatively obscure fractures that cut diagonally across them rather than to the outlined mountain blocks. (JET)

Cited as a reference in NURE Contractor Reports.

<323>
Thompson, H.E., B. Ingram, and E.B. Gross, USGS, Grand Junction, CO; USGS, Washington, DC; AEC, Grand Junction, CO

Abernathyite, A New Uranium Mineral of the Metatorbernite Group. *The American Mineralogist* 41:32-90. (1956)

Abernathyite has the formula $K(UO_2)(AsO_3)_x \cdot 8H_2O$. It occurs as transparent, yellow, fluorescent, thick tabular crystals belonging to the tetragonal system, ditetragonal-dipyramidal class (4/m 2/m 2/m). The space group is $P4/mnm$; $a_{(sub 0)}=7.17$ plus or minus 0.01 angstroms; $c_{(sub 0)}=9.08$ plus or minus 0.01 angstroms; $a:c=1:1.266$; $Z=2$. Optically, the mineral is uniaxial negative. The hardness is between 2 or 3 and the specific gravity is 3.7. Abernathyite is composed of 9.5 percent K_2O ; 57.7 percent UO_3 ; 21.6 percent As_2O_5 ; 1.5 percent P_2O_5 ; 4.6 percent H_2O ; 9.9 percent H_2O ; for a total of 100.8 percent. The mineral was first discovered in 1953 in the Faenrol mine, Emery County, Utah, by the mine operator, Jess Abernathy, for whom Abernathyite is named. (JET)

GENERALITY

<326>

Tilsley, J.P., David S. Robertson and Associates Limited, 65 Queen Street West, Toronto, Ontario, Canada

Uranium Mineralization in Shallow Intrusive Environments. Uranium Deposits, Their Mineralogy and Origin, Short Course Handbook, Volume 3, E.M. Kimberley (Ed.). University of Toronto Press, Toronto, Canada, Ch. 10, (pp. 281-289), 521 pp. (1978, October)

Uranium deposits formed by degassing of shallowly emplaced, highly-differentiated intrusives are not likely to contain large tonnages of uranium metal. However, uranium reserves in the several-thousand-ton range are possible. A genetic model that has been derived from observations made in areas of economically significant uranium mineralization is discussed in this chapter. The model is applicable in any volcanic and alkaline intrusive environments. (JST)

<325>

Traill, R.J., Queen's University, Kingston, Ontario, Canada

Synthesis and X-ray Study of Uranium Sulphate Minerals. The American Mineralogist 37(5-6):396-406. (1952, May)

Attempts were made to synthesize the uranium sulfate mineral zippelite. Physical, chemical, optical, and x-ray data for zippelite and four other synthetic products are presented. Artificial zippelite is monoclinic, with a space group of C2/m. Unit cell dimensions are: $a=8.81$, $b=14.13$, $c=6.95$ angstroms. Beta is 104 degrees 15 minutes. Cell contents are $2[(UO_2)_3(SO_4)_2(OH, 2.8820)]$. Calculated specific gravity is 3.68 and measured specific gravity is 3.66. The artificial zippelite is biaxial negative, $n_{\perp}=1.655$, $n_{\parallel}=1.717$, $n_2=1.765$, Y =colorless, X =pale yellow, and Z =yellow. (JST)

<326>

White, E.W., The Pennsylvania State University, Department of Mineralogy, University Park, PA

An Investigation of the Mineralogy, Petrography, and Paleotectonics of Uranium-Bearing Lignite: Uranium Mineralization in Some North and South Dakota Lignites. EYO-7948; M.S. Thesis; 79 pp. (1958, April 2)

The petrographically visible uranium minerals from eleven deposits of Tertiary lignite from North and South Dakota are characterized on the basis of optical, chemical, X-ray diffraction and dehydration properties. The uranium mineral occurrences are divided into three areas on the basis of stratigraphy and geography. Eleven of the twelve minerals are hydrated uranium phosphates, one is an arsenate. Eleven, including the arsenate, belong to the group of torbernite-setatorbernite minerals.

Sodium-autunite $Na_2(UO_2)_2(OH)_2.2H_2O$ is found in four of the deposits, and is the first reported occurrence of the mineral in the United States. The other identified minerals include: meta-autunite, meta-autunite, hydrogrossularite, salite, subgalite, ahenbergite and hydrogrossularite. Blockiness of the lignite favors uranium deposition. The minerals have no observed affinity to particular lignite minerals. The sodium-autunite is associated with lignites having a high solubility in water and dilute hydroxide solutions. The uranium minerals in the Cave Hills and Billings County areas appear to have formed after removal by erosion of the overlying beds of volcanic material which are thought to have been the source of the uranium. This indicates that in these areas the uranium must have been precipitated originally in the lignite and subsequently leached and redeposited in the near surface portions of the same or nearby seams. (Auth) (MSW)

<327>

Williams, W.C., Beryllium Resources, Inc., Salt Lake City, UT

Beryllium Deposits, Spur Mountain, Utah. Guidebook to the Geology of Utah, No. 17. (pp. 36-59). (1963)

Beryllium occurs at a number of locations in western Utah and central Nevada. Occurrences in the Sheeprock Mountains, Spur-Topaz Mountain, Deep Creek Range, Snake Range, and elsewhere in the region include many of the most significant, non-pegmatite occurrences known. The habitat of the beryllium occurrence alone sets the Spur Mountain deposits in a class by themselves. The numerous faults in the area served as passageways for the mineralizing solutions, which ascended through the Paleozoic sediments into the overlying volcanic sequence. In the tuff, the solutions were distributed partially along faults and fractures, but dominantly along planar zones of greatest permeability more or less parallel to the original but weak stratification of the tuff. Most of the mineral content of the solutions was precipitated within the tuff, but locally the solutions "leaked" into the overlying rhyolites. Fluorite and minor quantities of beryllium are found in fractures and veinlets in the rhyolite. The beryllium is present chiefly as bertrandite and one of its polymorphs, gel-bertrandite. Fluorite is a common mineral both in the beryllium and non-beryllium bearing zones. Manganese is present in complex mixtures and compounds of various oxides. It is believed that the beryllium was transported as a sodium beryllium fluoride. (JST)

Cited as a reference in EURE Contractor Reports.

GENESIS OF DEPOSITS

<328>

Armstrong, F.C., USGS, Spokane, WA

Geologic Factors Controlling Uranium Resources in the Gas Hills District, Wyoming. Wyoming Sandstone, R.L. Bryant (Ed.), Proceedings of the 22th Field Conference, 1973. Wyoming Geological Association, Casper, WY, (pp. 31-48), 292 pp. (1973).

The Gas Hills uranium district is in Fremont and Natrona Counties, Wyoming. Uranium was discovered here in 1953, and it has been a major mining and milling location since. The upper member of the Wind River formation, the Puddie Springs arkose member, is the host rock for the uranium deposits. It consists of poorly consolidated arkosic sandstone and conglomerate facies with thin discontinuous interbeds of mudstone. The rest of the formation consists of silty sandstone and mudstone which are unfavorable host rocks for uranium. Permeability seems to determine to a great extent whether a particular rock is favorable for uranium deposition or not; openwork conglomerate appears to be a good host rock, whereas fine-grained, only slightly permeable rocks are unfavorable hosts. The ore bodies in the Gas Hills area are considered to be ore rolls, i.e., crescent-shaped in vertical cross section, sinuous in plan. The average thickness is 10-15 feet. Most of the ore rolls are stacked in echelon to form frontal systems. The majority of the unoxidized ore is distributed in the lower part of the upper member of the Wind River formation, but it occurs in other stratigraphic positions as well. Unoxidized ore is dark and normally, the darker the ore the higher the grade. The ore minerals are very fine-grained graninitite and a little coffinite. Oxidized ore occurred near the surface and was mined cut when mining first started. Most production, however, has come from unoxidized ore and all of the reserve is contained in unoxidized ore. The uranium is not distributed uniformly throughout a roll but is normally concentrated in the body of the crescent nearest the concave side. In the Gas Hills, the mineralizing solutions moved from south to north. Production estimates of the recoverable uranium vary from 150 million to 200 million pounds D309, dependent on the price paid for the ore. (MSU)

<329>

Austin, S.P., Bendix Field Engineering Corporation, Grand Junction, CO

Dissolution and Authigenesis in Host Sandstones. AAPG Bulletin 63(4):686. (1979, April)

Empty or partly empty shells that conform to detrital rather than original crystal shapes of sandstone grains are present in host sandstones of the Morrison Formation. This somewhat paradoxical situation is explained by removal of sodium from a surface layer of the detrital grain during weathering, with concomitant conversion of this layer to microcline, which resists dissolution under conditions prevailing after sedimentation. During compaction, dissolution of this outer layer occurs at pressure points; once this layer is penetrated, dissolution of the interior proceeds along crystallographic directions and removes all or part of the unaltered sandstone. Untrinned microcline also is present as minute crystals within shells and as outgrowths on both detrital potash feldspar grains and (rarely) on the shells. Uraniferous organic material occurs both under and over some outgrowths on detrital microcline, suggesting contemporaneity of outgrowths and organic material. Elsewhere, chlorite, reportedly contemporaneous with coffinite, coats both exteriors and interiors of feldspar shells and thus succeeds feldspar dissolution; taicite supersedes rather than replaces feldspars. Quartz outgrowths are commonly earlier than uraniumiferous organic material but later than jordisite. Locally, chlorite and/or hematite form total or partial pseudomorphs after pyrite. Rarely, sarcosite is partially pseudomorphous after, and forms outgrowths on, pyrite. These and similar observations by others reveal fragments of a paragenetic sequence complicated by the presence of both primary and redistributed ore. Further investigations may complete a sequence useful in determining conditions of mineralization, and thus in the discovery of similar ore deposits. (Auth)

<330>

GENESIS OF DEPOSITS

<330>

Beck, L.S., Saskatchewan Department of Mineral Resources, Precambrian Geology Division, Regina, Saskatchewan, Canada

Genesis of Uranium in the Athabasca Region and Its Significance in Exploration. CIS Bulletin 63(695):367-377. (1970, March)

The Athabasca region forms part of the large Churchill structural province of the Canadian Shield and is underlain by an Archean or Iaphebian assemblage of regionally metamorphosed and granitized rocks. The basement complex is characterized by a dominant northeast-trending "grain" imparted by the Sudbury orogeny and basic dikes cut all the rocks of the region. The region is an important mineralogic province of vein-type pitchblende, and it contains numerous showings of syngenetic uraninite in pegmatite and crystalline base-metal rocks. The pitchblende deposits can be divided into two groups on the basis of mineralogy; a large group, comprising over 90 percent of the known occurrences, and a much smaller group with a more complex mineral assemblage. The deposits of simple mineralogy consist of pitchblende accompanied by pyrite, chalcopyrite and galena. The deposits of complex mineralogy consist of pitchblende accompanied by one or more of the following: Co-Wi arsenides and sulfides; Co-Wi-Ph selenides; and native elements (Pt, Ag, As, and Cu). These deposits are restricted to a narrow belt within the Beaverlodge area, but there is no apparent geological explanation for their restricted geographical location. Most of the uranium deposits occur in subsidiary structures to major faults and the three dominant fault sets, trending east, northeast, and northwest, appear to equally favorable. The deposits occur in a wide variety of rock types, with the largest deposits (with the exception of the Gunnar deposit, which is in a metasomatized paragneiss) occurring in mafic rocks. Red hematitic alteration of wall rocks is a typical feature of the pitchblende zones and a characteristic, though not infallible, guide to ore. The paragenesis of the pitchblende deposits is complex, but a sequence indicated by several deposits is as follows: (1) introduction of pitchblende in finely divided form accompanied by finely disseminated hematite; (2) brecciation of the host rock and replacement of colloform pitchblende accompanied solely by calcite at first and later by calcite with other gangue minerals; and (3) further brecciation and replacement of massive pitchblende, calcite, and sulfides. There is no evidence of any major break in mineralization and it is probable that the stages are transitional and, perhaps, overlapping. The pitchblende deposition occurred at temperatures ranging from 100 to 500 degrees C, and probably at depths of less than 10,000 feet. A loss in pressure and the catalytic reaction with iron are believed to be the critical factors in causing the precipitation of the pitchblende. The structural environment determines which of the two factors was dominant. (JET)

<331>

Becraft, G.E., USGS, Washington, DC

Uranium in Carbonaceous Rocks in Townsend and Helena Valleys, Montana. USGS Bulletin 1046-C, (pp. 149-164). (1958)

The Townsend Valley is a wide basin about 60 miles long and some 600 square miles in areal extent. All known radioactive anomalies in the valley are in rocks of Oligocene age. The Helena Valley is another wide basin, separated from the Townsend Valley by a broad, low divide northwest of Winston. Quaternary deposits are extensive in the Helena Valley, and as a result, Tertiary rocks are exposed in only a few small areas. A few weak radioactivity anomalies have been noted in rocks similar to the Oligocene rocks northeast of Winston. All of the anomalies in both valleys are in or adjacent to carbonaceous shales in the lower part of a Tertiary unit which consists of several thick beds of conglomerate, interbedded bentonite, and partly bentonized dark-gray tuffs. Of the 20 localities studied, secondary uranium minerals were noted at five. No primary uranium minerals were noted at any of the localities. The author believes the source of the uranium in the Townsend and Helena Valley deposits is the light-gray and white fine-grained tuffs and lapilli tuffs, samples of which contain 0.002 to 0.009 percent uranium. The uranium was probably leached from the tuffs by meteoric water during bentonization and was concentrated in the carbonaceous shale and lignite. Faulting is common in the Tertiary rocks, but no direct relation of uranium deposits to the faults was found. No other structural controls were apparent in the deposits. (JET)

<332>

Bell, R.T., Canada Geological Survey, Ottawa, Ontario, Canada

Uranium in Black Shales - A Review. Uranium Deposits, Their Mineralogy and Origin. Short Course Handbook, Volume 3, S.H. Kimberley, (Ed.). University of Toronto Press, Toronto, Canada, Ch. 12. (pp. 307-329), 521 pp. (1978, October)

Uraniferous black shales are nearly always characterized by very thin, persistent laminae, with other primary sedimentary structures conspicuously absent. These shales are typically composed of dark gray, grey brown to black, very fine sand- to clay-sized material with organic carbon present as solid carbon compounds, spores and larger fragments of terrestrial and marine plant origin. Pyrite or sardasite is always present, often in amounts up to several percent. The uranium is associated with the organic fraction, or, in the case of phosphoritic units, with the phosphates. Black shales are recorded from all sedimentary environments except desert-savanna. Uranium content of the principal ancient black shales is large. In Sweden, the Billingen district covers 500 square kilometers with thickness of uraniferous black shale of about 3 meters and a mean uranium content of 300 ppm. The total amount of uranium in this area is estimated at one million tons. Marka, a second district is estimated to have at least one hundred thousand tons of uranium. The Chattanooga shale, while of considerably lower grade, also holds large amounts of uranium due to its wide distribution. (JET)

GENESIS OF DEPOSITS

<333>
Brookins, D.C., University of New Mexico,
Albuquerque, NM

Periods of Mineralization in Grants Mineral Belt,
New Mexico. AAPG Bulletin 63(4):687. (1979,
April)

Geologic observations coupled with laboratory studies indicate several periods of mineralization in the Grants mineral belt. The earliest mineralization is from trend ore in the Abosia Lake and Smith Lake districts; Rb-Sr radiometric ages on chlorite formed penecontemporaneously with primary uranite minerals range from 135 to 138 plus or minus 8 m.y. This period of mineralization is within the limits of error for the age of sedimentation obtained on barren ground metacorillonite of 140 to 145 plus and minus 10 m.y., but cross-cutting ore indicates early epigenetic as opposed to syngenetic mineralization. Early formed ore in the Laramie district was resobilized and reprecipitated during some mid-Cretaceous event at 110 to 115 m.y. determined on the basis of Rb-Sr dating. Ore was not derived from the overlying Dakota Formation (Cretaceous), as the Rb-Sr dates for the Dakota and Yances formations are 92 plus and minus 6 m.y. and 85 plus and minus 10 m.y., respectively (in excellent agreement with U.S. Geological Survey K-Ar dating). Mineralization is present in the Dakota Sandstone, but whether the ore was syngenetic or epigenetic is unknown. Much of the stack ore was apparently formed during the Laramide orogeny about 60 m.y. ago, usually in close proximity to a redox front. Post-Laramide ore is proposed for several deposits in reduced ground at this redox front, some of which is apparently Tertiary although resobilized Jurassic ore cannot be distinguished from that from much younger sources even though reworked Jurassic ore is supported by high Sr 87/Sr 86 ratios. Ore possibly formed during the Tertiary from a southerly source for some deposits, and some resobilized ore, possibly of Pleistocene age, is minor in minor amounts. (Auth)

<334>
Brookins, D.C., University of New Mexico,
Albuquerque, NM

Mechanisms for Uranium Deposition in Grants Mineral Belt. AAPG Bulletin 63(4):676-687. (1979, April)

A polygenetic model for uranium deposition of much of the ore in the Grants mineral belt results from (a) spatial relations of orebodies, (b) geochronologic studies, (c) clay-mineral studies, (d) trace-element studies, and (e) theoretical considerations. Trend ore apparently formed from southeast-flowing solutions entirely in reduced ground with organic carbon (plus some hydrogen sulfide) acting as reductant; this is supported by evidence for organic carbon in calcite penecontemporaneous with ore, trace-element distribution, and other factors. Uplift, resobilization, and reprecipitation of some of the stratigraphically high ore in the Laramie district is somewhat similar to Wyoming roll-type deposits in terms of mineralization control by sulfide-sulfate equilibria and clay-mineralogic variations. The effect of this event is not apparent in the deeper Abosia Lake ore. The Laramide orogeny resulted in the establishment of a redox front which, in turn, resulted in destruction and resobilization of some earlier trend ore and the formation of stack ore. Virtually all zones of rock weakness are subject to some mineralization near this front, and the sulfide-sulfate equilibria cause many of these stack deposits to resemble roll fronts. Roll geometry of some of this ore is due to encroachment of the front on reduced ground after the Laramide. Younger, but very local, soluti as result in ore in oxidized ground, some of which is indicated by primary uranophane. Roll geometry is present for some of these deposits. The superimposition of the redox front on the older trend ore allows both carbon and sulfur to act as reductants, and orebody geometries are similar to Wyoming-type rolls in terms of uranium distribution but not necessarily for trace-element distribution. (Auth)

<335>
Childers, E.O., Western Standard Uranium,
Incorporated, Riverton, WY

Uranium Geology of the Kaycee Area Johnson
County, Wyoming. Wyoming Sandstone, R.L. Eayert
(Ed.), Proceedings of the 22th Field Conference,
1970. Wyoming Geological Association, Casper,
WY, (pp. 13-30), 292 pp. (1970)

The stratigraphy, structure and regional geology of the Kaycee Area, Johnson County, Wyoming are described. The sands of the Wasatch and Fort Union formations, both Tertiary in age, are of major concern. Uranium and vanadium mineralization is well developed in the sandstones and conglomerates of these two formations. Brightly colored red deposits in both the Fort Union and Wasatch strata were caused by hematite staining in connection with their alteration as oxidizing waters carried uranium and vanadium through them. (HBU)

Cited as a reference in EURE Contractor Report.

<336>

CRUESIS OF DEPOSITS

C336>
Coleman, R.G., USGS, Washington, DC

Mineralogical Evidence on the Temperature of Formation of the Colorado Plateau Uranium Deposits. *Economic Geology* 51(1):1-8. (1957, January)

The oxidized uranium deposits on the Colorado Plateau are considered to represent primary ore that formed under equilibrium conditions, therefore minerals deposited by the primary ore fluids should exhibit properties inherent to existing temperature, pressure, composition of these fluids during deposition. Uraninite, coffinite, low-valent vanadinite oxides, and sulfides are the most abundant minerals deposited by the ore-forming fluids. The relative temperature of formation of the sulfides is discussed in the paper. It has been shown in equilibrium diagrams for the FeS-ZnS system that the formation temperature (ranging from 138-400 degrees C, when corrected for pressure) can be made on sphalerites known to have formed in the presence of excess iron sulfide. Sphalerites forming under these conditions are not common in the Colorado Plateau uranium deposits, except in two Triassic sedimentary deposits containing ZnS that formed in the presence of excess iron sulfide. These are the Happy Jack Mine, White Canyon District, San Juan County, Utah, and the Hidden Splendor Mine, San Raphael District, Emery County, Utah. In both deposits yellow crystals of the sphalerite have formed concurrently with pyrite and uraninite. However, after the sphalerites were purified and analyzed for the iron content, unit cell measurement were determined, and the temperature of formation was found to be less than 138 degrees C, the temperature at which the equilibrium diagram for Fe-ZnS is incomplete. Assumptions may be made as to the depositional environment (i.e., using geothermal gradient and lithostatic pressure), knowing the time in which the sphalerites were deposited (Triassic-Jurassic), and these reveal that the primary uranium minerals are stable and could form at the temperatures indicated. (BBW)

C337>
Dubyk, H.S., and P. Young, Bendix Field Engineering Corporation, Grand Junction Operations, Grand Junction, CO

Preliminary Evaluation of the Uranium Favorability in the Kaiparwits Plateau Region, Garfield and Kane Counties, Utah. GJEI-64(78); 26 pp. (1978, May)

The report is a preliminary evaluation of the uranium potential of the basal sandstone of the Chinle Formation (Triassic) and of the Salt Wash Member of the Morrison Formation (Jurassic) in the Kaiparwits Plateau. Both subsurface and surface data were utilized, but due to limited outcrops, the Chinle Formation was studied principally by subsurface methods. Published and unpublished literature was searched to obtain information. Five surface samples were collected from the Morrison Formation. Vanadine, polythiophene, selenium, copper, iron, and lead were analyzed by atomic absorption spectroscopy and Cu, Mn, and Ni were determined by gamma-ray spectroscopy. Petrographic studies included clay analyses and mineral identification. Favorability of the basal Chinle sandstone was based on (1)

presence of intermediate-size sandstone-filled channels cut into the Moenkopi, (2) presence of carbonaceous material, (3) an adequate source of uranite, and (4) gamma-ray anomalies from test-hole logs. Favorability of the Salt Wash Member of the Morrison Formation was based on (1) sandstone-anadstone ratios that approach equality, and (2) presence of thick sandstone lenses, carbonaceous material, and halos of light-tan to brown limonite staining. Although the basal Chinle sandstone and the Salt Wash Member of the Morrison contain sizable uranium deposits throughout much of the Colorado Plateau, both units lack characteristics that are favorable for significant uranium deposits in the Kaiparwits Plateau. (PAC)

Gamma-ray log from the area used for stratigraphic correlation and for identification of anomalies are listed in Appendix A. Appendix B contains sample description and analyses. Measured sections in the Kaiparwits Plateau and adjacent area are contained in Appendix C.

C338>
Galloway, W.E., Bureau of Economic Geology, Austin, TX

Deposition and Early Hydrologic Evolution of Westwater Canyon Wet Alluvial-Fan System. AAPG Bulletin 63(4):689. (1979, April)

The Westwater Canyon Member is one of several large, low-gradient alluvial fans that comprise the Morrison Formation in the Four Corners area. Morrison fans were deposited by major laterally migrating streams entering a broad basin bounded by highlands on the west and south. The Westwater sandstone framework consists of a down-fan succession of (1) proximal braided channel, (2) straight bedload-channel, (3) sinuous mixed load-channel, and (4) distributary mixed load-channel sandstone bodies. Regional sandstone distribution and facies patterns are highly digitate and radiate from a point source northwest of Gallup, New Mexico. Early groundwater flow evolution within the Westwater fan aquifer system can be inferred by analogy with Quaternary wet-fan deposits and by the interpreted paragenetic sequence of diagenetic features present. Syndepositional flow was controlled by the down-fan hydrodynamic gradient and high horizontal and vertical transmissivity of the sand-rich fan aquifer. Groundwater was abundant, fresh, and slightly alkaline; dissolution and transport of soluble sulfate would be likely. With increasing confinement of the aquifer below less permeable calcareous Brushy Basin deposits and release of soluble constituents from volcanic ash, flow patterns stabilized and relatively more saline, pregnant groundwater sealed the aquifer. Uranium mineralization occurred during this early postdepositional, semiconfined flow phase. Exposure, erosion, and possible further flushing of proximal fan deposits had little apparent effect on the aquifer. Development of overlying Dakota swamps suggests a shallow water table indicative of regional discharge or stagnation. In either event, only limited downward flux of acidic water is recorded by local bleached, kaolinized zones where Westwater directly underlies the Dakota. Subsequent groundwater flow phases have further obscured primary alteration patterns and caused some local oxidation and redistribution of uranium. (Auh)

95
<339>
GENESIS OF DEPOSITS

<339>
Cavasci, A.T., and P.P. Kerr, Columbia
University, Department of Geology, New York, NY
Uranium Replacement at Garnet Ridge, Arizona.
Economic Geology 63 (8): 859-876. (1968, December)

Uranium-vanadium-copper minerals were found as a cement or as vein in the Navajo Sandstone, both along the contact with a breccia dike and nearby. The Navajo Sandstone exposed at Garnet Ridge is a fine-grained quartz arenite with subordinate microcline and altered plagioclase. Cement is scarce and where present it is mainly calcite. Near the dike the cementing materials become more abundant and numerous veins containing iron, copper, vanadium, and uranium minerals are present along cracks and fractures in the sandstone. Balschite, chrysocolla, calciovoltborthite, tytanite, limonite, chalcopyrite, and pyrite were identified in the veinlets or in the cement. It is believed that the breccia dikes and collapse structures at Garnet Ridge were probably formed as a result of intense igneous activity at depth. The uranium, vanadium, and copper mineralization related to the breccia dikes suggests that metallic mineralization was associated with the formation of the dikes. Deposition of calcite as veinlets in the breccia shows that solutions migrated after the emplacement of the dike. The metallic mineralization probably occurred during the final hydrothermal stage of igneous activity. The types of garnets that occur at Garnet Ridge suggest a deep-seated origin and a medium- to high-grade metamorphism of the source rock. (JET)

<340>
Germanov, A. I.

Geochemical and Hydrodynamic Conditions of
Epigenetic Uranium Mineralization in
Petroleum-Water Zones. Geochemistry 2: 107-120.
(1961).

The hydrodynamic conditions for the formation of uranium mineralization of the Athabasca Lake type are considered. Epigenetic uranium mineralization arises in the marginal parts of petrolierous artesian basins. Where infiltrating ground water penetrates flooded petroleum reservoirs or rocks that formerly contained petroleum, the Eh of the water is lowered from 500-250 mV to as low as -400 mV, the dissolved components are rapidly reduced, and uranium is precipitated. Uranium enrichment of water in the oxidizing zone up to 5×10^{-6} or even 2×10^{-6} g/l is necessary for the formation of ore deposits. This is favored by warm or hot climatic conditions, under which soils enriched with supergene carbonates and sulfates are formed. In addition, the high clarity of uranium in rocks of the oxidizing zone [$n \times 10^{-6}$ (2-3) percent and higher is favorable to uranium enrichment]. (AETH) (JET)

<341>
Gott, G.B., D.E. Wolcott, and C.G. Bowles, USGS,
Washington, DC

Stratigraphy of the Inyan Kara Group and
Localization of Uranium Deposits, Southern Black
Hills, South Dakota and Wyoming. USGS
Professional Paper 762; 57 pp. (1974)

The Inyan Kara Group in the southern Black Hills consists of the Lakota and Fall River Formations of Early Cretaceous age. Uranium ore deposits are restricted to four

stratigraphic units, of which only one is highly carbonaceous. These units are (1) the highly carbonaceous sandstones and siltstones of the lower part of the Fall River Formation, (2) noncarbonaceous fluvial unit 5, also in the Fall River Formation, (3) noncarbonaceous fluvial unit 6, in the Fuson Member of the Lakota Formation, and (4) moderately carbonaceous fluvial unit 1 in the Chilson Member of the Lakota Formation. Uranium was introduced into the Inyan Kara with the artesian recharge of calcium sulfate type water from the Niobrara. As this water migrated down-dip, it was modified by ion exchange and sulfate reduction to either a sodium sulfate or sodium bicarbonate type water, causing an increase in pH values and a decrease in Eh values. Reduction of sulfate ions in the ground water was a major factor in creating a favorable environment for the precipitation of uranium. Other factors that affected the localization of the uranium deposits pertain to the concentration of metals in the ground water and to the rate of ground water flow. Oxidation of uranium deposits near the Inyan Kara outcrop may locally increase the concentration of uranium in the ground water and thereby increase the volume of uranium transported to the site of deposition. The distribution of the fluvial sandstones directly affects the rate of ground water flow and, therefore, the volume of transported uranium. (JET)

<342>
Hoede, J., Saskatchewan Research Council,
Saskatoon, Saskatchewan

Classification of Uranium Deposits in Northern
Saskatchewan. Uranium Deposits, Their Mineralogy
and Origin, Short Course Handbook, Volume 3, E.H.
Kimberley, (Ed.). University of Toronto Press,
Toronto, Canada, Ch. 16, (pp. 397-402), 521 pp.
(1978, October)

Uranium occurrences in northern Saskatchewan
may be grouped into syngenetic and epigenetic
types of deposits. Syngenetic deposits
include both radioactive pegmatites and
dissimulations and local concentrations of
uranium within Archean metasedimentary rocks
of conglomerate type. The syngenetic
deposits are of no present economic
importance. The epigenetic deposits of
northern Saskatchewan are represented by the
well known Beaverlodge vein-type deposits and
the more important, and more recently
discovered, unconformity-type of the Athabasca
basin. Two episodes of epigenetic
mineralization are believed responsible for
these deposits. The first, of late Hudsonian
age, is represented by the Beaverlodge
vein-type deposits of simple mineralogy. The
second episode is of approximately
"Grenvillian" age and it gave rise to the
unconformity-type deposits within the
Athabasca basin. In the Beaverlodge area,
this second episode led to reworking of
Hudsonian mineralization in addition to
generation of vein deposits of complex
mineralogy. (JET)

<343>

GENESIS OF DEPOSITS

<343>

Buffman, R.C., Jr., R.R. Kirk, and R.J. Cokken, USGS, Denver, CO; Northern Arizona University, Flagstaff, AZ

Depositional Environments as Ore Controls in Salt Wash Member of Morrison Formation (Upper Jurassic), Carrizo Mountains, Arizona and New Mexico. APC Bulletin 63 (4):689-690. (1979, April)

Uranium deposits in the Salt Wash Member of the Morrison Formation in the Carrizo Mountains area appear to be closely related to depositional facies. In the vicinity of the Eastside area, southeastern Carrizo Mountains, the Salt Wash consists of a lower part, 10 to 15 m thick, and an upper part, 55 to 60 m thick. The lower part contains sandstone and silty sandstone interpreted as overbank and partially abandoned channel-fill deposits. It also contains a few large lenticular channel sandstones deposited by meandering and possibly braided streams. Uranium deposits are uncommon in the lower part. The upper part of the Salt Wash contains a much greater percentage of braided-stream-deposited channel sandstones, many of which coalesce to form prominent continuous ledges. The fines grained low-energy deposits are very limited in extent, commonly being less than 200 m long, 20 m wide, and 2 m thick. They have a lenticular cross section and a scour base. They consist of interbedded sandstones, claystones, and siltstones and are interpreted as abandoned and partially abandoned channel fills. Subsequent scouring of these beds has resulted in clay-clast conglomerates which were incorporated as lag deposits in the bases of overlying channel sandstones. Detrital organic debris is uncommon but is present in some channel-lag deposits as well as in some of the bedded sandstones. Uranium deposits in the Carrizo Mountains area are associated with abandoned and partially abandoned channel fill and with clay-clast lag conglomerates adjacent to major channel sandstone systems in the upper part of the Salt Wash. (Ruth)

<346>

Johnson, C., Michigan Technological University, Department of Geology and Geological Engineering, Houghton, MI

Depositional Models and Areas Favorable to Mineralization. SJD-42(76); Uranium and Thorium Occurrences in Precambrian Rocks, Upper Peninsula of Michigan and Northern Wisconsin, With Thoughts on Other Possible Settings. J. Kallisteki, (pp. 163-159), 728 pp. (1976, June)

Primary mineralization accounts for the radioactivity observed in three places in northern Michigan. Although none of these prospects have economic potential, the processes which formed them could easily occur on a larger scale, and when this process is combined with supergene enrichment, economic concentrations could be formed. The synsite dike near Marquette represents the concentration of uranium and thorium by magmatic differentiation similar to but on a much smaller scale than the Keweenaw complex in Greenland. The Greens Creek Pegmatite and the monazite near Republic are interpreted to represent the re-concentration of uranium and thorium by metamorphism and recrystallization of an older rock. No syngenic concentrations of uranium have been found in Michigan. The Goodrich conglomerate contains tetrital grains of monazite, but only trace amounts of uranium. Supergene occurrences of uranium are the most prevalent type of uranium concentration in northern Michigan and the type of occurrence with the most economic potential. Three types of potential source rocks for the supergene occurrences are found in northern Michigan. They are pyritic black slates, granite gneisses, and rhyolites, all of which contain relatively high concentrations of syngenic or primary uranium. Potential host rocks for supergene mineralization could theoretically include most rock types in the area. Proximity to the source rocks, the permeability and porosity of the rock, and a reduced chemical environment are required to fix uranium. Suitable host rocks include fractured and brecciated black slate; porous oxidized soft iron ore; vuggy, pyritic quartzite; disease dikes, and shear zones and fractures in granites and gneisses. The mineralizing process requires a period of tectonic activity which produces openings in brittle rocks, followed by a period of intense chemical weathering. Two periods of tectonic activity have been recognized in Michigan. The most intense of these was the Penokean Orogeny dated at 1.9 b.y. The model "Lake Superior type uranium deposit" is a supergene concentration of uranium. Its occurrence is related to Middle Precambrian metasediments because of the ease with which uranium in black slates can be leached and re-concentrated. The deposits may thus occur within the black slates of within the stratigraphically underlying oxidized iron formation. The areas thought to have the highest potential for mineralization are those underlain by the black pyritic slates of the upper Marquette Range Supergroup. Also important, but less widespread are the supergene occurrences in fractured granites and gneisses. (JRN)

GENESIS OF DEPOSITS

<305>

Kerr, P.F., Columbia University, Department of Geology, New York, NY

Criteria of Hydrothermal Replacement in Plateau Uranium Strata. Peaceful Uses of Atomic Energy, Vol. 2, Survey of Raw Material Resources, Proceedings of the 2nd International Conference, Geneva, Switzerland, September 1-13, 1958. United Nations, New York, (pp. 330-338), 883 pp. (1958)

The Colorado Plateau has long been one of the major uranium producing provinces in the world. Opinions differ concerning the mechanism involved in the replacement of Plateau ores, and four hypotheses now receive support: (1) the circulatory groundwater theory, (2) the ash-leach theory, (3) the syngenetic theory, and (4) the hydrothermal theory. Criteria applicable to the interpretation of origin include: (1) absolute age determination of primary uranium ores, (2) the evidence of wall rock alteration, (3) mineral and chemical associations of Plateau ores, (4) the role of organic matter in uranium replacement, (5) the stratigraphic distribution of the ores, (6) the structural features associated with the ore-bearing solutions and (7) igneous and hydrothermal features near Plateau uranium deposits. These criteria tend to support the hydrothermal theory. The syngenetic theory assumes the uranium deposits are replaced contemporaneously with the enclosing sediments. The mechanism of precipitation essentially is supergene, and deposits are formed at low temperatures. Criteria at variance with this theory are some of the absolute age data, alteration evidence, stratigraphic distribution, mineralization and hydrothermal features. Currently, this theory receives little attention. The ash-leach theory attributes the origin of Plateau uranium to supergene leaching from volcanic ash. Uranium deposits derived by leaching the overlying ash are believed by some to accumulate in underlying strata. This theory received strong support in the Wyoming area where early deposits were found stratigraphically below ash-bearing strata, but inherent weaknesses of this theory include absolute age data, hypogene mineralization, the role of organic matter, hydrothermal features, and the evidence of wall rock alteration. Also, sufficient uranium content in the ash remains to be demonstrated. Although certain local deposits may have formed by this mechanism, a general application of this theory seems unlikely. According to the circulatory groundwater theory, uranium deposits were replaced in sediments by normal groundwater solutions. Groundwater circulation is assumed to have removed uranium ions from exposed areas of crystalline rocks and deposited repeated increments in the deposits as now found. The

usual groundwater temperatures prevail, and igneous influence is absent. This theory is supported by the extensive evidence of wide lateral mineralization, the fact that uranium is precipitated from solution and the existence of a chemically feasible mechanism of transfer. However, alteration, urano-organic ore deposition, and a number of aspects of the mineralization and igneous features of the Plateau fail to support the basement erosion as the primary source of uranium ions, and there is reason to believe that ores were frequently deposited at higher temperatures than prevail in normal groundwater. The hydrothermal theory envisages the source of uranium as magmatic fluids. The fluids, charged with uranium ions from primary magmatic sources, come in contact with precipitants. The precipitants such as plant detritus, petrolierous material, or accompanying sulfur compounds cause the deposition of uraninite, coffinite, or urano-organic compounds. The principal weakness of the theory lies in the limited extent to which supporting criteria have been fully studied and developed. Certain difficulties in absolute age determinations remain and problems concerning mineralization exist. (JST)

<346>

Landwehr, W.R.

The Genesis and Distribution of Major Mineralization in Western United States. Economic Geology 63:967-970. (1968)

Major hydrothermal mineralization in the western United States has occurred in three epochs: Precambrian, Nevadanide, and late Tertiary. Probably in excess of 95 percent of the value of the metals produced has come from the Nevadanide deposits. The Nevadanide epoch is characterized by plutonism of two types; one giving rise to major mineralization and the other to little or none. Plutons of the first type are confined to the northeast trending belts of major mineralization. Plutons of the second type are well distributed over the entire region. Productive plutonism is the result of tangential tensional stress caused by regional uplift. Response to the stress has resulted in zones of crustal rupture that allowed the parental basaltic magma at depth to become mobile and ascend. During the ascent fractional crystallization and differentiation ultimately resulted in major mineralization. Bimetallic plutonism is in part due to tangential compression stress, and in part to convectional temperature variations. The plutons were formed by anatexis or granitization. (Ruth) (JST)

Cited as a reference in SURE Contractor Reports.

C387>

GENESIS OF DEPOSITS

C387>
Langford, P.P., University of Saskatchewan,
Saskatoon, Saskatchewan, Canada

Stratigraphic Control of Uranium Deposits. AAPG
Bulletin 63(4):690-691. (1979, April)

The restricted stratigraphic distribution of economic uranium deposits is one of their most consistent characteristics. Even the occurrence of uraniferous pegmatites in Saskatchewan and Ontario appears to have been stratigraphically controlled. Quartz-pebble conglomerate deposits are placers, but other deposits in sediments are chemical precipitates, characterized by thorium-free primary uranium minerals with vanadium and selenium. In marine sediments these minerals form low-grade, disseminated, widespread deposits that are obviously syngenetic. In terrestrial sediments, chiefly fluvial sandstones and associated vein deposits, the concentration of uranium varies widely, the high-grade portions constituting ore. Genesis is important in deciding how rigorously to limit exploration to certain stratigraphic situations. Genetic processes can only be inferred, but if deposits in diverse situations are compared, then features held in common are likely to be critical and others incidental. Thus vein deposits in Saskatchewan and Australia have common structural, mineralogic, and stratigraphic features, but differ in their basement host rocks. Their mineral assemblages, lack of zoning, and associations with fluvial sandstones are also common to the Colorado-type sandstone deposits. The Wyoming type of roll deposit though in similar environments is unique, having mineralogic and compositional zoning, a feature of epigenetic deposits of other minerals and one which may be indicative of truly epigenetic origin. The hypothesis of near-surface, quasisyngenetic origin presumes that formations are unique at their time of formation, which explains the ubiquitous stratigraphic control. Objections to this hypothesis are based largely on the high temperatures and salinities indicated by fluid inclusions and the late dates given by Pb-206 dating methods. However, these are the results of diagenesis which recrystallized the quasisyngenetic deposits at high temperature and produced discordant dates. In contrast, hypotheses that postulate ore formation long after deposition and burial of the sediments fail to account for the stratigraphic control. Unique features such as the presence of volcanic debris acting as an intrasediment source of uranium are commonly cited as ore controls, but only a very small proportion of sediments with such features has uranium deposits in spite of an apparent consistency of diagenetic processes. (Kuth)

C388>
McMillan, R.H., Western Mines Limited, Toronto,
Ontario, Canada

Genetic Aspects and Classifications of Important Canadian Uranium Deposits. Uranium Deposits, Their Mineralogy and Origin, Short Course Handbook, Volume 3, R.W. Kischerley (Ed.). University of Toronto Press, Toronto, Canada, Ch. 6, (pp. 187-204), 521 pp. (1979, October)

A classification of important uranium deposits which utilizes both genetic and descriptive criteria is presented. The uranium deposits are grouped in four major categories: (1) igneous; (2) metamorphic; (3) detrital; and (4) hydrogenic. With the Hydrogenic group are five sub-categories (1) hydrothermal; (2) syngenetic; (3) epigenetic; (4) syngenetic,

syngenetic, and epigenetic; and (5) suprigenic. Uranium of igneous origin has been found in several alkaline and carbonatite complexes in the Canadian Shield and the Cordillera. Deposits of metamorphic origin include those which are found in fold belts where metamorphism has reached upper asphomite to granulite grade. These deposits are of two main types: (1) felsic segregations consisting of pegmatitic or alkaliitic veins and dikes, and (2) skarns. The most important detrital deposits are the paleoplacers in the Elliot Lake district. Of the hydrogenic deposits, those of epigenetic origin are the most important economically. These deposits include those hosted by continental sandstone and lignite, as in the Colorado Plateau and elsewhere in Tertiary basins of the United States, in addition to those in the Athabasca Formation of Saskatchewan. (JNT)

C389>
Miller, L.R., and L.W. LeCheminant, Canada
Geological Survey, Ottawa, Ontario, Canada

Uranium mineralization in the Baker Lake Basin, District of Keewatin. Proceedings of the Joint Annual Meeting of the Geological Association of Canada, the Mineralogical Association of Canada, and the Geological Society of America, Toronto, Ontario, October 23-26, 1978. The Geological Society of America, Boulder, Colorado, (p. 456), 531 pp. (1978)

Near Baker Lake, N.W.T., uranium mineralization occurs within amphibian and Archean intrusive and gneiss complexes and unconformably overlying sedimentary and volcanic rocks of the Paleohemikian Dubavat Group. Conglomerates and arkoses of the lower red bed sequence of the Dubavat Group form overlapping fining-upward clastic wedges derived from a tectonically unstable region of sharp relief to the east and southeast. The red beds partly infill grabens and half-grabens. Subaerial potassium alkaline lavas, pyroclastics, and volcanoclastic sedimentary rocks overlie the red beds and locally extend over the basement outside the fault blocks. Small hypabyssal alkaline complexes and lamprophyre dykes intrude the basement and basal Dubavat Group rocks and are temporally associated with alkaline volcanism. Three distinct uranium associations have been recognized: 1) fracture controlled mineralization in the Dubavat Group and basement gneisses (Au-Ag-Cu-Se-U or Zn-Hg-Pb-Cu-U), 2) diatreme breccia mineralization in basement gneisses (Zn-Cu-U) and 3) impregnation and microfracture mineralization in altered arkose peripheral to lamprophyre dykes (Ag-Cu-U). Fracture controlled mineralization has structural characteristics and alteration mineral assemblages similar to hydrothermal vein deposits at Beaverlodge, Sask. Diatreme breccia mineralization results from hydrothermal systems channelled through porous highly brecciated gneiss. Mineralization within altered arkose formed by a two stage process. Fe and Cu sulphides and native Ag and Cu were deposited locally within thermal aureoles formed during emplacement of lamprophyre dykes. These mineralized zones subsequently provided the reducing environment for precipitation of uranium from groundwater. (Kuth)

GENESIS OF DEPOSITS

<350>

Miller, T.P., and B. Johnson, USGS, Juneau, AK

An Occurrence of Parsonite, A Secondary Uranium Mineral, in Alaskite of the Wheeler Creek Pluton, Alaska. USGS OFR-78-315; 6 pp. (1978)

Parsonite, a hydrous phosphate of Pb and U, has been identified for the first time in Alaska, in the Purcell Mountains. The mineral occurs as a soft, yellow to chocolate coating closely associated with green muscovite on fracture surfaces in a shear zone in alaskite of the Wheeler Creek Pluton. The true width of the parsonite-bearing material is uncertain, but strong radioactivity has been detected over an area about 3m x 20m, with readings up to 10,000 cps being recorded. Coarse grained alaskite (radiometric age late Cretaceous) underlies the west end of Wheeler Creek pluton and intrudes lower Cretaceous andesitic volcanic rocks, upper Cretaceous rhyodacitic hypabyssal rocks, and upper Cretaceous quartz monzonite of the pluton. It is composed of K-feldspar, chiefly "patch" perthite with minor amounts of albite and abundant quartz. Biotite is the chief mafic mineral, with hornblende occurring locally near contacts with country rock; magnetite and allanite are accessory minerals. Scintillometer readings of 400-600 cps were obtained from the alaskite, while delayed neutron analysis of two samples showed 14.4 pps and 13.4 pps U and 52.2 pps and 45.2 pps Th. A sample of altered alaskite with a visible coating of parsonite had 459 pps U; a sample of altered alaskite without visible parsonite had 881 pps U. The original source of U in the parsonite is unknown; occurrence of an oxidized U-mineral in association with a shear zone in uraniferous alaskite definitely represents secondary concentration of U. The parsonite may therefore indicate the presence of primary U-minerals and/or more widespread secondary enrichment of the alaskite. (LRS)

<351>

Borozenko, N.K., Leningrad Mining Institute, Leningrad, USSR

Uranium Metallogenesis Epochs. International Geology Review 8(5):608-620. (1966)

No geologic era is characteristically uraniferous or characteristically barren on a world-wide scale. Beginning with the late Archean, commercial uranium deposits occur in all eras and their periods, thus there is no reason for preferential exploitation in rocks of any particular period. Some eras (and periods) are more uraniferous than others with respect to certain large provinces and even continents. For instance, the bulk of the uranium reserves in Eurasia is represented by Paleozoic exogenous and endogenous deposits. The Mesozoic and Cenozoic come next in importance, followed by the Proterozoic. In North and South America, Africa, and Australia, Proterozoic is most important; there are virtually no Paleozoic commercial deposits; and a considerable amount of uranium is Mesozoic and Cenozoic. The reasons for such a distribution are not clear. The great disparity between Paleozoic uranium reserves of America, Africa and Australia, on the one hand, and Eurasia on the other, is probably due to the difference in their respective tectonics. Uranium distribution within the Paleozoic section is very uneven, and there is a tendency for the endogenous mineralization to grow from the older periods to the younger. The opposite is true for exogenous mineralization. The uranium reserves grow smaller going from the older eras to the younger, but the picture is different if duration of eras is taken into account. As weighed for time, the reserves grow larger going from older to younger, both in their total and especially as regards to the exogenous deposits. This tendency is reversed for endogenous deposits. All eras, except the Paleozoic, show a preponderance of endogenous deposits over the exogenous and metasedimentary. The Paleozoic is somewhat richer in endogenous deposits. While the large granitic intrusions originated in the Archean and Proterozoic, the Proterozoic alone witnessed the origin of commercial high-temperature contact-metamorphic uranium skarn deposits. These deposits are scarce to nonexistent in post-Proterozoic times. The current view is that uranium is genetically related not to the large batholiths common in the Archean and Proterozoic, but rather to minor intrusions and subvolcanic formations. Such intrusions mark the late and terminal geosynclinal stages and they are typical of the subplatform and platform conditions. (JEP)

The report seems to be contradictory.

<352>

GENESIS OF DEPOSITS

<352>

Word, G.L., Jr., USGS, Boston, MA

Characterization of Fine-Grained Black Uranium Ores by Transmission Electron Microscopy. USGS Circular 753; Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977, J.A. Campbell (Ed.), (pp. 29-31), 75 pp. (1977)

Mineralogical and geochemical investigations of primary uranium minerals (uraninite and coffinite) and of the mechanisms by which these phases oxidize to the yellow uranyl minerals have been hampered by the fine-grained nature of the primary crystalline phases and the black amorphous colloidal nature of the products of the early oxidation steps. Because of this, the USGS has been employing a technique utilizing a transmission electron microscope (TEM) to study organic material containing fine-grained coffinite $[\text{U}(\text{SiO}_4)\text{Ix}(\text{OH})\text{y}]$ from the La Sal no. 2 mine in Mesa Co., Colorado. The coffinite-bearing material was made into a 20 micrometer-thick, doubly polished thin section, which was further thinned to electron transparency (1 micrometer) by argon ion silling. The scanning transmission electron microscope (STEM) showed the coffinite as elongated grains (1-2 micrometers wide and 10-15 micrometers long) filling collapsed plant-cell cavities in a carbonaceous matrix. At higher magnification, these grains appeared as aggregates consisting of individual crystals ranging from 30 to 500 nanometers in size embedded in the more transparent carbonaceous matrix. Covering the surfaces of the coffinite grains were 5- to 15-nanometer particles. These particles were found covering all coffinite grains observed, and were determined to be cubic with a unit cell edge of $a=5.46$ angstrom; a measurement consistent with oxidized uraninite. The small uraninite particles were interpreted as reaction products from the breakdown of coffinite; the silica existing as an amorphous phase associated with the coffinite and the matrix. A thermal spike was probably the driving force in the reaction. This breakdown of coffinite to fine-grained uraninite plus silica may be a necessary step in the sequence by which coffinite oxidizes to the yellow uranyl minerals, reflecting the inability of the coffinite structure to accept the smaller hexavalent uranium atom and its charge-compensating defect. Alternatively, the uraninite may be the reaction product formed during the transformation of coffinite to a metastable state. (JST)

<353>

Ojakangas, R.W., University of Minnesota, Department of Geology, Duluth, MN

Uranium Potential in Precambrian Rocks of Minnesota. GJBK-62(76); 259 pp. (1976, October)

Anomalous radioactive localities are present in the granites and pegmatites of the Northwest Angle, in the migmatites of the Vermilion granite-migmatite massif, in the McGrath Gneiss, and in the Thomson Formation. The highest radioactivity level measured was 1700 cps. Whereas the radioactivity at the first two locales mentioned above is apparently the result of igneous-metamorphic processes, the mineralization at the latter two may be related to unconformities. Moderate radioactivity levels were noted in

some plutonic bodies as well. Lithologic, stratigraphic and structural relationships suggest that several sedimentary rock units, while not displaying abnormal radioactivity, should be favorable units in which to do further exploration. These are the Pokegama Quartzite, the Sioux Quartzite, the Packwood Formation, the Hesperian Quartzite, and the Upper Keweenawan formations. (Aut) (PAC)

<354>

Otton, J.K., USGS, Denver, CO

Geology of Uraniferous Tertiary Rocks in the Artillery Peak-Date Creek Basin, West-Central Arizona. USGS Circular 753; Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977, J.A. Campbell (Ed.), (pp. 35-36), 75 pp. (1977)

Uranium occurs in Tertiary rocks of the Artillery Peak-Date Creek basin 150 km northwest of Phoenix, Arizona. The Tertiary rocks within the basin consist of Eocene (?) sedimentary and intermediate to mafic volcanic rocks belonging to the Artillery Formation; lower Miocene silicic volcanic and tuffaceous sedimentary rocks; upper lower to middle Miocene (?) mafic to intermediate rocks, coarse calictic rocks and tectonic breccias belonging to the Chapin Wash Formation; upper Miocene (?) basalt; and upper Miocene to Holocene sedimentary rocks. Facies relations within these units are complex, unconformities common, and no unit can be traced continuously throughout the basin. The rocks of the basin are generally tilted to the south or southwest and have been cut by normal faults. The predominant faults have a northwesterly trend, although east-west and northeast trending faults are also present. At the Anderson Mine in the eastern part of the basin, uranium occurs in silicified, tuffaceous, locally carbonaceous lacustrine mudstones, calcareous mudstones, and siltstones. These lacustrine and overlying fluvial rocks compose a unit that ranges in thickness from 60 to 120 m in surface exposures, and thickens considerably down-dip to the south in the subsurface. Fossil plant material, consisting of thin beds of lignitic material and silicified twigs, leaves, and roots is abundant. Uranium occurs principally in thinly bedded siltstones rich in carbonaceous or silicified plant material. In many places these siltstones are highly stained by Fe- and Mn-oxides. Carnotite is the only uranium mineral yet identified, and it is probably secondary. The primary uranium phase has yet to be identified: in the mineralized carbonaceous rock it may be an urano-organic complex; and in the silicified rock it may be an urano-silica or urano-iron hydroxide complex. Interbedded with the mineralized tuffaceous siltstones are unmineralized, thickly bedded, greenish-gray tuffaceous mudstones, white to light-gray tuffaceous calcareous mudstones with abundant calcareous microfossils, and sparse sandstone and siltstone. A thin conglomerate is observed locally at the base. The overlying fluvial rocks consist of upward coarsening gray to greenish-gray sandstones and sandy conglomerates. Virtually the entire unnamed lower Miocene unit is rich in tuffaceous material and is anomalous in uranium content. Approximately 2 km west of Artillery Peak, uranium occurs in carbonaceous, calcareous siltstones and fine-grained sandstones immediately overlying the basal arkose of the Artillery Formation. The arkose overlies basement rocks which are rich in uranium and thorium in the Artillery Peak area. (JST)

GENESIS OF DEPOSITS

(355)
Pipiringos, G.H., and W.H. Benson, 656S, Denver, CO

The Battle Spring Formation in South-Central Wyoming. Wyoming Sandstone, R.L. Eayert (Ed.), Proceedings of the 22nd Field Conference, 1970. Wyoming Geological Association, Casper, WY. (pp. 161-168), 292 pp. (1970)

Known uranium deposits in the Battle Spring formation are distributed in the Crook's Gap area in the northeastern part of the Great Divide Basin, Wyoming. Increased prospecting and mounting economic interest in the formation has been accompanied by uncertainty and confusion as to its physical and temporal limits. The purpose of the paper is to supply uranium exploration geologists and prospectors the criteria needed to reasonably ascertain the lithology, stratigraphic limits and age of the formation, both surficially and subsurficially. The Battle Spring formation consists of arkose with lesser amounts of sandy siltstone and claystone. It is massive and crossbedded, friable, and weathers into featureless low hills and slopes. Irregular and spheroidal concentrations are common. The formation lacks recognizable discrete channel-sandstone bodies probably because it originated by the coalescing of piedmont alluvial fans along poorly developed drainage systems. Detrital coal, coal trash, and poorly sorted carbonaceous siltstone beds are common which insure conditions suitable for host rock uranium deposits. The thickness varies from 3300 feet in its southern extent to 5000 feet in other parts. The age of the formation is now thought to be the entire lower Eocene. (BBW)

(356)
Provo, L.J., University of Cincinnati, Department of Geology, Cincinnati, OH

Stratigraphy and Sedimentology of Radioactive Devonian - Mississippian Shales of the Central Appalachian Basin. GJSB-37(77); COO-165C-1; 102 pp. (1976, December 31)

In eastern Kentucky and nearby, the Ohio Shale -- a radioactive, black organic-rich shale of Late Devonian age -- consists of two dominant lithologic types, which occur in a distinctive stratigraphic sequence. These two lithologies are brownish-black, organic-rich shale and greenish-gray, organic-poor shale and sandstone. Five to seven stratigraphic subunits can be recognized easily in both the subsurface and outcrop and are traceable over most of eastern Kentucky and into parts of adjacent states. These seven units are the Cleveland Shale, Three Lick Bed, Upper, Middle, and Lower Marion Shales, Olentangy Shale, and Marcellus Shale. Black shale within the Ohio Shale in Kentucky typically contains 30 ppm uranium while lighter-colored, organic-poor shale contains only 15 ppm. Uranium content of samples from five stratigraphic subunits in Kentucky ranges from 6 to 74 ppm; average content is 27.7 ppm or minus 3.2 ppm at 90 percent confidence limits.

For all samples from Ohio, Kentucky, Tennessee, and Alabama, average uranium content is 32.9 plus or minus 3.9 ppm at 90 percent confidence limits, with the amount of uranium varying from 1 to 166 ppm. The amount of uranium varies with lithology and geographically. The samples richest in uranium are those black shales from Tennessee and Alabama. In Kentucky, the thickest, most uraniumiferous units are the Cleveland Shale and the Lower Marion Shale, and the entire formation in the state is estimated to contain 6.28×10^{12} tons of uranium. Black shales of Late Devonian age have a widespread geographic distribution in North America and on three other continents. The environmental settings of these black shales include: (1) shallow, cratonic seas, (2) distal facies of tachidites, and (3) basinal facies associated with reefs. The first two of these environments characterize the Ohio Shale and its equivalents in the central Appalachians. (Bath)

This work was supervised by P.L. Potter, Professor of Geology and J.B. Hayward, Assistant Professor of Geology.

(357)
Benson, R.R., Northern Arizona University, Flagstaff, AZ

Uranium in Todilto Limestone - Sabkha-Like Deposit. AAPG Bulletin 63(8):692. (1979, April)

The Todilto Limestone was deposited in or near a large lake that at times became restricted and evaporated to dryness. The formation has two members: a lower limestone and an upper gypsum member. The limestone member has been divided informally into three zones: the lower "platy" zone, a middle "crinkly" zone, and an upper "recrystallized" zone. The platy zone is interpreted to have been deposited below wave base under anoxic conditions. The crinkly zone has thin stromatolitic laminations and may form algal domes. The upper recrystallized zone appears in part to be a collapsed breccia caused by the removal of interbedded gypsum. Uranium ore is restricted primarily to the "crinkly" and recrystallized zones. These two zones may have been formed in a sabkha-like environment. R.R. Benson has proposed a sabkha origin for some stratiform copper deposits. The same conditions that cause copper to precipitate would also cause uranium to precipitate. Groundwater bearing U-6 could be drawn upward by evaporative pumping through the decaying algal-ast zone where the uranium would be reduced to U-8 and precipitated. Carbonate materials lithify early destroying permeability so that uranium replacement must occur before lithification. Radioisotope dates on uranium in the Todilto Limestone indicate ore replacement shortly after deposition. Uranium-bearing groundwater moved basinward in the underlying Zatradia Sandstone and was drawn upward through the stromatolitic zones along the southwest margins of Lake Todilto and uranium was precipitated. (Bath)

<358>

GENESIS OF DEPOSITS

<358>

Binsaite, J., Canada Geological Survey, Ottawa, Ontario, Canada

Application of Mineralogy to the Study of Multi-Stage Uranium Mineralization in Remobilized Uranium Deposits, Saskatchewan. Uranium Deposits, Their Mineralogy and Origin, Short Course Handbook, Volume 3, H.M. Kimberley, (Ed.). University of Toronto Press, Toronto, Canada, Ch. 17, (pp. 403-430), 521 pp. (1978, October)

Mineralogical research provides the following data essential for the interpretation of radioactive anomalies as well as for evaluation and characterization of multi-stage mineralization of remobilized uranium deposits in northern Saskatchewan: a. identification and interpretation of the complex mineralogy of the ore and host rocks; b. paragenetic relationships between uranium-bearing ore minerals and groundmass minerals; c. changing chemical and physical properties of the ore minerals and associated rock-forming minerals during superimposed alterations as a result of changing environmental conditions; d. chemical and structural relationship between primary and secondary ore minerals; e. mineralogical evidence of several periods of remobilization and redeposition of the mobilized uranium and radiogenic lead; and f. selection of minerals for age dating of multi-stage mineralizations and alterations that have occurred during a time period of at least 1800 million years. The assessment, characterization and exploitation of uranium deposit is difficult without pertinent mineralogical background data. (Juth)

<359>

Robertson, J.A., Ontario Geological Survey, Room 911, 77 Grenville Street, Toronto, Canada

Uranium Deposits in Ontario. Uranium Deposits, Their Mineralogy and Origin, Short Course Handbook, Volume 3, H.M. Kimberley, (Ed.). University of Toronto Press, Toronto, Canada, Ch. 9, (pp. 229-280), 521 pp. (1978, October)

Ontario presently has two uranium mining camps: Elliot Lake and Bancroft. These deposits host about 13 percent of the free world's identified and partially identified uranium resources in the economic and subeconomic categories, having over 430,000 metric tons of uranium. The uranium ores, particularly those from Elliot Lake, also contain substantial resources of thorium. In addition to these deposits, the Province of Ontario hosts a number of other uranium deposits. The geology of Ontario and the nature and distribution of the uranium deposits are summarized in this review. (JHT)

<360>

Bosholt, J.H., and A.J. Bartel, USGS, Denver, CO

Uranium, Thorium, and Lead Systematics in Granite Mountains, Wyoming. Earth and Planetary Science Letters 7:141-147. (1969)

Comparisons of radiogenic lead with uranium and thorium in whole-rock samples of granite from the Granite Mountains indicate that lead and thorium behaved as Pb/Pb closed systems, but uranium did not. The usually low $\text{U-238}/\text{Pb-206}$ ratio values, coupled with the radiogenic $\text{Pb-206}/\text{Pb-204}$ ratios, indicate that uranium contents were once considerably greater than those present in the surface rocks today. The data obtained on the uranium-thorium-lead system also indicate that many of the rocks in this granitic unit originally had Th/U ratios of less than one. The most feasible interpretation is that the uranium was leached from the near surface rocks at some time during the Cenozoic, providing a major source for the uranium deposits in the central Wyoming sedimentary basins. (JEP)

<361>

Ruzicka, V., Canada Geological Survey, Ottawa, Ontario, Canada

Phanerozoic Uranium Deposits and Occurrences in Europe and Eastern North America. Uranium Deposits, Their Mineralogy and Origin, Short Course Handbook, Volume 3, H.M. Kimberley, (Ed.). University of Toronto Press, Toronto, Canada, Ch. 8, (pp. 217-228), 521 pp. (1978, October)

Most European vein-type and related uranium deposits occur in the Hercynian orogenic belt. The Hercynian orogeny affected the Paleozoic and Precambrian complexes in a belt stretching from the Iberian Peninsula through France, Germany, and part of eastern Europe. Subdivision of the Hercynian orogenic belt into local zones is based both on variable proportions of pre-Hercynian rocks and on regional variations in the style of Hercynian deformation. The Moldanubian zone is the richest in vein-type and related uranium deposits. The backbone of this zone is the Hercynian cordillera which extends from the Iberian Meseta through the Armorican Massif, the Massif Central, the Black Forest, and through the Bohemian Massif. Uranium reserves are roughly proportional to grade of metamorphism through the zone and two types of deposits occur: (1) intragranitic veins and (2) deposits in peribatholithic shale, schist, and paragneiss. Sedimentary uranium deposits in Europe are spatially related to platforms. The cover rocks on Hercynian and Alpine basements host several deposits in sandstone and a large deposit in Cambrian algal shale is known from the Banstad area in Sweden. Most volcanic associated uranium resources in Europe are related to carboniferous and Permo-Triassic volcanic activity and are spatially restricted to areas in the western Carpathians of Czechoslovakia, to the northern Italian Alps, and to the area between Dinarides and the Serbo-Macedonian Massif. Conceptual genetic models based on uranium deposition in Europe are applicable to exploration in similar geological environments in eastern North America. The Appalachian orogeny contains several potentially favorable rock types. (JHT)

GENESIS OF DEPOSITS

<362>

Shelby, C.A., Bureau of Economic Geology, Austin, TX

Heavy Minerals in the Wellborn Formation, Lee and Burleson Counties, Texas. University of Texas Report of Investigations 55; 54 pp. (1965, April)

At five places along the outcrop of the Wellborn Formation in Lee and Burleson counties, Texas, anomalously high gamma radiation is associated with concentrations of heavy minerals. The most abundant heavy minerals are ilmenite, magnetite, and zircon. The radiation is emitted by some radioactive element in zircon. The intensity of the radiation and the areal extent of the radiation anomalies were measured by a scintillation counter. The Wellborn Formation, composed of sediments deposited in near-shore environments, is characterized by cross-bedded sandstones lenses interbedded with montmorillonitic, lignitic shale and lignite. Heavy minerals in the lower part of the Wellborn are concentrated in thin sheets and wedges along cross-beds and in local patches and streaks. There are about 8 million tons of heavy mineral-bearing sandstone with an average of about 2 percent heavy minerals, or 2-1/2 million tons with an average of almost 3 percent heavy minerals. Locally, ilmenite, magnetite, and zircon take up as much as 25 percent of the sandstone, although concentrations are too small to be considered as commercial deposits under present economic conditions. (Auth)

Cited as a reference in NURE Contractor Reports.

<363>

Staatz, T.H., and F.W. Osterwald, USGS, Denver, CO

Geology of the Thomas Range Fluorspar District, Juab County, Utah. USGS Bulletin 1069; 97 pp. (1959)

The Thomas Range fluorspar district covers an area of around 34 square miles surrounding Spur Mountain in central Juab County. From its discovery in 1943 to the end of 1952, 12 properties in this district yielded a total of 75,312 short tons of fluorspar. Almost all of the fluorspar deposits have an abnormally high uranium content. All but 1 of the 7 fluorspar veins and pipes that contained over 3.050 percent uranium are on the southern end of Spur Mountain. Analyses of 155 fluorspar samples revealed a range of from 0.003 to 0.33 percent uranium. The highest grade uranium samples came from the Bell Hill, Harrisite, Eagle Rock, Lucky Louie, and two smaller prospects. Most of the deposits are enriched in uranium near the surface. This is believed to have been effected in an arid climate by slow leaching of the upper part of the ore body, in part by material being actively eroded. The uranium was redeposited a few inches to 30 below the rock from which it was leached, owing probably to the adsorption of the ground water by the dry underlying ore. The uranium content from upper workings may be as much as twice that at depth. (JMT)

Cited as a reference in NURE Contractor Reports.

<364>

Steacy, R.R., and S. Kaisan, Canada Geological Survey, Ottawa, Ontario, Canada; Canada Centre for Mineral and Energy Technology, Ottawa, Ontario, Canada

Uranium Minerals in Canada: Their Description, Identification and Field Guides. Uranium

Deposits, Their Mineralogy and Origin, Short Course Handbook, Volume 3, S.W. Kimberley (Ed.). University of Toronto Press, Toronto, Canada, Ch. 4, (pp. 107-180), 521 pp. (1978, October)

The mineralogy of uranium, particularly within Canada, is discussed in this chapter. The uraninite group of minerals, along with brannerite, uranothorite, thacholite, and coffinite are covered in some detail. In addition, sections on secondary uranium minerals, uranium in accessory minerals, and mineral identifications are included, as well as an extensive table listing all known uranium minerals and their compositions. (JMT)

<365>

Theis, E.J., David S. Robertson and Associates Limited, 20th Floor, 65 Queen Street West, Toronto, Ontario, Canada

Mineralogy and Setting of Elliot Lake Deposits. Uranium Deposits, Their Mineralogy and Origin, Short Course Handbook, Volume 3, S.W. Kimberley, (Ed.). University of Toronto Press, Toronto, Canada, Ch. 13, (pp. 337-338), 521 pp. (1978, October)

The quartz-pebble conglomerates of the Elliot Lake-Blind River and Agnew Lake areas are the most important source of uranium in Ontario. The uranium-bearing quartz-pebble conglomerates are confined to the Hatinenda Formation which lies at the base of the Huronian Section. The mineralogy of these quartz-pebble conglomerates is directly related to the depositional energy environment. It changes in response to changes in depositional conditions. Minerals, such as pyrite, which have a large range of grain sizes, reflect depositional environment by corresponding changes in grain size. Minerals with a limited size range, such as uraninite, monazite, and zircon reflect depositional energy conditions by changes in their concentrations. There has been some redistribution of uranium onto titania collectors, but this has not changed the placer nature of the ore reefs. (JMT)

<366>

Thorston, W.R., T.H. Staatz, and D.C. Cox, USGS, Denver, CO

Fluorspar Deposits of Utah. USGS Bulletin 1005; 53 pp. (1958)

The studies of fluorspar localities in Utah made by the U.S. Geological Survey during and since the recent war are summarized. The fluorspar at the Cougar Spar and Blue Bell sites in the Indian Peak Range of western Beaver County occurs as fissure veins in fault and breccia zones in volcanic and intrusive rocks. At the Monarch (Staatz) claims in west-central Beaver County fluorspar was mined chiefly from a fault between limestone and rhyolite porphyry. The Thomas Range district in Juab County has yielded sizeable tonnages of fluorspar from pipes in faulted dolomite and rhyolite porphyry. From 1919 to 1926 the Silver Queen mine in Tooele County produced fluorspar from fissure veins in faulted limestone. The report describes the geology of producing mines and the various prospects examined. Production and reserves of fluorspar for Utah are summarized. (Auth)

<367>

GENESIS OF DEPOSITS

<367>

Trebley, L.P., Canada Geological Survey, Ottawa, Ontario, Canada

Geologic Setting of the Beaverlodge-Type of Uranium Deposits and its Comparison to that of the Unconformity-Type. Uranium Deposits, Their Mineralogy and Origin, Short Course Handbook, Volume 3, H.B. Kimberley, (Ed.), University of Toronto Press, Toronto, Canada, Ch. 19, (pp. 431-456), 521 pp. (1978, October)

The rock succession in the Beaverlodge area is comprised of four main components: Tazin Group, Martin Formation, Athabasca Formation, and gabbro dikes. The Tazin group is at the base of the succession and it is overlain unconformably by the Martin Formation, and locally by the Athabasca Formation. The Martin and Athabasca formations do not occur in contact, but from geological considerations, the Athabasca is assumed to be the younger. Gabbro dikes cut Tazin rocks, part of the Martin Formation, and the Athabasca Formation south of Lake Athabasca. There are three distinct types of uranium deposits in the area: syngenetic, epigenetic, and supogene. The syngenetic deposits are represented by remnants of the country rock richer in radioactive minerals than the enclosing, granitic rocks, by granitic areas slightly more radioactive than most, and by radioactive coarse-grained pegmatites. These deposits are not economic and in general have some thorium and rare earths in addition to uranium. Their main radioactive minerals are uraninite, monazite, zircon, and monothorite. The supogene deposits are characterized by the secondary minerals: uranophane, liebigite, kassolite, fournierite, zeppeite, and several others of lesser importance. These deposits are small and are restricted in their distribution to the present day surface and appear to have formed recently. The epigenetic deposits are the most common and constitute the largest known deposits in the area. Pitchblende is their main uranium mineral and these deposits have no thorium and rare earths. Most of the pitchblende is colloform and massive. The epigenetic deposits occur mainly as veins and disseminations and, based on their mineral assemblages, can be classified into two distinct groups. The most important group is characterized by a simple mineral assemblage, the main minerals being pitchblende, hematite, and pyrite. The other group constitutes only rare economic deposits. It has a complex mineralogy, having, in addition to pitchblende, hematite, and pyrite, fair amounts of sulfides, arsenides, etc. of Ni, Co, Bi, and some gold and silver. (JST)

<368>

Treessell, D.B., and R.C. Zollinger, Beadix Field Engineering Corporation, Grand Junction Operations, Grand Junction, CO

Preliminary Study of the Uranium Potential of the Triassic-Jurassic Basin in Connecticut and Massachusetts. GJRK-68(77); 20 pp. (1977, October)

Possible uranium source rocks are found in both the eastern and western highlands bordering the Connecticut Basin. They include pre-Triassic schists, gneisses, granites, and pegmatites. Within the Connecticut Basin, possible source rocks include the Granby Tuff and Hitchcock pyroclastics, which are associated with the Maples and Holyoke basins in southern Massachusetts. Results of analyses show that these rocks are favorable as potential uranium sources. Interbedded and intertonguing sandstone, mudstones, and shales are common throughout the Connecticut Basin. Fossil plants and organic carbon sufficient to create a reducing environment occur in all sedimentary units, particularly in the black shales of the Shattuck Meadow and East Berlin Formations. Although faults, which may form impermeable barriers to circulating mineralizing fluids, are distinguished throughout the basin, they are concentrated around New Britain and along the eastern and western borders. The Mount Carmel, West Rock, and Barraclough Sills form barriers to permeability in the central and southern portions of the Hartford Basin. Permeability traps also occur where channel sands pinch out and facies changes occur in alternating sandstones and shales. No anomalous uranium concentrations were detected with the exception of the gray sandstones mapped as the Lower Shattuck Meadow Formation in the vicinity of the Newgate Prison Mine. Here, uranium is associated with copper directly below an unconformity. Gamma spectrometric, fluorometric, and atomic analyses suggest a correlation between uranium and copper, but no relation between uranium and copper minerals can be seen. Disequilibrium shown by some of the analytical data suggests that the uranium may have been leached and redistributed within the sandstone. (PAG)

<369>

Tugarinov, A.I., I.L. Khodakovskiy, and A.P. Zhidikova, Academy of Sciences, V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow, USSR

Physicochemical Conditions for Tolybdenite Production in Hydrothermal Uranium-Molybdenum Deposits. Geochemistry International 7-8; 731-739. (1978, July)

The physicochemical conditions characteristic of the hydrothermal solutions that produce uranium-molybdenum deposits are discussed. The transport conditions are considered for Mo(IV) in hydrothermal solutions containing fluoride, thiomolybdate, and uranium-molybdenum coordination compounds. It is found that the Mo and U can be transported simultaneously as hexavalent compounds in the presence of small amounts of hydrogen sulfide (about 10⁻² M) at about 150 degrees C. Molybdenite and uranium minerals can crystallize together when the elements are reduced to the tetravalent state. (Aust) (JST)

GENESIS OF DEPOSITS

<370>
White, E.V., and B.P. Martin, Gulf Minerals
Canada Limited, Toronto, Ontario; McGill
University, Department of Geological Science,
Montreal, Quebec, Canada

Felsic Volcanism within the Killik Series,
Labrador, and Associated Uranium Mineralization.
Proceedings of the Joint Annual Meeting of the
Geological Association of Canada, the
Mineralogical Association of Canada, and the
Geological Society of America, Toronto, Ontario,
October 23-26, 1978. The Geological Society of
America, Boulder, Colorado, (p. 515), 531 pp.
(1978)

The Killik Series comprises a metamorphosed
sequence of Paleohelikian rhyolite flows and
pyroclastic units, less extensive tholeiitic
and alkaline basaltic flows and related
subvolcanic intrusive and metasedimentary
rocks. The volcanic suite displays bimodality
and trends of iron enrichment and alkalinity
characteristic of products of ensialic rift
systems. Differentiation trends, field
associations and a low initial Sr 87/Sr 86 of
0.708 imply a magmatic origin for the felsic
volcanic and intrusive rocks and an ultimate
mantle source with minimal crustal
contamination. Numerous uranium showings
occur mostly associated with felsic
differentiates; those of economic interest are
found within porous zones where leaching and
pronounced hydrothermal Na-for-K exchange and
Ba-enrichment are evident. An ultimate
hydrothermal source for the uranium in
synvolcanic fluids is proposed; subsequent
groundwater circulation may well account for
remobilization of the uranium, possibly as
chloride complexes, and local enrichment into
zones of economic significance. (Auth)

106

GEOLOGY OF DEPOSITS

<371>
Federal Water Pollution Control Administration, Cincinnati, OH

Radium 226 and Radon 222 Concentrations in Central Florida Ground Waters. PB-260 211; 37 pp. (1966, January)

In central Florida, 105 water wells were sampled for Ra 226 and Rn 222 at the request of the Florida State Board of Health. Sampling was carried out to measure ground water contamination by radionuclides released by mining of U-bearing phosphate deposits, fertilizer spoil piles, and waste water ponds. Phosphate is mined from the Bone Valley Formation (Pliocene), which is derived from and underlain by the Hawthorne Formation (Miocene). The Hawthorne is the confining layer for the principal artesian aquifer of central Florida; the top of the aquifer is in the Tampa Limestone (Eocene). Local recharge occurs where sinkholes penetrate the Hawthorne; these may also act as access routes for pollutants. Radon concentrations ranged from 23-46,600 pCi/l and radium from 0-76 pCi/l; means were 1860 and 1.2 pCi/l, respectively. A correlation exists between Ra and Rn concentrations, but cannot be defined at present. Analyses for Sr, Th, Pb 210, Po 210, and certain inorganic compounds were performed on selected samples. Two municipal water supplies and 12 private wells exceeded the 3 pCi/l Public Health Service drinking water Standard for Ra 226. 3 wells were greater than 10 pCi/l, one being used by a food processing plant. (LKH)

<372>
Baillieul, T.A., and G.J. Indelicato, Bendix Field Engineering Corporation, Grand Junction Operations, Grand Junction, CO

Uranium in the Glen Wild Area, Woodridge, New York, 7.5-Minute Quadrangle. GJBI-86(78); 15 pp. (1978, November)

Uranium occurrences at five localities in a sequence of alternating channel sands and mudstones of the Upper Devonian Catskill Formation are described. The largest occurrence known, at Gibber Egg Company, is about 200 feet long and, in places, more than 1 foot thick. The calcium-uranium silicate uranophane has been identified at one locality, and secondary copper minerals have been identified at three other localities. Chemical U3O8 assays as high as 9980 ppm were recorded. The reconnaissance indicated that the rocks of the Glen Wild area belong to the upland alluvial-fan-and-braided-stream association which places the region very close to the sediment source. Two possible mechanisms for the uranium concentrations are given: (1) Diagenetic Model and (2) Syngenetic Model. In the former, uranium ions are absorbed on the surface of clay particles and carried in the suspended load to be deposited with red muds. During burial and

diagenesis the muds are compacted and liberate water. Under appropriate Eh and pH conditions uranium is released from the clay and goes into solution. Water saturated in uranium then migrates through the muds to a conglomeratic channel, which acts as a conduit for ground water, and is carried to a concentrating point. In the syngenetic model, uranium-saturated ground waters enter the system from an outside source, presumed to be a metamorphic terrain to the east exposed during Devonian time. The fluids travel most readily through the coarser conglomeratic layers and are stratigraphically bound by the less-permeable red mudstones. In both models, organic debris is the most likely reductant and fixing agent for the uranium. (JHE)

<373>
Berlow, J.L., Am., Salt Lake City, UT

Some Uranium Occurrences in Northern Perry County, Washington. PB-2068; 22 pp. (1958, October)

Prospecting for uranium in northern Perry County, Washington, was most intense during the summer months of 1955 and 1956. The principal host rocks for the uranium minerals are bodies of pegmatite that occur as segregations with a batholith, and as injections into older metamorphic rocks. Uranium was concentrated in residual fluids during late-stage consolidation of the pegmatite, and crystallized as uraninite and uranium-bearing refractory minerals at approximately the same time as the essential mineral constituents of the pegmatite. Some of the uranium was subsequently taken into solution by ground waters, transferred short distances, and recrystallized as secondary uranium minerals in interstitial spaces and along parting surfaces. Minor amounts of uranium occur in the intruded rocks but usually are confined to zones located near the contact with a pegmatite body. The uraniferous pegmatites appear to be typically lens-like and pinch out with short distances. The uranium minerals are erratically distributed throughout the pegmatites and, when concentrated in ore-grade deposits, they are usually confined to small, discontinuous zones. Several stockpiles containing a maximum of 150 tons of uraniferous material have been collected throughout the district; none are considered of ore grade under current marketing conditions. Small tonnages of commercial-grade uraniferous material could be extracted at many of the prospects by very selective mining. (JHE)

<374>
Berthold, E.L.

On the Occurrence of Uranium, Silver, Iron, etcetera in the Tertiary Formation of Colorado Territory. Natural Sciences of Philadelphia 27:363-366. (1875)

A mineral vein found six miles north of Golden, Colorado at the Lyden Coal mine was geologically investigated and analyzed. The host of the vein was a sandstone containing clay and clay shale. There was little alteration observed in the host rock in the vicinity of the vein. The vein was found to contain from .2 to 2 per cent uranium. (JHE)

GEOLOGY OF DEPOSITS

<375>

Butler, R.P., Jr., and P.P. Fisher, USGS, Denver, CO

Uranium and Vanadium Resources in the Moab 1 Degree x 2 Degree Quadrangle, Utah and Colorado. USGS Professional Paper 988-B: 22 pp. (1978)

The Moab quadrangle of Utah and Colorado has several very productive uranium and uranium-vanadium deposits and a significant resource potential. Rocks exposed over most of the quadrangle consist of bedded sedimentary rocks of Paleozoic and Mesozoic ages. The Chinle Formation of Triassic age and the Morrison Formation of Jurassic age contain most of the known uranium deposits. The primary ore minerals in the deposits consists of uranium and vanadium oxides and silicates, which mainly impregnate the sandstones. Tabular orebodies that average somewhat less than a meter thick and are as much as one hundred meters across are characteristic. Generally, these bodies lie nearly parallel to the bedding of the host sandstone, and they are mainly localized by sedimentary structural features. These deposits are believed to have been formed by ground waters moving along the beds before the host beds became deeply buried. Most of the deposits in the Chinle Formation are in the Big Indian mineral belt on the southwest side of the Lisbon Valley anticline. These deposits have yielded ore containing uranium worth about \$500 million. Favorable locations for similar deposits may be on the flanks of the Dolores anticline and possibly on the flank of the Moab anticline and ground bordering the southwest side of Spanish Valley. Deposits in the Salt Wash Member of the Morrison Formation have yielded approximately 9,100,000 metric tons of ore from which more than \$600 million worth of vanadium and uranium has been extracted. More than 80 percent of this ore came from the Uravan mineral belt. The belt was probably localized along the toe of a subsidiary alluvial fan, which was formed by a distributary stream system on part of the main fan in an area of minor subsidence during Salt Wash time. The deposits in the belt and on the mid-slope of the fan west of the belt occur in sandstone lenses that formed along the courses of the major distributary streams; deposits outside the area of this alluvial fan also occur in sandstone lenses formed in major stream courses. The ore deposits are believed to have formed before burial by marine sedimentary beds in Late Cretaceous. Reserves plus undiscovered resources in deposits in the Uravan mineral belt probably contain about 12,700 metric tons of U3O8; those in the fan area west of the belt about 7,900 metric tons of U3O8; and those in the Salt Wash in other parts of the quadrangle about 3,400 metric tons of U3O8. (Auth) (JNT)

<376>

Coleman, P.G., APC, Division of Raw Materials, Washington, DC

Mineralogical and Geological Investigations of the Uranium Deposits of the Wind River District, Wyoming. RME-8056; 25 pp. (1958, June)

The study of the uranium deposits of the Wind River District, Wyoming, was undertaken to determine the relationships between the mineralogy and uranium equilibrium state and the field geology of the deposits. The uranium deposits of the Wind River Basin appear to follow a sequence according to their relative position with regard to the groundwater table or erosional benches. The analytical and geological data strongly suggest that the cap rock is the source rock for the higher grade mineralized areas. High arsenic content in most of the uranium-bearing cap rock localities strongly suggests a hydrothermal source of uranium. The concentrations of yellow to green secondary uranium minerals are found at various stratigraphic horizons and show considerable mineralogical variation. All exposures examined indicate that the mineralized areas are small and irregular. In exposures examined in detail, the brownish cap rock overlies the mineralized areas. In some localities, secondary uranium minerals are present in the cap rock also, where they have been produced as a result of alteration of the brown interstitial material by leaching. The host rock in the mineralized areas is quite variable, grading from clay (shale) through fine to coarse sandstone; very commonly, uranium minerals are found in the boulder conglomerate lenses. Two distinctly different types of uranium mineralization can be distinguished in the field which suggest that these deposits may have been formed in several ways. (JNT)

<377>

Dahlkappa, P.J.

Classification of Uranium Deposits. Mineralius Deposita 13 (1):83-108. (1978)

A listing of the recognized types of uranium mineralization shows nineteen determinable types out of which only six are of economic importance at present: Oligomictic quartz pebble conglomerates, sandstone types, calcrites, intra-intrusive types, hydrothermal veins, and veinlike types. The different types can be genetically related to prevalent geological environments: (1) the primary uranium occurrences formed by endogenic processes; (2) the secondary occurrences derived from the primary by subsequent exogenic processes; and (3) the tertiary occurrences, which are believed to be formed by endogenic metasomatic processes. Little is known about the behavior of uranium during metamorphism, and thereby the metallogenesis of the tertiary uranium generation is still vague. A metatectonic-geochronologic correlation of uranium deposits shows that a distinct affinity of the uranium exists to certain geologic epochs: to the Upper Archean-Lower Proterozoic, to the Hercynian and in a less established stage, to the Upper Proterozoic. (Auth) (JNT)

GEOLOGY OF DEPOSITS

<378>

De Lira, P., Dirección de Plantas Piloto e Industriales, Junta de Energía Nuclear, Madrid, Spain

Investigations on the Nature and Physical Concentrations of Spanish Uraniferous Quartzites. Processing of Low-Grade Uranium Ores. Proceedings of a Panel, Vienna, June 27 - July 1, 1966. International Atomic Energy Agency, Vienna, (pp. 143-156), 257 pp. (1967)

A study of a radioactive material from Santa Elena is presented. The material contained over 130 ppm U₃O₈, 680 ppm ThO₂, 4.9 percent ZrO₂, and 14.29 percent TiO₂. Over 150 million tons of the material were examined and in the light of these studies, the material was defined as a rutile-zirconiferous quartzite with a double radioactivity source due to be uranium enclosed in the zircon lattice structure and to the presence of monazite. No brannerite or davidite was present in the material, and there was no conclusive evidence of the presence of sphene. (Auth) (JET)

<379>

Dickinson, K.L., USGS, Denver, CO

Detailed Stratigraphy and Sedimentology of Whitsett Formation in Uranium Area of Western Karnes County, Texas. BHPG Bulletin 63(3):840. (1979, March)

The Whitsett Formation of the upper Eocene Jackson Group contains, in ascending order, the Silvorth Sandstone, Conquist Clay, Deveeville Sandstone, Duboce, Tordilla Sandstone, and Pashion Clay Members. In Atascosa to McAllen Counties, the Callihan Sandstone Member, considered to be a stratigraphic equivalent of the Tordilla, is apparently the same age as the Pashion. The Deveeville is called the Stones Switch Sandstone Member by some geologists. The Pashion contains flood-plain, lagoon-bay, and distributary-channel facies. The Kellner and Rosenbrook uranium mines are in the distributary-channel facies of the Pashion. These mines have previously been considered to be in the Tordilla Sandstone Member. The Callihan Member apparently represents tidal-delta sandstone at its type locality. The Tordilla is a transgressive barrier-beach unit in the areas of the Pfeil-Fright and Wedington-Butler-Gallow-Schlesier uranium-ore trends. Farther east, in the Ranka and Stoeltje uranium mines, the Tordilla is represented by a back-barrier island facies. Although the predominant facies of the Duboce is paludal and bay-lagoon sedstone, the ore in the Lass and Bicker uranium mines is in a sand-filled distributary-channel facies. A back-beach facies of the Deveeville contained the ore of the Search mine, and the F. Brysh mine is in the lower of two beach units in the Deveeville. The sandstone members of the Whitsett Formation were deposited in transgressive barrier beaches, although locally they may be represented by progradational beaches or tidal inlets and deltas. Sandstone deposited in the

distributary channels is equivalent in age to the clay members. The grains of the sandstone units in the Whitsett are composed mostly of feldspar and quartz. Some facies also contain abundant volcanic shards. Montmorillonite and clinoptilolite are part of the feldspar are authigenic constituents in the sandstone. The sandstone of the distributary channels is coarser grained than that in the beach sequences. (Auth)

<380>

Dushan, R.J., USGS, Washington, DC

Uranium Minerals in Oligocene Gypses Near Chadron, Dawes County, Nebraska. REI-525; 31 pp. (1955, May)

Carnotite, zirconolite [REI(502)4(PO4)4-16H2O], and autunite occur in the basal 25 feet of a 270-foot sequence of anasitic bedded gypsum and gypsiferous clay in the Ogle Formation of Oligocene age about 12 miles northeast of Chadron in northeast Dawes County, Nebraska. Uranium minerals are visible at only two localities and are associated with carbonaceous matter. Elsewhere, the basal 25 feet of the gypsum sequence is interbedded with carbonate rocks and is weakly but persistently cyaniferous. Uranium probably was replaced from above by uranyl solutions rich in sulfate. (Auth)

<381>

Falkowski, S.K., New Mexico Institute of Mining and Technology, Socorro, NM

Geology and Ore Deposits of Johnny 5 Mine, Abiquiu Lake District, New Mexico. BHPG Bulletin 63(8):687-688. (1979, April)

The Johnny 5 mine is one of very few mines in the Abiquiu Lake district with uranium ore in two members of the Jurassic Morrison Formation; these members are the Westwater Canyon sandstone and the Brushy Basin shale. The Westwater Canyon ore is contained in the two upper sandstone units of the member, and the Brushy Basin ore is contained in the Poisón Canyon sandstone. The sedimentary features and structures in the Westwater Canyon sandstone indicate that the sediments were deposited by a system of aggrading braided streams, possibly at the distal end of coalescing alluvial fans. The Poisón Canyon sandstone was probably the result of deposition in a complex environment of meandering and braided streams. Paleocurrent direction indicators, such as fossilized-log orientation, foreset azimuths, and the axis of cross-beds and channel scour, suggest that the local paleostress flow was to the east and southeast. The uranium mineralization is closely associated with (1) local accumulations of carbonaceous (humate) matter derived from the decay of organic material, such as trees and plants; and (2) paleostream channels preserved in the rocks. The ore elements were derived from the leaching of volcanic air-fall tuffs and ash, which were introduced into the fluvial system during volcanic activity in the western United States. The mobile ore element ions were reduced and concentrated by humic acids and bacteria present in the fluvial system, and ultimately remobilized in the system into the forms present today. The uranium is thus envisioned as forming either essentially on the surface as the sediments were being deposited or at very shallow (20 ft; 6 m) depth.

<382>

GEOLOGY OF DEPOSITS

<382>

Foster, J.P., and R.J. Quintanar, United Nuclear Corporation, Grants, NM

Anomalous Orebody Within Abrosia Lake Trend at Sandstone Mine. AAPG Bulletin 63(4):689. (1979, April)

At the Sandstone Mine, there is an anomalous orebody that lacks the characteristic coloring and gamma counts associated with known uranium ore at Abrosia Lake. The orebody occurs along the down-dip edge of a tongue of hematitic sand in the basal sand unit of the Westwater Canyon Section. The orebody is white to light gray, most likely because of a lack of indigenous humic material. The abundance of pyrite indicates the uranium is in the tetravalent state, probably coffinite. Preliminary analysis also indicates the presence of uranophane evidently altered from the coffinite. Equivalent 8305 by gamma determination is usually 30 to 60 percent of actual 8308, indicating that this orebody is relatively recent. Oxidizing meteoric water, forming a geochemical cell, remobilized the uranium minerals in the preexisting trend orebodies and deposited them down-dip from the farthest extent of this cell. Post-Saskota deformation influenced the course of the migrating meteoric water and the extent of the redox interface controlling the orebody. As lower grades of 8308 become economical, the potential for unknown reserves adjacent to the redox interface should not be overlooked. Areas of low- g : le ore should be sampled to become aware of any equilibrium imbalances. An established sampling program coupled with more sophisticated beta-gamma instrumentation should ready the inaccuracy of present-day gamma evaluations. (AETH)

<383>

Galloway, R.E., Bureau of Economic Geology, Austin, TX

Oakville Formation of Texas Coastal Plain - Depositional Systems, Composition, Structure, Geohydrology, and Uranium Mineralization. AAPG Bulletin 63(3):455. (1979, March)

The Oakville Formation consists of deposits of a bedload fluvial system composed of at least four major and several minor systems that flowed across the Miocene Texas coastal plain. Rivers of the southwestern part of the system transported polymictic sand and gravel containing abundant volcanic clasts; stream deposits of the northeastern area are uniquely rich in reworked carbonate-rock fragments. Structures suggest highly variable to ephemeral flow and extensive development of crevasse splays. Founding flood-plain muds consist of kaolinitic calcite to sodium montmorillonite. Illite is present locally. Hydrogeology and uranium mineralization are strongly influenced by a broad belt of subjacent Wilcox (Eocene age) growth faults. Mineralization and alteration patterns reflect the complex flow of groundwater within a stratigraphically and structurally compartmentalized aquifer. With evolution of the Oakville aquifer system, faults have acted both as flow boundaries and as loci for intrusion of deep-seated highly reducing brines and shallow meteoric groundwater, further obscuring primary ore-forming processes. Volcanic glass within and possibly above the Oakville provides a probable source for the uranium.

<384>

Gilligan, E., University of Kansas, Lawrence, KS

Uranium Mineralization in the Barro Mountain, New Mexico. Economic Geology 63:239-246. (1968)

Uranium minerals have been found in the Barro Mountains in the White Signal and Bullard Peak districts. In the White Signal district and adjacent areas, secondary uranium phosphate minerals are the principal uranium-bearing minerals. Autunite, torbernite, meta-torbernite, and an iron-uranium phosphate (probably bassanite) have been identified, with torbernite and meta-torbernite being the most abundant uranium-bearing minerals. The distribution of the uranium phosphates within the deposits appears to correlate with depth. Autunite is common in surficial exposure, but has not been found below 30 feet. Torbernite is present throughout the depth range explored in the workings, but not found below 100 feet in a drill hole that explored the Berry Silver vein. The uranium-iron phosphate is known only from below 100 feet in the Berry Silver Mine. Uraninite was identified at the Blue Jay deposit 2 feet below a small trench. Minerals associated with the uranium phosphates are mostly hydrous iron oxides, copper carbonates and native gold. The uranium deposits are localized in the vicinity of the intersections of diabase dikes and gold-bearing quartz-pyrite veins, probably due to the high phosphatic content of the diabase dikes and their susceptibility to alteration and release of phosphorus which fixed the uranium. In the Bullard Peak district, uranium occurs with nickel and cobalt arsenides and sulfarsenides in what are predominantly native silver veins. Within the veins, silver occupies the central portions, and the nickel and cobalt minerals, principally nickel skutterudite, are concentrated toward the margins. Uraninite occurs in the outermost zones of the veins with the nickel and cobalt minerals, never occurring with the silver. The veins are believed to be genetically associated with a nearby Late Cretaceous or Early Tertiary non-zonitic intrusion. The uranium is believed to have been emplaced during the last phases of silver and base-metal mineralization, or it may represent a second stage of metallization allied to fluorite and gold mineralization of nearby areas. (JTH)

GEOLOGY OF DEPOSITS

<385>
Green, R.W., USGS, Golden, CO

Disconformities in Grants Mineral Belt and Their Relation to Uranium Occurrence. AAPG Bulletin 63(8):689. (1979, April)

At least two major, regionally extensive, intraformational disconformities and numerous local ones are present in sedimentary rocks of Triassic, Jurassic, and Cretaceous ages in the Grants mineral belt. These disconformities, some of which have been known for many years, have proven useful in stratigraphic correlation and in differentiating genetically related rock sequences in the mineral belt. In addition, two of these disconformities, one local and the other regional, are significantly associated with the distribution of sandstone-type uranium deposits in the Jurassic Morrison Formation and the overlying Cretaceous Dakota Sandstone. The Westwater Canyon Member and laterally equivalent beds of the Bacaute and Brushy Basin Members of the Morrison Formation are separated from underlying Jurassic rocks by an intraformational disconformity which marks a major change in depositional environment from predominantly subaqueous delta to fluvial-lacustrine within the Jurassic sequence. This disconformity is economically significant in that all of the large uranium deposits in rocks of Jurassic age in the mineral belt occur within fluvial sandstone facies of the Morrison above the disconformity. Recognition of this disconformity in outcrop and in the subsurface is important in delineation of exploration target areas and resource assessment in the San Juan basin. Uranium deposits in the basal part of the Dakota Sandstone are associated with the well-known regional, southward-bounding disconformity present at the lower boundary of the Dakota throughout the San Juan basin and adjacent region. In the western part of the mineral belt, impermeable Brushy Basin shales have been truncated at this disconformity and uranium-bearing groundwaters from the Morrison Formation have migrated into basal organic-rich sandstone of the Dakota to produce several small to medium-sized uranium deposits.

<386>
Gelbrassien, R.L., USGS, Washington, DC

Petrology of the Heads Peak Phosphatic Shale Member of the Phosphoria Formation at Coal Canyon, Wyoming. USGS Bulletin 1111-C, (pp. 71-186). (1960)

The Heads Peak Phosphatic Shale Member of the Phosphoria Formation is 183 feet thick at Coal Canyon and consists of dark thin-bedded phosphorites and carbonate and quartz-silicate rocks. The average chemical composition, in percent, of the member is: SiO₂, 26.5; TiO₂, 0.2; Al₂O₃, 4.5; Fe₂O₃, 1.8; MgO, 4.5; Na₂O, 0.9; CaO, 27.0; K₂O, 1.6; P₂O₅, 10.6; CO₂, 3.8; P, 1.1; SO₃, 2.0; R₂O, 0.9; and carbonaceous material, 0.8. The "average" rock contains unusually high amounts of phosphorous and fluorine. The average Ca/Mg ratio for the member is 6, but it ranges from 88 for the average phosphorite to 2.9 for the average carbonate rock. Important minor constituents that occur in the rocks in significant amounts are vanadine, selenite, and uranite. The uranium content of the whole member ranges from 0.0005 to 0.03 percent and averages 0.008. The higher uranium contents are in phosphorites. Dolomite makes up 21 percent of the member and calcite, 8 percent.

Carbonate-fluorapatite makes up 28 percent, and the quartz-silicate group of minerals makes up 33 percent of the member. The three principal compositional rock types are characterized by the dominance of a mineral or mineral group: carbonate-fluorapatite in phosphorite, calcite and dolomite in carbonate rock, and the quartz-silicate group of minerals in the quartz-silicate rocks. Most of the rocks are composed of silt-size particles, but many phosphorites are composed of pellets and oolites of sand size. The rock strata most commonly consists of beds 0.5 to 2 feet in thickness and occurs in anastomotic alteration of one upon another. There is no favored pair of rock types or sequence of the three types. Carbonate-fluorapatite, dolomite, and calcite, chemically related compounds that have calcium and carbonate ions in common, occur in the rocks of the member in three principal associations. These occurrences are considered to represent approximately the solid phase or phases of these minerals in equilibrium with sea water from which they formed. Where found alone, carbonate-fluorapatite represents a first-stage differentiation of sea water by evaporation, or a precipitation owing to sustained addition of phosphate to sea water by the dissolution of dead organisms, for example. The dolomite-carbonate-fluorapatite mixtures represent a second-stage differentiation following the precipitation of apatite alone, in which the two minerals form together in proportions high in dolomite. These two closely related kinds of mineral associations are dominant in the Coal Canyon section. The dolomite-calcite mixtures cover a wide range of proportions that is not readily explained in terms of simple phase relations. Under conditions in which dolomite is the single solid phase in equilibrium with sea water, however, calcite could precipitate metastably and change with time, while in contact with sea water, to dolomite. In this manner, the amount of dolomite formed is a function of the time during which calcite is in free contact with sea water, and all proportions of dolomite and calcite are possible. (Rath) (JHT)

<387>
Heintrich, R.W., The University of Michigan, Department of Mineralogy, Ann Arbor, MI

Some Rare-Earth Mineral Deposits in Mohave County, Arizona. Arizona Bureau of Mines Bulletin 167; 22 pp. (1960)

Pegmatites in the Aquarius Range, Mohave County, Arizona contain a variety of radioactive rare-earth minerals. Authenticated species are: monazite, xenotime, euxenite, yttriotantalite, gadolinite, and allanite. Pergamonite may also be present. The occurrence of yttriotantalite, several tons of which have been produced, is the first that has been established for the United States. Within one pegmatite, the sequence of rare-earth minerals is accompanied by an increase in yttrium rare earth and tantalum in younger minerals at the expense of Ce rare earths and Nb in older species. In each of the pegmatites, the two subgroups of rare earths do not form minerals of the same chemical class. The identity of the abundant rare-earth mineral in the Kingman Goldspur pegmatite is established as allanite. A sample of the allanite was found to contain 2.7 percent thorium and 0.18 percent uranium. (JHT)

<388>

GEOLOGY OF DEPOSITS

<389>

Jenkins, J.P., Jr., and S.P. Cunningham, Gulf Research and Development Company, Houston, TX

Depositional Environment of Poison Canyon Sandstone in Gulf Mariano Lake Mine. AAPG Bulletin 63(8):690. (1979, April)

A study of the depositional environment of the Poison Canyon Sandstone (Brushy Basin Member of the Upper Jurassic Morrison Formation) in the Mariano Mine was undertaken to determine the relation of uranium occurrence to the depositional environment. An analysis of the sedimentary structures, paleocurrent measurements, isopach data, and electric-log shapes has led to the interpretation that the Poison Canyon Sandstone in the Mariano Lake Mine vicinity is a sequence of bed-load deposits of a fluvial system. Paleocurrent measurements taken in the mine and at three outcrops of the Poison Canyon confine facings from earlier work that indicated eastward current flow. The dominance of tabular cross-beds, channel occurs, and trough cross-beds, the geometry of the Poison Canyon sandstones, and the chaotic sedimentary structures corroborate deposition in a braided-stream environment. The Poison Canyon sandstones may be subdivided into two lithofacies. A cross-bedded unit is characterized by large-scale tabular cross-beds, scour surfaces, medius to coarse grain size, poor sorting, angular to subangular grains, an abundance of feldspar grains, and clay rip-up clasts. A second unit is dominated by laminar bedding, fine grain size, moderate sorting, subrounded grains, and an abundance of quartz. The source area for the sands had been dominated by plutonic rocks. These facies cannot be separated on the basis of electric-log shape. Uranium ore occurs in both facies but is more abundant in the cross-bedded unit. The complexities of the braided-stream system greatly complicate any study of the interrelation of the uranium and the depositional environment. Obvious conclusions are that the grain size does not greatly influence the emplacement of the uranium, that the orebody at the Mariano Mine is epigenetic, and that the sheetlike nature of the Poison Canyon sandstones suggests that the limiting factors on the ore boundaries are geochemical rather than stratigraphic. (JST)

<389>

Johnson, C., Michigan Technological University, Department of Geology and Geological Engineering, Houghton, MI

The Uranium and Thorium Occurrences in Michigan's Precambrian Rocks. GJSY-48(76); Uranium and Thorium Occurrences in Precambrian Rocks, Upper Peninsula of Michigan and Northern Wisconsin, with Thoughts on Other Possible Settings, J. Kalliokoski, (pp. 87-139), 294 pp. (1976, June)

Thirty-eight radioactive occurrences of Northern Michigan are discussed in this section. Most of these showings are small and the radioactivity localized. The occurrences are classified into three categories: syngenetic, primary, and supergene.

Syngenetic mineralization is restricted to sedimentary processes in which the formation of the host rock and the concentration of the ore minerals took place simultaneously and by the same mechanism. The only syngenetic occurrence noted is in the Goodrich Conglomerate and its consists of detrital grains of monazite. Primary mineralization is used to denote radioactive accessory minerals within granites and gneisses, which formed at the time the magma cooled. This type of mineralization accounts for the observed radioactivity at three places in northern Michigan; including a synsite dike, a monazite, and a pegmatite. The rest of the radioactive occurrences (and the majority of them) are interpreted to be of supergene origin. They were formed by downward percolating ground waters which leached uranite from the surrounding rocks and reprecipitated it in traps and zones of reduction. The majority of these radioactive occurrences are caused by pitchblende and/or secondary uranium minerals, such as metatorbernite or meta-autunite, in middle Precambrian metasediments; diabase dikes of uncertain age, and Keweenawan felsites. (JST)

<390>

Johnson, C., Michigan Technological University, Department of Geology and Geological Engineering, Houghton, MI

Characteristics of Relevant Types of Precambrian Uranium Deposits. GJSY-48(76); Uranium and Thorium Occurrences in Precambrian Rocks, Upper Peninsula of Michigan and Northern Wisconsin, with Thoughts on Other Possible Settings, J. Kalliokoski, (pp. 15-37), 294 pp. (1976, June)

The six important types of Precambrian uranium deposits throughout the world are discussed in this chapter and the comparable Michigan deposits of each type are listed. The types of uranium deposits are as follows: (1) Uraniferous Precambrian Quartz Pebble Conglomerates, (2) Uranium in Granites and Pegmatites, (3) Uranium in Synsites and Bophiline Synsites, (4) Vein Deposits of Possible Supergene Origin in Precambrian Gneisses, (5) Vein Deposits of Possible Supergene Origin in Precambrian Metasedimentary and Volcanic Rocks, and (6) Uranium Associated with Diabase Dikes. Examples of each type of deposit discussed are: (1) Elliot Lake, Ontario, Witwatersrand, South Africa, and Jacobina, Brazil; (2) Rossing, Southwest Africa, Nassif Central, France, and Spokane, Washington; (3) Ilmenesang, Greenland; (4) Beaverlodge and Rabbit Lake areas, Saskatchewan; (5) Big Jungle-Alligator River Province, Northern Territories, Australia; and (6) Thelon Point area, Ontario. (JST)

GEOLGY OF DEPOSITS

<391>

Johnson, C., Michigan Technological University, Department of Geology and Geological Engineering, Houghton, MI

The Precambrian Geology of Michigan.

CJER-58(76): Uranium and Thorium Occurrences in Precambrian Rocks, Upper Peninsula of Michigan and Northern Wisconsin, With Thoughts on Other Possible Settings, J. Kollistoski, (pp. 38-80), 290 pp. (1976, June)

The Lower Precambrian rocks throughout most of the western Upper Peninsula are represented by granites, gneisses, basic and felsic volcanic rocks, amphibolites and metasediments. The granites and gneisses are exposed in relatively large areas of northern Michigan, and, from evidence of provenance in conglomerates, they have been exposed sporadically both prior to and after the Penokean orogeny, 1900 m.y. ago. Because of this, their possible role in the formation of supergene uranium prospects cannot be overlooked. The lower Precambrian sedimentary rocks in northern Michigan consist of the Dickinson Group. The Group includes the East Branch Arkose, Selberg Schist, and Six Mile Lake Amphibolite; all have been metasedimented. Minor radioactivity has been noted in outcrops of the East Branch Arkose in Sec. 8, T42N, R29W. The Middle Precambrian metasedimentary and metavolcanic rocks are separated from the basement rocks by a major unconformity, and have been referred to the Marquette Range Supergroup. They have been divided into four groups and their lithologic variations record episodic vertical movement of basement granites during sedimentation. The Goodrich Quartzite of the Baraga Group contains a coarse basal conglomerate which occurs in lenses 220-300 feet thick, but thins rapidly along strike. It places the Goodrich Quartzite also contains detrital grains of monazite along the bedding planes, where the monazite settled out as a heavy black sand. The formation contains only trace amounts of uranium, but it is possible it may contain detrital uraninite, as in the Blind River type deposits. The Paint River Group is the youngest of the Middle Precambrian metasediments. Nine radioactive occurrences are found in the Riverton Iron Formation, a member of the Paint River Group. All of the occurrences are at or near stratigraphic contacts between oxidized iron formation and black slate. Keweenawan rocks in Michigan are separated from the older rocks by a major unconformity formed subsequent to the Penokean Orogeny. The series consists of a thick sequence of basic flows and continental sedimentary rocks. (JNT)

<392>

Keph, B.P., Idaho Bureau of Mines and Geology, Moscow, ID

Geology of the Uranium Deposits near Stanley, Custer County, Idaho. Idaho Bureau of Mines and Geology Pamphlet No. 117, 40 pp. (1959, June)

The Stanley uranium area is in T11N, R13 and 14 E, Boise Principal Meridian, approximately midway between the Idaho towns of Challis and Ketchum on U.S. Highway 93. The Cretaceous Idaho Batholith, dominantly quartz monzonite, forms the basement of the area and it is nonconformably overlain by the Oligocene-Miocene Challis Formation. The Challis Formation in the Stanley area consists of 2,000 feet of tuffs and flows of intermediate composition with a 100 foot sequence of clastic terrestrial sedimentary rocks at the base. Silicic hypabyssal rocks, probably of early Tertiary age, intrude the batholith. Fractures are the dominant structural feature, with the major fracture sets striking 305 degrees N, S 60-70 degrees E, and north. Uranium occurs in: (1) steeply dipping fractures in batholithic rocks and silicic intrusive rocks, and (2) disseminated in beds of arkosic conglomerate at the base of the Challis Formation. Uranium is the ore mineral in at least one of the bedded deposits. Both supergene ores and hypogene ores are present in the Stanley area. Few of the deposits have been explored to depths greater than 20 feet. The known deposits are distributed in a northwesterly trending belt across the Stanley area. Fractures are the primary control in all deposits, and the S 45 degrees N set of fractures is most important. The control of the deposits by fractures, the presence of uraninite, cassiterite, and stibnite in the ore, and the hydrothermal alteration of the host rocks indicate a hydrothermal origin for the deposits. Sixteen groups of claims have been staked in the area, totaling over 230 claims. Each group is described. Approximately 2,300 tons of ore averaging near 0.25 percent U3O8 have been produced from the Stanley uranium deposits. (Ruth) (JNT)

GEOLOGY OF DEPOSITS

<393>

Keys, E.S., and P.E. Dodd, BSC, Washington, DC

Lithofacies of Continental Sedimentary Rocks Related to Significant Uranium Deposits in the Western United States. Peaceful Uses of Atomic Energy, Vol. 2, Survey of Raw Material Resources, Proceedings of the 2nd International Conference, Geneva, Switzerland, September 1-13, 1958. United Nations, New York, (pp. 367-378), 883 pp. (1958)

Uranium deposits and districts in the United States suggests certain consistent relationships between features of the sedimentary host rocks and uranium ore. In the United States, most uranium deposits occur in continental sedimentary rocks ranging in age from Permian to late Tertiary. Approximately 95% of the ore reserves are in sedimentary rocks of the following ages: Triassic [23 \times 10¹² tons of U3O8], Jurassic [188 \times 10¹² tons of U3O8], and Tertiary [32 \times 10¹² tons of U3O8]. Lithofacies of the host rocks can be used as local exploration guides. Lack of homogeneity of texture and composition of the ore-bearing sediments is often cited as an ore guide. Most of the host rocks are fine- to medium-grained sandstones. Sedimentary textures are important because of their direct relationship to the porosity and permeability of host rocks. Transmissivity studies of the ore-bearing rocks of the Colorado Plateau indicate that fluvialite rocks generally have lower regional transmissive capacity than the less favorable eolian and marine rocks, but are characterized by a wide range of local transmissivity. The host rock is usually underlain or overlain by relatively impermeable beds, either argillaceous or well-cemented arenaceous rocks. Many ore bodies are localized near these barriers, usually adjacent to the lowest barrier. These surrounding, less permeable beds have apparently served to channel the flow of the ore-bearing solutions. As a rule, the most permeable sandstones in a district are not ore bearing but probably served as conduits through which the uraniferous solutions moved. Many large ore deposits are localized just above stratigraphic discontinuities, especially where these breaks are marked by a relatively impermeable bed. Paleostream channels of varying dimensions are probably an important ore control for most of the ore bodies of the United States. Channels or similar features, variously called braided channels, straths, swales, scour, depositional basins, or elongate lenses, have been suggested as ore controls in all of the major districts in the western United States. The depositional environment of the favorable host rocks is a zone of change from fast-water channel environment to the slow- or stagnant-water environments of flood plains and abandoned channels. (JNT)

<394>

Langford, F.P., University of Saskatchewan, Department of Geological Sciences, Saskatoon, Saskatchewan, Canada

Uranium Deposits in Australia. Uranium Deposits, Their Mineralogy and Origin, Short Course Handbook, Volume 3, M.R. Kimberley (Ed.), University of Toronto Press, Toronto, Canada, Ch. 7, (pp. 205-216), 521 pp. (1978, October)

Uranium was first produced in Australia in 1906 from Radium Hill. In 1944, intensive exploration began resulting in the development of the Rum Jungle, South Alligator River Valley, Radium Hill, and Mary Kathleen deposits. After 1965, due to increased

uranium prices, a resurgence of uranium exploration activity resulted in the discovery of the major deposits at Lake Prome, the Egalia basin, and Yeelirrie. By far the largest uranium deposits in Australia are located in the Darwin area in the northern part of the Northern Territory. Major vein-type deposits of Babulak, Jabiluka, Ranger, and Koongarra occur in the part of this area known as the Alligator Rivers Region. South of these deposits, the South Alligator River valley contains a large number of showings and a number of small mines. On the west side of the area, the Ira Jungle camp has four economic uranium deposits and some base metal mines. It is believed that the uranium resources of the Darwin area exceeds 350,000 tons of U3O8; considerably more than the other uranium deposits in Australia combined. Ore deposits from all three camps in the Darwin area are close to, if not in contact with, the unconformity between the Lower and Middle Proterozoic. The mineralogical, structural, and stratigraphic situations of these deposits are very much like those of the Athabasca deposit in Saskatchewan. Several other deposits outside the Darwin area are of economic importance. These include the Westmoreland deposit, Mary Kathleen mine, Egalia Basin deposit, Lake Prome area, Yeelirrie and Haureen deposits. (JNT)

<395>

Lindsey, D.L., USGS, Denver, CO

Geology of Volcanic Rocks and Mineral Deposits in the Southern Thomas Range, Utah: A Brief Summary. Brigham Young University Geology Studies 25(1):25-31. (1978)

Uranium deposits have been discovered in the Thomas Range. These deposits occur as (1) fluorite pipes, (2) in beryllium deposits in tuff, (3) in tuffaceous conglomerate and sandstone at the Yellow Chief mine, and (4) veinlets of opaline silica at many localities. The only production of uranium has been from the Yellow Chief deposit, which was mined between 1959 and 1962. The ore at the Yellow Chief is beta-uranophane [Ca(UO₂)₂(SiO₃)₂·5H₂O]. It occurs in lenses as much as 6 meters thick and 90 meters long that are approximately discordant to the bedding. The mineral wexsite [K(UO₂)₂(SiO₃)₃·8H₂O] occurs in the limestone conglomerate that overlies the tuffaceous sandstone at the Yellow Chief Mine. Both minerals occupy interstices and fractures and coat sand grains and clasts in the conglomerate. Uranium also occurs in the structure of opaline silica veinlets in tuff at many places in the Thomas Range, with the most uraniferous opal veinlets in the rhyolitic ash-flow tuff of the oldest volcanic group at the Autunite No. 3 prospect on the east side of Topaz Mountain. None of these occurrences have produced ore. Important deposits of fluorite and beryllium have also been found in the Thomas Range. (JNT)

GEOLOGY OF DEPOSITS

4396
Lindsey, R.A., E. Gonor, and W. Roestjor, USGS,
Denver, CO

Hydrothermal Alteration Associated with Beryllium
Deposits at Spur Mountain, Utah. USGS
Professional Paper 818-1; 20 pp. (1973)

The beryllium deposits at Spur Mountain occur in waterlaid tuff that contains carbonate clasts. Vitric and zeolitic tuffs are present outside the mineralized area where argillitic and feldspathic tuffs are present within the mineralized area. Early alteration of the tuff was characterized by argillization and addition of Si, Al, Fe, H2O, F, Be, Li, and many trace elements. The beryllium ore body and associated fluorite are near the top of the tuff and are underlain by a thick zone containing lithium-bearing trioctahedral montmorillonoid clay and associated calcite. Beryllium (as bertrandite), lithium, vanadium, and other elements are concentrated in the fluorite-rich nodules, and magnesium, lithium, and zinc are concentrated in trioctahedral nontronitic clay nodules. (JHT)

4397
Livingston, S.L., Yukon Resources Corporation,
Santa Fe, NM

Geology and Development of Marquez, New Mexico
Uranium Deposit. AAPG Bulletin 63(8):691.
(1979, April)

Uranium deposition in the Marquez, New Mexico, area occurs almost exclusively in the lower Westwater Canyon Member of the Morrison Formation of Jurassic age. The average aggregate thickness of the Westwater is 90 m but ranges from a minimum of 73 m to a maximum of 100 m. A "K" shale separates the upper and lower Westwater sandstone boundaries. The lower Westwater sandstone development is more pronounced in an east-southeast direction parallel with strike of the orebody(ies). Three distinct ore zones were deposited in pericocordant elongate patterns. The upper zone occupies a stratigraphic interval just below the "K" shale and two lower zones lie above and below the "K" shale. Coffinite and uraninite predominate as the stable uranium species; other extrinsic elements were added during the mineralization process. Manganese undoubtedly exerted major control on formation of the uranium. Ferruginous iron pervades both within and outside the deposit whereas ferric iron, though limited in quantity, is confined principally to the orebody(ies). The lower "K" shale, parameters of permeability, and recurrence of meanders along the paleochannels also seem to influence enrichment. Surface drilling is continuing, a vertical mine shaft to approximately 2,100 ft (630 m) is nearing completion, and a mill is being constructed on the property. (JHT)

4398
Lupe, R., USGS, Denver, CO

Depositional Environments as a Guide to Uranium
Mineralization in the Chinle Formation, San
Rafael Swell, Utah. Journal of Research of the
USGS 5(3):365-372. (1977, May)

Uranium deposits in the San Rafael Swell are related to sedimentary depositional environments in the Upper Triassic Chinle formation. The sedimentary textures resulting from depositional processes operating in

low-energy environments appear to have influenced uranium mineralization. The Chinle consists of three thinning-upward, fluvial-lacustrine sequences. Uranium minerals are concentrated in the lower part of the lowest sequence in areas where sediments of low-energy environments are complexly interbedded with sediments of other environments. Areas favorable for uranium exploration exist in the subsurface to the north, west, and south of the Chinle outcrop in the Swell. This determination is based on the spatial distribution of depositional environments and the pattern of Chinle deposition through time. (JHT)

4399
Miller, D.S., Jr., Wyoming Geological Survey,
Laramie, WY

Wyoming's Resources - Green River Basin. Geology and Mineral Resources of the Greater Green River Basin, Proceedings of the Twenty-Fifth Field Conference, Casper, WY, September 17-19, 1973. Wyoming Geological Association, Casper, (pp. 23-26), 246 pp. (1973)

The mineral resources of the Green River Basin of Wyoming are discussed very generally in this paper. The only uranium mining underway in the basin at the time the paper was written is in the vicinity of Crooks Gap in the northeast margin of the Great Divide Basin. Indications are that there will be more exploration in the future. Occurrences of uranium bearing rocks such as uraninite, schroedingerite in association with coals, and uranium phosphate have been reported by mining companies, the USGS, and by the AEC. The most significant deposits have been encountered in Eocene strata in an area south of Crooks Gap. Commercial grade ore is anticipated in any of the numerous Paleocene sandstones and in the arkosic sandstones of the Eocene Battle Spring Formation. (JHT)

4400
Newton, J., D. LeHoine, C.W. Adams, R.L.
Anderson, and J.A. Shively, Idaho Bureau of Mines
and Geology, Moscow, ID

Study of Two Idaho Thorite Deposits. Idaho
Bureau of Mines and Geology Pamphlet No. 122; 53
pp. (1960, September)

The thorium deposits of the Hells Mountain area in Boundary County and the thorite deposits of the Lemhi Pass area, Idaho are discussed. Thorite lode deposits occur in the Hells Mountain area. All thorite prospects in this area were located along faults and calcite was a preferential host for thorite. The thorite deposits in the Lemhi Pass area are contained in broadly folded and faulted metasedimentary rocks belonging to the Precambrian Belt series. These rocks are intruded by scattered small dioritic and lamprophyric dikes of uncertain, but probably Late Cretaceous or Early Tertiary age. The deposits are characteristically blackened fracture zones and veins containing thorite. Because of their mineral associations and structural relations, the deposits are classed as hydrothermal veins. (JHT)

<801>

GEOLOGY OF DEPOSITS

<801>

Bisninger, R.D., AEC, Washington, DC

Geologic Distribution of Nuclear Raw Materials. Peacetime Uses of Atomic Energy, Vol. 2, Survey of Raw Material Resources, Proceedings of the 2nd International Conference, Geneva, Switzerland, September 1-13, 1958. United Nations, New York, (pp. 7-10), 883 pp. (1958)

Of the many metals for the industrial utilization of atomic energy, the ores of four - uranium, thorium, beryllium, and zirconium - have special significance as nuclear raw materials. As the intensive and widespread uranium geologic and exploration program of the past decade has proceeded, changes have taken place in the relative importance of the various types of uranium deposits. A decade ago uranium deposits in sandstones and other sedimentary formations were considered, at best, a minor supplementary source; the great potential of the metacarbonate or conglomerate deposits was not yet recognized and the significance of the oxidized outcrops of many vein-type uranium deposits was not understood. Granitiferous Precambrian conglomerates lithologically similar to those in Canada and South Africa are known in many parts of the world. Experience since the Blind River discovery, however, indicates that conglomerate deposits from which uranium can be produced at present prices are the exception. Because of the widespread occurrence of deposits in sedimentary rocks and the large areas of favorable sedimentary terrane yet to be explored, this type of deposit will probably continue to increase in relative importance. Reserves of such deposits represent more than 95 percent of the recorded reserves in the United States which total about 220,000 tons of U308 (1958). The remaining reserves are in vein and vein-type deposits. Important production of sandstone ores now comes from the stratigraphic units each in rocks of Triassic, Jurassic, Cretaceous, and Tertiary age. The rapid discovery and development of deposits in sedimentary rocks give promise of the continuing discovery of large reserves of this type in the United States as well as in areas of similar lithology and structure elsewhere in the world. Vein-type uranium deposits will probably remain in third place in importance. In vein-type deposits, uranium is often the sole extractable metal and is seldom in association with more than one co-product. Economic deposits of uranium are now known in veins in granites of Hercynian and Tertiary age; in fracture zones at the contact of granite and metamorphosed sedimentary rocks; in pyrometamorphic deposits; in pipe-like deposits in metasedimentary rocks unrelated to intrusives; in pegmatitic zones in gneiss; and in fault-controlled deposits in Tertiary volcanic rocks. Although continued exploration may well discover reserves of low-cost uranium sufficient to last into the next century, the world may eventually turn to the almost unlimited reserves of low-grade uranium bearing shale, phosphorite, and granite. Current annual United States production of uranium as a by-product of the phosphate industry is about 100 tons. No production of uranium from shale, phosphorite, or granite is presently feasible. (JMT)

<802>

Olson, J.C., and S.R. Wallace, USGS, Denver, CO

Thorium and Rare-Earth Minerals in Powderhorn District, Gunnison County, Colorado. USGS Bulletin 1027-O, 32 pp. (1956)

Thorium was discovered in the Powderhorn District of Gunnison County, Colorado, in 1949. Since that time over 33 deposits have been found in an area 6 miles (9.7 km) and 20 miles (32.2 km). The district is underlain primarily by pre-Jurassic metamorphic and igneous rocks, most of which are of Precambrian age. These rocks are overlain by sandstone of the Morrison Formation and by volcanic rocks of the Albion Group and the Hinsdale Formation. The thorium deposits occur in or near alkalic igneous, the greatest mass of which is the Iron Hill composite stock which occupies an area of 12 square miles (31.2 square kilometers). The thorium deposits are veins and mineralized shear zones that range from a few inches to 16 feet in width and from a few feet to 3,500 feet in length. The veins are composed of calcite, dolomite, siderite, andesite, quartz, barite, pyrite, sphalerite, galena, goethite, apatite, alkali feldspar, and a number of other minerals. At least part of the thorium occurs as thorite or thorogummite. A small amount of what has tentatively been identified as xenotime is found in one deposit and several minerals containing rare earth metals of the cerium group are found in the carbonate veins near Iron Hill. The radioactivity of the deposits appears to be due almost entirely to thorium and its daughter products. The thorium oxide content of a selected high-grade sample from the Little Johnnie vein is as much as 4 percent, but most veins contain less than 1 percent. The Little Johnnie vein, which was mapped in detail, was found to be a mineralized fault zone that ranges less than 6 inches to 5 feet in width and can be traced discontinuously for a distance of more than 3,500 feet. The thorium-bearing material occurs as irregular veinlets and thin films introduced along the fault zone. Near its west end the vein is broken by many faults in a zone that marks the edge of a roughly circular fault block. (JMT)

<803>

Osterwald, P.W., USGS, Washington, DC

Structural Control of Uranium-Bearing Vein Deposits and Districts in the Conterminous United States. USGS Professional Paper 455-G, (pp. 121-146). (1965)

Uranium-bearing veins in the United States are principally fissure-filling deposits in faults, joints, or fracture zones that have resulted from compressive, tensile, or torsional stresses. The individual ore bodies within vein deposits are tabular, sheetlike masses or ore shoots along veins, irregular stockworks along fault zones, or pipe-like masses either in fault intersections or in blocks of broken ground. Many veins consist of gouge or breccia containing uranium minerals. Rocks adjacent to faults, joints, or fault zones may also contain uranium if they are porous or reactive, or if they are broken. Most uranium-bearing vein districts in the United States are in structural environments in which subsidiary intermediate to small-scale faults and folds are related spatially to large- to intermediate-scale folds, anticlinal uplifts, crystalline-rock masses, or faults. Deposition of uranium commonly occurs late in the structural history of a district. (Auth)

GEOLOGY OF DEPOSITS

<404>
Pipiringos, G.W., H.A. Chisholm, and E.C. Kepferle, USGS, Washington, DC

Geology and Uranium Deposits in the Cave Hills Area, Harding County, South Dakota. USGS Professional Paper 476-1; 64 pp. (1965)

The geology and uranium deposits of the Cave Hills area, in north-central Harding County at the northwest corner of South Dakota, including 215 square miles of timbered buttes and ridges, are discussed. The rocks exposed in the Cave Hills are, in ascending order, the Hell Creek Formation of Late Cretaceous age, the Ludlow and Tongue River Members of the Fort Union Formation of Paleocene age, and the Chadron Formation of early Oligocene age. The rocks consist mostly of swamp and stream deposits but include brackish water or near-shore marine sediments. The total thickness reaches 800 feet. The Hell Creek Formation consists of clay shale, carbonaceous shale, siltstone and sandstone. Neither coal beds nor uranium deposits were noted in the formation. The Ludlow Member of the Fort Union Formation consists of gray clay shale, greenish-gray siltstone, and gray sandstone. Major coal beds and uranium deposits are located in this unit. The Lonesome Pete coal bed is one of the thickest and purest of all coal beds in the area. The Tongue River Member of the Fort Union Formation is crossbedded sandstone with interbeds of siltstone and claystone. Sparse coal beds may be found in this unit, but are not of the same quality as those found in the Ludlow Member. One of the largest local uranium deposits is located in Coal Bed E, found in the Tongue River Member. The Chadron Formation is a conglomerate, very coarse grained sandstone. Tuffaceous sandstone and claystone, bentonite, tuffaceous bentonitic claystone are silicified limestone are common as well. The small quantities of uranium occurring in the Fort Union Formation are not of ore grade, but these concentrations do exist in the E and F Coal Beds of the Tongue River Member. Coal Zone C, and the Lonesome Pete and Carbonate ore zones of the Ludlow Member are probably in the form of organouranium complexes. In this form uranium is not visible and must be detected with radioassay instruments or by chemical analyses. Relatively minor amounts of uranium occur as a film or scaly mass of yellowish uranium minerals. The most abundant uranium minerals occurring in this area are metatorbernite, followed by meta-autunite and metazirconite. (BBB)

<405>
Bridgley, J.L., USGS, Denver, CO

Roll-Type Uranium Occurrence at Dennis-Bunn Claim and Possibility of Uranium Deposits in Eastern Part of San Juan Basin, New Mexico. AAPG Bulletin 63(4):692-693. (1979, April)

Uranium at the Dennis-Bunn claim, south of Cuba, New Mexico, along the east margin of the San Juan basin, occurs in stacked fluvial-channel sandstones interbedded with gray-green mudstones of the Westwater Canyon Sandstone Member of the Morrison Formation of Jurassic age. Although all the sandstone units are mineralized, the greatest concentration of uranium occurs in the uppermost sandstone unit. The uranium deposits are low to medium grade, range from 0.001 to 0.07 percent U3O8, and are irregularly distributed along the margins of intertonguing oxidized and

unoxidized sandstone. The configuration indicates that these are roll-type uranium deposits and that they formed at the interface between oxidizing and reducing solutions. The host rocks dip 45 degrees west into the basin. Reconstruction of the tectonic and sedimentologic history along the eastern margin of the basin suggests that conditions favorable for the solution, transportation, and deposition of uranium probably occurred from Late Cretaceous into Eocene time. Uranium in the mineralizing solutions may have originated from within the Morrison Formation or may have been leached from the Paleocene Ojo Alamo Sandstone or Encimado Formation, or from the Eocene San Jose Formation which once covered the area. Similar uranium deposits occur in the Morrison Formation at the Goodner lease, north of Cachana Spring. The presence of oxidized sandstone in the Morrison Formation along the outcrop belt from Cachana Spring north to Cuba suggests that additional uranium deposits may exist at the boundaries of oxidized and unoxidized sandstone in the subsurface along the eastern margin of the San Juan basin. (Auth)

<406>
Riese, W.C., and D.G. Brookins, Gulf Mineral Resources Company, Albuquerque, NM; University of New Mexico, Albuquerque, NM

Mount Taylor Uranium Deposit, San Mateo, New Mexico. AAPG Bulletin 63(4):693. (1979, April)

The Mount Taylor uranium deposit is located at the extreme eastern end of the Ambrosia Lake district in the Grants mineral belt of New Mexico. Ores are confined to the Westwater Canyon Member of the Jurassic Morrison Formation and are spatially related to meanders in the paleochannels which deposited the arkosic sands of this member. The shape of the deposit roughly resembles the roll fronts of the Wyoming Tertiary basins. This deposit resembles the deposits of the Wyoming basins chemically as well. Arsenic, selenium, molybdenum, and several other less commonly analyzed trace elements occur in zones across the orebody, parallel with the direction of dip and indicative of a redox cell. Mineralogically, however, the Mount Taylor deposit differs significantly from those in the Wyoming basins and, surprisingly, from most of the other deposits in the Ambrosia Lake district. It does not reside at an iron redox interface nor is it very pyritiferous. It does have concentrations of calcite along its down-dip and bottom edges. Montmorillonite, chlorite, and kaolinite show a regular zonation from the unaltered down-dip sediments, through the ore zone, and into the up-dip altered sediments. No primary uranium-bearing minerals have been identified. The deposit shows a complex relation to organic materials in the sediments indicating two periods of organic enrichment of the sediments. The nature of this relation implies that organic transport mechanisms may have been as important in ore genesis as inorganic mechanisms. (Auth)

<807>

GEOLOGY OF DEPOSITS

<807>

Pistorcelli, S.J., Western Nuclear Inc.,
Albuquerque, NM

Geology of Eastern Smith Lake Ore Trend. ALPG
Bulletin 63(8):693-694. (1979, April)

The ore trend explored by Western Nuclear, Inc. at Smith Lake, lies in approximately six sections in T158, R138 of McKinley County, New Mexico. All of the orebodies lie within the Brushy Basin Member of the Jurassic Morrison Formation which contains essentially three distinct sandstone units at this location. For exploration purposes this breakdown is adequate, although the sandstones do become exceedingly complex on a small scale. The Smith Lake ore lies along the southern margin of the Chaco slope. The regional dip is quite uniform at about 2 degrees north-northeast. North of the deposits running subparallel to the east-west ore trend is the Mariano Lake anticline. At the west end, the anticline dies out at the Pinonale monocline and does not extend to the Bluewater fault zone on the east. The Bluewater fault is a normal, high-angle fault, downthrust to the east, and essentially forms the eastern boundary of the area. The orebodies are aligned approximately east-west and are generally arcuate. The geometry of the ore is controlled by the stream-channel systems in the Brushy Basin sandstones. Some of these orebodies coincide with the redox interfaces that have been found. Those that do can assure the geometry of a typical roll-front type of orebody. Three hypotheses for depositional controls are: (1) Laramide structures are spatially associated with the ore and have been considered by some geologists as a depositional control; (2) the change of lithologies from sandstones to mudstones down the hydraulic gradient also may have affected ore deposition; and (3) stream channel systems with carbonaceous material localizing the ore is a viable control as well. (Auth)

<808>

Roscoe, S.H., Canada Geological Survey, Ottawa,
Ontario, Canada

Meromian Rocks and Graniferous Conglomerates in
the Canadian Shield. Geologic Survey of Canada
Paper 68-80; 205 pp. (1969)

Granite ore deposits of the Elliot Lake-Biab River area and other beds of radioactive, pyritic, quartz-pebble conglomerate near the north shore of Lake Huron, occur within greenish, very coarse grained, crossbedded, argillaceous, feldspathic quartzite in the Elliot Lake Group at the base of the Meromian Supergroup. Volcanics, formerly considered pre-Meromian, in the Espanola-Sudbury area east of Elliot Lake may be correlative with basalts that comprises much of the Elliot Lake Group to the west in the Thessalon-Sault Ste. Marie area. Overlying Meromian formations, Hough Lake, Quirke Lake and Cobalt Groups, in ascending order, each contain conglomeratic greywacke of probable glacial origin overlain by argillaceous strata (including limy beds in the Quirke Lake Group) in turn overlain by subarkose. Sedimentary strata totalling more than 30,000 feet in the southeastern part of the region thin southward to the north. Grain sizes in clastic rocks coarsen and lower strata wedge out northward beneath disconformably overlying strata. The dominantly continental, early Archean Meromian rocks are

probably older than most other Archean rocks in the Canadian Shield which are dominantly marine, deposited on relatively smooth surfaces under comparatively stable conditions. Probable Meromian correlative in the Mistassini region, Quebec, contain radioactive conglomerates and limited areas of similar rocks occur near Padie, Northwest Territories. Highly metamorphosed remnants of analogous strata may be present in the Grenville and Churchill Provinces. Deposition of Meromian graniferous conglomerates was controlled by the disposition of Meromian lava fields and by tectonic movements during sedimentation as well as by local and sourceward topographic features. Exploration possibilities near Elliot lake, where ore is associated with valleys in basement greenstone, are mainly at depths greater than 3,000 feet. Conglomeratic zones may occur at depth off the northeast margin of the Thessalon Volcanics as they do off the northwest margin of the St. Croix Volcanics in the structurally complex Agnes Lake area. Granite and many other heavy minerals, including pyrite in the oligosic conglomerates, are detrital but authigenic brannerite, pyrite and other minerals are also present. The highest grade ores represent headward and medial concentrations of the heaviest detrital grains within more extensive placers. The survival of abundant detrital pyrite and granitite, a deficiency of ferric iron in continental Meromian rocks and in underlying ancient residual soils, and the apparent lack of conglomeratic deposits or the Meromian-Sudbury and type in post-Archean rocks, may indicate that the early Archean atmosphere was a reducing one. (Auth)

<809>

Scholl, W.U., Laboratory for Sediment Research,
Heidelberg, Federal Republic of Germany

Der Südwestliche Sandbereich der Espinhaço-Zone
Minas Gerais, Brasilien. Geologische Rundschau
61(1):201-216. (1972, March)

The paper is based on geological mapping in Precambrian metamorphic rocks at the SE border of the São Francisco Basin. The oldest units are the Preinhas rocks, which are overlain by the megasynclinal, quartzitic facies of the Binas Series. These units are unconformably overlain by the younger São Francisco Series. The latter is subdivided into a marginal facies with coarse-grained clastics, the Macaubas, and a fine clastic and calcareous basin facies, the Bambui. The São Francisco Series was involved in the final phase of the Binas orogeny. The quartzites of the Binas and Macaubas are intensively thrust-faulted now overlying the Bambui. In the Bambui only large amplitude folding developed. Based on the tectonical and the sedimentological relations it is assumed that the São Francisco Series is the molasse of the Binas geosyncline. (JNT)

Cited as a reference in McNeil, R., "Geology of Brazil's Uranium and Thorium Occurrences," under ERDA Contract E(05-1)-1664.

GEOLOGY OF DEPOSITS

<610>
Sharp, D.J., and D.L. Wyman, AEC, Division of
Raw Materials, Salt Lake City, UT

Preliminary Report on Uranium Occurrence in the
Atlanta Area, Lincoln County, Nevada. 282-2048;
18 pp. (1956, January)

Uranium was discovered on the Blue Bird claims
in the Atlanta area, Lincoln County, Nevada,
in 1954. This deposit is situated
approximately 35 air miles north of Pioche,
Nevada. The geology of the area consists of
moderately folded and highly block-faulted
sedimentary rocks of Ordovician age. These
sediments are overlain by Tertiary volcanic
rocks which have been disturbed by some of the
faulting. Intrusive breccia pipes in the Ely
Springs dolomite, the youngest of the
Ordovician sedimentary rocks, have been
silicified and mineralized and apparently
controlled the localization of the gold,
silver, and uranium minerals. The Blue Bird
workings are in a silicified breccia pipe
which contains quartzite fragments and
silicified fragments of limestone and
dolomite. Uranium has been identified by
X-ray methods in the silicified matrix of the
rock. Three diamond drill holes on the
property provided geologic information.
Anomalous radioactivity was detected at a
number of similar silicified breccia zones,
including the Atlanta mine and several
abandoned gold and silver workings in the
Atlanta region. Surface and airborne
prospecting of the Ely Springs dolomite is
recommended in this region, especially near
silicified breccia pipes. (Aust)

<611>
Staatz, E.E., USGS, Denver, CO

Geology and Description of the Thorium-Bearing
Veins, Lemhi Pass Quadrangle, Idaho and Montana.
USGS Bulletin 1351; 98 pp. (1972)

The Lemhi Pass quadrangle lies astride the
Continental Divide in the east-central part of
the Beaverhead Mountains. The quadrangle,
though only a part of the much larger Lemhi
Pass thorium district, is the area of the most
abundant thorium veins. Rocks of the Belt
Supergroup underlie the entire quadrangle and
are at the surface over about 60 percent of
the area. Fine-grained siliceous quartzite is
the dominant rock type. The Challis
Volcanics, which at one time overlaid the Belt
rocks, are now preserved in downfaulted blocks
and as erosional remnants. Diorite Dikes are
scattered through the rocks of the Belt
Supergroup; these dikes were emplaced in
Tertiary time after the Challis Volcanics.
The rocks of the area are deformed by several
sets of faults and a few folds. Three
principal types of veins occur at the 107
mapped localities in the Lemhi Pass
quadrangle. They are as follows: (1) veins
that contain thorium, (2) veins that contain
copper but do not contain thorium, and (3)
barren quartz veins. The thorium veins are,
by far the most common. The range in
thickness from paper thin to 30 feet, and in
length from a few feet to at least 3,900 feet.
The veins occur along small faults and shear
and most of them are near the Lemhi Pass, Full
Moore, or Dan Patch faults. The veins are
sheared and brecciated, and earlier gangue
minerals are veined by later minerals. The
thorium-bearing veins consist principally of
quartz or quartz and microcline gangue. The
gangue minerals are cut by veinlets of

goethite and hematite that contain thorite and
less commonly, monazite. Thirty-nine minerals
have been identified from various veins, but
only seven minerals - quartz, magnetite,
specularite, goethite, thorite, microcline,
and rutile - occur in at least two-thirds of
the veins. Other moderately common minerals
are barite, pyrite, black manganese oxide
minerals, red earthy hematite, monazite,
suscovite, and apatite. In addition to
thorite and monazite, the thorium-bearing
minerals brookite and allanite have been
identified in several veins. Some of the
thorite occurs in limonite. The average
thoria content of some of the better explored
veins commonly exceeds 0.25 percent. The
overall rare earth content is about equal to
the thorite content. Copper-bearing veins are
not as common as thorite-bearing veins and
they consist principally of primary and
secondary copper minerals in a quartz gangue.
Barren quartz veins are shorter than veins of
the other two types. The veins of the Lemhi
Pass quadrangle are probably Tertiary in age,
forming after the Challis Volcanics and the
diorite dikes. The copper-bearing veins are
older than the thorium-bearing veins, but the
relative age of the barren quartz veins to the
other vein types is not known. (JMT)

<612>
Staatz, E.E., USGS, Denver, CO

I and L Veins and Thorium Vein System, Bokan
Mountain, Southeastern Alaska. Economic Geology
73(4):512-523. (1978, June)

The I and L vein system is a group of veins
near the southeast part of the Bokan Mountain
stock. The veins are unique in that they
contain significant amounts of uranium,
thorium, and rare earths - an unusual
combination - and because of the distribution
of their rare earths. The host rocks of the
vein system are predominantly plutonic,
although some metamorphic rocks are present.
Typically the veins are thin, rarely exceeding
5 feet in thickness, and they are
characterized by abrupt changes in thickness.
They transect parts of the Upper
Triassic-Lower Jurassic Bokan Mountain granite
throughout their northwestern extent and
Ordovician granitic rocks to the southeast.
The mineralogy of the veins is complex;
uranium, thorium, and the rare earths occur in
several minerals from different parts of the
veins. A total of 34 minerals has been
recognized, although many are sporadically or
locally distributed. The principal gangue
minerals are quartz and albite. Uranium
generally occurs in thorium-bearing uraninite,
but it also occurs in cassiterite. Thorite is
the principal thorium-bearing mineral in the
northeast and central part of the vein system,
but allanite is found in the southeastern part
of the system. In addition to allanite, the
rare earth minerals include bastnasite,
zircon, monazite, and an unnamed mineral.
The uranium content of 93 vein samples ranges
from 0.005 to 2.8 percent; thorium content of
27 samples ranges from 0.0033 to more than 10
percent; and total rare earth content of 17
samples ranges from 0.023 to more than 10
percent. The distribution of the rare earths
is unusual; one part of the vein may contain
predominantly cerium-group rare earths, and
another part of the same vein may yield
predominantly yttrium-group rare earths. The
I and L veins also contain abnormal amounts of
beryllium, niobium, zirconium, barium,
strontium, tin, lead, zinc, copper, and
molybdenum. (Aust) (JMT)

<813>

GEOLOGY OF DEPOSITS

<813>

Tessendorf, T.W., Reserve Oil and Minerals,
Grants, NM

Redistributed Orebodies of Poison Canyon Mine.
AAPG Bulletin 63(4):698-695. (1979, April)

Since the early 1950s Poison Canyon has been a classic example of uranium geology. At the present time, because of economic conditions, a closer examination of the redistributed mineralization is being made. Because of the evolution of the structure and geomorphology of Poison Canyon, the primary mineralization went through further oxidation and reduction. Enriched solutions of uranium migrated downdip through permeable sandstones, with calcium replacing silica near mudstone contacts. These solutions were controlled by north-trending fracture patterns, with some vertical movement along major faults. The uranium collected in structural and lithologic traps, then oxidized, forming aneobalike orebodies with the higher grade mineralization located in the fractures. The authigenic mineral is mainly tyuyamunite in the hexavalent state in sands deficient in carbon and associated, although rarely, with pascoite and ilsemanite. The equilibrium of the primary minerals differs from that of the redistributed minerals. The uranium has been leached from the primary minerals causing chemical values to be less than radiometric. The redistributed minerals are chemically greater than radiometric, producing a favorable equilibrium. Also, the percent extraction in the mill process is greater for the redistributed ore than the primary ore. The paragenetic position of the different minerals has a direct bearing on these observations. (Auth)

<818>

Tweto, O., and P.K. Sims, USGS, Denver, CO;
Minnesota Geological Survey, Minneapolis, MN

Precambrian Ancestry of the Colorado Mineral Belt. Geological Society of America Bulletin 74:991-1014. (1963, August)

The narrow northeast-trending Colorado mineral belt, the site of most of the major mining districts of Colorado, is characterized by intrusive porphyries and associated ore deposits of Laramide age and, in some places by fissures and faults of northeasterly trend. The belt is about 250 miles long and extends diagonally across the generally north-trending mountain ranges of Colorado, occupying several different geologic environments and following an ancient zone of weakness defined by northeasterly-trending shear zones. Movement occurred along the shear zones through most of the Precambrian time. During this time, deformation progressed from a deep-seated environment characterized by folding and plastic flow to more shallow environment characterized by fracture and retrograde metamorphism. During Paleozoic and Mesozoic time, minor differential movements occurred repeatedly in the regional zone of shearing, as recorded by thinning, wedgeouts, and changes in facies of several sedimentary formations along the zone. With the onset of the Laramide orogeny, magma invaded the regional zone of shearing and imparted to it the conspicuous features that characterize the mineral belt - intrusive igneous bodies and ore deposits. Fault movement occurred along the zone at this stage also, but it was on a smaller scale than it had been previously. (JET)

Cited as a reference in NURE Contractor Reports.

URANIUM INDUSTRY

<615>
Norbasca's Exploration Program Involves \$160,000.
The Northern Miner 68(52):23. (1979, March 8)

Norbasca Mines is concentrating its 1979 exploration program on a portion of its 18,063 acre Wallaston Lake property in Northern Saskatchewan. Five drill holes are to be put down as a first step in following up on the geophysical and radon surveys carried out over the past eight months. The program is expected to cost about 100,000 dollars. Exploration on the property is being directed by Norbasca under a joint venture agreement involving Norbasca (25 percent), Consolidated Reactor Uranium Mines (25 percent), and Saskatchewan Mining Development Corporation (50 percent). The company will also carry out further surface exploration on a second area in the northwest corner of the property, on Michael Lake, where reconnaissance geophysical surveys have established the presence of conductors. (JST)

<616>
Rivkin and Company, Sydney, Australia

Prospects for the Uranium Industry in Australia.
IIHS-af-327: 60 pp. (1976, February)

The report discusses basic issues of the coming uranium era the world supply and demand situation, the trend in uranium prices and the continuing move to nuclear power as the world's primary source of electrical energy. The first section of the report discusses the technical aspects of the nuclear industry but is necessarily brief because the real story is the world trend to nuclear power for economic and political reasons and the old story of supply and demand (discussed in section two). Within Australia some companies are better placed than others to benefit from the uranium era. Section three looks at prices and section four reviews the individual companies involved in the uranium industry in Australia. (PAC)

<617>
International Atomic Energy Agency, Vienna, Austria

Processing of Low-Grade Uranium Ores.
Proceedings of a Panel, Vienna, June 27 - July 1, 1966. International Atomic Energy Agency, Vienna: 267 pp. (1967)

The proceedings of a panel convened by the International Atomic Energy Agency in Vienna on the processing of low-grade uranium ores. Twenty-two specialists from 15 countries and one international organization attended the meeting and they were asked to make appraisals of the current situation with regard to the processing of low-grade uranium ores and give recommendations for a possible IAEA program of activities. These 13 status reports and 13 other technical reports are presented. Seven of the thirteen technical reports were abstracted for the BURE data base. (JST)

<618>
Al-Sheib, L., and J.S. Shelton, Oklahoma State University, Department of Geology, Stillwater, OK

Uranium Potential of Sedimentary and Igneous Rocks in Western and Southwestern Oklahoma. USGS Circular 753; Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977, J.A. Campbell (Ed.), (pp. 61-62), 75 pp. (1977)

Uranium anomalies are present in Permian terrigenous clastic rocks and Cambrian igneous rocks in western and southwestern Oklahoma. These anomalies are known to occur in siltstones of the Doxey Formation, in the Post Oak Conglomerate near the Wichita Mountains, and in dikes within the igneous complex of the Wichita Mountains. A carnotite-tyskysenite-bearing zone is localized in the lower part of the Doxey Formation. This formation is characterized by alternating siltstones, mudstones, and shale. The host rock is composed of highly resistive, well stratified, pale-reddish-brown sandy siltstone beds, 12-150 cm thick. Subangular to angular quartz and feldspar grains are cemented by secondary gypsum and calcite. Ripple marks and small-scale crossbedding are major sedimentary structures and the depositional environment of the Doxey is interpreted to be tidal-flat. Uranium occurs as spotty encrustations along bedding planes, as fillings of small fractures, and as part of the cement in siltstones. The mineralization appears to be spatially related to grayish-green siltstone and also to the secondary gypsum disseminated in siltstones and filling fractures. The Post Oak Conglomerate represents the uppermost Permian unit of a thick section of Pennsylvanian and Permian arkosic and carbonate detritus derived from the Wichita uplift. The conglomerate near the mountains consists of cobbles and boulders in a matrix of sandstone which displays very abrupt lateral and vertical changes in grain size. The Post Oak shows low uranium contents ranging from 2 to 8 ppm; averaging 2.3 ppm. The highest uranium values are found in sandstones which are characterized by a matrix of silt and clay, and which occur immediately south of granite outcrops. Uranium anomalies are also present in a coarse-grained, arkosic, channel sandstone 20 km south of the granitic rocks of the Wichita Mountains. The average uranium content of several samples is 60 ppm, however, no uranium minerals have been identified. Riebeckite-egirine-pagmatite dikes, genetically related to the peralkaline Cambrian Granite, contain 80 to 100 ppm uranium. Fission tracks show that the uranium is associated with both egirine-riebeckite and refractory minerals such as zircon and allanite. It is believed that uranium in these dikes is related to a late uranite-rich hydrothermal stage which followed an early aqueous phase. (JST)

<419>

URANIUM INDUSTRY

<419>

Anderson, J.S., and H.I. Ritchie, Utah Construction and Mining Company

Solution Mining of Uranium. American Mining Congress Journal 54(1):20-26. (1968, January)

In early 1960, Utah Construction and Mining Co. started producing uranium ore from an underground mine in Shirley Basin, Wyoming. Because the costly square-set method had to be used in the mining, an investigation was initiated to determine what other production method could be used. The method selected for study was in situ leach mining. The most critical consideration in the solution mining at Shirley Basin was the pattern geometry. During the experimental phase, patterns were square or triangular, with the production well in the center. The area was bounded by inflow wells that were located irrespective of regional groundwater flow direction. During the early period of operation, nitric acid was used as a leaching agent. Analyses of uranium and nitrate recoveries for patterns mined during this phase indicated that solution losses were occurring and that there was substantial dilution in the effluent produced. In an attempt to correct these problems, a complete test study was initiated, and pattern design was changed. The current design is based on the fact that interflow between wells in an aquifer having regional flow can be controlled by varying inflow-effluent rates, by distance between wells, and by aligning wells at specific angles to the direction of groundwater flow. Pattern operation starts with the introduction of the leaching solution to the three inflow wells. Sulfuric acid is now used instead of nitric acid. The uranium-bearing solution produced from the production wells is pumped into the recovery plant where two circuits, a continuous ion-exchange column with two attendant elution, or stripping columns and a fixed resin-bed column, extract the uranium. The resin column is then stripped with a mixture of nitric acid, sodium nitrate, and sulfuric acid, the solution is purified, and the U3O8 is precipitated with dolomitic lime or magnesia slurry. The outstanding advantages of the solution mining process are safety and relatively low cost. The principal disadvantages of solution mining are the dependence on permeability and other uncontrollable ground conditions and the difficulty of getting acceptable recovery in multiple ore horizons. (JNT)

<420>

Civín, V., and J. Prochazka, Research and Development Laboratory No. 3 of the Uranium Industry, Prague, Czechoslovakia

Processing Uranium-Bearing Materials Containing Coal and Lignite. Processing of Low-Grade Uranium Ores. Proceedings of Panel, Vienna, June 27 - July 2, 1966. International Atomic Energy Agency, Vienna, (pp. 89-95), 247 pp. (1967)

Among the ores which are classified as low-grade in the Czech are mixtures of coal and bentonitic lignes of tertiary origin, containing approximately 0.1 percent U and with a moisture content at times well above 20-30 percent. The uranium is held mainly by the carbonaceous component. Conventional processing of these materials presents various difficulties which are not easily overcome. During leaching the pulp thickens and frequently becomes pasty, due to the presence of montmorillonites. Further complications

arise from the high sorption capacity of the materials (again primarily due to montmorillonites) and poor sedimentation of the viscous pulps. In addition, the materials are highly refractory to the leaching agents. The paper presents experience gained in solving the problems of processing these ores. The following basic routes were explored: (1) separation of the carbonaceous and loamy components: The organic component appears to be the main activity carrier. Processing the concentrated material upon separation of the inactive or less active loam may not only remove the thixotropic behaviour but also substantially reduce the cost of the ore treatment; (2) 'liquefying' the pulps or preventing the thickening of the pulp by addition of suitable agents; (3) joint acid or carbonate processing of the materials in question with current ore types; (4) removal or suppression of thixotropic behaviours by thermal pretreatment of the material; and (5) application of the 'acid cure' method. The first method appears to be the most effective, but it presents considerable difficulties due to the extreme dispersion of the carbonaceous phase and further research is being carried out. Methods 2 and 3 proved to be unacceptable. Method 4, which includes roasting at 300-400 degrees C, is not being operated on an industrial scale. The final method has also shown definite advantages for particular deposits of high montmorillonite content material.

<421>

Dare, W.L., Bureau of Mines, Denver, CO

Mining Methods and Costs - Continental Uranium, Incorporated, Continental Number 1 Mine, San Juan County, Utah. Bureau of Mines Information Circular 7801: 20 pp. (1957, September)

The Continental No. 1 mine is at the south end of the Big Indian mining district, San Juan County, Utah. The mine is on a school section owned by the State of Utah and leased by Continental Uranium, Inc. A 70,000-ton uranium-vanadium ore deposit was discovered as a result of an exploratory drilling program completed in 1954. The ore body is elongated along the east-west strike of the Moss Back member of the Triassic Chicle Formation. It is roughly tabular in shape, but irregular in outline. It dips 8 to 10 degrees to the south. The ore occurs at the base of the Moss Back, within 2 feet of the Persian Cutler Formation. The ore mined to date has an average thickness of about 7 feet. It is developed by a 350-foot slope and haulageway given within the ore stratum and mined by open stoping with random pillar support. The height of the ore, its gentle dip, and the strength of the overlying rock have permitted use of trackless loading and haulage equipment. (JNT)

URANIUM INDUSTRY

<422>

Burley, A.G., Canada Geological Survey, Ottawa, Ontario, Canada

New and Recent Results from the Canadian Uranium Reconnaissance Program. USGS Circular 753; Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977, J.A. Campbell (Ed.), (pp. 63-68), 75 pp. (1977)

The Geological Survey of Canada (GSC) was involved in developing new methods of exploration for uranium throughout the 1960's and is presently involved in an effort to delineate all regions in Canada where the crust contains an above normal amount of uranium. The uranium reconnaissance program primarily depends upon airborne gamma-ray spectrometry and regional geochemistry, but other methods are not excluded if these serve the objectives of the program. The objectives of the program are (1) to provide the mineral industry with high quality reconnaissance data to indicate those areas of Canada where there is the greatest possibility of finding new uranium deposits, and (2) to provide government with systematic and nationally consistent data to serve as a base for uranium resource appraisal. The program is expected to continue at least until 1985. Airborne gamma-ray spectrometry is primarily undertaken over relatively flat areas where there is some rock outcrop and generally thin overburden. Regional geochemistry is the only method being used at present in mountainous areas, but it is also being used in parts of the country with extensive overburden and in areas considered particularly favorable for uranium occurrence. (JAT)

<423>

Dickinson, K.A., USGS, Denver, CO

Uranium and Thorium Distribution in Continental Tertiary Rocks of the Cook Inlet Basin and Some Adjacent Areas, Alaska. USGS Circular 753; Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977, J.A. Campbell (Ed.), (pp. 70-72), 75 pp. (1977)

The Cook Inlet Basin area of Alaska contains a large thickness of continental sedimentary rocks containing carbonaceous material that could act as host rocks for uranium deposits and surrounding the area are suitable uranium source rocks in the form of granite and tuff. A study was conducted concerning the distribution of uranium in the potential host rocks to see if the uranium has been mobilized by dissolution, transported, and redeposited. A total of 57 samples of the potential host rocks were sampled with the uranium and thorium being determined by the delayed-neutron method of analysis. The uranium and thorium contents found in the continental sedimentary rocks of the Cook Inlet were very uniform. The uranium content was aged about 2.0 ppm and the range was from 0.5 to 4.3 ppm. The Th/U ratio averaged 2.3; low when compared to the general terrestrial rock ratio of 3-4, and low when compared to many oxidized nonmarine sedimentary rocks that characteristically have ratios of more than 7. The low uranium content and the low Th/U ratio found in the Tertiary sedimentary rocks of the Cook Inlet area may indicate that geochemical conditions have not been favorable for the formation of epigenetic uranium deposits, but it is important to note that the samples collected and analyzed for this report may not adequately represent the large amount of potential host rocks. (JAT)

<424>

Benson, D.W., and A. Brugnesteijn, British Columbia Research

Microbiological Leaching of Uranium. New Mexico State Bureau of Mines and Mineral Resources Circular 118; Selected Papers from 1978 Uranium Symposium at Socorro, New Mexico, P.J. Ross and D.E. Baker, Jr., Compilers, (pp. 55-61), 61 pp. (1979)

In the Elliot Lake area, uranium occurs primarily in the mineralized forms of uraninite and brannerite. Acid mine waters containing significant levels of soluble uranines were determined to also contain the iron- and sulfide-oxidizing bacteria, *THIOPAECILLUS PERRARDIAENSIS*. The production rates for the mine were cyclic due to the bacterial leaching being favored by the moisture-laden air of summer and inhibited by the loss of moisture during the winter months. The enhancement of bacterial activity was determined to be promoted by microbiological oxidation of ferrous iron and pyrite. Energy released during these oxidation steps is used for growth by the bacteria. The leaching area should be damp, within the pH range of 2 to 3, adequately ventilated, phosphate and ammonia sulfate available to the bacteria, and the temperature at about 35 degrees C. Production on the commercial scale should be increased where stopes meet these requirements. (PAT)

<025>

URANIUM EXTRACTS

(025)
 El Shazly, E.S., S.A.T. El Hazeek, and I.H. Zayed,
 U.A.E. Atomic Energy Establishment, Cairo, United
 Arab Republic

Leaching Experiments on Uraniferous Shales and
 Sandstones from Qatrasi, Western Desert, United
 Arab Republic. (1971)

The Qatrasi uraniferous shales are characterized by the presence of clays, particularly montmorillonite associated with dolomite and calcite, gypsum, hematite and goethite, basic organic matter, quartz sand, native sulfur, some feldspars altered to sericitic, soluble salts and other minor minerals, all in variable amounts. Leaching experiments were carried out on a shale with a uranium content of 200 ppm. Physical methods of concentration, including sieving, magnetic separation, heavy-liquid separation, tabling, and flotation failed to make fractions with a higher uranium content than the original shale. Direct alkaline leaching was not promising owing to the high consumption of sodium carbonate due to the presence of gypsum and organic matter; also uranium extraction is not possible in this medium, and sodium decomposition was not feasible due to the decomposition of uranium. It was found that the recovery of uranium could be effected through methyl alcohol precipitation of uranite and sodium sulfate, reissolving it in a mixture of water followed by sodium decomposition with soda. Direct acid leaching was not promising because of the high acid consumption caused by the abundance of carbonates and the presence of organic matter. The acid process was improved by roasting followed by slaking and then leaching with sulfuric acid and ultimately recovering uranium by anion-exchange resin IPI 360. The red ferruginous sandstone of Qatrasi is constituted of quartz sand with hematite and goethite associated with a small amount of dolomite. Experiments carried out on a sandstone containing 266 ppm uranium indicated that uranium leaching is mainly connected with the dissolution of the iron oxides. Hydrochloric acid was found to be the best acid for leaching, while the addition of an oxidant (H2O2) was necessary for the process. (Auth) (J37)

(026)
 Fisher, J.R., Rio Algom Mines Limited, Research and Development Department, Mining Division, Elliot Lake, Ontario, Canada

Bacterial Leaching of Elliot Lake Uranium Ore. Canadian Mining and Metallurgical Bulletin 59 (649):588-592. (1966, October)

The uranium mines in the Algoma District in the area of Elliot Lake, Ontario, contain ore of the pebble conglomerate type. The uranium mineralization, along with 2 to 6 percent sulfides, occurs in the matrix interstitial to the pebbles. In 1959, it was found that the pH of the mine waters in some of the mines was decreasing and becoming more acidic with time. As the pH of the waters became more acidic, the uranium content of the waters increased. The general trend was that the pH of the mine waters would slowly decrease to about 4.5 over a period of 4 to 6 years. The decrease in pH would then drop suddenly to about 2.5 in a matter of months. In 1961, a research program was begun to determine the cause of the increased acidity of the mine waters, and it was found that the bacterium, THIOBACILLUS PERROXIIDANS, was the cause of the decrease in pH. THIOBACILLUS PERROXIIDANS has the property of producing ferric iron, which

caused the mine waters to become oxidizing, allowing the hexavalent uranium to be oxidized and thereby making it completely soluble in the sulfuric acid which is formed from the reaction between the oxidizing mine water and the sulfides present in the ore. In August, 1968, following the shut down of Rio Algom Mines Limited conventional mining and milling system at the Milliken mine, a research program was begun to evaluate the practicality of leaching uranium via bacterial action. A series of drill holes were directed through the parting wall of the Milliken mine and the Lacnor mine, which had been previously shut down. The bacterial activity in the mines resulted in a coating of basic ferric sulphate on the rocks in the mine. High pressure hoses were used to remove the coating and free the soluble uranium. After washing the stopes, a 40 pound bag of bacterium nutrient known as X was spread on the stope floor. After 160 days, the X nutrient was found to give an 86 percent U3O8 extraction rate compared to a 66 percent rate when no nutrient was used. The nutrient was spread at about 3 grams per square foot of stope floor area. Over a period of 1 year, 127,000 pounds of uranium were recovered from the underground workings of the Milliken mine by the use of bacterial leaching. The over-all grade of the water being pumped to the surface was 0.135 g/l, or 1.35 pounds per 1000 gallons of water treated. During the operation, it was discovered that the bacterium requires at least a temperature of 18 degrees C to obtain good results. During the winter of 1968-69, the underground rock temperatures in parts of the Milliken mine dropped to 18 degrees C and this decrease in temperature reduced bacterial activity by 30 to 50 percent when compared to the summer activity. (JET)

(027)
 George, D.E., and J.B. Ross, Salt Lake City Metallurgy Research Center, Salt Lake City, UT

Recovery of Uranium from Uranium Mine Waters and Copper Ore Leaching Solutions. Processing of Low-Grade Uranium Ores, Proceedings of a Panel, Vienna, June 27 - July 1, 1966. International Atomic Energy Agency, Vienna, (pp. 227-238), 207 pp. (1967)

Waters pumped from uranium mines in New Mexico are processed by ion exchange to recover uranium. Production is approximately 200 lb U3O8/day from waters containing 5 to 15 ppm U3O8. Recoveries range from 80 to 90 percent. Processing plants are described. Uranium has been found in the solutions resulting from the leaching of copper-bearing waste rock at most of the major copper mines in the western United States. These solutions, which are processed on a very large scale for recovery of copper, contain 2 to 12 ppm U3O8. Currently, uranium is not being recovered, but a potential production of up to 6000 lb U3O8/day is indicated. Ion exchange and solvent extraction research studies are described. (Auth)

URANIUM INDUSTRY

(428) Grotz, P.L., The Colorado Corporation, Denver, CO

Key Sandstone Uranium Deposit in the Battle Spring Formation, Lost Soldier-Green Mountain Area, Sweetwater County, Wyoming. Wyoming Sandstone, P.L. Bayert (Ed.), Proceedings of the 22th Field Conference, 1970. Wyoming Geological Association, Casper, WY, (pp. 9-12), 292 pp. (1970)

In 1969 the Colorado Corporation undertook a drilling project of uranium leases and claims covering 25,000 acres in the Lost Soldier-Green Mountain area, Sweetwater County, Colorado. As a result, uranium was discovered in the lower part of the Battle Spring formation, a Tertiary unit consisting of sandstone, conglomerate and shale. The occurrence of the Lost Soldier uranium deposit is initially related to the lithofacies development along the Buddy Gap paleodrainage; these deposits were then emarginally distributed and/or enriched in their present positions. The site of mineralization appears to be controlled by oxidation, stratigraphy, and structure. (MM)

(429) Gilmond, R.J., and S.T. Windham, USEPA, Office of Radiation Programs, Washington, DC

Radioactivity Distribution in Phosphate Products, By-Products, Effluents, and Wastes. ORP/CSP-75-3; 32 pp. (1975, August)

Samples of phosphate ores, products, by-products, effluents, and wastes from several mines, wet process phosphoric acid plants, and electric furnace facilities throughout the southern US were analyzed for U, Ra 226, and Th. Ra 226 analyses were performed using the Ra emanation method; U and Th were detected by alpha spectroscopy after ion exchange concentration and coprecipitation. Only data from Florida are presently available; analysis of marketable rock showed 42 pCi/g Ra 226, 41 pCi/g U 238, 1.9 pCi/g U 235, 41 pCi/g U 234, 2 pCi/g Th 227, 0.61 pCi/g Th 228, 92.3 pCi/g Th 230, and 0.48 pCi/g Th 232; slimes contained 45, 42, 2.6, 40, 2.3, 1.2, 40, and 1.4 pCi/g, respectively; sand tailings has 7.5 pCi/g Ra 226, 5.2 pCi/g U 238, 0.38 pCi/g U 235, and 5.3 pCi/g U 234. Approximately 60 percent of the activity extracted in Florida phosphate mining remains as waste products after beneficiation; removal of suspended solids from the heavy slime before effluent discharge removes 92-99.7 percent of the Ra in the slimes. Analyses of effluents from seven mine and beneficiation plants found no Ra 226 discharge greater than 3.0 pCi/l. In wet process phosphoric acid production most of the Ra 226 remains with the phosphogypsum by-product, while most of the U and much of the Th enter solution and are transferred to the phosphoric acid product. Lime neutralization of effluents was found to be very effective in removing Ra 226, U, and Th 230. In the electric furnace process, most of the Ra 226 is retained in the calcium silicate slag; this may not be true of other radionuclides, such as Po 210, that may be

volatilized in the furnace. Increased emphasis on assessing the potential impact of gypsum and slag by-products is recommended. The radioactivity concentrations in raw materials, products, wastes, by-products, and effluents detailed in this paper should enable additional work to model migration pathways of these radionuclides in the environment and to estimate individual and overall population impacts. (MM)

(430) Battagay, L.E., Kansas Geological Survey, Lawrence, KS

Interpretation of Uranium Content of Ground Water in West-Central Kansas. USGS Circular 753; Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977, J.L. Campbell (Ed.), (pp. 65-66), 75 pp. (1977)

The uranium content of ground water collected from 239 pumping irrigation wells was determined by X-ray fluorescence. Ground water from these wells was derived from (1) the Ogallala Formation (Tertiary), (2) undifferentiated Tertiary (Ogallala) and Quaternary sequences, and (3) Quaternary alluvial sediments along the Arkansas River in the west-central area of Kansas. The bedrock formations from north to south (Pierre Shale to Dakota Sandstone) increase in age from Late to Early Cretaceous. The water table slopes regionally from west to east, and the water varies from an alkaline earth-bicarbonate type to an alkaline earth-sulfate type. Uranium concentrations ranged from 2-172 ppb, with a mean of 18 ppb. The areal distribution of waters with uranium levels above 20 ppb was closely related to a north-south-trending topographic depression (Scott-Piasey depression and Scott Basin) that is also reflected in bedrock contours, and to portions of the Arkansas River valley. These areas contain saline soils and shallow water tables, and usually exhibit sulfate-type ground water and higher total dissolved solids content. In the Scott Basin area the higher total dissolved solids level in the ground water appears to be related to leaching of soluble salts from the soils in the basin area. Water from the sandy areas south of the Arkansas River exhibits low uranium levels. Several major chemical species and the total dissolved solids in the ground water show a positive correlation with uranium, which suggest the higher uranium values observed may result from an increased salt loading of soils and ground water in areas of shallow water tables. Correction for common correlation with total dissolved solids is found to reduce greatly the number of variables exhibiting a significant correlation with uranium (SiO₂, F, Sr, and Mg). A comparison of uranium content with total dissolved solids suggested that water from the Scott Basin, zone of the upland drainage areas, and the northern half of the Scott-Piasey depression exhibit a higher uranium-to-total-dissolved-solids ratio than water from the southern half of the depression and the alluvium of the Arkansas River valley. This comparison also suggest that waters having two different compositions, both with relatively high uranium contents, exist in the area. The relatively high uranium content of ground water from this area suggested that a regional anomaly exists for the aquifer and related systems in the Ogallala. Such an anomaly may result from leaching and dissolution of volcanic ash found in the Ogallala that contains about 6 ppm uranium. (JMT)

<831>

URANIUM INDUSTRY

<831>
 Karslup, D.L., G.P. Miller, P.S. Levy, and J.P. Benatti, Brookhaven National Laboratory, Upton, NY; New Mexico State Bureau of Mines and Mineral Resources, Socorro, NM

Theroluminescence of Uranium Host Rocks in Ambrosia Lake Area. AAPG Bulletin 63(4):669. (1979, April)

Exposure to radiation during the formation or redistribution of uranium ore deposits is expected to affect the theroluminescence (TL) properties of the host rock. For example, TL measurements on samples from a traverse of a Wyoming roll-type deposit display the following intensity-versus-distance pattern. Starting from barren oxidized ground the intensity increases gradually with decreasing distance to ore, is extremely high in ore, and drops abruptly with distance in reduced ground to a level substantially below that in oxidized ground. This pattern is in accord with current hypotheses concerning the genesis of this type of deposit. Measurements of both natural and artificial TL made on quartz separates from drill cores and samples collected underground in the Ambrosia Lake area, because of the intensity and structure of their respective glow curves, permit discrimination among oxidized ground, reduced ground, and mineralized areas. In addition, samples from oxidized ground show TL intensities and glow-curve characteristics that have been correlated with structural features that controlled the redistribution of ore. Although the data show some statistical variation, the general intensity-versus-distance pattern has been observed in many cases. All currently available results suggest that TL can be developed into a viable tool for uranium exploration.

<832>
 Reide, E.-A., W. Paschke, K. Ziegner, and S. Held, Kernforschungsanlage Juelich GmbH, Juelich, Germany

Matrix of Cultivable Mutants of Single - Celled Green Algae and Process for Obtaining Uranium by this Matrix. OBRSL-tr-6228; 2 pp.; German Federal Republic Patent D7-23-85-830-81. (1975)

A technique is proposed for the extraction of uranium from seawater by mutated unicellular green algae. The mutants are formed by irradiation green algae with about 50 k r of x-rays and culturing them on a nutrient substrate enriched in U. Surviving colonies are cultivated further in the usual way, and strains particularly suited to U-enrichment are selected. A massive culture is placed in a filter cage with at least two walls made of sieves permeable to seawater but not to the algae. This filter cage may be placed so that water is swept through it by tidal action. With an algal cell size of 50-100 μ and a sieve pore size such that total cross-sectional area of the matrix is 100 square mile, a flow rate of 10 (20%) tons of seawater per day should be attainable. U is removed from the matrix by tributyl phosphate extraction. (LKH)

<833>
 Hill, J.P., Texas Railroad Commission, Austin, TX

Responsibilities of Texas Railroad Commission for Uranium Mining Pursuant to Surface Mining and Reclamation Act of 1975. AAPG Bulletin 63(3):666. (1979, March)

was enacted on June 21, 1975, with the expressed intent of regulating the surface mining of coal and uranium and activities associated with a surface mining operation. The Railroad Commission of Texas has certain responsibilities pursuant to this legislation, although some types of activities are not affected by this law. (Ruth)

<834>
 Huang, S.H., Texas A & M University, College Station, TX

Uranium Deposits of Texas Gulf Coastal Plain - Trend, Exploration, and Production. AAPG Bulletin 63(3):670. (1979, March)

Uranium in the Texas Gulf coastal plain occurs primarily in two types of deposits: (1) in sandstone-type deposits of Colind, Oakville, Catahoula, Frio, and upper Jackson, and (2) in Tertiary Wilcox, Llano-Jackson, and upper Jackson lignite. Total potential resources of uranium in the coastal plain have been estimated to be about 0.25 million tons, ranking third in the United States. Analyses of several thousand samples from the coastal plain show the following results. (1). In the sandstone-type deposits, uranium is both roll type and scroll type. Best uranium concentrates are in reduced ores. Uranium is closely associated with (a) lignite or disseminated organic matter, (b) clays, particularly smectite, (c) zeolites, particularly with clinoptilolite, and (d) carbonate rocks and calcite. Uranium minerals present are uraninite, coffinite, carnotite. Adsorption of uranium by clays is largely dependent on pH. (2). In lignite, the concentration of uranium decreases with geologic age. Uranium is generally concentrated at the contacts of lignite seams with sandstones or shales rather than in the middle of the seam. Recovery of uranium has been either by surface or in-situ mining. However, development of in-situ leaching has gained new impetus because of the unique situation of south Texas uranium deposits. Results of laboratory tests show that hydrochloric acid is the best effective solvent to recover uranium from either oxidized or reduced sandstone-type ore deposits, and from lignite without the addition of oxidant (e.g., H2O2). (Ruth)

<835>
 Kelly, T.L., B.L. Link, and H.R. Schipper, Geohydrology Associates, Inc., Albuquerque, NM

Effects of Uranium Mining on Groundwater in Ambrosia Lake Area, New Mexico. AAPG Bulletin 63(4):660. (1979, April)

The principal ore-bearing zone in the Ambrosia Lake area of the Grants uranium district is the Westwater Canyon Member of the Morrison Formation of Jurassic age. This is also one of the major artesian aquifers in the region. Significant declines in the potentiometric head within the aquifer have been recorded, and digital modeling shows that declines may locally approach 3,000 ft (900 m) in the vicinity of a mine. Loss of potentiometric head in the Westwater Canyon Member has resulted in the interformational migration of groundwater along fault zones from overlying aquifers of Cretaceous age. This has resulted in local deterioration in chemical quality of the groundwater. (Ruth)

URANIUM INDUSTRY

<436>
Kennedy, R.H., Atomic Energy Commission, Washington, DC

Recovery of Uranium from Low-Grade Sandstone Ores and Phosphate Rock. Processing of Low-Grade Uranium Ores, Proceedings of a Panel, Vienna, June 27 - July 1, 1966. International Atomic Energy Agency, Vienna, (PP-216-226), 247 pp. (1967)

Commercial-scale experience in the United States in the recovery of uranium from low-grade sources is discussed. The majority of the uranium recovery operations have been conducted by operators of uranium mills as an alternative to processing normal-grade ores. The operations have generally been limited to the treatment of low-grade materials generated in the course of mining normal-grade ores. In some circumstances such materials can be treated by simplified procedures as an attractive source of additional production. The experience gained in uranium recovery from phosphate rock is treated in some detail. The land pebble phosphate rock of central Florida generally contains about 0.01 to 0.02 percent U₃O₈. While no uranium is being recovered from this source at the present time, it does represent a significant potential source of by-product uranium production because of the large tonnages being mined. (Auth) (JNT)

<437>
Larson, W.C., Bureau of Mines, Twin Cities, MN

Uranium IN SITU Leach Mining in the United States. Bureau of Mines Information Circular 9777; 68 pp. (1977)

A broad overview of this relatively new mining technology is given, and the purpose of the report is as a reference source for information on IN SITU leaching. A list of IN SITU leaching publications is included as well as engineering data tables for almost all of the active pilot-scale and commercial uranium IN SITU leaching operators. Additional information is given that discusses the current Bureau of Mines uranium IN SITU leaching research programs. (JNT)

This report contains 259 references concerning IN SITU leach mining.

<438>
Larson, W.C., Bureau of Mines, Twin Cities, MN

Uranium In-Site Leach Mining - A Third Alternative. IAPG Bulletin 63(3):486. (1979, March)

Uranium in-situ leach mining, when used as a single commercial mining method, represents a technologic breakthrough with which many people are not familiar. In the last 5 years, plant-installed capacities for uranium in-situ leach mining have increased approximately 12-fold. There are now at least seven western states which have activities of some type regarding uranium in-situ leaching. (Auth)

<439>
Lepirov, I.P., State Committee for the Utilization of Atomic Energy, Moscow, USSR

Underground Leaching - A Method for the Economic Extraction of Uranium from Low-Grade Ores. Processing of Low-Grade Uranium Ores, Proceedings of a Panel, Vienna, June 27 - July 1, 1966. International Atomic Energy Agency, Vienna, (pp.

210-215), 247 pp. (1967)

The method of underground leaching of uranium ores has a number of advantages over extraction followed by processing of the ores in factories. It has been studied in two types of deposits, occurring in rock masses and sandy shales. Research techniques were worked out accordingly for the leaching of uranium from large-grained ore (>200 mm) and from layers in natural stratification. Special models were constructed permitting the simulation of underground leaching conditions. The results obtained were checked in field conditions on experimental plots and experimental underground blocks. The investigations demonstrated the practicability of the process of underground leaching of uranium from certain ores and made it possible to work out flow-sheets and routines for an industrial process, information about which is given in the paper. (Auth)

<440>
Bashir, D.S., Western Nuclear Inc., Metallurgical and Chemical Department, Jeffrey City, NY

Heap Leaching of Low Grade Uranium Ore. Mining Congress Journal 50(12):50-54. (1968, December)

Two basic heap leaching methods are used by Western Nuclear, Incorporated for extracting uranium from low grade ores. They are referred to as conventional (straight gravitational down-flow through an open pile) and percolation (controlled flow, both upward and downward, through a contained pretreated pile) leaching. The conventional heap leaching method consists of applying dilute sulfuric acid solutions to open or exposed piles of low grade uranium ore, and recovering the leach solutions. At the Gas Hills, the U₃O₈ recovery was 89.2 percent. The percolation leaching method involves leaching crushed ore in a tank specially constructed for that purpose. This process has a 91.4 percent recovery rate. Both leaching processes allow the large amounts of waste ore below the nine cut-off grade to be economically processed. (JNT)

<441>
Matthews, D.C., Anaconda Company

Hydrometallurgical Aspects of Mineral Exploration. New Mexico State Bureau of Mines and Mineral Resources Circular 118; Selected Papers from 1970 Uranium Symposium at Socorro, New Mexico, R.J. Rossen and D.H. Baker, Jr., Compilers, (pp. 1-2), 61 pp. (1971)

Hydrometallurgy may incorporate such preparational procedures as boring into a mineral deposit for in site leaching, blasting or ripping for heap leaching, crushing for vat leaching, and grinding for agitation leaching. Uranium deposits determined to be uneconomical to process must be analyzed by hydrometallurgical processes. Exploration must give due consideration to proposed mining methods in regard to selectivity and/or separation of the ores into metallurgical intervals and provide ample samples for the metallurgist to blend and composite to simulate potential mill feeds. (PAG)

<442>

URANIUM INDUSTRY

<442>
 Bayville, J.H., L.L. Nichols, and R.C. Seidel,
 Bureau of Mines, Washington, DC
 Extracting Uranium from a Wyoming Granite.
 Bureau of Mines Report of Investigations 6219; 15
 pp. (1977)

A possible future source of uranium is granitic material. The Bureau of Mines, in an effort to explore the general leaching characteristics of such potential resources, leached samples of Wyoming granite that contained 0.06 to 0.12 percent U3O8. Conventional acid leaching extracted 93 percent of the uranium in 18 hours. The amount of required acid addition was 50 to 100 pounds of H2SO4 per ton of ore, and the oxidant addition was 3 pounds of NaClO3 per ton of ore. The acid consumption continues after maximum uranium recovery has been reached; this effect may complicate heap or in situ leaching with acidic solutions. Some variation in reagent requirements was noted between the two ore samples. Conventional carbonate leaching with strong solutions at 85 degrees C extracted 94 percent of the uranium in 24 hours. These granitic materials also showed some response to dilute carbonate solutions, and the results suggest that the material may be chemically amenable to heap or in situ leaching with dilute carbonate solutions. (Auth) (JHT)

<443>
 McCready, H.H., V.F. Harrison, and W.B. Gov,
 Canada Department of Energy, Mines and Resources,
 Mines Branch, Extraction Metallurgy Division,
 Ottawa, Ontario, Canada

A Proposed Method, Using Bacteria, for the Continuous Leaching of a Uranium Ore. Canadian Mining and Metallurgical Bulletin 62(682): 135-140. (1969, February)

A semi-continuous bench-scale, countercurrent-decantation system, in which the ore was moved countercurrently to the flow of leaching solution, was used to conduct acid-leaching tests on uranium ore with the aid of bacteria. The method, which involved a low degree of agitation, was successfully applied to extract uranium in practical amounts and at practical rates. The acidity of the leaching solution was the main variable investigated in the bench scale tests done in the Mines Branch. Over 90 percent of the uranium was extracted in a six-stage system. The results suggest that this technique could be applied in the utilization of bacterial oxidation and leaching as a method for treating Elliot Lake uranium ore. (Auth)

<444>
 Tertie, J.B., Jr., USGS, Reston, VA

Monazite Placers in the Southeastern Atlantic States. USGS Bulletin 1390; 41 pp. (1975)

Placer mining for monazite in North and South Carolina during the periods 1887-1911 and 1915-1917 was done on small deposits in the headwaters of streams that drained monazite-bearing rocks. Exploration was undertaken in 1951-1958 by the USGS and the US Bureau of Mines with the objective of finding larger ore bodies of suitable grade downstream that would warrant large-scale mining. Such deposits have not been found and the explanation for the lack of deposits is that a high percentage of alluvial monazite moves continuously downstream unless it can be held in the interstices of gravel beds. Because

weathering of most common crystalline rocks in the Southeast generally yields only sand, silt, and clay, alluvial sediments contain only sparse gravel deposits. The part of the Coastal Plain most likely to have detrital monazite from the belts of monazite-bearing crystalline rocks in the Piedmont lie in the state of Virginia, North Carolina, South Carolina, Georgia, and Florida. The formations of the Coastal Plain range in age from Cretaceous to Holocene. Distinct Pleistocene terraces are present. The occurrence of monazite in the sedimentary formations of the Coastal Plain in economic quantities is considered unlikely, but reconcentrations of such deposits by local streams may yield workable placer deposits. A fluvial deposit in Aiken County, S.C. is cited and described as an example of this process. Pleistocene terraces, whose upper limits mark ancient shorelines have been correlated with several interglaciations of the Pleistocene Epoch, and conditions of weathering, erosion, transportation, and deposition of these sediments were more favorable for the accumulation of heavy minerals than in Holocene time. Because of this, the largest volume of heavy minerals will be found in terrace deposits, rather than along present beaches. Monazite is also generally distributed in all the littoral deposits of Florida, but the content is too low to produce monazite placers. Placers of ilmenite, rutile, and zircon, however, are mined, and at two of the four operating plants, monazite is produced as a by-product. (JHT)

<445>
 Nelson-Moore, J.L., D.B. Collins, and A.L. Hornbaker, Colorado Geological Survey, Denver, CO

Radioactive Mineral Occurrences of Colorado and Bibliography. Colorado Geological Survey Bulletin 40; GJBL-5(79); 1058 pp. (1978)

The two-part report provides an essentially complete listing of radioactive occurrences in Colorado, with a comprehensive bibliography and bibliographic cross-indexes. Part 1 lists approximately 3000 known radioactive occurrences with their locations and brief accounts of the geology, mineralogy, radioactivity, host rock, production data, and source of data for each. The occurrences are classified by host rocks and plotted on USGS 1 degree x 2 degree topographic quadrangle maps with a special 1:100,000-scale base map for the Uravan mineral belt. Part 2 contains the bibliography of approximately 2500 citations on radioactive mineral occurrences in the state, with cross-indexes by county, host rock, and the special categories of "Front Range", "Colorado Plateau", and "Thorium". The term "occurrence" as used in this report is defined as any site where the concentration of uranium or thorium is at least 0.01 percent or where the range of radioactivity is greater than twice the background radioactivity. All citations and occurrence data are stored on computer diskettes for easy retrieval, correction, and updating. The US Geological Survey and the US Department of Energy provided the largest volumes of both bibliographic and occurrence data. Additional sources included private mining and exploration companies working in Colorado, State agencies, and various published and unpublished reports. (Auth) (PAC)

URANIUM INDUSTRY

(446)
Riese, A.C., and C.J. Popp, New Mexico Institute of Mining and Technology, Socorro, NM

Application of Solution-Mineral Equilibrium Chemistry to Solution Mining of Uranium Ores. *AMP Bulletin* 63(4):693. (1979, April)

Modern methods of solution mining are typically accompanied by gains and losses of mass via reagent consumption by rock-forming minerals and subsequent clay-mineral formation. A systematic approach to alleviation of such problems involves the application of leach solutions which are in equilibria with the host rock minerals but in disequilibrium with the ore-forming minerals. This steady state can be achieved by solution composition adjustments within the systems $\text{K}_2\text{O}-\text{Al}_2\text{O}_3-\text{SiO}_2-\text{H}_2\text{O}$ and $\text{Na}_2\text{O}-\text{Al}_2\text{O}_3-\text{SiO}_2-\text{H}_2\text{O}$. Uranium ores from the Grants mineral belt of New Mexico containing 0.15 to 1.0 percent U₃O₈ were collected for investigation. Small-scale (less than or equal to 1 kg) column leaching experiments have been conducted to compare results of conventional leaching systems with those obtained with solutions in equilibrium with the matrix minerals. Application of these principles will have considerable bearing on future in-situ leaching of uranium ores. (Auth)

(447)
Hedge, C., Wyoming Mineral Corporation, Lakewood, CO

In-Site Uranium Solution Mining - Environmental and Licensing Requirements. *AMP Bulletin* 63(3):519. (1979, March)

Under changing conditions, the structure of state or federal regulatory agencies, their resources and authority, and their people and how they function also are subject to changing responsibilities. Similarly, a typical vigorous mining corporation utilizing newly developing technology changes with respect to its organization and objectives, its employees and their attitude, plus the economic principles and competition which motivate the company's method of operation. The interaction of the government agency and the firm finds concomitant changes in the outcome of the divergent forces and demands on each. Of particular importance are the provisions of rules, regulations, and permits produced under these circumstances, as well as the company's responses to them. (Auth)

(448)
Santos, E.S., R.B. Hall, and P.C. Weisner, USGS, Denver, CO

Mineral Resources of the San Pedro Parks Wilderness and Vicinity, Rio Arriba and Sandoval Counties, New Mexico. *USGS Bulletin* 1345-C; 29 pp. (1975)

A study of the San Pedro Parks Wilderness was made by the USGS and the US Bureau of Mines from 1970 to 1972. Included in the study were investigations of mining claim locations within and adjacent to the wilderness, investigations of the present status of the mineral industry in the general region, and a field evaluation of all known mining claims

and prospect workings. During the 1950's and early 1960's, numerous uranium claims were staked on the Cutler Formation and younger strata adjacent to the wilderness. Two small shipments of mineralized rock were made from the mill at Shiprock, New Mexico, but no payment was made for either shipment due to the low grade of the rock. The results of the investigation into the mineral resources of the San Pedro Parks Wilderness indicated that there are no exploitable mineral deposits, fossil fuels, or geothermal energy resources. (JRT)

(449)
Sugier, P., Direction des Productions, CEA, Chatillon-Sur-Seine, France

Recovery of Uranium in Mine Waters. Processing of Low-Grade Uranium Ores. Proceedings of a Panel, Vienna, June 27 - July 1, 1970. International Atomic Energy Agency, Vienna. (pp. 96-100), 287 pp. (1967)

In a brief introductory survey the author indicates the data on which leaching was first observed in the CEA mines and lists the main factors necessary for, or favourable to, the solubilization of uranium in mines. Information is given on the various sources of this type at present identified in France and the methods used to recover uranium in mines situated near ore-concentration plants. An explanation is given for the use of the calcium precipitation technique in connection with waters produced in mines not situated near ore-concentration plants. Data are given on the results of laboratory tests carried out on waters containing uranium, together with a description of an industrial-scale facility built in consequence of these tests. Details are given of the statistical results obtained. The author concludes by outlining the programme which will be implemented in the near future with a view to increasing the tonnage of uranium produced by in-situ leaching and indicated that the CEA engineers are very optimistic about the prospects of this new low-cost method of producing uranium. (Auth)

(450)
Trotton, D.R., and E. Canot, Bureau of Mines, Twin Cities, MN

Well Construction Information for In-Site Uranium Leaching. Bureau of Mines Information Circular 8769; 19 pp. (1978)

This publication describes present practices of making injection wells for in-situ uranium leaching. Casing, screens, drilling fluids, coring, logging, cementing, and developing are discussed with the objective of aiding those who are starting an in-situ leaching operation. Improper choices of materials or techniques can result in wells that are either useless or wells that have an unacceptably high resistance to injection. Important factors include careful selection of screen slot size, use of logs for choosing the cementing basket depth, proper cementing techniques, and careful choice, use, and flushing of drilling fluids. The information was obtained through observation of well construction and through discussion with in-situ leaching companies, drillers, and suppliers. (Auth)

<451>

URANIUM INDUSTRY

<451>
Tituski, S., The Northern Miner, Toronto,
Ontario, Canada

Nuclear Scare Knocks Down Wide Range of Uranium
Stocks. The Northern Miner 65(4):1, 16. (1979,
April 5)

The Three Mile Island nuclear power plant
accident may affect companies engaged in
exploration and mining for uranium. Although
it appears certain that nuclear energy will be
increasingly important in the future,
resistance to power plants and more stringent
regulation will undoubtedly result in a longer
lead time in the construction of new plants.
The potential slowing of the growth of the
entire nuclear industry may affect uranium
exploration and the development of mines
considerably if the demand for uranium falls.
(JMT)

GEOLOGY OF POTENTIAL URANIUM-BEARING AREAS

<452>
Blackstone, D.L., Jr., Wyoming Geological Survey, Laramie, WY

Structural Geology of the Eastern Half of the Morgan Quadrangle, The Strauss Hill Quadrangle, and the James Lake Quadrangle, Albany and Carbon Counties, Wyoming. Wyoming Geological Survey Preliminary Report No. 13; 85 pp. (1973, October)

The structural geology of the eastern half of the Morgan Quadrangle, the Strauss Hill Quadrangle, and the James Lake Quadrangle of Albany and Carbon Counties, Wyoming is detailed in this report. Uranium prospecting has been carried out in this area by several groups through the method of airborne scintillometers followed by drilling. Effort has been concentrated on the Paleocene Hanna Formation and the Eocene Wind River Formation, but to date, no ore bodies have been reported. (JET)

<453>
Boudette, E.L., USGS, Reston, VA

Two-Sica Granite and Uranium Potential in the Northern Appalachians Orogen of New England. USGS Circular 753; Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977, J.L. Campbell (Ed.), (pp. 23-24), 75 pp. (1977)

The Concord Granite crops out in three belts in New Hampshire. The belts apparently coincide with antiformal flexures in allochthons which expose partial to complete sections of two-sica granite at least 1 km thick. The two-sica granite contains uranium minerals exposed in two parallel roadcuts along Interstate Route 89 in New London, N.H., and in the Lake Sunapee belt, the westernmost of the granite belts. The mineralized pluton is everywhere strongly jointed and is intensely sheared at a few places. The pluton has a moderate systematic foliation probably formed partly by flowage and partly by inherited relic foliation in screens dragged parallel to flowage. Oxidized uranium minerals in a zone more than 8 meters thick are exposed in the I-89 cut. This occurrence of secondary uranyl-phosphate minerals resembles that of the Baypeak mine near Spokane, Washington. Uranium minerals in the Lake Sunapee deposits occur mainly in fractures, local fault gouge, and biotitic schlieren. The granite is somewhat more fractured than correlative rock north and south on regional strike, but not conspicuously so. In the ten years since the mineralization was exposed by roadcuts and the water table was lowered, more than 90 percent of the yellow uranium minerals have been leached away by vadose ground water. It is possible that the uranium minerals have reprecipitated at the lower water table. Two-sica granite is recognized for its metallogenetic specialization in tin, tungsten,

beryllium, lithium, fluorine, and scandium. Uranium production in France and in the Iberian peninsula is from Variscan or Hercynian-age two-mica granites. The Concord Granite can be compared with the uranium-producing granites of the Massif Central of France and fits the evolving international model for two-mica granites based upon an apparent anatexic origin, emplacement during an orthotectonic event, and probable requisite preconcentration of uranium in its parent rock, thought to be monazite. It is significant that carbonate-rich lamprophyre dikes are associated with the Concord Granite, especially as seen in the mineralized rock at Lake Sunapee. Carbonate lamprophyre emplacement in Variscan granites is concurrent with uraniumiferous vein emplacement and transformation of parts of the granite to episyenite, and the mobility of the uranium is related to carbonate complexing. Exploration on this basis should be focused on episyenite and lamprophyre zones, especially in the upper zones of the Concord sheets. (JET)

<454>
Brown, K.B., Oak Ridge National Laboratory, Oak Ridge, TN

Chemical Technology Division, Chemical Development Section C, Progress Report for October-December 1961. ORNL-72-197; 49 pp. (1962, February 21)

Results of research programs in the Chemical Technology Division of the Oak Ridge National Laboratory for the period of October through December 1961 are summarized in this report. Recovery of thorium by acid leaching ten granite samples (36-82 ppm) from the Conway Formation in New Hampshire ranged from about 50 to 35 percent, and averaged 70 percent. Study of the effect of grind size on the recovery of thorium from the Conway and Pikes Peak granites showed no significant differences in the range minus 20 to minus 200 mesh. The thorium concentration is a size Conway granite sample was found to be much greater in the fine than in the coarse fractions, whereas the Pikes Peak granite showed only slight thorium enrichment in the finer fractions. Uranium recoveries in acid leaching of four different granite samples were not improved by adding an oxidant. Preliminary analysis of a field survey of the Conway granite indicated that the accessible surface of the formation averages at least 41 ppm thorium. The thorium concentration in twenty-two samples of sub-lateritic soil from Mississippi, Alabama, Georgia, and Virginia ranged between 5 and 16 ppm. (JET) (JET)

<455>
Campbell, J.A. (Ed.), USGS, Denver, CO

Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977. USGS Circular 763; 72 pp. (1977)

This circular contains expanded abstracts for 41 technical papers presented at the 1977 Uranium and Thorium Research and Resources Conference, sponsored by the Branch of Uranium and Thorium Resources of the US Geological Survey. The conference was held April 27 and 28, 1977, at the Colorado School of Mines, Golden, Colorado. All 41 papers have been abstracted and input into the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. (JET)

<456>

GEOLOGY OF POTENTIAL URANIUM-BEARING AREAS

<456>
 Dodge, B.W., and R.G. Loucks, Bureau of Economic Geology, Austin, TX

Mineralogical Composition and Diagenesis of Tertiary Sandstones along Texas Gulf Coast. AAPG Bulletin 63(3):480. (1979, March)

The upper Gulf Coast Wilcox Formation is composed dominantly of quartz with feldspar, metamorphic and volcanic rock fragments, and sand clasts. The lower Gulf Coast Wilcox Formation contains more quartz and volcanic rock fragments. Lower Gulf Coast Yegua and Jackson Formations are composed of quartz, volcanic, and lesser carbonate rock fragments. Northward they become more quartz-rich and contain metamorphic rock fragments and sand clasts. Lower Gulf Coast Frio and Vicksburg Formations are similar to the Yegua and Jackson. Northward, they become more quartz-rich, but carbonate rock fragments are absent. Despite variations in composition, Tertiary sandstones exhibit a similar diagenetic sequence idealized as follows. Surface to shallow subsurface diagenesis (0 to 4,000 ft; 1,200 m) begins with pedogenic clay coats and with leaching and calcite replacement of feldspar. Minor kaolinite, feldspar overgrowths, and iron-rich carbonate material are also precipitated. Porosity is commonly reduced by compaction from the original 40 percent to less than 30 percent. Moderate subsurface diagenesis (4,000 to 11,000 ft; 1,200 to 3,300 m) involves leaching of early carbonate cements and subsequent cementation by quartz overgrowths and later carbonate cement. These stages commonly reduce porosity to 10 percent or less, but this trend may be reversed by late leaching of feldspar, rock fragments, and carbonate cements. Restoration of porosity to more than 30 percent can occur, but this may be reduced by late cementation by kaolinite and iron-rich dolomite and ankerite. Deep subsurface diagenesis (11,000 ft; 3,300 m) is a continuation of late iron-rich carbonate cements. (Auth)

<457>
 Graff, P.J., and R.S. Houston, USGS, Reston, VA

Radioactive Conglomerate in Proterozoic (Precambrian II) Metasedimentary Rocks of the Sierra Madre, Wyoming. USGS OFR-77-870; 9 pp. (1977)

A program of evaluation of miogeosynclinal metasedimentary rocks of the early middle Precambrian in southeastern Wyoming as possible host for uranium-bearing conglomerate was begun in 1975. The program was a cooperative effort of the USGS, the University of Wyoming Geology Department, the Wyoming Geological Survey, and the Energy Research and Development Administration. The study has resulted in the discovery of uranium-bearing quartz-pebble conglomerates at several locations in the Mountain Bow Mountains and Sierra Madre. The most significant result of the 1977 field program was the discovery of radioactive conglomerate in the northwestern Sierra Madre. The quartz-pebble conglomerate beds of the western Sierra Madre are not uniformly mineralized with some layers having much higher uranium values than others. Although none of the analyzed samples from the Sierra Madre contained commercial quantities of uranium, the analyzed samples were taken from extensively weathered outcrops. Because uranium is very soluble in oxidizing solutions, it is probable that a significant amount of uranium present before weathering has been leached from these rocks. Speculation that economic concentrations of uranium may exist at depth have not been confirmed by exploration drilling. (JET)

GEOLOGY OF POTENTIAL URANIUM-BEARING AREAS

<658>

Leventhal, J.S., and R.C. Granger, USGS, Denver, CO

Conceptual-Mathematical Models of Uranium Ore Formation in Sandstone-Type Deposits. USGS Circular 753; Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977, J.A. Campbell (Ed.), (p. 38), 75 pp. (1977)

Relatively simple calculations allow estimates to be made of the time required to produce a sandstone-type ore deposit of a given size using reasonable assumptions for the removal of uranium from igneous source rocks, for uranium content of ground water, ground water flow rate, uranium entrapment efficiency, and host rock porosity and density. Mass balance calculations indicate that removal of half the uranium from a relatively small volume of source rock (7.7×10^{12} cubic meters) having a specific gravity of 2.6 and originally containing 10 ppm uranium would yield 10 metric tons of uranium - approximately equal to a deposit that contains 26,000 pounds of U3O8. This amount is equivalent to that obtainable by weathering and leaching a 300 m x 300 m area of granite to a depth of 8.5 m or a 3 km x 3 km area of volcanic ash about 8.5 cm thick. The time required to remove the uranium from such source rocks depends, in part, on their porosity and permeability which, in turn, are related to either the grain size of the ash or the degree of fracturing of the granite, and, of course, the solubility of the uranium. The amount of weathering and rainfall and the infiltration of meteoric water into the ground water system also must be considered. It can be calculated that 10^{12} cubic meters of water containing 10 ppb uranium are needed to form a deposit that contains 10 metric tons of uranium. If the rainfall is 25 cm/year, this amount of water would fall on the granite noted above in about 44,000 years and the ash in 440 years. In that it is unlikely that all the rainwater would enter the ground water system, these must be regarded as minimum estimates. If only 10 percent of the rainwater infiltrated the rock, the above time should be increased by a factor of 10. Using several reasonable assumptions, a calculation can be made of the time required to form a roll-type deposit that averages 5 m wide across the roll front and which contains 10 metric tons of uranium. If this deposit averages 0.25 percent uranium, it contains about 4,000 metric tons of ore, and if this ore has a specific gravity of 2, it has a volume of about 2,000 cubic meters. The 10^{12} cubic meters of ore-bearing solution needed to supply 10 metric tons of uranium, assuming a uranium content of 10 ppb and 100 percent precipitation is about 500,000 times the volume of the ore deposit. The ore formed as the solution flowed through the 5-m-wide orebody. If the hydraulic gradient is 9.8 m/ka and the host rock is a medium-grained sandstone having a permeability of 2 darcys, then the bulk of the water flow is 5.3 m/year. That is about 5.3 cubic meters of water flowing through a cross-sectional area of 1 square meter in a year. This means that each year a volume of water equal to the volume of ore percolates through the roll, and that it will take about 500,000 years to form the assumed 0.25 percent uranium orebody. If the ore solution were richer and contained as much as 50 ppb uranium, it then would take only about 100,000 years to form the same orebody. (Auth) (JNT)

<658>

Selson, W.H., and J.P. Dobell, USGS, Washington, DC

Geology of the Bonner Quadrangle, Montana. USGS Bulletin 1111-F, (pp. 199-235). (1967)

The oldest rocks exposed in the Bonner quadrangle belong to the Jesland Limestone, the local representative of the Piegan group. The group is characterized by the prevalence of calcite-rich rocks and is near the middle of the Belt Series. Here clayey and sandy tan to gray limestone is the major component of the Jesland Limestone. The thickness of this area is at least 4000 feet. The Piegan group is succeeded toward by the Missoula group, which occupies most of the Bonner quadrangle. The Missoula group has an aggregate thickness of about 14,200 feet, and as subdivided here includes, from the base upward, the Miller Park Quartzite, Bonner quartzite, McNamea argillite, Garnet Range quartzite, and Pilcher quartzite. All components of the Belt series within the quadrangle appear to have gradational contacts. The Miller Park argillite is composed of red and green silty argillite and argillaceous quartzite. The Hellgate quartzite member, high in the formation, is about 1200 feet thick, and has some 3800 feet of argillite below it and 1000 feet of argillite above. The Bonner quartzite corresponds to the middle member of the McNamea formation. The formation is characterized by its tendency to break into blocks speckled with grains of white, translucent, weathered feldspar. Pink vitreous quartzite predominates the formation and it is about 1500 feet. The McNamea argillite, as here restricted, is composed largely of red and green metamorphosed clayey siltstone and minor amounts of argillite and quartzite. The formation is about 8000 feet thick. The Garnet Range quartzite consists of greenish-gray quartzite and dark-green and dark-gray argillite, shale, and sandy argillite. The color, abundant detrital silt, and intense internal deformation serve to distinguish the formation. The formation is about 1800 feet thick. The next succeeding formation is well exposed along Pilcher Creek, and is here named the Pilcher quartzite. Most of the formation consists of pale- to moderate-crossbedded quartzite. The Pilcher quartzite is from 700 to 1800 feet in thickness. The contact between the Missoula group and the overlying rocks may be either gradational or unconformable. The overlying rocks are probably of Middle Cambrian age. Cirques, U-shaped valleys, and small moraines in the northern part of the quadrangle indicate glaciation during Pleistocene time. Shoreline features at many places below an altitude of 6200 feet testify to the former glacial Lake Missoula. Sills, dikes, and stocklike bodies of diabase of probable late Precambrian age constitute the only intrusive masses within the mapped area. (Auth) (JNT)

<860>

GEOLOGY OF POTENTIAL URANIUM-BEARING AREAS

<860>

Robertson, F.S., University of Washington, Seattle, WA

Geology and Mineral Deposits of the Elliston Mining District Powell County, Montana. Ph.D. Thesis; 332 pp. (1956)

The Elliston mining district comprises an area of about 85 square miles, about 20 miles southwest of Belgrade, Montana. Sedimentary rocks, Mississippian to Lower Cretaceous, crop out in a small area in the northeast part of the district. Upper Cretaceous volcanic rocks occur throughout the northwestern two-thirds of the district where they rest unconformably on sedimentary rocks. The Boulder Batholith intruded the volcanic rocks probably in very early Tertiary time and is represented by granodiorite followed by main stage quartz monzonite with related aplite-alaskite. The structural events in the district are: 1) very mild warping and erosion prior to the early volcanics, 2) westerly tilting of sedimentary and volcanic rocks, 5 to 30 degrees, prior to and/or accompanying intrusion of the batholith, 3) intrusion of the Boulder batholith, followed by 4) faulting, jointing, and vein formation, all tectonically related. Veins in the quartz monzonite were formed by many stages of fracturing. Early replacement lodes were followed by successive fissure fillings. The common vein minerals are in order: tourmaline, quartz, pyrite, auriferous arsenopyrite, sphalerite, argentiferous galena, argentiferous tetrabedrite, chalcopyrite and ankeritic carbonates. Fissure veins in volcanic rocks are generally narrow and include: 1) steep N. 65 degrees E. veins, 2) steep veins parallel to NW faults, and 3) "flat" veins. The mineralogy is the same as above except for tourmaline. The mineralogical and petrological features, as well as chemical variation diagrams, suggest consanguinity of the batholithic and Upper Cretaceous volcanic rocks. The volcanic pile is considered to represent the first magmatic episode which was followed by the intrusion of quartz monzonitic magma in an essentially concordant body of batholithic dimensions. Batholithic rocks were exposed by erosion in early Tertiary time. An upland surface was developed which is now at about 7,200 feet. Rhyolite welded tuffs were extruded onto the partly dissected surface. The age of the rhyolite is not known, but a late Tertiary age is possible. Two stages of glaciation, one possibly pre-Wisconsin and another probably early Wisconsin are recognized. (JHT)

<861>

Roth, P.

Paleogeology of the Panhandle of Texas. Bulletin of the Geological Society of America 60:161-168. (1969, October)

The sedimentary sequence and facies changes in the subsurface of the Panhandle of Texas are shown by three cross-sections. The stratigraphic column is divided into 13 geologic subdivisions. A paleogeologic map presents the areal distribution of each geologic subdivision. The effects of orogenic and epeirogenic movements are discussed. (Roth) (MBW)

There are numerous maps included in this report; Cited as a reference in WURE Contractor Reports.

<862>

Wallace, R.E., and J.W. Cady, USGS, Denver, CO

Geophysical and Petrologic Studies of Radioactive Contact Zones of Pyroxenite Dikes in Nepheline Syenite of the Eklutna Pluton, Western Alaska. USGS Circular 753; Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977, J.H. Campbell (Ed.), (pp. 6-8), 75 pp. (1977)

A ground geophysical, petrographic, and petrophysical study was made of the Eklutna Creek pluton in western Alaska to determine the sources of coincident total-count gamma-ray and aeromagnetic anomalies detected in aerial surveys. The Eklutna Creek pluton is a composite stock of Cretaceous age which intruded Lower Cretaceous silicic stocks and volcanic rocks. It includes two major silica-undersaturated rock types: fine-grained pyroxenite and medium-grained nepheline syenite. Field relationships between the two are anomalous. Petrographic studies of the samples collected in the field show a metamorphic contact zone in addition to unaltered pyroxenite and nepheline syenite. The felsic rocks contain major orthoclase and nepheline, and varietal biotite, aegirine, and sphene. The pyroxenites are fine- to medium-grained in this section, and are composed of predominant aegirine-augite and biotite, and minor orthoclase, nepheline, sphene, and zeolites. In contact zones, potilloblastic felsic minerals commonly contain inclusions of fine-grained melanite and orthoclase. The orthoclase and garnet become more common near the syenite. Gamma-ray spectrometer traverses show zones of highest radioactivity along contacts between pyroxenite and nepheline syenite. Iron oxide staining, perhaps indicating hydrothermal alteration, is prominent along the contact zones. Detailed profiling by gamma-ray spectrometry showed the iron oxide-stained rocks are more radioactive than average, but the highest readings were obtained over a sharp, unoxidized contact of pyroxenite against nepheline syenite. On a scale of kilometers, aeromagnetic highs of the Eklutna Creek pluton and of other alkalic plutons north of the Selavik Hills correlate with radioactivity anomalies. On a scale of 10 to 100 meters, radioactivity anomalies correlate with contact zones between pyroxenite and nepheline syenite. The pyroxenite is distinguished by magnetic and VLF conductivity highs. Thus magnetic and electrical measurements, on either scale, may be tools for locating possible uranium mineralization. (JHT)

GEOLOGY OF POTENTIAL URANIUM-SEQUESTERING AREAS

<863>
Barren, C.G., USGS, Beaver, CO

Ground-Water Flow and the Shape of Uranium Roll Deposits. USGS Circular 753; Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977, J.A. Campbell (Ed.), (pp. 24-25), 75 pp. (1977)

The characteristics of ground water flow were related to the shape of the oxidation front of sandstone-type orebodies in an effort to use this relationship as a tool for studying the ground water flow during the time that the deposit was forming. May ground water flow patterns were evaluated to find the associated shape of the oxidation front. The type of ground water flow that produced shapes similar to those found in actual deposits was postulated to represent the actual flow of ground water as the deposits formed. The oxidized tongue associated with a roll-type uranium deposits was created by oxidants reacting with the pyrite and other ore components. The rate at which the oxidized tongue advanced was controlled by the rate at which the oxidants were delivered to the oxidation front. Although all oxidants were delivered by ground water there were two separate and distinct processes involved: (1) oxidants were transported by the moving ground water, (2) oxidants were moved by diffusion from regions of high concentration to regions of low concentrations. These delivery processes were described by a differential equation and solved by computer analysis. The results were displayed on microfilm in a graphical form resembling the shape of a roll front of an actual orebody. A movie showing the development of an oxidation front and uranium ore body was obtained by recording successive computer-generated representations of the roll front. In the movie, a bulge or roll develops in the oxidation front within the zone of maximum flow in the aquifer. Although parts of the orebody may lag behind in the less permeable zones of the aquifer, they are slowly destroyed by oxidants that are delivered by the diffusion process. In a simple homogeneous aquifer system the shape of the roll gradually achieves maturity and its dimensions are a function of the ratio between flow velocity and diffusion. For example, an average ground water velocity of $2 \times 10^{2.5}$ cm/s (6.3 m/yr) and an oxidant diffusion coefficient of $2 \times 10^{2.5}$ cm/s will produce a C-shaped oxidation front with a profile about twice as wide as the height of the aquifer. (Auth) (JAT)

<863>
Wilbert, W.P., and C.J. Teplin, Bendix Field Engineering Corporation, Grand Junction, CO

Preliminary Study of Uranium Favorability of the Silcox and Claiborne Groups (Eocene) in Texas. GJEI-7 ('78); 25 pp. (1978, January)

Rocks of the Wilcox and Claiborne Groups crop out in the Texas Gulf Coastal Plain and are represented by a series of sands and shales which reflect oscillation of the strandline. The Wilcox Group (lower Eocene), usually undifferentiated in Texas, consists of very fine sands and clays and abundant lignite. The Claiborne Group (middle Eocene) comprises, in ascending order, Carrizo Sand, Bexar Formation (clay), Queen City Sand, Neches Formation (clay), Sparta Sand, Cook Mountain Formation (clay), and Vega Formation (sand). Fluvial systems of the Wilcox and Claiborne exist in east Texas and trend perpendicular to the present coastline. In central Texas, sand bodies are parallel to the present coastline and are strand-plain, barrier-bar systems. Since the time of deposition of the Queen City Sand, a significant fluvial sand buildup occurred in the area of the present Rio Grande embayment where the marine clays pinch out. Known occurrences of mineral scatter in the Silcox and Claiborne (up to the Vega) are limited to lignite (particularly in the Wilcox), channel sand in the upper Claiborne, and hydrocarbons throughout. No uranium mineralization is known, and no uranium is likely to be discovered in the Claiborne and Wilcox. Approximately 50 surface samples and many gamma-ray logs showed no significant anomalies. The sands are very good potential host rocks, but no uranium source was discovered. During deposition of the Wilcox and Claiborne Groups, there was no volcanism to serve as a source of uranium (as with the prolific occurrence in the younger rocks of south Texas); also, Precambrian crystalline rocks in the Llano uplift were not exposed. (Auth)

RESERVES AND RESOURCES

<465>

Juria-Garza, S., and S. Constantino-Serrata, Instituto Nacional de Energia Nuclear, Mexico City, Mexico

Exploration, Mining, and Milling of Uranium Ore in Mexico. COSF-761010; Nuclear Power Development and the Fuel Cycle, P. Parasches (Ed.), Proceedings of a Conference, Bonnau, HI, October 11-18, 1976. American Nuclear Society, Incorporated, Vinsdale, IL, (pp. 215-222). (1976)

About 95 percent of the total area of Mexico is regarded as favorable for geological and geophysical uranium exploration, but less than 10 percent of this area has been or is being actively explored for uranium. As of December 1975, the total positive reserves in Mexico were 8000 metric tons of U3O8. This figure is expected to increase considerably with increased exploration. The discovery of substantial uranium reserves in acidic volcanic rocks has been a significant development in Mexico. Previously, this type of rock was not considered as a suitable geologic environment for uranium. About 63 percent of the Mexican uranium reserves are in Cretaceous limestones and Tertiary volcanic rocks. Only 37 percent of the reserves are in sandstones and arkoses of sedimentary origin. Three uranium mills represent Mexico's effort in uranium ore processing: one which operated from 1969 to 1971 and produced 89 metric tons of U3O8, one under construction, and one in the initial planning stage. (JET)

<466>

Cook, E., Texas A & M University, College Station, TX

Exploration of very low-grade "uranium deposits." AAPG Bulletin 63(3):435. (1979, March)

While there was great optimism about the economic exploitation of very low-grade uranium deposits (0.002 to 0.010 percent U3O8) such as occur in the Chattanooga Shale and the Conway Granite, there now is almost equivalent pessimism. A 1978 National Research Council report "rules out" shales and granites as future uranium sources, because of the "explosive" mining and processing costs required and because the environmental impacts of the "many large operations" that would be needed are not likely to be acceptable. Such a conclusion appears premature. Gold is won at an after-tax profit from demineralized refractory ores in which it is found in concentrations as low as 3 ppm (0.0003 percent), much lower than the low end of the range cited for uranium in shales and granites; the price-grade relations for gold suggest that 0.006 percent U3O8 rock could become ore at a price well below \$150/lb. The energy balance appears positive even for once-through LWR burning; with breeders, it would be strongly positive. To meet the projected 1980 United States annual requirement of 19,000 short tons of U3O8 from a single mine in rock containing 0.006 percent U3O8 at 70 percent recovery would require moving a billion of 1.24 million short tons of rock a day—a large amount, but easily within the ability of present technology (5 or 6 large copper pits would be the equivalent), and possibly not unacceptable in a time of energy scarcity. The major constraint on potential uranium supply remains political, rather than geological or technological. (KUCB)

<467>

Griffith, J.W., R.E. Lang, S.C. Robinson, S.I. Boscoe, and R.E. Steacy, Canada Geological Survey, Ottawa, Ontario, Canada

Types and Ore Reserves of Canadian Radioactive Deposits. Peaceful Uses of Atomic Energy, Vol. 2, Survey of Raw Material Resources, Proceedings of the 2nd International Conference, Geneva, Switzerland, September 1-13, 1959. United Nations, New York. (pp. 35-39). 543 pp. (1959)

Production of uranium oxide in Canada in 1957 was estimated to total 6697 tons, valued at \$136,700,000. Uranium-bearing conglomerate in the Blind River region, Ontario, accounted for 51 percent of the Canadian production in 1957. Pitchblende-bearing veins and disseminations in the Beaverlodge region, Saskatchewan, and Great Bear Lake and Barren River regions, Northwest Territories, provided 41 percent. Dykes and lenses of pegmatitic granite in the Bancroft region, Ontario, yielded 9 percent. There are twelve general types of uranium deposits in Canada. They are as follows: 1) granites and syenites, 2) pegmatites, 3) metasomatic deposits, 4) hydrothermal deposits, 5) placers, 6) conglomerates, 7) sandstones, 8) dolomites, 9) phosphate rocks, 10) carbonaceous deposits, 11) cappings, and 12) deposits formed by percolating water. Total measured, indicated, and inferred uranium reserves in Canada total 376,998,000 short tons. Thorium has been found in many classes of uranium deposits; in some occurring in larger amounts than uranium. The principal known deposits of thorium in Canada are the uranium ores of Blind River. These are estimated to contain an average of 0.05 percent ThO2. Some large deposits in this district appear to average 0.1 percent ThO2, and ores now being mined near Bancroft are estimated to carry about 0.02 to 0.2 percent ThO2. Deposits of several other kinds contain large tonnages of very low grade thorium-bearing material. The principal ones known are dolomite containing monazite, and placers containing various thorium minerals. Virtually no prospecting has been done in Canada directly for thorium. If this should be warranted, it seems probable that other large deposits, perhaps of higher grade, might be found. (JET)

<468>

Pickman, H.C., and V.J. Lynch, Bureau of Mines, Washington, DC

Chattanooga Shale Investigations. Bureau of Mines Report of Investigations 6932; 55 pp. (1967, April)

Preliminary evidence indicated that the Chattanooga Shale might constitute a potential vast low-grade source of uranium. Investigation by core drilling indicated that while the Chattanooga Shale may constitute a resource for the future, the very low (0.006 percent) average uranium content is not economic when compared with the relatively higher grade western ores. A total of approximately 12,000 feet of test drilling was done in 72 drill-holes, and large samples were mined for extractive and metallurgical testing. An experimental mine site was selected on the basis of the drilling project. (Autn)

<669>

RESERVES AND RESOURCES

<669>
Johnson, J.C., IEC, Division of Raw Materials,
Washington, DC

Resources of Nuclear Fuel for Atomic Power.
Peaceful Uses of Atomic Energy, Vol. 2, Survey of
Raw Material Resources, Proceedings of the 2nd
International Conference, Geneva, Switzerland,
September 1-13, 1958. United Nations, New York,
(pp. 3-6), 843 pp. (1958)

Uranium reserves fall into two broad economic categories: those from which uranium could be recovered and sold profitably at a price of approximately \$10 per pound of U3O8 or less; and the very low-grade uraniferous shale and phosphate deposits from which exploitation for uranium alone would require a price three to six times that amount. With respect to reserves of the first category, the 1957 estimates by Canada and South Africa indicate that the developed or partially developed reserves in each of these two countries contain approximately 630,000 tons of U3O8. Recorded reserves of the United States are now about 220,000 tons. Nearly two years ago, France published reserves figures of 50,000 to 100,000 tons. These estimates total about 1,100,000 tons of U3O8. Taking into consideration the probable conservative nature of these estimates, and including the reserves of Australia, the Belgian Congo, Portugal and other countries, total reserves in areas presently under development in non-Communist countries may be nearer 1,500,000 tons of U3O8. On the basis of present geologic data, and the discovery experience of the past ten years, an additional 2,000,000 tons of relatively low-cost uranium might be developed in new areas within a reasonable period by an aggressive exploration program. A major factor responsible for the lack of discovery of many new areas since 1955 has been the limited market for additional uranium production. The United States, Canada, and South Africa are the major producing countries. Production in the United States, is now about 15,000 tons of U3O8 per year. The production rate in Canada is approximately 13,000 tons a year, and South African production is more than 6,000 tons of U3O8 per year. The cost of mining uranium ores in the USA varies widely. Large, open-pit mining operations are increasingly important, and mining costs range from \$2.80 to \$11.50 per ton (1959). Underground mining costs range from \$6.00 to \$10.00 for large mechanized operations, to about \$15.00 per ton for small underground operations. The cost of processing sandstone-type ores in the USA ranges from \$6.00 to \$10.00 per ton for the larger mills. (JET)

<670>
Bisinger, E.D., DOE, Rockville, MD

Future of Uranium. IAPG Bulletin 63(3):533.
(1979, March)

The future of nuclear power has been uncertain for a number of years. However, despite somewhat lower forecasts than some years ago, nuclear is emerging again as a major future power source both in this country and throughout the world. Uranium is the mainstay of nuclear power whether alone or in combination with plutonium. If nonproliferation concerns dictate the former, much larger quantities of uranium will be needed than otherwise but, in either case, a many-fold increase in production will be required. Additional uranium resources are being developed in the United States and the world at an adequate rate for the time being, but this rate will have to be increased substantially toward the latter part of the century. United States reserves calculated at a forward production cost of \$30/lb increased in 1978 by about the same amount as in 1977. Total estimated resources did not change significantly, however, and exploration activity has apparently begun to level off at least for the present. The development of uranium deposits in Texas and successful exploration to expand Texas uranium resources can play a significant, although probably not major, role in meeting United States uranium demand. (AETH)

REFERENCES AND RESOURCES

<071>
Offield, T.S., C.L. Paines, and D.L. Savatzky, 1975, Denver, CO

Computer-Enhanced Images and Geologic Studies, Southern Powder River Basin, Wyoming. USGS Circular 752; Short Papers of the US Geological Survey Uranium-Thorium Symposium, 1977, J.R. Casper? (Ed.), (pp. 27-29), 73 pp. (1977)

Different surface geologic materials of interest in uranium exploration show varying reflectance characteristics and vegetation assemblages in computer-enhanced Landsat images of the southern Powder River Basin. Well drained (sandy, coarse-grained) and poorly drained (clayey, fine-grained) soils are distinguished by conspicuous vegetation differences: a major vegetation change marks the line drawn by some mappers for the disjunct contact of the Fort Union and Wasatch formations. Within the area underlain by generally coarse-grained sandstones of the Wasatch, numerous areas have vegetation like that of the Fort Union, suggesting the presence of the Fort Union or finer grained facies in the Wasatch. Color enhancement of images produced from single ratios is achieved by compositing three color films each of which represents contrast stretches of three different segments of the image gray scale. This and other enhancements of the band 4 to band 5 ratio image, especially when combined with enhanced versions of other band-ratio images, permit reasonably good discrimination of exposed hematite-stained materials in altered ground associated with uranium roll-front mineralization. The vegetation differences and red altered ground are not discernible in available high-altitude, color-infrared photographs. Field and laboratory measurements of spectral reflectance show that absorption bands characteristic of ferric iron are obvious in spectra of altered rocks and their overlying residual soils, but are absent or minimal in the spectra of unaltered materials. This is the basis of the detection of red altered ground using Landsat data. The field spectra show that bands not available on Landsat but available in aircraft scanners should permit better discrimination of hematite-stained, altered materials and possibly of calcite-cemented materials associated with uranium roll fronts. Enhanced Landsat images also show many linear topographic elements 2 to 25 km long that are so regularly developed that they are inferred to represent geologic structure. Lineaments in the southern Powder River Basin match the northwest trend of subsurface fold and ore-sand isopachs mapped at the Highland area. A color-enhanced image of a Landsat band 5 to band 4 ratio has revealed a NW-trending lineament marked by changes in vegetation and stream-course patterns. The line is suspected of marking a subtle, relatively young structural sag parallel to and west of a postulated positive fold axis. Uranium occurrences are scattered in a narrow belt west of this newly defined lineament, but the line marks the west limit of economic mineralization thus far discovered. The authors believe the lineament represents a structural sag that impeded the flow of uranium-bearing solutions and promoted major uranium deposition just east of the structure. (JET)

<072>
Flood, J.H., and C.E. Reynolds, Science Applications, Incorporated, La Jolla, CA

Gamma-Ray Spectra Enhancement. GJ91-25(77): SAI-77-518-LJ; 78 pp. (1977)

The results of a program to apply the HAZZ code to the analysis and enhancement of gamma-ray spectra from airborne large-volume Si(Li) detection systems is described. The program improves on the accuracy of uranium, thorium, and potassium determinations and picks out Bi 213 peaks (other than 1.76 MeV) for possible use in correcting for airborne Bi 214 background. The HAZZ development improves the accuracy of other gamma-ray spectroscopy performed in the exploration of uranium using either borehole or surface XRF (potassium, uranium, thorium) detection. (PAC)

<073>
Stockdale, P.B., University of Tennessee, Department of Geology and Geography, Knoxville, TN

An Investigation of the Chattanooga Black Shale of Tennessee as a Source of Uranium. ORO-143; 11 pp. (1955, July 1)

Seven hundred fifty-two outcrop samples and one hundred thirty core samples of the Chattanooga Shale were collected for uranium analysis. Fluorimetric uranium analyses were run on all samples, supplemented by flame spectrophotometric analyses for ferric oxide, calcium oxide, and other trace elements apt to be present. The phosphate content was also determined in some instances. Calculations of the uranium reserves in all of the Chattanooga Shale which lies beneath the 15,000 square miles of the Highland Rim and the Cumberland plateaus of the state of Tennessee produce a figure of approximately 20,000,000 tons of uranium. This figure assumes an average thickness of 25 feet for the Chattanooga Shale, and an average grade of 0.0025 percent uranium. The best average uranium grade in the Chattanooga Shale is in the Gassaway Member. Conclusions were fairly well established regarding the amount of uranium in the Chattanooga Shale. They are as follows: (a) the amount of uranium is reasonably consistent from place to place, and there are not abrupt lateral differences at any given stratigraphic horizon; (b) the Gassaway Member is higher grade than the Dovelton Member; (c) the "E" unit of the Gassaway Member, where distinguishable, runs the highest of the individual units, with 0.008 percent uranium, or better; (d) the "F" unit, with its many gray beds, is the poorest, commonly running no greater than 0.001 to 0.0015 percent uranium; and (e) the "A", "C", and "D" units of the Gassaway Member are of intermediate grade. (JET)

<870>

RESURSES AND PROBLEMS

<870>

Bright, R.J., 502, Washington, DC

New Mexico and World Uranium. AIPG Bulletin
63(1):695. (1973, April)

New Mexico is endowed with the world's largest known concentration of uranium ore in sandstone. Through 1977 these orebodies yielded 129,150 short tons of U3O8, about 81 percent of the United States supply and 18 percent of the free world's supply of yellow cake. Only one foreign nation, Canada, exceeds the state of New Mexico in production. From the 1977 level of about 7,600 tons U3O8, New Mexico's output is expected to double within the next 10 years, thus maintaining the state's relative position within the United States. However, the nation's share of world production is apt to slip as new mines come on-stream in such countries as Australia, Canada, and Niger. The sandstone uranium deposits of New Mexico, Colorado, Wyoming, and Texas have provided models for exploration around the world, and orebodies of this type are now known in at least 10 countries. Some of the foreign deposits exhibit unusual geologic features or have distinctive exploration histories. Argentina-At Sierra Minata, the largest deposit, the ore is related to pyrite in an oolitic sandstone. Australia-In the Beverley basin ore was discovered by drilling continental sediments floating St. Painter which contains uranium-bearing veins in granite. Austria-At Forstau, pitchblende and coffinite mineralization in Permian sandstone beds was not remobilized during regional metamorphism to the greenschist facies. Canada-The Blizzard deposit of British Columbia was found by application of the Tono, Japan, model. France-The Verneuil deposit, in Persian sediments, is controlled partly by faults and partly by lithology. Gabon-The deposits are in the oldest host rock (about 2,000 m.y.) known to contain sandstone ore. Japan-In the Tono deposit, the ore is contained in paleochannel structures as a uranium-bearing zoilite mineral. Niger-The largest resources in sandstone, exclusive of the United States, have been developed in Niger. South Africa-The main deposits are in the lower part of the Balfour Group of the Karoo Supergroup, but northward the deposits are progressively higher in the section and in younger rocks. (Ruth)

AUTHOR INDEX

AUTHOR INDEX

Banerdt, W. L. 141, 220
 Bannas, C. B. 400
 Bannas, J.A.S. 129
 Barjuria-Garcia, S. 465
 Al-Shaib, Z. 418
 Alekperov, T. L. 2
 Alekseev, P.A. 3
 Allman, H.J. 183
 Anderson, A.L. 400
 Anderson, J.S. 419
 Anderson, Ye. B. 117
 Andreyev, P.P. 4
 Andreyeva, I.V. 8
 Anikina, L.I. 318
 Applin, K. 82
 Arendt, J.E. 184
 Armstrong, W.C. 328
 Arshavskaya, E.I. 5
 Asylbaev, G.Kh. 23
 Atrashenok, L.Y. 188
 Augustithis, S.S. 6
 Austin, S.P. 329
 Axelrod, J.E. 268
 Bagreyev, V.V. 86
 Baillies, T.R. 372
 Baker, D.H., Jr., (Comp.) 235
 Bakhtiarov, A.V. 57
 Saltz, E.H., Jr. 185
 Baranov, V.I. 7, 8
 Barczak, V.J. 265
 Barlow, J.L. 373
 Bartel, I.J. 360
 Barthel, P. 186
 Baturin, G.N. 9, 10, 11
 Baucus, E.I. 126, 127, 205
 Beck, L.S. 330
 Bechtel, G.E. 321
 Belyy, G. 16
 Bell, K.G. 12, 13
 Bell, R.T. 332
 Belova, L.N. 301
 Bennett, W. 206
 Benson, L.V. 83
 Berendsen, P. 37
 Berezhina, L.I. 173
 Bergman, I.A. 171
 Bernard, A. 26
 Berthelin, J. 18
 Berthoud, E.L. 378
 Bertine, K.K. 15
 Berezina, I.G. 5
 Bibikova, E.V. 158
 Billings, G.L. 129
 Bivenas, E.H. 187
 Blackstone, D.L., Jr. 452
 Bobrov, V.L. 48
 Bolivar, S.L. 188, 189, 198
 Bonatti, E. 134
 Bone, S.J. 125
 Botova, N.N. 193
 Boudette, E.L. 453
 Bowles, C.G. 266, 341
 Bowman, E. 105
 Bowyer, B. 267
 Bradbury, J.C. 16
 Brady, B.T. 191
 Bristol, E. 192
 Brooker, E.J. 268
 Brookins, D.G. 31, 119, 317, 333, 338, 406
 Brown, K.B. 454
 Broxton, D.E. 193
 Bruynsesteyn, A. 828
 Bunker, C.H. 109, 267
 Bunker, H.E. 225
 Bush, C.L. 109, 247
 Butler, A.P., Jr. 375
 Butler, J.B. 269
 Cadigan, R.A. 17, 46
 Cady, J.W. 462
 Caldwell, E.L. 214
 Cameron, E.W. 29
 Campbell, I.H. 18
 Campbell, J.A. (Ed.) 455
 Campbell, R.A. 42
 Capedri, S. 38
 Carsichael, I. 105
 Cassou, A.H. 19
 Chen, L.H. 15
 Cheney, D.S. 194

AUTHOR INDEX

Chang, C.W. 20
 Chase, R.S. 270
 Chaudhry, P. 104
 Cheadle, J.H., Jr. 195
 Cheney, E.S. 21
 Chenoweth, T.L. 22, 196
 Cherdynatsev, V.V. 23, 28
 Chernikov, A.A. 271
 Childers, E.O. 335
 Chisholm, W.A. 408
 Christ, C.L. 272, 273
 Civin, V. 420
 Clark, J.R. 272, 273
 Clayton, C.G. 197
 Cobb, J.C. 25
 Coffman, J.S. 221
 Cohenour, R.E. 274, 275
 Coleman, R.G. 336, 376
 Collins, D.B. 465
 Conner, J. 19
 Constantine-Rerrera, S. 465
 Conwell, C.B. 37
 Cook, E. 466
 Cook, J.C. 198
 Coppens, R. 26
 Carken, R.J. 363
 Correia, M. 19
 Cowart, J.B. 114
 Cox, D.C. 366
 Cundari, A. 27
 Cunningham, C.M. 142
 Cunningham, S.B. 388
 Curry, D.L. 258
 Curtis, L. 276
 Cuttitta, F. 291, 298, 295
 Dahlkamp, P.J. 377
 Damon, P.E. 28
 Dare, W.L. 421
 Darnley, A.G. 29, 422
 Davis, J.D. 30
 Dawson, H.E. 194
 De Luca, P. 378
 Delians, M. 277
 Della Valle, N.R.R. 119
 Della Valle, R.S. 31, 317
 Dement'yev, V.S. 32
 Denson, B.H. 355
 DeVoto, E.H. 200
 Dickinson, K.A. 33, 38, 379, 423
 Dmitriyev, L.V. 35
 Dobel, J.P. 459
 Dodd, P.H. 393
 Dodge, F.C.W. 36
 Dodge, H.H. 456
 Dolmanova, I.P. 311
 Dooley, J.R., Jr. 37
 Dostal, J. 38
 Dreschhoff, G. 201
 Dubyk, W.S. 337
 Duncan, D.C. 202
 Duncan, D.W. 424
 Dunham, R.J. 380
 Dunsmor, H.E. 203
 Dupuy, C. 38
 Dwairi, I. 228
 Dyck, W. 39, 40, 41, 42
 Dynkov, Yu.H. 278
 Eckelmann, W.P. 43
 Efendiev, G.Kh. 2
 El Razek, E.H.T. 425
 El Shazly, E.H. 425
 Emerson, D.O. 279, 280
 Erickson, H.P. 261
 Ermakov, V.I. 3
 Evans, H.T., Jr. 273
 Falkowski, S.K. 381
 Falmlee, J.K. 48
 Ferguson, R.B. 126, 127, 204, 205, 219, 230
 Perris, C.S. 206
 Filippov, N.S. 45
 Pilonov, V.A. 3
 Fisher, F.G. 282
 Fisher, J.R. 426
 Fisher, R.P. 375
 Pitch, D.C. 207, 208
 Pleischer, R.L. 209
 Plexner, S. 105
 Florence, T.H. (Ed.) 46

AUTHOR INDEX

Ponina, B.P. 167
 Porter, J.P. 382
 Pot, R.F. 210, 211
 Fraser, R.J. 212
 Freeman, V.L. 221
 Frodel, C. 283, 288, 285, 286,
 287, 288, 289, 290, 291, 292
 Frodel, J.B. 293, 298, 299
 Fuchs, L.B. 296, 303
 Fuller, G.E. 431
 Gabelman, J.W. 47, 297
 Gale, M.B. 60
 Galipeau, J.H. 213
 Galloway, W.E. 338, 383
 Ganguly, A.K. 68
 Genow, H. 396
 Garrison, E.S. 40
 Gavasci, L.T. 339
 Gavrilin, R.D. 88
 Gavshin, V.N. 48, 49
 George, D.P. 427
 Gerbert, E. 296
 Gerling, E.K. 50
 Germanov, A.I. 380
 Getseva, B.V. 301
 Gillersan, Z. 384
 Gingrich, J.E. 270
 Ginzburg, V.L. 150
 Givens, T.H. 214
 Gleadow, A.J.W. 27
 Godoi, B.O. 40
 Goldberg, E.D. 166
 Goldhaber, M.B. 51, 238, 315, 316
 Goldschmidt, V.N. 52, 53
 Golovanov, V.I. 68
 Goodfellow, W.D. 58
 Goodson, C. 13
 Goran, D.H. 298, 299
 Gorski, L. 215
 Gossold, W.D., Jr. 55
 Gotsen, Ya. D. 300
 Gott, G.B. 301
 Gow, R.A. 443
 Graff, P.J. 457
 Granger, R.C. 55, 458
 Gresty, B.L. 216
 Grauch, B.I. 316
 Green, D.B. 72
 Green, M.S. 385
 Gregg, C.C. 217
 Griffith, J.W. 467
 Grimaldi, F.S. 268
 Gritsasenko, G.S. 301
 Gross, E.E. 323
 Groth, P.B. 428
 Gruber, J.B. 392
 Guibert, J.W. 30
 Guisard, E.J. 429
 Gulakh, A.G. 57
 Gulbrandsen, B.L. 386
 Galin, Ye.B. 173
 Hall, B. 269
 Hall, R.B. 438
 Hansen, J. 95
 Barnes, T.P. 218
 Harrison, V.P. 483
 Hathaway, L.B. 430
 Haughton, D.E. 58
 Hayslip, D.L. 431
 Hazen, S.W., Jr. 73
 Hearn, B.C., Jr. 263
 Heffner, J.D. 219
 Heide, E.A. 432
 Heier, K.S. 77, 78
 Heinrich, E.B. 387
 Henderson, P. 59, 60
 Hickman, R.C. 468
 Higgins, M.B. 263
 Hill, D.E. 241, 242, 253, 256
 Hill, J.R. 433
 Hoekstra, R.B. 303
 Hoeve, J. 304, 305, 342
 Hoisington, W.D. 37
 Hopkins, M.E. 115
 Hornbaker, A.L. 465
 Houston, R.S. 457
 Howard, J.H., III 61
 Huang, W.H. 438
 Hudson, T. 239
 Huffman, A.C., Jr. 383

AUTHOR INDEX

Berlbut, C.S., Jr. 306
 Betchikian, C.B. 63
 Indelicato, G.J. 372
 Ingersen, E. 62
 Ingras, B. 323
 Irwin, G.A. 63
 Isabaev, E.A. 23
 Isaeva, E.A. 68
 Jacobsen, S.I. 220
 James, G.W. 65
 Jenkins, J.T., Jr. 388
 Jennings, J.K. 91
 Jensen, D.H. 187
 Jensen, H.L. 21
 Johnson, B. 350
 Johnson, C. 66, 348, 389, 390, 391
 Johnson, J.C. 469
 Jonasson, I.H. 41, 54
 Jones, P.L. 231
 Josa, J.H. 67
 Joshi, L.U. 68
 Tachadoorian, R. 239
 Kadyrov, M.B. 23
 Kaiman, S. 364
 Kalil, E.K. 69
 Karpova, L.W. 169
 Kazachevskii, I.V. 28
 Kelly, P.R. 18
 Kelly, T.E. 435
 Kennedy, R.H. 436
 Kepferle, R.C. 404
 Kern, B.P. 392
 Kerr, P.P. 339, 345
 Keys, W.S. 393
 Khodakovskiy, I.L. 369
 Killsgaard, T.H. 221
 Kimberley, H.H. 70, 307
 Kisherly, H.H. (Ed.) 71
 Kirk, A.R. 343
 Kish, L. 155
 Kleeman, J.D. 72
 Koch, G.S., Jr. 73
 Kochenov, A.K. 11
 Kochenov, A.V. 10, 74
 Kodina, L.A. 100
 Kolyadina, L.B. 149
 Koslev, L.V. 45, 117
 Korobkov, V.I. 8
 Kot, G.A. 122
 Koval'skiy, V.V. 75
 Krylov, A.Y. 76, 148
 Kulp, J.L. 25, 63
 Kuz'mina, E.A. 24
 Lambert, I.B. 77, 78
 Lambertson, R.J. 79
 Landwehr, W.R. 346
 Lang, A.H. 467
 Langford, F.F. 80, 308, 347, 398
 Laagmair, D. 81, 82
 Larson, W.C. 437, 438
 Lavery, W.G. 103
 Lavrent'ev, Yu.S. 49
 Leach, D.L. 83
 LeChevallier, A.H. 349
 Leske, A.J. 91
 LeBoine, D. 400
 Leonova, L.L. 35, 84, 85, 86, 87,
 88, 89
 Lepirov, A.P. 439
 Lesure, P.G. 222
 Leventhal, J.S. 90, 91, 458
 Levy, P.W. 431
 Lin, W.G. 92
 Lindsey, D.A. 37, 175, 309, 395,
 396
 Link, R.P. 73
 Link, R.L. 435
 Lipova, I.M. 311
 Lisitsin, A.K. 93, 94
 Livingston, B.A. 397
 Loucks, R.G. 456
 Lovborg, L. 95
 Lovering, J.P. 72
 Lu, W.D. 20
 Ludwig, K.R. 96, 97, 175
 Lueck, S.L. 223
 Lupe, R. 398
 Lutts, B.G. 98
 Lynch, V.J. 468
 Lyons, J.B. 99
 Lyutimova, E.A. 5

AUTHOR INDEX

Sackmann, A. 60
 Sagnes, R. 14
 Sakarov, E.S. 310, 311
 Saksimova, I.G. 139
 Salyuga, D.P. 190
 Samkaya, S.N. 100
 Samok, G. 223
 Sartin, P.P. 370
 Sashbir, D.S. 480
 Setheus, D.C. 481
 Savell, J.C. 228
 Sayville, J.H. 482
 Sayalov, I.A. 57
 McCready, R.H. 483
 Schijam, R.H. 348
 ScVicker, L.D. 16, 115
 Selik'yan, A.A. 311
 Semino, J.L. 67
 Vertie, J.B., Jr. 485
 Segrowitz, R. 282, 292
 Sigitzis, T. 211
 Sigata, L.K. 300
 Sillard, H.T., Jr. 107
 Sillet, L.R. 389
 Siller, D.W., Jr. 399
 Sillier, T.P. 350
 Silis, W.R., Jr. 218
 Silton, C. 264
 Sineyev, D.A. 166
 Sineyeva, I.G. 98, 166
 Sironov, V.P. 92
 Sironova, O.P. 168
 Sitchell, W.S. 102, 168
 Soenck, R.H. 312
 Sogrocamporo, L. 209
 Soiseyenko, U.I. 190
 Soore, S.C. 103
 Sorozenko, R.K. 351
 Sorozov, L.N. 92
 Norris, W.A. 225, 258
 Norton, B.D. 313
 Notooka, J.H. 222
 Mountjoy, R. 396
 Roxhan, R.H. 156, 226
 Nuberakmand, S. 104
 Mueller, H.H. 79
 Murate, K.J. 268
 Murphy, H. 105
 Myerson, B.L. 410
 Maeser, C.W. 96
 Nagasawa, H. 106
 Nagi, P.I. 108
 Nash, J.T. 96
 Naurov, S.B. 107, 108
 Nazarenko, N.G. 278
 Nelson-Moore, J.L. 485
 Nelson, S.H. 459
 Neuschel, S.K. 109
 Newton, J. 400
 Nichols, I.L. 482
 Nininger, R.D. 401, 470
 Nishimura, S. 110, 111
 Nkomo, I.T. 112
 Nord, G.L., Jr. 352
 Buffield, E.W. 268, 299
 Nunes, H.P. 257
 O'Connor, L.J. 227
 Offield, T.W. 471
 Ojakangas, R.W. 353
 Olson, J.C. 318, 402
 Orgeval, J.J. 19
 Orlov, D.P. 23
 Osipov, D.K. 113, 172
 Osmer, J.A. 270
 Osmond, J.K. 118
 Osterwald, P.W. 363, 403
 Ostrom, H.E. 16, 115
 Otton, J.K. 37, 358
 Overstreet, W.C. 196, 314
 Parslow, G.R. 228
 Paschke, H. 432
 Pawlick, R.A. 150
 Pavshukov, V.V. 117
 Peters, G.I. 229
 Pierce, A.P. 118
 Pierson, C.T. 37
 Pipiringos, G.H. 355, 404
 Place, J.T. 119
 Pluzan, I.I. 120, 121
 Pogiblova, L.S. 89

AUTOR INDEX

Polyakov, A.I. 122, 123, 124
 Polyakova, V.N. 300
 Popp, C.J. 446
 Porritt, J.E.J. 125
 Presnyakova, O.P. 68
 Price, W. 126, 127, 205, 230, 231
 Prochazka, J. 420
 Provo, L.J. 356
 Person, J.D. 232
 Pyallling, A.O. 48
 Quintana, R.J. 392
 Rafalsky, P.P. 128
 Ragland, P.C. 129, 213
 Raines, G.L. 471
 Ralston, W.B. 187
 Ratner, A.P. 150
 Rawson, R.F. 357
 Reade, W.L., Jr. 233
 Reed, J.H. 472
 Renault, J.B. 431
 Resad, J.G.B. 27
 Reynolds, G.B. 472
 Reynolds, P.L. 51, 234, 315, 316
 Reznikov, V.V. 48
 Rice, B.S. 191
 Richards, T. 239
 Richardson, R.L. 29, 130
 Ridgley, J.L. 405
 Riese, A.C. 486
 Riese, W.C. 317, 406
 Rissaitse, J. 318, 358
 Ristorcelli, S.J. 407
 Ritchie, W.I. 419
 Robertson, F.S. 460
 Robertson, J.A. 359
 Robinson, G.D. 263
 Robinson, S.C. 467
 Rogozina, E.N. 4
 Roman, R.J., (Cospr.) 235
 Rosberger, S.B. 131
 Root, R.E. 236
 Roscoe, S.R. 408, 467
 Rosholm, J.W. 37, 112, 360
 Rosholm, J.W., Jr. 118
 Ross, J.B. 427
 Ross, V. 319
 Roth, R. 461
 Roy, R.P. 135
 Ruiz Reyes, J.A. 237
 Runnels, D.D. 223
 Runnels, R.T. 132
 Russell, W.L. 133
 Rutledge, C. 467
 Ruzicka, V. 361
 Rydell, R.S. 138
 Eye, D.N. 135
 Sachdev, S.C. 136, 238
 Sackett, W.H. 137
 Sainsbury, C.L. 239
 Samsoni, Z. 154
 Santos, E.S. 448
 Satarin, A.A. 57
 Saucier, A.E. 138
 Saveljeva, K.T. 301
 Savatzky, D.L. 471
 Schipper, H.P. 435
 Schleicher, J.A. 132
 Schull, W.U. 409
 Seidel, D.C. 442
 Seafte, P.E. 156
 Senia, Yu.S. 10
 Serebrennikov, V.S. 139
 Serikov, Yu.I. 140
 Shannon, S.S., Jr. 240
 Sharp, B.J. 320, 410
 Sharp, B.B., Jr. 141, 220, 241,
 242, 256
 Shelby, C.A. 362
 Shelton, J.B. 418
 Sherrington, G.H. 243
 Sherwood, A.H. 321
 Shultz, W.U. 142
 Shively, J.A. 400
 Shnol'sh, L.I. 21
 Shekolyukov, Yu.A. 50
 Sibbald, T.T.I. 304, 305
 Sidoresk, G.A. 143, 169, 271
 Simon, S.D. 246
 Sims, P.K. 414
 Skidmore, J.H. 245

AJIBOR INDEX

Smirnov, V.A. 184
 Smith, B.D. 227
 Syslov, A.A. 185
 Syslova, I.G. 117
 Soborov, V.P. 123
 Somayajulu, B.L.K. 186
 Sonnabank, W.H. 246
 Sorensen, Poul 95
 Spalding, R.F. 147
 Spiridonov, A.I. 151
 Staatz, R.H. 287, 363, 366, 411, 412
 Starik, I.Z. 188, 189, 190
 Steacy, H.R. 368, 467
 Steinhauer, D.W. 225
 Stephenson, W.L. 187
 Stern, T.S. 321
 Stieff, L.B. 321
 Stockdale, P.B. 473
 Stokes, W.L. 322
 Strisower, B. 105
 Stuckless, J.S. 97
 Sugier, P. 489
 Soltamkhodzhayev, A.B. 151
 Swanson, D.A. 263
 Syromyatnikov, V.G. 32, 152
 Szebo, B.J. 153
 Szalay, S. 158
 Szoghy, I.H. 155
 Taneyev, R.H. 151
 Tanner, A.B. 155
 Taucher, L.R. 288
 Tausion, L.V. 157
 Taylor, R.L. 102, 168
 Taylor, P.P. 168
 Templeton, C.J. 864
 Tessendorf, T.W. 813
 Theis, W.J. 365
 Thompson, D.T. 249
 Thompson, W.Z. 323
 Thurston, W.R. 366
 Tilsley, J.Z. 328
 Titayeva, N.A. 7
 Tolosa, P.W. 250
 Tourtelot, E.B. 160, 161
 Traill, E.J. 325
 Tremblay, L.P. 367
 Trexler, P.K. 251, 258
 Truesdell, D.B. 368
 Tu, Le-Tien 8
 Tagarinov, A.I. 158, 369
 Tarekian, K.K. 15
 Terovskii, S.D. 159
 Tweeton, D.R. 650
 Tweto, O. 818
 Tynaskiy, V.G. 151
 Updegraff, D.B. 252
 Valastro, S., Jr. 62
 Valuyeva, A.A. 769, 271
 Van Zeckhout, E.H. 253
 Van Wartwick, E.S. 132
 Vasalstine, C.L. 254
 Villoria, T.A. 67
 Vine, J.D. 160, 161
 Vitenski, S. 451
 Volynets, H.P. 124
 Vorotnitskaya, I.Ye. 75
 Wagener, K. 332
 Wagoner, J.L. 255
 Wakita, H. 106
 Wald, H. 432
 Walker, G.W. 162
 Wallace, A.B. 462
 Wallace, S.R. 402
 Ward, P.W. 218
 Warr, J.W., Jr. 116
 Warren, C.G. 56, 863
 Warren, P.D. 232
 Warren, P.G. 253, 256, 257
 Weaver, P. 163
 Weaver, T.A. 199, 259
 Weis, P.L. 222
 Weisner, P.C. 888
 Wells, G.S. 40
 Wenrich-Verbeek, K.J. 259
 West, J.P. 260, 261
 Whitaker, S.H. 42
 White, A.H. 116
 White, E.W. 326
 White, N.V. 370

AUTHOR INDEX

White, S.L. 155
Whitehead, W.L. 13
Wibert, W.P. 462
Williams, W.C. 327
Winchester, J.W. 262
Windham, S.T. 429
Wolcott, D.E. 381
Wollenberg, H. 95, 105
Wright, H.D. 280
Wright, R.J. 474
Yermolayev, N.P. 164
Yershov, V.E. 165
Yes'kova, E.E. 166
Yevseyeva, L.S. 167
Young, P. 337
Zarinsky, V.I. 164
Zayed, Z.Z. 425
Zeller, E.J. 201
Zenilli, M. 102, 168
Zhidikova, I.P. 164, 369
Zhiltsova, I.G. 169
Zhukov, G.V. 171
Zhukova, A.B. 170, 171
Zhuravlev, R.S. 113, 172
Zhuravleva, L.N. 173
Zielinski, B.A. 174, 175
Zietz, I. 263
Zinev'yev, V.V. 78
Zollinger, R.C. 368
Zykov, S.I. 158

GEOGRAPHIC LOCATION INDEX

All geographic locations in the United States are indexed by state, and may be followed by county, city, township, range, section, and $7\frac{1}{2}$ or 15 minute quadrangle or combinations of the above. The following illustration shows township, range, section, and $7\frac{1}{2}$ and 15 minute quadrangles.

GEOGRAPHIC DESCRIPTION INDEX

Africa, Niger 307

Alabama 356, 448, 452

Alabamas, Cleburne County 47

Alaska 141, 176, 220, 225, 281, 282, 253, 256, 350, 412, 422, 452

Alaska, Seward Peninsula 239

Antarctica 201

Argentina 306, 478

Arizona 178, 179, 250, 266, 239, 383, 385, 386, 354, 393

Arizona, Cochise County 162

Arizona, Gila County 162

Arizona, Greenlee County 30

Arizona, Mohave County 30, 387

Arizona, Navajo County 217

Arizona, Pima County 30

Arizona, Yavapai County 264

Arkansas 160

Arkansas, Crawford County 47

Arkansas, Garland County 47

Arkansas, Hot Spring County 47

Arkansas, Montgomery County 47

Arkansas, Pike County 47

Arkansas, Van Buren County 47

Australia 18, 80, 243, 394, 416, 478

Australia, New South Wales 27

Australia, Northern Territory 210, 211

Austria 474

Azores 110

Azores, São Miguel 102

Brazil 105

Brazil, Minas Gerais State 409

California 36, 69, 83, 178, 179, 202

California, Riverside County 162

Canada 105, 183, 192, 268, 368, 400, 422, 443, 467, 478

Canada, District of Keewatin 142, 349

Canada, Labrador 370

Canada, Magdalen Islands 203

Canada, New Brunswick 80, 203

Canada, Newfoundland 168, 203

Canada, Northwest Territories 142, 168, 349

Canada, Nova Scotia 80, 168, 203

Canada, Ontario 81, 302, 347, 359,

Canada, Ontario 365, 426

Canada, Prince Edward Island 80, 203

Canada, Quebec 81

Canada, Saskatchewan 42, 58, 305, 318, 347, 415

Canada, Yukon Territory 54

Colorado 22, 141, 160, 161, 225, 227, 259, 302, 385, 386, 375, 393, 414, 454

Colorado, Adams County 445

Colorado, Alamosa County 199, 445

Colorado, Arapahoe County 445

Colorado, Archuleta County 199, 224, 445

Colorado, Baca County 232, 445

Colorado, Bent County 232, 445

Colorado, Boulder County 445

Colorado, Chaffee County 200, 445

Colorado, Cheyenne County 445

Colorado, Clear Creek County 445

Colorado, Conejos County 199, 445

Colorado, Costilla County 185, 445

Colorado, Crowley County 445

Colorado, Custer County 185, 282, 445

Colorado, Delta County 445

Colorado, Denver County 445

Colorado, Dolores County 199, 224, 445

Colorado, Douglas County 206, 445

Colorado, Eagle County 445

Colorado, El Paso County 445

Colorado, Elbert County 445

Colorado, Fremont County 200, 445

Colorado, Garfield County 445

Colorado, Gilpin County 162, 445

Colorado, Grand County 445

Colorado, Gunnison County 228, 402, 445

Colorado, Hinsdale County 199, 224, 445

Colorado, Huerfano County 185, 445

Colorado, Jackson County 445

Colorado, Jefferson County 374, 445

Colorado, Kiowa County 445

Colorado, Kit Carson County 445

Colorado, La Plata County 199, 224, 445

GEOGRAPHIC DESCRIPTIONS INDEX

Colorado, Lake County 445
 Colorado, Larimer County 162, 445
 Colorado, Les Animas County 185, 232, 445
 Colorado, Lincoln County 445
 Colorado, Logan County 445
 Colorado, Mesa County 352, 445
 Colorado, Mineral County 199, 224, 445
 Colorado, Moffat County 17, 445
 Colorado, Montezuma County 199, 224, 445
 Colorado, Montrose County 224, 445
 Colorado, Morgan County 445
 Colorado, Otero County 232, 445
 Colorado, Ouray County 199, 224, 445
 Colorado, Park County 240, 445
 Colorado, Phillips County 445
 Colorado, Pitkin County 445
 Colorado, Powers County 232, 445
 Colorado, Pueblo County 185, 445
 Colorado, Rio Blanco County 445
 Colorado, Rio Grande County 199, 445
 Colorado, Roett County 445
 Colorado, Saguache County 199, 445
 Colorado, San Juan County 199, 224, 445
 Colorado, San Miguel County 199, 224, 445
 Colorado, Sedgwick County 445
 Colorado, Summit County 91, 445
 Colorado, Teller County 445
 Colorado, Washington County 445
 Colorado, Weld County 233, 251, 315, 445
 Colorado, Yuma County 445
 Connecticut, Hartford County 47, 368
 Connecticut, Litchfield County 368
 Connecticut, Middlesex County 368
 Connecticut, New Haven County 368
 Connecticut, Tolland County 368
 Daepg Region 45
 Florida 187, 429, 448
 Florida, Columbia County 63
 Florida, De Soto County 63, 371
 Florida, Hamilton County 63
 Florida, Hardee County 63, 371
 Florida, Highlands County 371
 Florida, Hillsborough County 63, 371
 Florida, Lake County 371
 Florida, Manatee County 63, 371
 Florida, Orange County 371
 Florida, Osceola County 371
 Florida, Pasco County 371
 Florida, Polk County 63, 371
 Florida, Sarasota County 63
 France 87a
 Gabon 87a
 Georgia 444, 454
 Georgia, Banks County 204
 Georgia, Barrow County 204
 Georgia, Chattooga County 47
 Georgia, Clarke County 204
 Georgia, Dawson County 204
 Georgia, De Kalb County 47
 Georgia, Elbert County 204
 Georgia, Forsyth County 204
 Georgia, Franklin County 204
 Georgia, Gaines County 204
 Georgia, Habersham County 204
 Georgia, Hall County 204
 Georgia, Hart County 204
 Georgia, Jackson County 204
 Georgia, Lumpkin County 204
 Georgia, Madison County 204
 Georgia, Oglethorpe County 204
 Georgia, Rabun County 204
 Georgia, Stephens County 204
 Georgia, Towns County 204
 Georgia, Union County 204
 Georgia, Walker County 47
 Georgia, White County 204
 Greenland 59, 60, 95, 105
 Hawaii 170
 Iceland 123
 Idaho 160, 170, 171, 202, 221, 245, 247, 411
 Idaho, Boundary County 400
 Idaho, Custer County 392
 Idaho, Leshi County 193, 400
 Idaho, Shoshone County 162

GEOGRAPHIC DESCRIPTIONS INDEX

Illinois 115
 Illinois, Hardin County 16
 India 68
 Italy 110, 307
 Italy, Sardinia 39
 Japan 119, 474
 Kansas 160, 439
 Kansas, Crawford County 132
 Kansas, Douglas County 132
 Kansas, Hamilton County 232
 Kansas, Labette County 132
 Kansas, Lyon County 132
 Kansas, Marion County 232
 Kansas, Meade County 132
 Kansas, Stanton County 232
 Kansas, Wilson County 132
 Kansas, Wyandotte County 132
 Kentucky 356
 Kentucky, Boyd County 47
 Louisiana 187
 Maine, Hancock County 47
 Maine, Washington County 47
 Maryland, Harford County 47
 Massachusetts, Franklin County 368
 Massachusetts, Hampden County 47, 368
 Massachusetts, Hampshire County 368
 Mexico 187, 237, 465
 Michigan 66, 160, 162, 384, 390, 391
 Michigan, Baraga County 47, 395
 Michigan, Dickinson County 47, 399
 Michigan, Gogebic County 389
 Michigan, Iron County 47, 389
 Michigan, Marquette County 47, 389
 Michigan, Ontonagon County 47, 389
 Minnesota 135, 353
 Minnesota, Becker County 236
 Minnesota, Big Stone County 236
 Minnesota, Clay County 236
 Minnesota, Grant County 236
 Minnesota, Kittson County 236
 Minnesota, Mahnomen County 236
 Minnesota, Marshall County 236
 Minnesota, Norman County 236
 Minnesota, Otter Tail County 236
 Minnesota, Pennington County 236
 Minnesota, Polk County 236
 Minnesota, Red Lake County 236
 Minnesota, Roseau County 236
 Minnesota, Traverse County 236
 Minnesota, Wilkin County 236
 Mississippi 454
 Mississippi, Rankin County 47
 Missouri, Boerhoe 28
 Missouri, Callaway County 47
 Missouri, Douglas County 47
 Missouri, Iron County 47
 Missouri, Madison County 47
 Missouri, Marion County 47
 Missouri, Ste. Genevieve County 47
 Missouri, Vernon County 47
 Montana 181, 160, 161, 225, 287, 311, 459
 Montana, Beaverhead County 193
 Montana, Broadwater County 189, 321
 Montana, Carter County 193
 Montana, Custer County 193
 Montana, Deer Lodge County 193
 Montana, Fallon County 193
 Montana, Gallatin County 189, 331
 Montana, Granite County 193
 Montana, Jefferson County 162, 189, 193, 279, 280, 331
 Montana, Lewis and Clark County 331
 Montana, Madison County 189, 193
 Montana, Park County 189
 Montana, Powder River County 193
 Montana, Powell County 460
 Montana, Ravalli County 193
 Montana, Silver Bow County 193
 Montana, Sweet Grass County 189
 Nebraska, Banner County 251
 Nebraska, Dundy County 380
 Nebraska, Kimball County 251
 Nebraska, Scotts Bluff County 251
 Nevada 63, 178, 179, 202
 Nevada, Churchill County 244
 Nevada, Eureka County 255
 Nevada, Lander County 255

GEOGRAPHIC DESCRIPTIONS INDEX

Nevada, Lincoln County 810
 Nevada, Mineral County 255
 Nevada, Nye County 255
 New Hampshire 99, 453, 458
 New Hampshire, Belknap County 130
 New Hampshire, Carroll County 130
 New Hampshire, Grafton County 130
 New Jersey, Hunterdon County 47
 New Jersey, Morris County 47
 New Jersey, Passaic County 47, 162
 New Jersey, Sussex County 47
 New Jersey, Warren County 47
 New Mexico 30, 31, 93, 119, 136,
 138, 161, 162, 196, 208, 225,
 238, 239, 249, 259, 265, 312,
 315, 317, 333, 338, 339, 343,
 345, 346, 361, 382, 384, 385,
 388, 393, 397, 405, 413, 427,
 431, 435, 446, 474
 New Mexico, Bernalillo County 105,
 207
 New Mexico, Chaves County 257
 New Mexico, Colfax County 105
 New Mexico, Eddy County 118, 257
 New Mexico, Lea County 257
 New Mexico, Lincoln County 105
 New Mexico, McKinley County 191,
 207, 687
 New Mexico, Otero County 105
 New Mexico, Rio Arriba County 105,
 198, 888
 New Mexico, Roosevelt County 257
 New Mexico, San Juan County 108
 New Mexico, San Mateo 406
 New Mexico, San Miguel County 105
 New Mexico, Sandoval County 105,
 108, 207, 406
 New Mexico, Santa Fe County 105
 New Mexico, Valencia County 103,
 207
 New York, Lewis County 47
 New York, Orange County 47
 New York, Putnam County 47
 New York, St. Lawrence County 47
 New York, Sullivan County 47
 New York, Westchester County 47
 New York, Woodridge 372
 Niger 476
 North Carolina 116, 167, 488
 North Carolina, Alexander County
 219, 230
 North Carolina, Alleghany County
 230
 North Carolina, Ashe County 219
 North Carolina, Ashe County 47,
 230
 North Carolina, Avery County 47,
 205, 213, 219, 230
 North Carolina, Burke County 219
 North Carolina, Cabarrus County
 219
 North Carolina, Caldwell County
 219, 230
 North Carolina, Catawba County 219
 North Carolina, Chatham County 205
 North Carolina, Clay County 204
 North Carolina, Cleveland County
 127, 219
 North Carolina, Davidson County
 219, 230
 North Carolina, Davie County 219,
 230
 North Carolina, Forsyth County
 213, 230
 North Carolina, Gaston County 127,
 219
 North Carolina, Guilford County
 219, 230
 North Carolina, Haywood County 205
 North Carolina, Iredell County
 219, 230
 North Carolina, Johnston County
 205
 North Carolina, Lee County 205
 North Carolina, Lincoln County
 127, 219
 North Carolina, Macon County 206
 North Carolina, McDowell County
 135, 219
 North Carolina, Mecklenburg County
 219
 North Carolina, Mecklenburg 205
 North Carolina, Mitchell County
 205, 213
 North Carolina, Moore County 205
 North Carolina, Randolph County
 219
 North Carolina, Richmond County
 219
 North Carolina, Rockingham County
 230
 North Carolina, Rowan County 219
 North Carolina, Rutherford County
 219
 North Carolina, Sampson County 205
 North Carolina, Stanly County 219

GEOGRAPHIC DESCRIPTION INDEX

North Carolina, Stokes County 230
 North Carolina, Surry County 230
 North Carolina, Union County 219
 North Carolina, Wake County 205
 North Carolina, Watauga County 230
 North Carolina, Wilkes County 230
 North Carolina, Yadkin County 230
 North Carolina, Yancey County 205, 213
 North Dakota, Barnes County 236
 North Dakota, Billings County 236
 North Dakota, Cass County 236
 North Dakota, Cavalier County 236
 North Dakota, Grand Forks County 236
 North Dakota, Griggs County 236
 North Dakota, Nelson County 236
 North Dakota, Pembina County 236
 North Dakota, Ransom County 236
 North Dakota, Richland County 236
 North Dakota, Sargent County 236
 North Dakota, Steele County 236
 North Dakota, Trappill County 226
 North Dakota, Walsh County 236
 Ohio 356
 Oklahoma, Atoka County 182
 Oklahoma, Beckham County 418
 Oklahoma, Bryan County 182
 Oklahoma, Carter County 182
 Oklahoma, Coal County 182
 Oklahoma, Creek County 181
 Oklahoma, Custer County 418
 Oklahoma, Garfield County 181
 Oklahoma, Garvin County 182
 Oklahoma, Grady County 182
 Oklahoma, Grant County 181
 Oklahoma, Hughes County 182
 Oklahoma, Jefferson County 182
 Oklahoma, Kingfisher County 181
 Oklahoma, Logan County 181
 Oklahoma, Love County 182
 Oklahoma, Marshall County 182
 Oklahoma, McClain County 182
 Oklahoma, Murray County 182
 Oklahoma, Noble County 181
 Oklahoma, Nowata County 13
 Oklahoma, Osage County 181
 Oklahoma, Pawnee County 181
 Oklahoma, Payne County 181
 Oklahoma, Pittsburg County 182
 Oklahoma, Pontotoc County 182
 Oklahoma, Pottawatomie County 182
 Oklahoma, Rogers Mills County 418
 Oklahoma, Seminole County 182
 Oklahoma, Stephens County 182
 Oklahoma, Tulsa County 181
 Oklahoma, Washita County 418
 Oregon 162, 178, 179, 282
 Oregon, Lincoln County 153
 Pennsylvania, Bedford County 47
 Pennsylvania, Berks County 47
 Pennsylvania, Bradford County 47, 126, 222
 Pennsylvania, Bucks County 47
 Pennsylvania, Carbon County 47
 Pennsylvania, Columbia County 47, 126, 222
 Pennsylvania, Dauphin County 47
 Pennsylvania, Fulton County 47
 Pennsylvania, Huntingdon County 47
 Pennsylvania, Luzerne County 47
 Pennsylvania, Lycoming County 47, 126, 222
 Pennsylvania, Northumberland County 47
 Pennsylvania, Potter County 126
 Pennsylvania, Schuylkill County 47
 Pennsylvania, Sullivan County 47, 126
 Pennsylvania, Tioga County 126
 Pennsylvania, Wyoming County 47
 Saskatchewan 308, 308, 342, 358, 367
 South Africa 302, 478
 South Carolina 116, 488
 South Carolina, Abbeville County 208
 South Carolina, Aiken County 231
 South Carolina, Anderson County 208
 South Carolina, Cherokee County 219
 South Carolina, Greenville County 208
 South Carolina, Greenwood County 208

GEOGRAPHIC DESCRIPTIONS INDEX

South Carolina, Laurens County 204
 South Carolina, Lexington County 231
 South Carolina, McCormick County 204
 South Carolina, Oconee County 204
 South Carolina, Pickens County 204
 South Carolina, Saluda County 231
 South Carolina, Spartanburg County 204, 219
 South Carolina, York County 219
 South Dakota 160
 South Dakota, Custer County 260, 361
 South Dakota, Fall River County 361
 South Dakota, Harding County 326, 400
 South Dakota, Lawrence County 261
 South Dakota, Pennington County 260, 341
 Spain 67, 378
 Tennessee 25, 356, 468, 473
 Tennessee, Carter County 47, 230
 Tennessee, Johnson County 47, 230
 Tennessee, Sullivan County 230
 Texas 62, 147, 160, 316, 383, 433, 438, 456, 464
 Texas, Armstrong County 461
 Texas, Atascosa County 226
 Texas, Bailey County 461
 Texas, Bee County 268
 Texas, Briscoe County 461
 Texas, Burleson County 362
 Texas, C虞rson County 461
 Texas, Castro County 461
 Texas, Childress County 461
 Texas, Cochran County 461
 Texas, Collingsworth County 461
 Texas, Cottle County 461
 Texas, Crosby County 461
 Texas, Dallas County 461
 Texas, Deaf Smith County 461
 Texas, Dickens County 461
 Texas, Donley County 461
 Texas, Duval County 38, 226
 Texas, Ector County 13
 Texas, Floyd County 461
 Texas, Foard County 461
 Texas, Gray County 461
 Texas, Hale County 461
 Texas, Hall County 461
 Texas, Hansford County 461
 Texas, Hardeman County 461
 Texas, Hartley County 461
 Texas, Haskell County 461
 Texas, Hockley County 461
 Texas, Hutchinson County 461
 Texas, Karnes County 33, 34, 226, 238, 248, 315, 379
 Texas, King County 461
 Texas, Knox County 461
 Texas, Lamb County 461
 Texas, Lee County 362
 Texas, Lipscomb County 461
 Texas, Live Oak County 34, 248, 315
 Texas, Llano County 129
 Texas, Lubbock County 461
 Texas, McCulloch County 33
 Texas, Moore County 461
 Texas, Motley County 461
 Texas, Nueces Crossing 13
 Texas, Ochiltree County 461
 Texas, Oldham County 461
 Texas, Parmer County 461
 Texas, Potter County 461
 Texas, Randall County 461
 Texas, Roberts County 461
 Texas, Sherman County 461
 Texas, Starr County 13
 Texas, Swisher County 461
 Texas, Webb County 51, 238, 315
 Texas, Wheeler County 461
 Texas, Wilson County 248
 United Arab Republic, Qatreni 425
 United States 105, 307, 403
 USSR 28, 74, 75, 92, 98, 110, 113, 122, 140, 167, 173, 271, 278, 301, 340
 USSR, Azerbaijan 2
 USSR, Gornaya Shoriya 172
 USSR, Kazakhstan 8, 35, 105
 USSR, Kirgiziya 89, 159
 USSR, Kola Peninsula 5, 124
 USSR, Siberia 7, 98, 121

GEOGRAPHIC DESCRIPTION INDEX

USSR, Tien-Shan 85, 96, 97
 USSR, Transbaikaliya 184
 USSR, Tariy Peninsula 57
 USSR, Tien-Shan 76
 USSR, Ukraine 170, 171
 USSR, Uzbek SSR 151
 Utah 88, 161, 178, 179, 202, 259,
 270, 302, 306, 320, 322, 327,
 345, 346, 366, 375, 393
 Utah, Box Elder County 336, 398
 Utah, Garfield County 337
 Utah, Juab County 175, 267, 281,
 309, 363, 395, 396
 Utah, Kane County 337
 Utah, Millard County 309, 395
 Utah, Piute County 162
 Utah, Salt Lake County 162
 Utah, San Juan County 73, 217,
 336, 421
 Utah, Tooele County 275, 309
 Vermont, Bennington County 47
 Vermont, Lamoille County 47
 Virginia 444, 458
 Virginia, Bland County 47, 230
 Virginia, Carroll County 230
 Virginia, Culpeper County 47
 Virginia, Floyd County 230
 Virginia, Franklin County 230
 Virginia, Grayson County 230
 Virginia, Henry County 230
 Virginia, Patrick County 230
 Virginia, Pulaski County 47, 230
 Virginia, Russell County 230
 Virginia, Scott County 47
 Virginia, Smyth County 230
 Virginia, Spotsylvania County 109
 Virginia, Tazewell County 47, 230
 Virginia, Washington County 230
 Virginia, Wythe County 230
 Washington 96, 162, 178, 179, 202
 Washington, Ferry County 373
 West Virginia 350
 West Virginia, Grant County 47
 West Virginia, Pocahontas County
 47
 Wisconsin 160
 Wisconsin, Marinette County 47

160

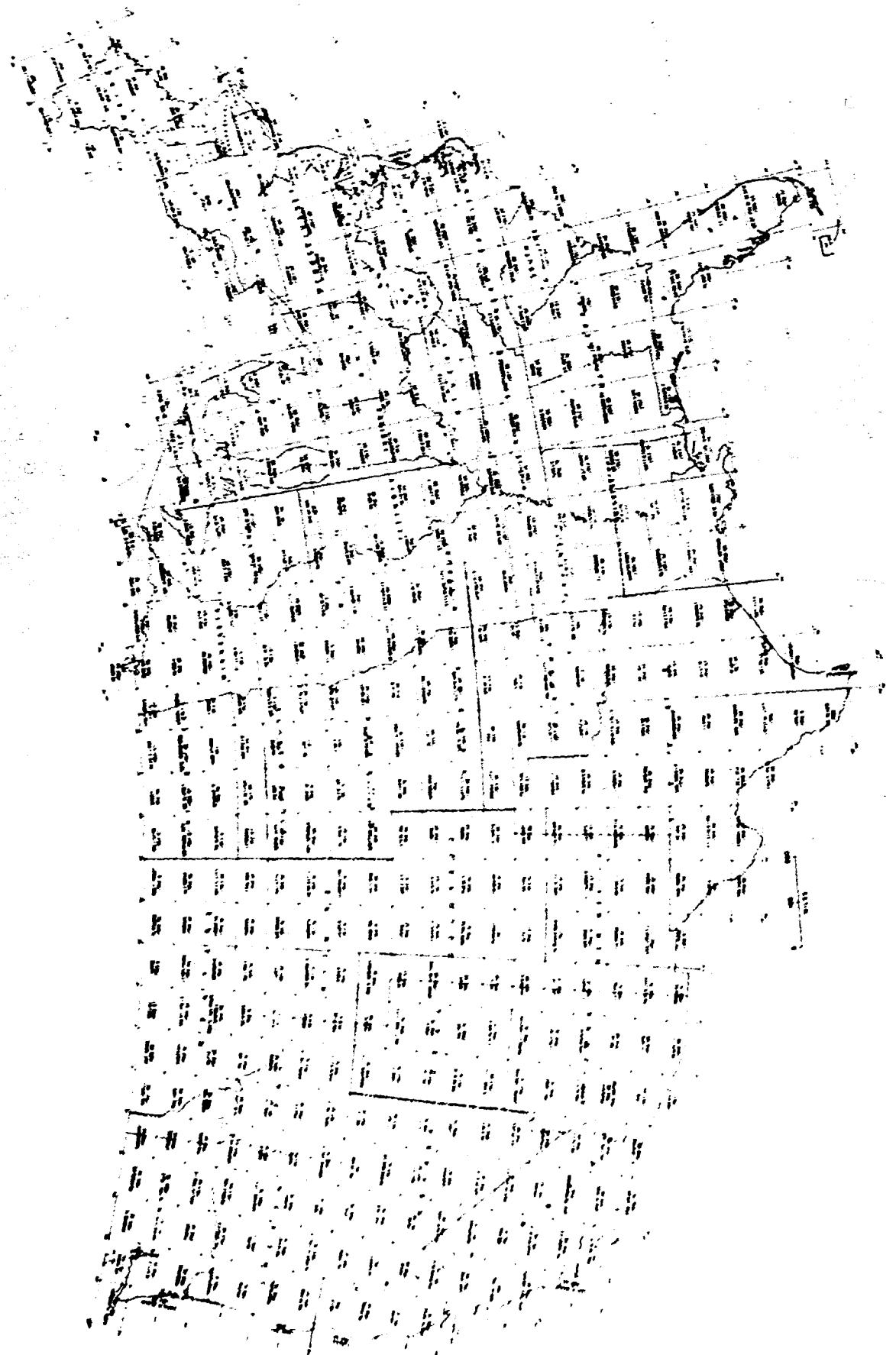
QUADRANGLE NAME INDEX

**The one degree by two degree National Topographic Map Series (NTMS) quadrangles are indexed.
The following map shows the quadrangles of the continental United States.**

QUADRANGLE NAME INDEX

KEE CLAIRE 105, 353
 KELAND 190
 KEL CITY 245
 KENO 202
 KERRY PEAK 105
 KED 161
 KESALANTE 217, 336, 337, 345
 KESKABA 47
 KEPKA 105
 KERHOT 353
 KENO 236, 353
 KESKABA 305
 KESKICKTON 47
 KESKOO 36
 KESK PIERCE 147, 371
 KESK SMITH 47, 160
 KESK SUMMER 161
 KESKESVILLE 63, 444
 KESKUP 141, 191, 230, 315, 345
 KESKETTE 105
 KESKES FALLS 47, 105, 453
 KESKETTLE 105, 202
 KESK CANYON 266, 345, 387
 KESK FORKS 236, 353
 KESK JUNCTION 22, 345, 352, 445
 KESKESVILLE 245
 KESK PALLS 105
 KESKLEY 22, 105, 227, 233, 315,
 410, 445
 KESK DAY 47, 105
 KESKESVILLE 116, 204, 444
 KESKLEY 202, 245
 KESKES 459
 KESKES 353
 KESKESBURG 222
 KESKESON 47
 KESKESFORD 47, 368
 KESKES 105
 KESKING 135, 353
 KESKES 257
 KESKESBROOK 345
 KESKESIAK 202
 KESKES SPRINGS 160, 381
 KESKESON 147, 245
 KESKES 161
 KESKESBUTON 47
 KESKES 423
 KESKESATIONAL FALLS 135, 353
 KESKES 47
 KESKES RIVER 47
 KESKESON 47, 105
 KESKESVILLE 444
 KESKESON CITY 47
 KESKESON CITY 47, 213
 KESKES 47, 132, 160
 KESKES VALLEY 205
 KESKES 161
 KESKESPELL 105, 161
 KESKES CITY 132
 KESKES RIVER 241
 KESKES 239, 423
 KESKES 353
 KESKESKES 161
 KESKES 30, 105, 387
 KESKESVILLE 47, 116, 205, 213, 444
 KESKESBUE 161, 256
 KESKES CROSSE 353
 KESKES JUETTA 232, 445
 KESKES CHAMPLAIN 47, 105
 KESKES 445
 KESKES 21, 112, 376, 399
 KESKES 34, 51, 226, 234, 288, 315,
 568
 KESKES 132
 KESKES 105, 461
 KESKESVILLE 22, 345, 410, 445
 KESKES 326, 404
 KESKESON 105, 130, 453
 KESKESBUE 105, 160
 KESKES BILLS 220
 KESKES 445
 KESKES 105
 KESKES ROCK 47, 105, 160
 KESKES 129
 KESKES BEACH 69
 KESKES ANGELES 69
 KESKES BOOCK 147, 461
 KESKES 410
 KESKES CANYON 217, 339, 345
 KESKES 36

QUADRANGLE BASE INDEX


MARQUETTE 47, 105
 MASON CITY 353
 MC ALLEN 13, 208, 464
 MC DOWELL 253
 MC NEILAN 47
 MESA 345
 MELBANK 353
 MELLETT 255
 MELLOMCKET 47
 MOAB 22, 73, 105, 224, 306, 345,
 352, 375, 421, 445
 MORELLY 47
 MONTGOMERY 444
 MONTROSE 22, 105, 224, 345, 402,
 414, 445
 ST FAIRWEATHER 141
 ST MC KEELEY 253
 MURKES 367
 MURKIN 353
 NEW YORK 47
 NEWARK 47, 105
 NEWCASTLE 160, 227, 301, 471
 NOVAK 141
 NOSE 141
 NOVOPOLK 444
 OGDEZ 202
 OGDENSBURG 47
 OKANOGAN 105, 373
 ORLANDO 63, 147, 371
 PADUCAH 16, 115
 PALESTINE 248, 464
 PECON 13
 PENDLETON 202
 PEORIA 115
 PERETTON 461
 PETERSBURG 105, 141
 PITTSBURGE 47
 PLAUVILLE 461
 PLANT CITY 63, 371
 PORT ALEXANDER 141
 PORTLAND 105, 130, 453
 PRESCOTT 264, 354, 387
 PRESTON 386
 PRICE 202, 322, 385
 PRINCE RUPERT 141
 PROVIDENCE 105
 PUEBLO 22, 105, 141, 260, 282, 445
 QUEBECO 135, 353
 QUINCY 47, 115
 RALEIGH 205, 444
 RAPID CITY 261
 RAYON 105
 RAVLIUS 258, 399, 452
 REHO 36
 RICHFIELD 322, 345
 RICHMOND 444
 ROANOKE 444
 ROCK SPRINGS 399
 ROCKY MOUNT 147
 ROLLA 28, 47
 ROME 47
 ROSEAU 353
 ROTHELL 105, 105
 RUSSELLVILLE 47, 160
 SACRAMENTO 36
 SALEM 105, 153
 SALINA 322, 336, 345, 398
 SALT LAKE CITY 322, 345
 SAN ANTONIO 36, 226, 248, 464
 SAN BERNARDINO 69
 SAN DIEGO 69
 SAN JOSE 36
 SANDPOINT 105, 400
 SANTA ANA 69
 SANTA CRUZ 36, 105
 SANTA FE 141, 185
 SANTA MARIA 69
 SCOTT CITY 160
 SCRANTON 47, 105, 372
 SEGUIN 36, 160, 226, 234, 268,
 315, 464
 SELAWIK 105, 141, 256, 462
 SELDOVIA 239, 423
 SEWARD 239, 423
 SHERIDAN 315, 335
 SHIPROCK 339, 385
 SHISHAREF 141, 256
 SHREVEPORT 105
 SHUNGUAK 105, 141, 256, 350
 SILVER CITY 386
 SIOUX FALLS 353

QUADRANGLE NAME INDEX

SIERRA 105, 141
SKAGWAY 141
SOCORRO 141, 345
SOLONIA 105, 141
SPARTANBURG 116, 444
SPRINGFIELD 47
ST CLOUD 353
ST JOHNS 141, 345
ST LAURENCE 105
ST LOUIS 47, 115
ST PAUL 353
STERLING 233, 445
STILLWATER 353
SUDBURY 141
SURVEY PASS 141
TAFT RIVER 141
TAMPA 63, 147, 371
TELLER 141, 241
TERIARKANA 464
THERMOPOLIS 21, 160, 376
THREE RIVER FALLS 236, 353
THUNDER BAY 353
TOOELE 274, 275, 309, 322
TOBININGTON 175, 227
TRINIDAD 22, 105, 445
TOCUMCARI 461
TULAROSA 185, 345
TULSA 13
TWIN FALLS 202, 245
TWO HARBORS 105, 135, 353
TYLER 464
TYCHER 220, 423
UTICA 47
VALDOSTA 63
VAN BORN 105
VERNAL 17, 22, 345, 445
VACO 147, 464
VANIER LAKE 36, 202
WALLACE 141
WASHINGTON 47, 109, 445
WATERTOWN 353
WATFORD CITY 326
WEED 105
WEELS 202
WEST PALM BEACH 147
WHITE SULPHUR SPRINGS 105, 279, 280, 331
WICHITA FALLS 147, 461
WILLIAMS 345, 387
WILLIAMSPORT 47, 126, 222
WIMBLEDON 202
WINSTON-SALEM 47, 105, 116, 213, 230, 444
WISEMAN 141

GEOFORMATIONAL FEATURE INDEX

Geologic formations, mines, claims, districts, lakes, rivers, mountains, and other regional structures presented in the reports are indexed.

GEOPORATIONAL FEATURE INDEX

Abiquiu Tuff Member 183
 Abc Formation 188
 Ida Formation 182
 Ida Group 181
 Agency Creek 237
 Agua Zarca Sandstone Member 309
 Alilit Series 370
 Ajibit Quartzite 349, 391
 Ijo Deposit 30
 Ila-Tac Mountains 76
 Alaska Range 220, 253
 Albert Formation 203
 Aldridge-Prichard Formation 306
 Algoma District 302, 426
 Alhambra Mine 384
 Allegheny Plateau 47
 Alligator Rivers 210, 394
 Alligator Valley 211
 Alips 397
 Alta Claim Group 392
 Altanout Limestone 132
 Astrosia Lake 435
 Astrosia Lake District 138, 191,
 208, 265, 333, 351, 382, 406,
 427, 431
 Asdes Formation 360
 Asderko Basin 182
 Anderson-Wiggins Prospect 389
 Animas Formation 185
 Animas River 199
 Anna Shale Member 132
 Annapolis Valley 80
 Antiers Sand 182
 Apache Trail Deposit 383
 Aphelin Metasediments 318
 Aphelin Quartzite 182
 Apishapa Arch 232
 Appalachian Basin 356
 Appalachia Mountains 47, 208
 Aquarius Range 387
 Arbuckle Limestone 182
 Arbuckle Mountains 182
 Ardmore Basin 182
 Arikaree Formation 194, 233, 326
 Arkansas Novaculite 182
 Arkansas River 105, 232, 410
 Arcoa Basin 182
 Arroyo Penasco Formation 309
 Artillery Formation 352
 Artillery Mountains 154
 Artillery Peak-Dale Creek Basin
 352
 Aspen Claim 392
 Athabasca Basin 183, 308, 305,
 308, 362
 Athabasca Formation 183, 308, 305,
 318, 338, 367
 Atlanta Sill 410
 Atlantic Ocean 69
 Atoka Basin 182
 Atoka Formation 182
 Atomic Blast Vein 411
 Austin Plateau 255
 Azores Plateau 102
 Badger Creek 260
 Badger Creek Tuff 266
 Baker Claim 392
 Baker Lake 182, 183, 249
 Baltic Sill 5
 Barbei Series 409
 Bancroft District 359
 Bandelier Tuff 185
 Bar River Formation 408
 Baraga Group 391
 Barber Hill 105
 Barilla Mountains 105
 Barndoar Sill 368
 Barringer Property 403
 Bartlesville Formation 13
 Bassick Mine 262
 Battle Formation 62
 Battle Spring Formation 355, 426
 Bay Horse Area 198
 Bazhenov Formation 121
 Bear Creek 247
 Bearpaw Formation 42
 Bearpaw Mountains 161
 Beartooth Mountains 189
 Beaverhead Mountains 193, 411
 Beaverhead Vein 411
 Beaverlodge Area 367
 Beaverlodge District 362, 417

COPROPARATIONAL FEATURE INDEX

Beaverlodge Linear Belt 330
 Bell Creek Gneiss 389, 391
 Bell Creek Chain Group 392
 Bell Hill Dolomite 363
 Belle City Formation 362
 Belle Fourche Shale Member 190, 236
 Belt Series 207, 306, 411
 Belted Range Tuff 178
 Beluga Formation 423
 Bendeleches Mountains 241
 Bennington Limestone 182
 Benny Vein 411
 Bergland Prospect 369
 Betty Jo Vein 411
 Biscroft Deposit 41
 Big Crabtree Creek 213
 Big Bank Clay 392
 Big Horn Vein 411
 Big Indian District 73, 421
 Big Snowy Group 466
 Bigfork Chert 182
 Bighorn Basin 161
 Bifitti Iron-Formation Member 389, 391
 Bison Shale 182
 Biwabik Iron-Formation 135, 353
 Black Bear Vein 411
 Black Creek Group 162
 Black Bull Vein 411
 Black Canyon Schist 105, 402
 Black Hawk Mine 386
 Black Hills 190, 260, 261
 Black Root Vein 287
 Blaylock Sandstone 182
 Blind River 359, 365, 408
 Blind River District 302, 467
 Blowing Rock Gneiss 219
 Blue Bell Mine 366
 Blue Bird Clay 410
 Blue Bear Vein 411
 Blue Hills 105
 Blue Hills Igneous Complex 105
 Blue Jay Deposit 388
 Blue Jay Fault 388
 Blue Ridge Province 47, 208
 Bluebird Group 411
 Bluelwater Fault Zone 467
 Bluff Sandstone 339
 Boggy Shale 182
 Boise Basin Area 205
 Bohan Mountain Granite 105, 412
 Bokchito Formation 182
 Bol'Shaya Kal'-Tayga Massif 172
 Bon Terre Dolomite 47
 Bone Valley Formation 371
 Book Mine 389
 Boulder Batholith 162, 193, 279, 288, 460
 Boulder River 189
 Stanford Granite Gneiss 369
 Braxos River 187
 Brulee Formation 182
 Brooks Mountain 239
 Brown Bear Vein 411
 Brown Mountain Granite 219
 Brown Park Formation 393
 Bruce Formation 468
 Brule Formation 251, 326, 380
 Brush Creek 205, 213
 Brushy Basin Member 119, 191, 207, 238, 312, 338, 375, 381, 385, 388, 393, 467
 Bryan Basin 182
 Buck Mine 389
 Buffalo Gash 260
 Buffalo Vein 247, 411
 Bell Moose Fault 411
 Billard Peak District 388
 Bergdorf District 285
 Berne Quartz Latite 178
 Berro Canyon Formation 188, 375, 421
 Berro Mountains 388
 Bushveld Intrusion 60
 Butterfly Dolomite 182
 Bytes Gneiss 47
 Caddell Formation 362
 Caddo Limestone 182
 Cago Vein 247, 300, 411
 Callikan Sandstone Member 379
 Calvin Sandstone 182
 Canadian Escarpment 185

CROPOGNATIONAL FEATURE INDEX

Canadian Shield 162, 168, 318, 350, 466

Cap-aux-Seules Formation 203

Cape Tormentine 46

Capitan Reef 118

Carbondale Group 115

Cardiff Mine 389

Caribou Mountain 105

Carlile Shale 232, 236, 300

Carlsbad Potash District 257

Carmel Formation 339

Carmey Lake Gneiss 391

Carolina State Belt 205, 219, 231

Carrizo Mountains 343

Carrizo Sand 226, 464

Caseyville Group 115

Castle Mountain Fault 220

Castle Rock Gulch 240

Catahoula Sandstone 33, 38, 47, 51, 226, 235, 246, 315

Catalina Basin 69

Catskill Formation 47, 222, 372

Caucasus-Crimesia Region 180

Cave Hills Area 404

Cederville Series 202

Centerville District 245

Cerbat Range 387

Chaco Slope 407

Chadron Formation 251, 326, 380, 408

Challis Volcanics 202, 221, 247, 392, 400, 411

Chapin Wash Formation 354

Charley River Area 242

Chattanooga Shale 25, 332, 356, 466, 468, 473

Cherokee Shale 47, 132

Cherryville Quartz Monzonite 116, 219

Chester Series 115

Chichagof Island 105

Chickachoc Chert 182

Chickaloon Formation 423

Chickasha Formation 182

Chico Hills 185

Chicopee Shale 368

Chinle Formation 73, 105, 188, 337, 339, 345, 375, 393, 396, 421, 468

Choccolay Group 391

Christmas Mountain 105

Chugwater Formation 251

Church Rock Member 375

Cid Formation 219

Cisarros River 232

Citronelle Formation 248

Claiborne Group 464

Clarksburg Volcanics Member 391

Clarke Formation 202

Clear Creek Limestone 16

Cleveland Shale 356

Cloud Chief Formation 418

Cloverly Formation 251

Cluff Lake 308

Coal Canyon 386

Coal Creek Claim 392

Coastal Plain 34, 62, 205, 226, 235, 248, 303, 434, 456

Coatzacoalcos River 147

Cobalt Group 408

Cohequid Bay 40

Coconino Sandstone 266, 385

Codroy Group 202

Coeur d'Alene District 162

Coffeyville Formation 182

Cohn Cyclothem 115

Colbert Porphyry 182

Cole Mine 162

Collier Thrust Belt 239

Colorado Group 460

Colorado Mineral Belt 418

Colorado Plateau 302, 307, 336, 345, 398, 445

Comb Monocline 339

Compeas Creek Gneiss 389, 391

Concord Granite 453

Concord Group 219

Connecticut Basin 368

Conquistador Clay Member 379

Contact Vein 411

Continental Divide 91

Continental No. 1 Mine 621

Conway Granite 47, 130, 454, 466

Cook Inlet 423

Cook Inlet-Susitna Lowlands 220

GEOGRAPHICAL FEATURE INDEX

Cook Mountain Formation 468
 Cool Creek Formation 182
 Copper Cliff Formation 408
 Copper King Mine 162
 Copper Queen Creek 247
 Copperite Claim 392
 Cornelius Pluton 30
 Cortez Basin 69
 Cougar Spar Mine 366
 Coyote Peak 105
 Crabtree Creek 205
 Crazy Mountains 105
 Criner Hills 182
 Cripple Creek 105
 Cromwell Formation 13
 Crooks Gap 1, 355
 Crossnore Group 219
 Crystal Lake Tuff 178
 Crystal Springs 44
 Cumberland Plateau 47
 Curtis Formation 17
 Custer Area 265
 Cutler Formation 185, 339, 421, 488
 Cypress Hills Formation 42
 Dakota Sandstone 185, 188, 191, 202, 232, 232, 333, 338, 375, 385, 421, 430
 Dan Patch Vein 247, 411
 Daniel's Harbour Deposit 168
 Davis Cyclothes 115
 Deadwood Formation 236
 Deep Cove Deposit 168
 Deep Creek-Tintic Belt 322
 Deer Creek 91
 Deer Lake 183
 Deer Vein 247, 411
 Deerfield Basin 368
 Delaware Basin 118
 Delaware Creek Shale 182
 Dennison-Bunn Claim 405
 Devil's Hole Formation 185
 Deveasville Sandstone Member 379
 Dexter Member 182
 Diatlo Plateau 105
 Diamond Peak Formation 202
 Dickinson Group 391
 Dilworth Sandstone Member 379
 Dimrody Formation 306
 Dimest Region 28
 Dockey Group 232, 257
 Dog Creek Shale 182
 Donnick Hills Group 182
 Dowelltown Member 473
 Doney Formation 418
 Dras Mountains 363
 Dry Canyon Creek 105
 Dubavnt Group 389
 Dubois Greenstone 105, 402
 Dubose Member 379
 Duddridge Lake Deposit 58
 Dugway Bell 267
 Duluth Complex 135, 353
 Duncan Sandstone 182
 Dunn Creek Slate 344
 Ear Mountain Granite 241
 East Basin Claim 392
 East Berlin Formation 368
 East Branch Arkose 391
 Eastend Formation 42
 Eastside Mines 343
 Echo Park Alluvium 280
 Elk Creek 105
 Elk Creek Pluton 462
 El Reno Group 182
 Elbert Formation 339
 Elberton Granite 47
 Elk City District 245
 Elk Creek 105
 Elk Mountains 418
 Elk Park District 199
 Elk Park Group 219
 Elliot Lake 307, 359, 365, 408
 Elliot Lake District 41, 426, 443
 Elliot Lake Group 408
 Elliston District 460
 Fly Greenstone 135
 Fly Springs Dolomite 410
 Enchanted Rock Batholith 129
 Enchantment Lake Formation 344, 391

GEOGRAPHICAL FEATURE INDEX

Enterprise Claim Group 392
 Entrada Sandstone 232, 339, 357, 375
 Eolas Granite 199
 Erikson Prospect 389
 Esmeralda Formation 292
 Espanola Formation 408
 Estancia Basin Area 161
 Eureka Quartzite 418
 Fairmont Shale Member 182
 Fall River Formation 236, 381, 393
 Fashing Clay Member 379
 Fern Creek Formation 388
 Fernvale Limestone 182
 Fish Haven Dolomite 363
 Flat Swamp Member 219
 Fleming Group 288
 Floride Dolomite 363
 Floyd Collins Deposit 384
 Flume Creek 287
 Foolproof Claim 392
 Fort Scott Limestone 132
 Fort Sill Limestone 182
 Fort Union Formation 198, 227, 326, 335, 408, 471
 Fossil Basin 161
 Fourche Mountain 105
 Fowlwood Brook 372
 Fox Hills Sandstone 232, 233, 452
 Francis Mine 389
 Frenches Formation 82
 Frio Clay 13, 33, 248, 456
 Front Range 105, 206, 418, 445
 Frontier Formation 452
 Fruitland Formation 185
 Frying Pan Vein 411
 Fulsotte Formation 363
 Galisteo Basin 161
 Gallinas Canyon 185
 Garber Sandstone 181, 182
 Garden City Formation 363
 Garden Valley District 245
 Garnet Range Formation 459
 Garnet Ridge 339
 Gas Hills 1, 21, 376, 480
 Gas Hills District 328
 Cassaway Member 25, 473
 Gatineau Hills 41
 Gays River Deposit 168
 German Mine 162
 Giants Range Batholith 135, 353
 Glen Wild Area 372
 Goddrich Conglomerate 389
 Gold Flat Member 178
 Gold Hill Fault Zone 219
 Golden Scepter Mine 400
 Golden Valley Formation 326
 Goliat Sand 226, 248, 393
 Goodard Shale 182
 Goodland Limestone 182
 Goodnet Lease 405
 Goodrich Quartzite 388, 389, 390, 391
 Gordon Lake Formation 408
 Gougaro Formation 408
 Granby Formation 368
 Grand Canyon 105, 266
 Grandfather Mountain Formation 213, 219
 Grandfather Mountain Window 47
 Graneros Shale 232, 380
 Granite Mountains 1, 97, 105, 112, 241, 360
 Grants Mineral Belt 31, 90, 119, 181, 196, 207, 208, 238, 239, 317, 333, 334, 385, 406, 406
 Graphite Quarry 389, 390
 Grassy Creek Shale 115
 Grayson Marl 182
 Great Basin 322
 Great Bear Lake 467
 Great Divide Basin 161, 355
 Great Salt Lake 44
 Green Mountain 428
 Green River Basin 161, 399
 Green River Formation 160
 Greenhorn Limestone 232, 380
 Greens Creek Pegmatite 388, 389, 390
 Greenwood Iron-Formation Member 390, 391
 Greenville Series 47
 Greenville Tectonic Province 408
 Gribbles Park Tuff 240

CROPORELATIONAL FEATURE INDEX

Gross Peak 30
 Grouse Canyon Member 178
 Grover Sandstone 233
 Gueydan Group 248
 Gulf of California 69
 Gulf of Mexico 137, 147
 Gunflint Iron-Formation 353
 Gunnison River 199, 402
 Guinn Iron-Formation Member 390
 Guinn Series 344
 Guinn Syncline 389
 Gypsum Creek Dome 339
 Hagerman Lake Beds 202
 Haggelt Dike 389, 390
 Hairpin Creek Area 224
 Hall Mountain 105, 400
 Hampden Formation 368
 Hanna Basin 161
 Hanna Formation 452
 Hannibal Shale 115
 Hanover-Pierro Stock 30
 Happy Jack Mine 336
 Hardwick Mine 282
 Harper Creek 205
 Harrisite Dolomite 363
 Hartford Basin 368
 Hartland Formation 368
 Hartshorne Sandstone 182
 Hawthorn Formation 371
 Haynes Property 162
 Heath Formation 160
 Heebner Shale Member 132
 Helena Valley 331
 Hell Creek Formation 326, 404
 Hellgate Quartzite Member 459
 Henderson Gneiss 219
 Hennessey Group 181, 182
 Hermit Shale 266, 385
 Herrossa Formation 199, 339
 Hidden Splendor Mine 336
 High Shoals Granitic Gneiss 219
 Highland Uranium Mine 471
 Highlandcroft Plutonic Series 99
 Highwood Mountains 105
 Hill Creek Formation 194
 Hillside Mine 254
 Hilltop Formation 182
 Hitchcock Shale 368
 Hohns Formation 182
 Holdenville Shale 182
 Holyoke Formation 368
 Honeycomb Basalt 281
 Honeycomb Hills 276
 Hoskinnini Mesa 217
 Hough Lake Group 408
 Huckleberry Ridge Tuff 174
 Humbolt Creek 239
 Husbolt Formation 202
 Hunter Creek Pluton 291
 Huston Group 182
 Huron Shale 356
 Euronian Supergroup 359
 I and L Vein System 412
 Idaho Batholith 193, 221, 392
 Idaho City District 285
 Idaho Pride Vein 411
 Idaho Springs Formation 91, 206
 Ilissausaq Intrusion 95, 105
 In Trust Vein 411
 Indian Peak Range 366
 Indiana Copper Mine 38
 Inez Deposit 388
 Insco Deposit 41
 Iyan Kara Group 381, 393
 Iron Hill 105
 Iron Hill Complex 402
 Iron Hill Intrusion 105
 Iron Mine 162
 Irving Formation 199
 Isham Prospect 389
 Jackfork Sandstone 182
 Jackpile Sandstone 312
 Jackson Dome 105
 Jackson Formation 33, 226, 248,
 379, 456
 Jacobsville Sandstone 388, 389
 James Mine 389
 Jasestown Granite 105
 Jisherlana Intrusion 18
 Joe Forsythe Prospect 389

GEOGRAPHICAL FEATURE INDEX

Johnny H Mine 208, 381
 Johns Valley Shale 182
 Johnston Area 205
 Judith Mountains 105
 Judith River Formation 42
 Kaib Bassif 35
 Kaibab Limestone 266, 345
 Kaiparowits Plateau 337
 Kakabeka Quartzite 353
 Kayene Area 335
 Kayenta Formation 339, 375
 Keg Mountain Ingnimbrites 281
 Keg Spring Andesite 281
 Keg Spring Latite 281
 Keweenaw Series 353
 Key Lake 304
 Khodus Formation 140
 Kiamichi Formation 162
 Kiana Hills 256
 Kick Dome 16
 Kindblade Formation 182
 Kinderhook Series 315
 Kingman Feldspar Mine 387
 Kings Mountain 127
 Kings Mountain Belt 219
 Kickee Belt 231
 Kirtland Formation 185
 Kitchi Schist 391
 Kittatinny Limestone 47
 Knife Lake Group 135
 Knox Dolomite 47
 Kola Peninsula 124
 Kona Dolomite 391
 Koongarra Deposit 210
 Kootenai Formation 460
 Kooperok Area 239
 Koyukuk Area 242
 Kuskokwim Mountains 253
 Kuznetsk Basin 113
 Kyzyltash Massif 8
 Kzyl-Ompol Massif 86, 88, 89
 Kyzyl-Ompol Mountains 86, 87
 La Sal Mountains 105
 La Sal Member 2 Mine 352
 Ludwig Granites 296
 Laguna Formation 248
 Laguna District 333, 334
 Lake Athabasca 268, 367
 Lake City Caldera 199
 Lake City District 228
 Lake Prince 390
 Lake Issyk-Kul' 75
 Lake Beosho Shale Member 132
 Lake Wipigon 183
 Lake of the Woods Area 353
 Lake Vermilion Formation 135
 Lakota Formation 236, 341, 393
 Lassote Sandstone 87
 Lance Formation 251
 Landstone Peak 91
 Laskin Dome 97
 Larasie Formation 227, 233, 315
 Larasie Mountains 251
 Las Animas Arch 232
 Last Chance Vein 247, 411
 Lava Creek Tuff 174
 Leadville Formation 339
 Lehigh Gap 372
 Lemhi Pass 105, 267, 400, 411
 Lena River Valley 7
 Lewis Shale 185, 452
 Lewisville Member 182
 Lightning Clais 392
 Linden Platon 353
 Linwood Lake 353
 Lisbon Valley 421
 Little Belt Mountains 105
 Little Charlie Creek 63
 Little Johnnie Vein 402
 Little Osage Member 132
 Little Spring Clais 392
 Liverpool Cyclones 115
 Livingstone Creek Formation 408
 Llano Estacado 257
 Llano Uplift 129
 Lodgepole Formation 460

GEOGRAPHICAL FEATURE INDEX

Logan Intrusions 353
 Lone Mountain 17
 Lonesome Pete Mine 404
 Long Creek Mountain 97
 Long Pine Hills Area 194
 Longmeadow Sandstone 368
 Lorrain Formation 408
 Los Ochos Mine 162
 Lost Sheep Dolomite 363
 Lost Soldier Area 428
 Lovozero Massif 122
 Lower Harden Claim 392
 Lucky Horseshoe Vein 267, 411
 Lucky Mc Mine 419
 Lucky Strike Claim 392
 Ledlow Member 326, 404
 Lytle Sandstone 232
 M and G Mine 389, 390
 Macaubas Series 409
 Maclean Orebody 168
 Macospin Cyclothes 115
 Madera Limestone 188, 408
 Madison Group 460
 Madison Plateau 189
 Madison Range 189
 Magdalena Group 185
 Magnet Cove 105
 Mahanomen Formation 353
 Main Diggings Claim 392
 Mancos Shale 185, 191, 224, 333, 375
 Mandate Claim 392
 Mangan Fault 384
 Manitou Island Complex 105
 Manning Formation 33, 362
 Maple Hill Shale 115
 Maquoketa Shale 115
 Marcellus Shale 356
 Margeson Creek Gneiss 389, 391
 Marion River 467
 Mariano Anticline 119, 407
 Mariano Lake Deposit 119, 136, 249, 388
 Marie Byrd Land 201
 Marlow Formation 182
 Marquette Range Supergroup 391
 Marguerite Trough 391
 Marquez Deposit 397
 Martin Formation 367
 Martin Ridge 30
 Mary Kathleen Mine 394
 Marysville District 162
 Haskell Formation 202
 Hasson Formation 211
 Matanak Valley 423
 Hatcha Gneiss 85
 Matienda Formation 408
 Mauch Chunk Shale 47
 Maureen Prospect 398
 Maurice Bay 304
 McAlister Formation 182
 McClure Mountain 105
 McCracken Mountains 354
 McGrath Gneiss 353
 McKenzie Hill Formation 182
 McKim Formation 408
 McLeansboro Group 115
 McLister Formation 182
 McNamara Formation 459
 Medicine Bow Formation 251, 452
 Medicine Bow Mountains 457
 Medicine Formation 188
 Menoken Group 394
 Merry Widow Mine 384
 Mesaverde Formation 185, 186, 202, 251, 375, 452
 Mi Vida Mine 73
 Michael Lake 415
 Michigamme Formation 384, 389, 390, 391
 Middle Lake 367
 Midnite Mine 96, 162
 Midwest Lake 304
 Migmatite Massif 353
 Miller Peak Formation 459
 Minas Series 409
 Mineral Park Deposit 30
 Ming Missive Deposit 168
 Minnelusa Formation 160
 Minnesota River Valley 353
 Mississagi Formation 408
 Mission Canyon Formation 460

Geographical Features Index

Mississippi River 147
 Missoula Series 459
 Missouri Mountain Shale 182
 Nodoc Fault Zone 231
 Nomkopi Formation 17, 217, 337, 339, 375
 Nolaz Formation 199, 339
 Noladovo Area 24
 Noss Schist 391
 Research Claim 366
 Monitor Range 255
 Montezuma Quartz Monzonite 91
 Northwest Anticline 339
 Noore Area 205
 Noorhead area 198
 Norenczi Deposit 30
 Morrison Formation 22, 103, 119, 138, 185, 188, 191, 207, 208, 232, 234, 236, 251, 312, 315, 317, 329, 337, 338, 339, 343, 375, 381, 382, 385, 388, 393, 397, 402, 405, 406, 407, 435, 460
 Noss Back Member 375, 393, 421
 Nout Ascutney 105
 Nout Carmel Sill 368
 Nout Osceola Granite 130
 Nout Rogers 105
 Nout Rosa 105
 Nout Rosa Granite 105
 Nout Taylor Deposit 406
 Nout Toby Conglomerate 368
 Mountain Glen Shale 115
 Moury Shale 236, 452
 Mt. Estelle Pluton 220
 Mt. McKinley 253
 Nuddy Creek 232
 Nuddy Sandstone Member 452
 Nenecie Creek Shale 132
 Nacimiento Group 185, 188
 Nash Fort Shear Zone 457
 Navajo Sandstone 339, 375
 Needle Mountains 199
 Megasnes Iron-Formation 391
 Nellie Bly Formation 182
 Nelson Batholith 400
 New Albany Shale 16, 115
 New Hampshire Platonic Series 99
 New Haven Formation 368
 Newark Group 368
 Newcastle Sandstone 236
 Newgate Prison Mine 368
 Newland Limestone 459
 Nigalia Basin 394
 Nigger Mountain 460
 Niebrara Formation 232, 236, 360, 452
 No Pay Vein 411
 Nokai Mesa 217
 Noma Group 241
 Nomesuch Shale 160, 389
 Nopising Quartzite 353
 North Branch Formation 203
 North Frying Pan Creek 267
 North Harper Creek 213
 North Horn Formation 202
 North Park Formations 251
 North Riley Pass District 404
 North Shore Volcanics 353
 Northwest Angle 353
 Oakville Sandstone 34, 248, 315, 383
 Ocala Limestone 886
 Ogallala Formation 232, 257, 430
 Ohio Shale 356
 Oil Creek Formation 182
 Ojo Aliso Sandstone 185, 188, 405
 Oka Carbonatite Complex 105
 Olentangy Shale 356
 Oliverian Platonic Series 90
 Ogallala-Guntah Belt 322
 Orpha Vein 411
 Osage Series 16
 Oscar Group 182
 Ottawa Graben 105
 Osgay Limestone 339
 Overfall Brook Formation 203
 Pacific Ocean 69, 186
 Pajarito Mountain 105
 Palangana Salt Dome 226
 Palmer Gneiss 391
 Palos Formation 364
 Pallico Estuary 147
 Park Range 414
 Peter Formation 408

GEOPORTIONAL FEATURE INDEX

Payette Basin 172
 Paunsaugunt Limestone 132
 Payette Formation 202
 Peace River 63, 147
 Pechanga Region 5
 Pecora Formation 408
 Peters Creek Fault 16
 Petrified Forest Member 393
 Phosphoria Formation 159, 193, 306
 Picamoose Creek Basin 161
 Picton Group 203
 Piedmont Group 127
 Piedmont Province 87, 116, 208
 Piedra River 199
 Piegan Group 459
 Pierre Shale 233, 236, 326, 380, 430
 Pikes Peak Granite 454
 Pine Creek Geosyncline 211
 Pine Tree Claim 392
 Pine Point Deposit 168
 Pine Ridge Sandstone Member 452
 Pinedale Monocline 407
 Pinkerton Trail Formation 339
 Pinto Mountains 162
 Pioneer Batholith 193
 Pioneerville District 205
 Pipeline Fault 138
 Pleasant Mountain 105
 Pleasanton Formation 132
 Pocono Formation 47
 Pocos de Caldas Intrusion 105
 Poison Canyon Mine 413
 Poison Canyon Sandstone 109, 381, 388
 Pokegama Quartzite 135, 353
 Polaris Mine Deposit 168
 Paleo Sandstone Lentil 408
 Polk Creek Shale 182
 Possum Kingdom Outlier 368
 Portage Lake Series 389
 Portland Formation 368
 Portland Mine 389
 Post Oak Conglomerate Member 418
 Potato Hill Claim 392
 Powder River Basin 161, 194, 227, 471
 Powderhorn District 402
 Powderhorn Granite 195, 402
 Powerhouse Intrusion 185
 Preague Isle Gneiss 389
 Prickly Pear Valley 279
 Prince of Wales Island 412
 Princeton Mine 389
 Puckaway Formation 353
 Purcell Mountains 350
 Purcell Sandstone 192
 Purcell Sills 408
 Purgatoire Formation 232
 Purgatoire River 232
 Quachita Mountains 182
 Quadrant Quartzite 460
 Quenak Gneiss 415
 Queen City Sand 468
 Quirke Lake Group 436
 Quirke Lake Mount 408
 Rabbit Lake 304
 Rabbit Lake Deposit 305, 318
 Rabbit Lake Formation 353
 Radical Hill 91
 Rainey Creek Intrusion 105
 Rainy Lake Area 353
 Rainy River Area 353
 Rainston Creek Mine 162
 Ranney Lake Formation 408
 Rare Metals Mine 387
 Ratton Basin 161
 Rattlesnake Hill 105
 Remecrag Formation 82
 Reactor Vein 247, 411
 Reagan Sandstone 182
 Reedy Creek Formation 384, 391
 Recapture Member 207, 385
 Red Bluff Claim 162
 Red Branch Member 182
 Red Cone 91
 Red Hill 105
 Red River Formation 236
 Red River Valley 236
 Redwall Limestone 266, 385
 Reese River 255

GEOLOGICAL FEATURE INDEX

Beklaw Formation 864
 Republic Siganite 389, 390
 Shes Intrusion 60
 Richards Mine 162
 Rico Formation 199, 339
 Nikolatviash Region 5
 Jingwood Mine 162
 Rio Grande River 199
 Riverton Iron-Formation 388, 390
 Rocky Arroyo 118
 Rocky Mountains 161
 Rosiclare Vein 16
 Ross-Adams Deposit 105
 Tambidoux Formation 87
 Rose Formation 353
 Royer Dolomite 182
 Redayye Mountains 278
 Tele Creek 232
 Red Jungle Deposit 30
 Red Springs Sandstone 12
 S. Bastados Mine 389
 Seganaia Batholith 353
 Salitral Shale Tongue 448
 Salmon City District 245
 Salmon River Mountains 193
 Salt Wash Member 22, 337, 339,
 343, 375, 393
 San Antonio Valley Deposit 103
 San Jose Formation 185, 188, 405
 San Juan Basin 161, 188, 405
 San Juan Mountains 228
 San Luis Valley 199
 San Mateo Fault 138
 San Rafael District 336
 San Rafael Group 105
 San Rafael Swell 398
 Sand Wash Basin 161
 Sandia Formation 448
 Sandstone Mine 382
 Sangre de Cristo Mountains 185
 Santa Barbara Basin 69
 Santa Cruz Basin 69
 Santa Rita Deposit 30
 San Francisco Series 409
 Sargent Prospect 389
 Savanna Formation 182
 Sawatch Range 474
 Sawtooth Batholith 221
 Sayan Mountains 92
 Scheller Property 409
 Schwartzwalder Mine 162
 Scott Basin 430
 Searles Lake 69
 Seift Formation 460
 Selavik Hills 105
 Selavik Hills Pluton 241, 256
 Seminole Formation 182
 Seneca Formation 182
 Sentinel Butte Member 326
 Serpent Formation 406
 Serpentine Area 239
 Serpentine Granite 241
 Seven Rivers Formation 318
 Serr Dolomite 363
 Seward Peninsula 241, 242, 256
 Shasket Creek 105
 Sheep Mountain Formation 459
 Sheeprock Mountains 274, 275
 Sherwood Mine 369
 Sheset Creek 247
 Shinarump Conglomerate 217, 393
 Shirley Basin 1, 161, 175, 419
 Shoal Creek Limestone 115
 Shorty Claim 392
 Shuttle Meadow Formation 368
 Siano Slate 391
 Siberian Plate 120, 121
 Side Hill Claim 392
 Sierra Ancha Area 162
 Sierra Madre 457
 Sierra Nevada Batholith 36
 Sierra Nevada Mountains 83
 Signal Mountain Formation 182
 Silver Ness Area 228
 Silver Plume Granite 105, 206
 Silver Queen Mine 366
 Silvertip Vein 414
 Simonson Dolomite 363
 Simpson Formation 13
 Sioux Quartzite 353

GEOPHYSICAL FEATURE INDEX

Sir-Sile Lake Amphibolite 391
 Skaergaard Intrusion 59, 60
 Skull Creek 17
 Skull Creek Shale 17, 236
 Smith Lake District 119, 333, 407
 Smith Mine 389
 Snake River 91
 Snake River District 265
 Snowbank Stock 353
 Solberg Schist 391
 Soudas Iron-Formation 135
 South Alligator Valley 210, 398
 South Frying Pan Creek 247
 South Park Area 181
 South Riley Pass District 404
 Sparta Formation 464
 Spearhead Member 174
 Spur Mountain 267, 278, 309, 320,
 327, 363, 395, 396
 Spruce Pine Area 205
 Spruce Pine Group 219
 St. Francois Mountains 28
 St. Lawrence Island 105
 St. Peter's Dome 105
 Stag Creek Volcanics 211
 Stanley Area 285, 392
 Stanley Shale 182
 Star Fluorite District 366
 Steele Shale 452
 Stephenson Mine 389
 Sterling Formation 423
 Stewart Fault 16
 Stinking Hot Springs 48
 Stobie Formation 408
 Stonefort Limestone Member 115
 Stonewall Formation 236
 Stony Mountain Formation 236
 Stony Rapids Linear Belt 330
 Storm King Peak 228
 Stuart Shale 182
 Styx River Batholith 220
 Sugarloaf Arkose 369
 Summerville Formation 339, 375
 Sunshine Mine 162
 Supai Formation 266, 205
 Superior Tectonic Province 408
 Susaayr Batholith 87
 Swan Peak Formation 363
 Sycamore Limestone 182
 Sylvan Shale 182
 Tacket Formation 160
 Talcott Formation 368
 Tallahassee Creek 240
 Tallahassee Creek Conglomerate 240
 Tallulah Falls Formation 204
 Tampa Limestone 371
 Tanana-Kuskokwim Lowlands 253
 Tank Hill Limestone 410
 Tanner Basin 69
 Tashkeet Artesian Basin 151
 Taxpayer Sample 389
 Taylor Mine 389, 390
 Tazim Group 367
 Tee Lake Area 415
 Teller Mountain 91
 Temple Mountain 302
 Teapleton Member 191
 Tensleep Sandstone 251
 Thelon River 142
 Thermopolis Shale 452
 Thessalon Formation 408
 Thirsty Canyon Tuff 174
 Thirtynine Mile Volcanic Series
 240
 Thomas Range 175, 278, 309, 363,
 366, 395, 396
 Thompson Creek 198
 Thompson Peak Formation 221
 Thomson Formation 353
 Three Forks Basin 189
 Three Lick Bed 356
 Thurman Sandstone 182
 Thursday Dolomite 363
 Tien-Shan 88
 Tistered Hills Group 182
 Tissins District 183
 Tin Mountain 105
 Tired Pup Batholith 220
 Tishomingo Granite 182
 Tobacco Root Mountains 189
 Tobin Mine 389

GEOLOGICAL FEATURE INDEX

Tidito Limestone 198, 357
 Togo Formation 96
 Toiyabe Range 255
 Toleca Quartz Bonzonite 116, 219
 Tombstone Batholith 54
 Tombstone Mountains 54
 Tombstone River 54
 Tongue River Member 326, 406
 Topaz Mountain 276, 281, 309, 363
 Tordilla Sandstone Member 378
 Toroseep Formation 266, 345
 Townsend Valley 331
 Tommy Gneiss 204
 Tradewater Group 115
 Trail Creek 247
 Trail Ridge Placer Deposit 404
 Transantarctic Mountains 201
 Trapper Creek 247
 Trapper Vein 411
 Traverse Ranch District 404
 Troubad Formation 353
 Troy Granite 182
 Tucumari Shale 257
 Turner's Falls Sandstone 368
 Turpi Bassif 85
 Turquoise Mountain 30
 Tuscaloosa Formation 406
 Tyan Kera Group 236
 Two Butte Creek 232
 Tyndale Creek Syncline 339
 Tyler Formation 160
 Tyonek Formation 423
 Typer Slate 348
 Uinta Basin 161
 Ukrainian Shield 170, 171
 Uncle Sam Fault 384
 Uncosphagze Formation 199
 Uncosphagze River Area 226
 Union Valley Formation 182
 Unkpapa Sandstone 381
 Uravan Mineral Belt 22
 Ursilite-Weeksite Group 271
 Uwharrie Formation 219
 Vallecito Creek 199, 228
 Vasoosa Formation 182
 Venoco Group 182
 Variscan Alkalic Intrusives 85
 Vermilion District 353
 Vermilion Fault 236
 Vermilion Granite 353
 Vermilion Bassif 135
 Vicksburg Formation 456
 Viola Limestone 13, 182
 Virginia Formation 135, 353
 Voelker Prospect 389
 W. Wilson Mine 162, 279, 280
 Wagon Bed Formation 1
 Wah-Heh-Fushee Belt 322
 Walker River Basin 83
 Wall Creek Sandstone Member 452
 Wall Mountain Tuff 240
 Walnet Clay 182
 Walnet Creek Fault 384
 Wanakah Formation 185
 Wanapum Formation 182, 182
 Waring Mountains 256
 Warren Area 285
 Warwoman Lineament 204
 Wasatch Basin 161
 Wasatch Formation 227, 234, 315,
 335, 393, 471
 Wasatch Plateau 161
 Wasatch Range 88
 Washakie Basin 161
 Washita Valley Fault Zone 182
 Wauneka Mine 389
 Weches Formation 468
 Wellborn Formation 362
 Wellington Formation 181, 182
 Wells Formation 386
 Wellsville Mountains 88
 West Bear Lake 304
 West Foreland Formation 423
 West Rock Sill 36
 West Spring Creek Formation 182
 Western Desert 425
 Western Lowlands 220
 Westmoreland Conglomerate 394
 Westwater Canyon Member 103, 138,
 191, 207, 317, 338, 381, 382,
 385, 393, 397, 405, 406, 435

GEOGRAPHICAL FEATURE INDEX

Wet Mountains 282
 Weteeka Shale 182
 Wewe Slate 391
 Wewoka Formation 182
 Wheeler Creek Pluton 35C
 Whiskey Lake Greenstone Belt 409
 White Canyon District 336
 White Horse Group 182
 White King Mine 162
 White Mountains 105, 130
 White Pine Mine 389
 White River Formation 1, 175, 227
 White River Group 198, 233, 251, 326
 White Signal District 384
 Whitehills Lake 182
 Whitesand Formation 42
 Whitsett Formation 33, 34, 238, 248, 315, 379
 Wichita Mountains 105, 418
 Wilcox Group 456, 464
 Williston Basin 198
 Willow Creek district 285
 Wilson Creek Gneiss 213
 Wiltshire-Acton Ranch 232
 Wind River Basin 21, 161
 Wind River District 376
 Wind River Formation 21, 251, 328, 376, 393, 452
 Wingate Sandstone 339, 375, 421
 Winnipeg Formation 236
 Witwatersrand 302, 307
 Boback Basin 161
 Wollaston Lake 415
 Wollaston Lake Fold Belt 58, 318
 Wolrab Hill Fault 16
 Wobble Shale 182
 Wonder Vein 247, 400, 411
 Wood Mine 162
 Woodbine Sand 13, 182
 Woodford Chert 182
 Woodrow Mine 312
 Woodstock Vein 411
 Workman Claims 162
 Yates Formation 118
 Yearian Creek 247, 411

KEYWORD INDEX

SEARCHED INDEX

AEROSILITE 323, 326
 ABSORPTION 8
 ACIDITY 826
 ACIDS 7, 67, 69, 74, 100, 301, 425
 ACIDS, HUMIC 7, 69, 74, 100, 301
 ACIDS, HYDROCHLORIC 425
 ACTINIUM 23
 ACTIVATION ANALYSIS 31, 33, 46,
 60, 66, 69, 101, 101, 178, 199,
 208, 205, 219, 230, 240, 255
 ABSORPTION 61, 149
 ALASKITES 45, 88, 89, 213, 350
 ALKALINE ROCKS 27, 38, 45, 54, 85,
 86, 88, 89, 98, 105, 124, 173,
 213, 350, 802
 ALKALINITY 204, 205, 236
 ALLASITE 45, 67, 129, 130, 350,
 307, 311, 412
 ALLUVIUM 189, 194, 232, 240
 ALTERATION 6, 8, 17, 23, 30, 43,
 51, 86, 100, 136, 161, 203, 208,
 217, 234, 238, 267, 271, 279,
 285, 286, 295, 304, 309, 315,
 316, 317, 318, 329, 330, 331,
 345, 350, 352, 383, 392, 456,
 462, 471
 ALUMINUM 161, 230, 321
 ANATASE 136
 ANATEXIS 453
 ANDERSONITE 264, 265
 ANDESTITES 113, 154, 350
 ANTICLINES 267, 375, 407
 APATITE 48, 52, 53, 60, 72, 97,
 173, 386
 AQUIPERS 63, 251, 338, 371, 383,
 435, 463
 ARGILLITES 120, 121, 203, 455
 ARGON 41
 ARAGON 39, 50
 ASPHALTITE 118, 182, 302
 ASPHALTS 12
 AUTUBITE 81, 202, 261, 280, 288,
 319, 326, 380, 384
 BACTERIA 14, 21, 252, 297, 381,
 828, 826, 843
 BARITE 168
 BARTON 119, 259
 BASALTS 72, 102, 111, 113, 123,
 131, 154, 390
 BASINS 69, 120, 151, 203, 304,
 305, 354, 405, 430, 471
 BASSETITE 384
 BATHOLITHS 87
 BAYLEYITE 264
 BECQUEELITE 272, 294
 BENTONITE 136, 267, 331
 BERYL 278, 275
 BERYLLIUM 267, 278, 275, 309, 327,
 395
 BETA-URANOFLUORITE 267, 289, 299, 395
 BIBLIOGRAPHIES 437, 445
 BILLIETITE 272, 294
 BIREFRIGENCE 312
 BISHOFITE 214, 472
 BORNITE 217
 BOROB 161
 BRASSERITE 117, 300, 302, 364,
 408, 412
 BRECCIAS 16, 192, 266, 339, 349,
 354, 357, 366
 BRECCIATION 330
 BROCKITE 411
 BROMINE 230
 BY-PRODUCTS 417, 427, 429, 436,
 444, 449
 CALCIOVOLBORTHITE 339
 CALCITE 21, 334, 339, 386, 425
 CALCIUM 45, 48, 52, 53, 106, 259,
 282, 316, 386
 CALCRETES 80
 CASBRIAS 213, 418, 459, 461
 CARBON 21, 62, 69, 302
 CARBON DIOXIDE 41, 82, 85, 107,
 139, 266, 276
 CARBONACEOUS MATERIALS 4, 7, 9,
 10, 12, 19, 38, 51, 67, 69, 76,
 90, 91, 100, 120, 121, 136, 140,
 171, 207, 208, 221, 236, 297,
 317, 329, 332, 338, 337, 343,
 345, 352, 354, 355, 356, 368,
 372, 380, 381, 382, 385, 397,
 404, 406, 407, 420, 423, 425, 434
 CARBONATITES 705, 173, 314
 CARBONIPEROUS 16, 25, 80, 115,
 132, 181, 185, 203, 266, 460
 CARNOTITE 80, 81, 202, 217, 354,
 380, 418, 434
 CERIUM 53, 204, 269
 CHALCOCITE 217, 266
 CHALCOPRITITE 217, 275, 330, 339
 CHEMICAL ANALYSIS 2, 4, 5, 5, 6,
 9, 10, 12, 13, 15, 16, 19, 20,
 21, 23, 25, 29, 31, 32, 33, 36,
 37, 40, 42, 44, 45, 46, 50, 55,
 57, 59, 60, 62, 64, 65, 66, 69,
 72, 76, 77, 78, 79, 80, 85, 88,
 90, 91, 92, 93, 95, 96, 98, 99,
 100, 101, 103, 106, 109, 113,
 114, 115, 120, 123, 128, 125,
 126, 127, 129, 132, 135, 136,

KEYWORD INDEX

CHEMICAL ANALYSIS 139, 141, 143, 144, 147, 149, 150, 152, 155, 157, 158, 159, 160, 161, 165, 166, 170, 171, 172, 174, 177, 178, 180, 181, 184, 186, 188, 189, 190, 191, 193, 194, 197, 199, 201, 204, 205, 210, 212, 213, 214, 215, 216, 218, 219, 220, 222, 223, 224, 225, 228, 229, 230, 231, 232, 240, 241, 242, 247, 250, 251, 252, 253, 255, 256, 257, 258, 259, 262, 264, 268, 272, 277, 278, 280, 282, 285, 286, 287, 289, 290, 291, 298, 295, 296, 299, 306, 310, 311, 319, 323, 325, 326, 336, 337, 365, 366, 423, 429, 430, 454, 455, 466, 472, 473

CHEMICAL FORMULAS 264, 269, 284, 287, 298, 293, 298, 298, 310, 325

CHEMICAL PROPERTIES 79, 81, 190, 264, 268, 273, 279, 284, 287, 288, 291, 293, 294, 295, 296, 325

CHEMICAL STRUCTURES 79, 100, 268, 272, 273, 287, 291, 293, 295, 298, 299, 306, 310, 325

CHLORINE 50, 107, 230

CHLORITE 31, 48, 49, 119, 238, 317, 329

CHROMATOGRAPHY 90

CHROMIUM 49, 269

CLARKITE 292

CLASSIFICATIONS 382, 384, 386, 377

CLAYS 16, 49, 140, 222, 337, 374, 379, 420, 430, 464

CLINOPTILOLITE 33, 434

COALS 42, 67, 100, 194, 202, 203, 297, 326, 362, 399, 404, 417, 420, 434, 445

COPALT 161

COPPERITE 81, 96, 117, 278, 283, 296, 303, 312, 321, 329, 345, 352, 364, 382, 397, 434

COLLOIDS 352

CHLORIMETRY 88, 124

COMPLEXING 8, 11, 32, 81, 82, 90, 93, 107, 131, 149, 164, 358

COMPUTER ANALYSIS 223, 250, 472

CONCENTRATIONS 2, 3, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 25, 27, 31, 32, 33, 35, 36, 38, 48, 49, 50, 51, 55, 57, 59, 60, 62, 65, 66, 67, 69, 72, 74, 77, 78, 83, 84, 85, 87, 88, 91, 92, 94, 96, 98, 99, 104, 109, 110, 111, 113, 118, 119, 120, 122, 123, 126, 126, 127, 129, 132, 135, 139, 140, 146, 148, 149, 150, 159, 160, 161, 166, 170, 171, 172, 174, 182, 185, 189, 190, 191, 198, 199, 204, 205, 213, 220, 224, 230, 231, 232, 280, 281, 282, 251, 255, 256, 257, 258, 298, 331, 337, 343, 356, 363, 365, 372, 374, 387, 411, 412, 419, 423, 425, 425, 430, 436, 442, 454, 466, 468, 472, 473

CONGLOMERATES 80, 158, 185, 217, 240, 256, 267, 307, 314, 335, 349, 365, 372, 376, 390, 395, 408, 418, 426, 457, 467

COPPER 17, 58, 161, 185, 210, 337, 349, 368

CRETACEOUS 56, 162, 176, 185, 251, 256, 381, 386, 389, 395, 408, 421, 460

CRYSTALLOGRAPHY 79, 183, 264, 270, 272, 273, 293, 298, 299, 306, 310, 325

DAUGHTER PRODUCTS 39, 46, 63, 103, 118, 156, 209

DAVIDITE 269

DEPOSITIONAL ENVIRONMENTS 80, 108, 180, 304, 308, 330, 340, 356, 362, 365, 379, 398, 408, 461, 464

DEPOSITIONAL ENVIRONMENTS, CHANNEL 38, 233, 248, 337, 338, 372, 381, 393, 406, 407, 418, 428

DEPOSITIONAL ENVIRONMENTS, EOLIAN 385, 393

DEPOSITIONAL ENVIRONMENTS, FLUVIAL 7, 30, 161, 217, 233, 248, 276, 327, 338, 343, 372, 381, 383, 388, 393, 406, 407, 416, 428

DEPOSITIONAL ENVIRONMENTS, LACUSTRIAL 357

DEPOSITIONAL ENVIRONMENTS, MARINE 10, 11, 120, 163, 393

DEPOSITS, BEDDED 22, 203

DEPOSITS, BERYLLIUM 396

DEPOSITS, COPPER 30, 41, 222, 266, 411, 417, 427, 488

DEPOSITS, GOLD 261, 384

DEPOSITS, HYDROTHERMAL 107, 128, 131, 138, 176, 276, 330, 339, 345, 349, 369, 392, 400, 467

DEPOSITS, OXIDIZED 380, 388, 413, 434

DEPOSITS, PHOSPHATE 10, 48, 63, 115, 132, 137, 147, 350, 371, 401, 417, 429, 436

DEPOSITS, PLACER 116, 176, 226, 237, 245, 314, 362, 365, 389, 408, 468

DEPOSITS, ROLL 51, 56, 58, 61, 119, 136, 217, 227, 238, 258, 315, 316, 328, 334, 405, 406, 434, 459, 463

DEPOSITS, SALT 226

DEPOSITS, SILVER 261, 384

DEPOSITS, SUPERGENE 266, 348, 367, 389

DEPOSITS, THORIUM 267, 314, 400, 402, 411, 412, 448, 445, 445, 467

DEPOSITS, URANIUM 1, 19, 21, 22, 31, 34, 40, 41, 42, 47, 51, 56, 58, 61, 62, 70, 71, 73, 80, 90, 96, 103, 105, 119, 131, 136, 138, 142, 162, 175, 176, 183, 185, 187, 190, 196, 200, 203, 206, 207, 208, 209, 210, 211, 218,

KEYWORD INDEX

DEPOSITS, URANIUM 217, 222, 223, 227, 233, 235, 236, 237, 238, 243, 244, 245, 246, 249, 252, 255, 260, 261, 268, 265, 266, 267, 276, 279, 297, 301, 302, 308, 305, 307, 308, 309, 312, 315, 316, 317, 318, 320, 328, 329, 330, 331, 333, 334, 335, 339, 339, 340, 341, 342, 343, 348, 345, 347, 348, 349, 350, 357, 358, 359, 361, 365, 367, 369, 370, 372, 374, 375, 376, 377, 379, 380, 381, 382, 383, 388, 385, 388, 389, 390, 392, 393, 394, 395, 397, 398, 401, 403, 408, 405, 406, 407, 408, 412, 413, 418, 419, 421, 425, 426, 427, 428, 433, 434, 435, 436, 437, 438, 439, 440, 441, 445, 446, 448, 452, 453, 455, 457, 458, 463, 465, 466, 467, 471, 474

DEPOSITS, VANADIUM 22, 375, 421

DEPOSITS, VEIN 47, 70, 128, 131, 162, 176, 206, 247, 278, 280, 310, 330, 339, 342, 361, 363, 366, 374, 388, 390, 394, 400, 401, 402, 403, 411, 412, 418, 453, 467

DEPOSITION 16, 25, 222, 356, 372, 461

DEWINDITE 291

DIABASES 344, 389, 390

DIADOCHY 286, 378

DIAGENESIS 309, 372, 456

DIATRIMES 389

DIFFERENTIATION 8, 27, 38, 59, 110, 111, 128, 129, 148, 157, 328, 418

DIORITES 58, 877

DISEQUILIBRIUM, ISOTOPIC 43, 151

DISEQUILIBRIUM, RADIOACTIVE 39, 103, 110, 118, 146, 155

DISTRIBUTIONS 8, 9, 10, 18, 27, 30, 33, 35, 36, 37, 47, 55, 60, 62, 72, 85, 87, 88, 89, 92, 96, 99, 109, 113, 122, 123, 128, 129, 135, 139, 148, 145, 157, 159, 160, 171, 172, 178, 182, 190, 241, 328, 338, 351, 355, 412, 423, 461

DOLONITES 133, 318, 386, 410, 425, 467

DRILLING 58, 196, 207, 208, 211, 233, 397, 415, 450, 468

DUNHOUTITE 319

DYSPROSIVUM 230

EARTH CRUST 78

EARTH MANTLE 72, 123

ECONOMICS 183, 197, 258, 415, 416, 419, 421, 430, 440, 447, 451, 466, 469, 470, 474

EE 11, 61, 62, 81, 82, 93, 108, 118, 139, 149, 167, 223, 334, 340, 372

ELECTRICAL CONDUCTIVITY 186, 206, 205, 230, 462

ELECTRICAL RESISTIVITY 186

ELIMINATION 63, 209

EMBODIMENT 209, 415, 429

EOCENE 11, 38, 161, 202, 238, 328, 335, 358, 355, 379, 399, 405, 428, 452, 464

EPIDOTE 99

EPIGEOPETROS 21

EQUILIBRIUM, ISOTOPIC 68, 158

EQUILIBRIUM, RADIOACTIVE 7, 39, 48, 104, 155

EUXENITE 221, 387

EVAPORITES 118, 257

EXTRUSIVE ROCKS 27, 110, 145, 171, 220, 228, 276, 281, 370, 410

EXTRUSIVE ROCKS, INTERMEDIATE 38, 53, 54, 102, 113, 154, 350

EXTRUSIVE ROCKS, HAFIC 38, 72, 102, 111, 113, 123, 134, 154, 390

EXTRUSIVE ROCKS, SILICIC 28, 723, 174, 176, 203, 255, 278, 348, 366, 390, 460, 465

FACIES, GROUND WATER 341, 430

FACIES, METAMORPHIC 77

FACIES, SEDIMENTARY 118, 121, 328, 343, 354, 379, 385, 388, 393, 407, 461, 464, 471

FAULTS 138, 188, 206, 248, 267, 304, 318, 322, 327, 330, 331, 354, 366, 368, 383, 392, 400, 402, 403, 407, 409, 411, 413, 418, 421, 460

FELDSPARS 49, 97, 112, 113, 260, 329, 350, 379, 411, 456, 459

FELDSPARS, ALKALI 329

FELDSPARS, PLAGIOLASE 49, 49

PERROSELITE 61

FISSION TRACK ANALYSIS 72, 210

FLUORINOMETRY 2, 6, 46, 66, 84, 141, 148, 172, 194, 197, 228, 229, 241, 242, 250, 256, 258, 368, 430, 473

FLUORINE 58, 107, 230, 267, 276, 386

FLUORITE 52, 53, 168, 267, 278, 275, 320, 327, 363, 366, 395, 396

FOLDS 211, 267, 375, 407, 409

FOSSILS 28, 153, 302

FOURMARIERITE 272, 277

FRACTURES 309, 392, 403

GABBROS 5, 54, 95, 154, 172, 367

GADOLINIUM 53

GALENA 168, 330

GARNETS 45, 204, 339

KEYWORD INDEX

GEOGRAPHETRY 347

GEOCHRONOLOGY 24, 25, 43, 69, 96, 97, 112, 117, 153, 158, 162, 175, 333, 347, 351, 357

GEOLOGIC HISTORY 24, 25, 43, 69, 96, 97, 112, 117, 153, 158, 162, 326, 333, 338, 347, 351, 357, 414, 488, 489

GEOMORPHOLOGY 47

GEOTHERMOMETRY 47, 107, 330, 336, 367

GEBBANIR 100

GLACIATION 69, 142, 459

GNEISSES 5, 58, 66, 77, 112, 206, 213, 318, 348, 349, 368, 389, 390

GOETITE 411, 425

GOLD 17, 347, 410

GOVERNMENT PROGRAMS 29, 178, 179, 181, 182, 188, 189, 193, 198, 195, 199, 204, 205, 217, 219, 220, 225, 230, 231, 232, 236, 280, 281, 242, 251, 253, 255, 256, 257, 258, 457, 468, 469

GRAIN SIZE 67, 259, 343, 365, 388, 458

GRANITES 8, 14, 26, 35, 36, 40, 45, 55, 58, 66, 76, 85, 86, 87, 88, 89, 92, 96, 97, 105, 112, 116, 130, 135, 154, 157, 166, 176, 206, 213, 239, 241, 253, 271, 278, 275, 318, 348, 350, 353, 360, 368, 389, 390, 391, 412, 418, 423, 442, 453, 454, 466, 467

GRANODIORITES 45, 55, 240, 253

TRAVELS 205

GROUNDWATERS 3, 32, 43, 51, 52, 43, 63, 74, 82, 83, 93, 116, 126, 127, 139, 151, 167, 178, 179, 191, 182, 189, 189, 191, 193, 199, 204, 205, 219, 223, 225, 228, 230, 231, 232, 240, 251, 257, 266, 267, 279, 338, 360, 341, 345, 349, 357, 371, 372, 382, 393, 385, 389, 430, 435, 445, 458, 463

GUMMITES 279, 280, 285

GYPSON 118, 265, 257, 380, 429

HAPNIUM 208, 255

HATZELITE 271

HELIUM 41, 50, 191

HEMATITE 108, 119, 136, 138, 228, 315, 329, 330, 367, 411, 425

HORNBLENDE 273, 350

HOST ROCKS 34, 112, 118, 162, 175, 194, 203, 207, 238, 308, 319, 328, 329, 331, 338, 340, 345, 347, 354, 358, 366, 378, 391, 405, 411, 412, 418, 423, 455

HOT SPRINGS 44

HYDROXYL 17, 41

HYDROGEN SULFIDE 9, 12, 21, 41, 120, 121, 249, 266, 276, 297, 318

HYDROGEOCHEMISTRY 3, 29, 32, 40, 82, 75, 83, 93, 126, 127, 181, 186, 187, 161, 167, 178, 179, 181, 182, 184, 188, 189, 193, 198, 195, 199, 204, 205, 213, 219, 220, 224, 225, 228, 230, 231, 232, 240, 241, 242, 247, 251, 253, 255, 257, 258, 340, 371, 455

HYDROLOGY 118, 200, 383

HYDROTHERMAL PROCESSES 86, 102, 303, 376

IANTHINITE 295

IGNEOUS ROCKS 5, 8, 14, 18, 26, 27, 28, 30, 35, 36, 38, 40, 45, 53, 54, 55, 57, 58, 59, 60, 66, 72, 76, 83, 84, 85, 86, 87, 88, 89, 92, 95, 96, 97, 98, 99, 102, 102, 105, 106, 109, 110, 111, 112, 113, 116, 122, 123, 124, 129, 130, 134, 135, 144, 185, 158, 157, 159, 166, 168, 170, 172, 173, 174, 176, 185, 193, 200, 203, 204, 206, 213, 220, 221, 236, 239, 240, 241, 253, 255, 260, 271, 274, 275, 276, 280, 302, 304, 318, 318, 330, 348, 345, 346, 349, 350, 353, 354, 360, 365, 366, 367, 368, 370, 373, 364, 387, 389, 390, 391, 392, 395, 402, 411, 412, 418, 423, 442, 448, 445, 453, 458, 460, 462, 465, 466, 467

ILLITES 31, 110, 383

ILMENITE 238, 215, 362, 488

INCLUSIONS 72, 387

INSTRUMENTS 98, 108, 133, 177, 187, 201, 212, 216, 241, 289, 382

INTRUSIVE ROCKS 30, 61, 124, 185, 168, 324, 346

INTRUSIVE ROCKS, INTERMEDIATE 53, 58, 55, 85, 86, 88, 89, 95, 105, 116, 122, 154, 166, 275, 365, 388, 399, 390, 411, 448, 462

INTRUSIVE ROCKS, MAFIC 5, 58, 59, 95, 158, 172, 308, 330, 348, 367, 389, 390

INTRUSIVE ROCKS, SILICIC 6, 14, 26, 35, 36, 40, 45, 50, 55, 58, 66, 76, 85, 86, 87, 88, 89, 92, 96, 97, 105, 109, 112, 116, 130, 125, 154, 157, 166, 176, 189, 208, 206, 213, 239, 240, 241, 253, 260, 271, 274, 275, 280, 302, 318, 319, 320, 348, 350, 353, 360, 368, 373, 387, 389, 390, 391, 392, 412, 418, 423, 442, 453, 458, 460, 466, 467

INTRUSIVE ROCKS, ULTRAMAFIC 57, 98, 105, 106, 173, 314, 462

ION EXCHANGE 90, 124, 228, 419, 425, 427

IONIC RADII 52, 53, 106

IRON 61, 108, 182, 161, 171, 238, 269, 316, 317, 330, 337, 397

ISOTOPES 21, 28, 32, 68, 103, 118, 137, 151, 152, 153, 155, 175

JOURNAL 224

JORDSTROM 21

KEYWORD INDEX

TERRASSIC 31, 119, 121, 130, 138, 208, 238, 238, 255, 317, 336, 337, 346, 368, 375, 381, 385, 393, 397, 405, 406, 407, 461
 TERRITORIES 31, 119, 126, 238, 317, 393
 KIMBERLITES 98
 LABTRANCE 269
 LATERITES 458
 LEACHING 6, 18, 26, 33, 38, 48, 67, 75, 138, 158, 207, 279, 285, 331, 348, 365, 366, 413, 417, 420, 424, 425, 426, 438, 439, 443, 447, 448, 449, 450, 452, 458
 LEAD 25, 43, 50, 52, 96, 97, 112, 117, 155, 158, 165, 175, 210, 277, 337, 360
 LEAD 210 155
 LIEBIGITE 367
 LIGNITES 42, 67, 100, 198, 262, 326, 331, 362, 417, 438
 LIMESTONES 53, 133, 139, 185, 203, 266, 357, 366, 371, 410, 445, 459, 465
 LIBONITES 138, 185, 234, 301, 315, 339, 411
 LITHIUM 225, 259, 278
 LITHOLOGY 237, 321, 329, 337, 355, 356, 388, 408, 461
 LOGGING 156, 187, 229, 468, 472
 MAGMA 52, 122, 129, 159
 MAGMATIC PROCESSES 8, 18, 27, 38, 55, 59, 76, 85, 89, 99, 110, 111, 122, 124, 129, 135, 148, 157, 159, 172, 304, 324, 418
 MAGNESIUM 45, 161, 230, 259, 386
 MAGNETITE 56, 173, 238, 315, 350, 362, 411
 MAGNETITE 51, 230, 275, 327
 MAPPING 1, 221, 239, 422
 MARCASITE 51, 118, 168, 230
 MASUYITE 272, 277
 MERCURY 17
 METABASITE 279, 389
 METACORPORIC ROCKS 5, 58, 59, 66, 77, 83, 96, 109, 112, 182, 168, 170, 171, 185, 193, 206, 213, 220, 236, 281, 253, 255, 318, 388, 399, 353, 361, 373, 378, 389, 390, 391, 398, 400, 406, 409, 411, 405, 457, 459
 METAMORPHISM 112, 172, 453, 462
 METASEDIMENT 50, 58, 102, 193, 220, 255, 318, 368, 353, 378, 389, 390, 400, 411, 457, 459
 METATORBERNITE 279, 323, 326, 340, 349, 403
 METAZEUSPERITE 279

METEORS 20, 27, 68, 86, 106, 125, 141, 188, 167, 177, 187, 191, 206, 209, 212, 214, 216, 218, 289, 259, 270, 317, 431
 METICS 46, 301, 453, 456
 METEOSCOPY, ELECTRON 117, 316, 317, 347
 METATITITES 241, 253, 453
 METEORITES 28, 32, 33, 39, 82, 75, 76, 80, 118, 131, 145, 152, 153, 159, 160, 168, 175, 213, 382, 413, 453, 463
 METE WATERS 417, 426, 427, 449
 METEORIZATION 47, 118, 162, 167, 191, 206, 238, 308, 305, 306, 315, 318, 322, 328, 333, 334, 335, 338, 342, 388, 346, 357, 370, 381, 383, 389, 390, 457
 METEORIZING SOLUTIONS 48, 96, 108, 119, 128, 131, 136, 164, 233, 266, 267, 276, 300, 327, 328, 338, 341, 369, 370, 372, 382, 389, 405, 413
 METEORALS, ACCESSORY 8, 18, 45, 51, 54, 57, 87, 89, 97, 122, 128, 129, 130, 168, 173, 239, 261, 286, 321, 350, 362, 387, 388, 411, 412, 418, 488
 METEORALS, CLAY 31, 33, 49, 86, 119, 136, 220, 317, 324, 325, 383, 406, 420, 425
 METEORALS, COPPER 203, 217, 266, 275, 330, 339, 388
 METEORALS, IRON 21, 51, 56, 56, 58, 6, 108, 118, 119, 120, 121, 136, 138, 167, 168, 173, 185, 207, 217, 223, 234, 260, 266, 275, 301, 315, 329, 330, 332, 339, 344, 350, 362, 365, 382, 384, 408, 411, 425
 METEORALS, MOLYBDENUM 21, 45, 169, 369
 METEORALS, RARE EARTHS 45, 53, 97, 116, 129, 130, 221, 264, 350, 367, 387, 393, 402, 411, 412, 448, 467
 METEORALS, TITANIUM 45, 129, 136, 230, 315, 362, 376, 411, 488
 METEORALS, URANIUM 272, 277, 279, 280, 285, 292, 298, 295, 349
 METEORALS, URANIUM 6, 18, 50, 70, 80, 81, 82, 87, 96, 47, 107, 117, 128, 143, 150, 165, 212, 217, 219, 221, 261, 264, 265, 266, 267, 268, 269, 271, 272, 273, 275, 277, 278, 279, 280, 283, 284, 285, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 302, 303, 306, 311, 311, 312, 313, 318, 319, 321, 323, 325, 326, 329, 330, 336, 339, 345, 350, 352, 358, 357, 368, 369, 369, 372, 373, 376, 380, 382, 384, 387, 389, 392, 395, 397, 399, 403, 408, 409, 410, 412, 413, 418, 430, 453, 467

KEYWORD INDEX

MICRALS, URANIUM 6, 70, 81, 82, 87, 96, 97, 107, 117, 128, 143, 150, 219, 221, 266, 268, 269, 275, 277, 278, 279, 280, 283, 285, 296, 300, 302, 303, 311, 312, 318, 321, 329, 330, 336, 365, 352, 357, 368, 392, 398, 387, 399, 392, 397, 399, 400, 410, 412, 434, 467

MICRALS, URANIYL 80, 81, 262, 217, 261, 264, 265, 267, 271, 273, 277, 280, 284, 285, 287, 288, 289, 290, 291, 292, 298, 295, 304, 310, 319, 320, 323, 325, 326, 339, 350, 352, 354, 368, 367, 372, 380, 382, 388, 389, 395, 399, 404, 413, 418, 434, 457

MICRALS, VANADIUM 339

MINES 62, 268, 265, 267, 312, 343, 379, 381, 382, 388, 395, 413, 427, 449

MINING 73, 196, 235, 258, 267, 328, 397, 421, 424, 426, 432, 438, 435, 436, 441, 446, 448, 449, 451, 469

MISCELLANEOUS, SOLUTION 67, 617, 619, 425, 426, 432, 438, 437, 438, 439, 440, 442, 443, 446, 447, 450

MIOCENE 34, 202, 354, 371

MISSISSIPPIAN 16, 25, 115, 203, 266, 460

MODELS 223, 334

MOLYBDENITE 45, 369

MOLYBDENUM 48, 119, 142, 169, 206, 310, 337, 369

MONTMORILLONITES 21, 33, 119, 136, 238, 317, 383, 420

MONTZONITES 55, 275, 384

MONTZONITES, QUARTZ 54, 109, 116, 280, 350, 392, 460

MUDSTONES 207, 208, 257, 354, 356, 368, 372, 405, 407

NATURAL GAS 120, 288

NEOS 81

NICKEL 161

NIOTIUM 6, 166

NITROGEN 81

NOVACEKITE 288

OBSIDIAN 174

OLIGOCEANE 13, 202, 331, 380, 408

OLIVINE 60, 106, 123

OPTICAL PROPERTIES 264, 268, 270, 272, 273, 282, 284, 285, 287, 288, 289, 291, 293, 298, 295, 298, 299, 300, 306, 310, 312, 313, 319, 325

ORDOVICIAN 115, 410

ORE CONTROLS 217, 222, 288, 276, 328, 331, 335, 383, 387, 389, 393, 397, 406, 407, 429

ORE GRADES 802, 805, 817, 886

ORE GUIDES 31, 47, 136, 138, 208, 234, 236, 238, 315, 317, 320, 385, 431

ORIGINS 14, 26, 38, 47, 51, 70, 71, 96, 107, 108, 131, 266, 267, 276, 297, 302, 305, 307, 308, 309, 315, 317, 319, 322, 328, 326, 327, 329, 330, 330, 331, 333, 334, 338, 339, 340, 341, 342, 344, 345, 346, 347, 348, 349, 351, 357, 358, 359, 360, 370, 372, 375, 376, 377, 381, 388, 389, 390, 400, 405, 428, 453, 458

OBIGESES 170, 388, 386, 361, 391, 409, 414

OBIGESES, LARASIDE 334, 414

OXIDATION 48, 52, 56, 61, 62, 96, 102, 114, 128, 136, 138, 143, 167, 227, 233, 234, 237, 238, 273, 295, 297, 301, 315, 338, 352, 413, 424, 426, 443, 463

OXYGEN 21, 41, 161, 268

PALOCENE 335, 399, 408, 405, 428, 452

PAREGENESIS 107, 136, 312, 317, 329, 330, 358, 413

PARNSONITE 289, 350

PEATS 7, 78, 91, 100, 202

PEGRATITES 58, 116, 189, 204, 206, 213, 260, 302, 314, 318, 330, 348, 353, 368, 373, 387, 389, 390, 467

PEKSTYLVIAN 115, 132, 181, 185, 203, 266

PERIDOTITES 106

PERMEABILITY 328, 348, 393, 458

PEREIA 118, 181, 185, 203, 257, 266, 302, 393, 419, 421

PETROLEUM 2, 3, 12, 13, 94, 120, 248, 380

PH 8, 11, 51, 61, 62, 81, 82, 83, 90, 93, 108, 131, 139, 149, 169, 208, 223, 228, 230, 319, 372, 428, 426, 438

PHASE RELATIONSHIPS 61, 79, 81, 82, 131, 260, 316, 319, 352

PHOBOLITES 53, 54

PHOSPHATE INDUSTRY 63, 137, 371, 429

PHOSPHORITES 11, 386, 401, 445

PHOSPHOROUS 161

PHOSPHORHYLITE 279, 280, 287, 291, 319

PHYLILITES 96, 390

PHYSICAL PROPERTIES 264, 268, 272, 273, 284, 285, 287, 288, 289, 291, 293, 294, 295, 298, 299, 300, 306, 310, 311, 313, 325, 328, 344, 393, 403, 456, 458

PITCHBLEND 70, 107, 128, 143, 150, 268, 278, 279, 311, 318,

KEYWORD INDEX

PITCHBLEND 330, 367, 389, 467

PLEISTOCENE 11, 69, 182, 185, 459

PLIOCENE 371

PLUTONIUM 153

POLAROGRAPHY 36

POBOSITY 344, 393, 403, 454, 458

POUPHETRIES 30, 102, 130, 168, 203, 277

POTASSIUM 27, 28, 30, 38, 45, 53, 76, 77, 78, 123, 130, 135, 161, 177, 259, 337, 472

POTASSIUM 40 203

PRECAMBRIAN 28, 58, 135, 182, 158, 170, 185, 189, 199, 213, 224, 236, 280, 344, 346, 353, 385, 390, 391, 394, 408, 414, 457

PRECIPITATION 93, 100, 131, 167, 175, 266, 276, 330, 345

PROSPECTING 1, 13, 17, 26, 33, 40, 42, 44, 126, 127, 136, 138, 139, 141, 156, 176, 177, 178, 179, 180, 183, 184, 185, 186, 187, 191, 192, 194, 196, 197, 198, 200, 206, 205, 206, 207, 208, 209, 210, 211, 212, 215, 216, 218, 223, 224, 227, 228, 230, 231, 235, 236, 237, 238, 239, 241, 243, 248, 245, 246, 247, 248, 249, 251, 252, 256, 257, 259, 260, 261, 262, 315, 322, 324, 337, 353, 358, 361, 368, 373, 382, 415, 422, 428, 431, 441, 448, 451, 452, 457, 464, 465, 467, 471, 472

PROSPECTING, BOTANICAL 190

PROTACTINUM 153

PROTACTINIUM 231 155

PROVENANCE 240

PYRITE 21, 51, 56, 61, 118, 119, 120, 121, 136, 167, 207, 217, 233, 234, 260, 266, 275, 329, 330, 332, 339, 344, 365, 367, 382, 388, 408

PYROKERMES 60, 72, 77, 106

PYROKERMITES 462

QUARTZ 49, 55, 68, 329, 350, 365, 379, 388, 411, 425, 456

QUARTZITES 58, 59, 102, 193, 353, 378, 408, 411, 459

QUATZITE 7, 11, 69, 102, 102, 153, 176, 185, 189, 459

RADIATION 90, 104, 125, 226, 243, 431

RADIOACTIVE DECAY 156

RADIOACTIVITY 13, 16, 28, 37, 78, 133, 180, 183, 198, 221, 226, 229, 353, 362

RADIOMETRIC ANALYSIS 46, 125

RADIOMETRY 30, 103, 133, 177, 147, 193, 201, 209, 212, 243, 246

RADON 1, 7, 13, 23, 25, 84, 63, 137, 155, 371, 429

RADON 226 110, 125, 155

RADON 13, 40, 41, 42, 63, 155, 186, 210, 371

RADON 222 155, 209, 246

RADON 271

RARE EARTHS 18, 31, 50, 52, 53, 166, 173, 255, 282, 387, 412

RATIOS 6, 7, 12, 20, 23, 24, 25, 26, 49, 68, 69, 77, 96, 112, 134, 137, 146, 146, 150, 151, 271, 312, 318, 360, 386

RATIOS, TH/U 6, 7, 33, 35, 55, 66, 88, 92, 95, 98, 99, 106, 113, 121, 130, 148, 145, 166, 193, 240, 255, 276, 360, 423

RECENT 69

RED BEDS 349

REDUCTION 12, 48, 52, 56, 61, 78, 98, 114, 128, 136, 167, 233, 234, 238, 248, 266, 297, 301, 315, 338, 348, 357

REFRACTIVE INDEX 265, 212

REMOTE SENSING 1, 29, 33, 109, 173, 177, 198, 201, 211, 215, 216, 226, 237, 239, 243, 246, 263, 455, 471, 472

REWARDITZ 291, 319

REVIEWS 46, 105, 177, 180, 186, 236, 277, 290, 332, 348, 359, 375, 390, 394

REVOLITES 26, 123, 178, 176, 203, 255, 278, 348, 366, 390, 460

RUTHERFORDINE 273, 292

RUTILE 136, 378, 411, 468

SABOGALITE 288, 326, 380

SALFITE 288, 326

SALINITY 44

SAMPLES, CORE 51, 62, 69, 136

SAMPLES, ROCK 31, 76, 101, 149

SAMPLES, SEDIMENT 181, 182, 199, 208, 219, 220, 231, 241, 251, 256, 257, 258, 259

SAMPLES, WATER 101, 101, 182, 188, 189, 193, 199, 219, 226, 228, 231, 232, 249, 241, 251, 253, 255, 256, 257, 258, 259

SAMPLING 16, 73, 112, 132, 160, 178, 179, 186, 199, 206, 210, 219, 220, 228, 225, 228, 232, 280, 287, 295, 258, 259, 430, 464, 466

SANDS 63, 245, 464

SANDSTONES 13, 21, 22, 31, 38, 46, 51, 73, 103, 118, 119, 133, 136, 138, 158, 161, 167, 181, 185, 190, 196, 200, 202, 203, 208, 222, 227, 232, 233, 238, 236, 238, 248, 249, 252, 254, 257, 267, 307, 308, 312, 315, 316, 317, 320, 329, 333, 335, 337, 338, 339, 341, 343, 345, 354, 361, 362, 369, 372, 374, 376, 377, 378, 379, 381, 382, 383, 384,

KEYWORD INDEX

SANDSTONES 388, 393, 395, 397, 399, 401, 404, 405, 406, 407, 413, 418, 421, 423, 425, 426, 431, 434, 445, 456, 458, 463, 466, 469, 470, 474
 SCHISTS 109, 213, 361, 368, 390
 SCHOEPITE 272
 SCHORLBERGERITE 264, 265, 306, 399
 SEDIMENTARY ROCKS 11, 13, 16, 17, 21, 22, 25, 31, 33, 34, 40, 42, 49, 51, 54, 58, 73, 80, 83, 100, 102, 103, 115, 116, 119, 120, 121, 132, 133, 136, 138, 139, 142, 150, 160, 161, 163, 167, 168, 170, 171, 174, 175, 181, 185, 190, 196, 200, 202, 203, 207, 208, 211, 217, 222, 224, 227, 232, 233, 234, 236, 237, 238, 240, 248, 249, 252, 250, 256, 257, 266, 267, 276, 281, 307, 308, 309, 312, 314, 315, 316, 317, 326, 327, 328, 329, 331, 332, 333, 335, 337, 338, 339, 341, 343, 345, 347, 349, 353, 356, 358, 356, 357, 361, 362, 365, 366, 367, 368, 371, 372, 378, 375, 376, 379, 381, 382, 383, 385, 386, 388, 390, 391, 393, 395, 396, 397, 398, 399, 401, 404, 405, 406, 407, 408, 410, 413, 416, 419, 421, 423, 425, 426, 428, 430, 431, 434, 435, 432, 436, 437, 438, 439, 463, 464, 465, 466, 467, 468, 471, 473, 474
 SEDIMENTARY STRUCTURES 69, 120, 151, 203, 211, 267, 281, 318, 355, 375, 385, 388, 391, 405, 407, 409
 SEDIMENTATION 356
 SEDIMENTS 7, 9, 10, 15, 63, 68, 126, 127, 140, 141, 142, 146, 178, 179, 196, 184, 198, 205, 219, 221, 222, 224, 225, 232, 240, 242, 245, 378, 379, 434, 468
 SEDIMENTS, STREAM 127, 181, 182, 188, 189, 193, 195, 199, 210, 213, 220, 232, 240, 247, 253, 255, 258, 259
 SELENIUM 21, 61, 218, 337, 346
 SEDGES 115, 118, 120, 132, 133, 160, 167, 190, 194, 202, 203, 232, 233, 332, 356, 361, 362, 369, 378, 376, 381, 385, 386, 397, 401, 404, 425, 430, 434, 436, 438, 468, 466, 468, 473
 SEDGES, CARBONACEOUS 25, 115, 120, 133, 160, 202, 203, 331, 332, 356, 368, 466, 468, 473
 SHEAR ZONES 350, 402
 SILICOS 161, 316
 SILITOSTONES 17, 217, 222, 354, 355, 404, 419, 423, 445, 459
 SILURIAN 461
 SILVER 17, 349, 367, 410
 SKUTTERUDITE 348
 SLATES 388, 390
 SODDITITE 298
 SODIUM 45, 161, 230, 250
 SOILS 33, 146, 190, 206, 458
 SOLUBILITY 81, 279
 SORPTION 4, 11, 48, 57, 61, 74, 81, 122, 139, 149, 228, 420
 SOURCE ROCKS 36, 44, 69, 116, 123, 142, 309, 331, 344, 345, 354, 360, 368, 376, 381, 383, 391, 405, 423, 458
 SPECTROMETRY 1, 20, 25, 29, 46, 57, 64, 65, 90, 95, 100, 104, 109, 123, 125, 135, 155, 156, 173, 177, 186, 201, 215, 216, 243, 337, 360, 422, 429
 SPEALERITE 168, 336
 SPHERE 45, 129
 STATISTICAL ANALYSIS 73, 136, 195
 STRATIGRAPHY 191, 207, 328, 335, 347, 355, 356, 383, 404, 428, 457
 STRUCTURAL GEOLOGY 135, 170, 191, 248, 263, 335, 348, 345, 386, 403, 407, 409, 420, 452, 460, 471
 SULFUR 21, 56, 62, 69, 107, 119, 121, 128, 316, 345, 425
 SURFACE WATERS 15, 41, 63, 75, 83, 126, 127, 137, 141, 188, 189, 193, 194, 199, 204, 205, 210, 213, 220, 222, 224, 228, 231, 232, 240, 241, 242, 251, 253, 255, 256, 257, 258, 259, 488, 485
 SURFACE WATERS, SALINE 9, 10, 11, 15, 64, 66, 120, 127, 146, 147, 169, 432
 SURVEYS, AERIAL 1, 29, 33, 109, 198, 201, 211, 216, 226, 239, 243, 263, 422, 471, 472
 SURVEYS, GEOCHEMICAL 54, 58, 182
 SURVEYS, GEOPHYSICAL 30, 103, 133, 173, 177, 186, 187, 190, 201, 209, 216, 226, 227, 239, 243, 246, 249, 415, 429, 455, 462
 SWARTZITE 268
 SYENITES 54, 95, 86, 88, 89, 93, 329, 390, 467
 SYENITES, NEPHELINE 53, 95, 105, 122, 166, 390, 462
 SYNCLINES 211, 409
 SYNGENESIS 10, 21, 345, 372
 TANTALITE 397
 TECTONICS 125, 170, 244, 248, 306, 460
 TENTACITE 1, 11, 13, 30, 100, 123, 161, 162, 176, 185, 189, 193, 202, 220, 234, 255, 274, 281, 302, 324, 331, 335, 346, 358, 355, 371, 379, 380, 393, 399, 404, 405, 423, 428, 452, 460, 468
 TEXTURES 315, 398
 THORIUM 53, 270
 THORITE 45, 51, 130, 246, 296, 400, 402, 411, 412
 THORIUM 6, 7, 3, 20, 30, 33, 35, 36, 37, 40, 41, 46, 52, 53, 55,

KEYWORD INDEX

PRECIOUS 57, 65, 66, 76, 77, 78, 85, 96, 67, 89, 92, 98, 99, 101, 106, 109, 112, 113, 118, 120, 121, 122, 123, 125, 129, 130, 133, 184, 185, 186, 151, 156, 159, 161, 166, 173, 177, 193, 208, 225, 280, 253, 255, 295, 318, 337, 350, 354, 360, 378, 387, 291, 402, 412, 423, 429, 450, 454, 467, 472

PRECIOUS RESERVES 314

THORIUM RESOURCES 214

THORIUM 224, 32

THORIUM 230, 32, 110

THORIUM 232, 32, 243

THORIUM 234, 104

THOROGOMMITE 286, 462

THUSCOLITE 302, 368

TILL 102

TITANIUM 48, 49, 119, 161, 238, 269, 316

TITRIMETRIC ANALYSIS 46

TOPAZ 278

TOWERNITE 261, 280, 326, 388

TRACE ELEMENTS 36, 262

TRACHYTES 102

TRIASSIC 40, 47, 73, 257, 336, 337, 368, 375, 385, 393, 396, 421

TUFFS 33, 51, 178, 185, 202, 203, 211, 255, 267, 276, 309, 315, 327, 331, 358, 381, 390, 395, 296, 423

TUNGSTEN 54

TYTURQUOITE 81, 289, 339, 411, 418

UBONITE 313

UCCOBORNITES 281, 308, 309, 308, 310, 342, 385, 391

UBASITES 6, 70, 81, 82, 96, 107, 117, 128, 183, 150, 219, 266, 268, 275, 278, 279, 280, 283, 285, 311, 312, 316, 330, 336, 345, 352, 357, 364, 365, 367, 384, 389, 392, 397, 399, 408, 410, 412, 434, 467

UBANIUM 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 15, 16, 17, 19, 23, 24, 25, 26, 27, 30, 31, 33, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 58, 55, 57, 59, 60, 62, 64, 65, 66, 67, 68, 69, 70, 72, 78, 75, 76, 77, 78, 83, 88, 85, 86, 88, 89, 91, 92, 93, 93, 98, 96, 97, 98, 99, 100, 101, 102, 106, 107, 108, 109, 111, 112, 113, 115, 116, 118, 120, 121, 123, 125, 126, 127, 129, 130, 132, 135, 137, 139, 180, 184, 185, 186, 187, 188, 189, 153, 150, 155, 156, 157, 158, 159, 160, 161, 168, 165, 166, 167, 168, 169, 170, 171, 172, 173, 178, 179, 177, 179, 181, 182, 188, 186, 187, 188, 189, 191, 193, 198, 199, 202, 208, 205, 210, 212, 213, 214, 219, 220, 221, 224, 225, 230, 231, 232, 240, 241, 242, 246, 251, 25, 255, 256, 257, 259, 259, 274, 311, 316, 320, 331, 332, 335, 337, 351, 356, 360, 363, 369, 373, 378, 386, 387, 391, 396, 398, 399, 410, 412, 417, 420, 422, 423, 424, 425, 427, 429, 430, 432, 436, 432, 433, 437, 439, 450, 454, 462, 467, 468, 472, 473

URANIUM RESERVES 12, 22, 29, 105, 192, 196, 268, 382, 401, 416, 422, 435, 467, 469, 470, 473, 474

URANIUM RESOURCES 22, 29, 30, 105, 192, 196, 201, 203, 332, 359, 375, 401, 416, 422, 432, 466, 467, 468, 469, 470, 473, 474

URANIUM 234 68, 118, 134, 151, 152, 155

URANIUM 235 20, 68, 155, 243

URANIUM 238 68, 104, 110, 114, 125, 134, 151, 152, 155, 243

URANIUM, LABILE 26, 360, 442

URANOCIRCITE 379, 280, 326

URANOPORESE 61, 279, 280, 299, 367, 372, 382

URANOPILITE 290

URABOTHORITE 87, 97, 296, 364, 367

URABOTS IONS 52, 81, 82, 93, 128, 228, 248, 311

URANYL IONS 4, 11, 33, 52, 81, 82, 93, 128, 154, 248, 297, 311

URSILITE 271

VAHADIES 31, 46, 100, 119, 161, 230, 269, 321, 335, 337, 386

VANDENPRIESSCHEITZ 172, 277

VEGETATION 4, 75, 190, 218, 432, 471

VOLATILES 157

VOLCANIC MATERIALS 106, 136, 171, 174, 203, 211, 255, 267, 281, 209, 327, 331, 330, 387, 356, 370, 379, 381, 383, 395, 408, 411, 423, 456, 458

VOLCANISH 281

WEATHERING 102, 130, 236, 266, 388, 460

WEERSITE 267, 271, 395

X-RAY DIFFRACTION 143, 264, 268, 272, 277, 282, 285, 291, 295, 296, 325, 226

XENON 50

XENOTIME 327, 402

YTTRIUM 6, 52, 53, 269

ZEOLITES 33, 438

ZEONERITE 280, 293

ZINC 142

ZIPPEITE 290, 325

ZIRCON 52, 97, 130, 286, 321, 362,

122
KEYWORD INDEX

ZINCOT 365, 367, 378, 444

ZINCOTIUM 48, 166, 242