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ABSTRACT

The combined s teady  s t a t e  conduct ion  and r a d i a t i o n  h e a t  t r a n s f e r  

problem f o r  a gray medium w i th in  a r e c t a n g u l a r  en c lo su re  i s  cons idered  

us ing the  d i f f e r e n t i a l  approx im at ion .  The P-1 and P-3 s p h e r i c a l  

harmonics approximations  f o r  th e  i n t e n s i t y  d i s t r i b u t i o n  a r e  in c o rp o ra te d  

in  the  equa t ion  o f  t r a n s f e r ,  and modif ied  Marshak-type boundary 

c o n d i t io n s  a r e  used in the  f o r m u la t io n .  The en c lo su re  w a l l s  a r e  assumed 

to  be iso thermal  b lack s u r f a c e s .

Two/"and f i v e ;^ o u p le d  second o r d e r  n o n l in e a r  p a r t i a l  d i f f e r e n t i a l  

equat ions  a r e  developed f o r  the  P-1 and P-3 ap p ro x im a t io n s ,  r e s p e c t i v e l y ,  

us ing th e  energy conse rva t ion  and m o m e n t -o f - in te n s i ty  e x p r e s s i o n s .  The 

P-1 equa t ions  have been num er ica l ly  so lved  using f i n i t e  e lement 

t e c h n i q u e s ,  v/hile the  P-3 r e l a t i o n s  have been solved us ing  a f i n i t e  

d i f f e r e n c e  s u c c e s s i v e / o v e r - r e l a x a t i o n  (SOR) a lg o r i th m .  Two-dimensional 

t em pera tu re  p r o f i l e s  and ho t  wall  h e a t  t r a n s f e r  r e s u l t s  a r e  p re sen ted  

f o r  square  en c losu res  and d i f f e r e n t  o p t i c a l  width  r e c t a n g u l a r  enc losu res  

f o r  a range o f  S ta rk  numbers.



1 . INTRODUCTION

Heat t r a n s f e r  by s imultaneous  conduction and r a d i a t i o n  in  a p la n a r  

medium capable  o f  absorb ing  and e m i t t in g  thermal r a d i a t i o n  has r ece iv ed  

c o n s id e ra b le  a t t e n t i o n  owing to  i t s  importance in such f i e l d s  as 

c r y o g e n ic s ,  a b l a t i o n  p r o t e c t i o n ,  g l a s s  m anufac tu re ,  and energy 

c o n se rv a t io n .  The mathematical  d i f f i c u l t i e s  involved  in  so lv in g  such 

problems a re  s u b s t a n t i a l  s in c e  the  d e s c r i p t i v e  energy r e l a t i o n  i s  a 

n o n l in e a r  i n t e g r o - d i f f e r e n t i a l  (o r  i n t e g r o - p a r t i a l  d i f f e r e n t i a l )  

eq u a t io n .

While s i g n i f i c a n t  a t t e n t i o n  has been addressed  to  one-dimensional  

problems of  combined mode energy t r a n s f e r ,  e . g .  [ 1 - 4 ] ,  on ly  l i m i t e d  

e f f o r t s  have been d i r e c t e d  to  m ul t id im ens iona l  problems. Typical  

s o l u t i o n  methods inc lude  use o f  the  d i f f u s i o n  ap p ro x im a t io n y ^ [ 5 ] , v a l i d  

only  f o r  o p t i c a l l y  t h i c k  media,  and the  Hotte l  zone method [5]  f o r  the  

r a d i a t i o n  exchange. In th e  l a t t e r  method, an i t e r a t i v e  scheme must be 

a p p l i e d ,  w ith  the  tempera ture  d i s t r i b u t i o n  i n i t i a l l y  assumed in  the  

r a d i a t i v e  computation and then updated when th e  multimode energy 

ba lance  i s  o b ta in e d .  In a d d i t i o n ,  the  zonal method r e q u i r e s  s i g n i f i c a n t  

s u b d iv i s io n  o f  the  volume in o rd e r  to  o b ta in  r e a l i s t i c  r e p r e s e n t a t i o n s  

o f  the  tempera ture  f i e l d .  Multidimensional  r a d i a t i v e  t r a n s f e r  s tu d ie s  

i n  p la n a r  media have a l s o  been l i m i t e d  [ 7 - 9 ] ,  w i th  e f f o r t s  p r im a r i ly  

d i r e c t e d  to  approximation methods.  U n fo r t u n a t e ly ,  use of  t h e se  methods 

in  multimode h ea t  t r a n s f e r  problems would r e q u i r e  s o l u t i o n  techniques  

s i m i l a r  to  those  used with the  Hot te l  zone method and thus  would 

-probafelt ^ e  com puta t iona l ly  q u i t e  len g th y .
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An a l t e r n a t i v e  method o f  s o l u t i o n  f o r  coupled conduction  and 

r a d i a t i o n  problems, which may be used f o r  m ul t id im ens iona l  g e o m e t r ie s ,  

i n c o r p o r a t e s  the  d i f f e r e n t i a l  approxim ation  (moment m ethod ) . In t h i s  

method, the  r a d i a t i o n  i n t e n s i t y  i s  approximated by a s e r i e s  o f  s p h e r i c a l  

harmonics.  This s i m p l i f i c a t i o n  t rans fo rm s  the  i n t e g r a l  equa t ion  of  

r a d i a t i v e  t r a n s f e r  to a s e r i e s  o f  p a r t i a l  d i f f e r e n t i a l  e q u a t i o n s .  The 

r e s u l t i n g  equa t ions  and Marshak-type boundary c o n d i t io n s  [10] can be 

so lved  to g e th e r  w i th  the c o n se rv a t io n  o f  energy e x p re s s io n .  One obvious 

advantage  o f  t h i s  method i s  t h a t  i t  s i m p l i f i e s  the  s o l u t i o n  te ch n iq u e ,  

s i n c e  the p a r t i a l  d i f f e r e n t i a l  eq u a t io n s  may be so lved  by s tan d a rd  

numerical  methods.

In t h i s  paper ,  the  combined conduction and r a d i a t i o n  h e a t  t r a n s f e r  

problem f o r  a gray medium w i th in  a r e c t a n g u l a r  en c lo su re  composed of  

i so thermal b lack w a l ls  i s  cons idered  using the  d i f f e r e n t i a l  

ap p rox im a t ion . .  The P-1 and P-3 s p h e r i c a l  harmonics approximat ions  fo r  

th e  i n t e n s i t y  a re  used to p r e d i c t  both tempera ture  and h e a t  t r a n s f e r  in  

the  two-dimensional f i e l d .

2.  FORMULATION

2.1 Background

The problem to be considered  i s  t h a t  o f  two-dimensional h e a t  

t r a n s f e r  in  a r e c t a n g u la r  enc losu re  composed o f  b lack  i so thermal  w a l l s .  

The in te rv en in g  medium may absorb and emit r a d i a t i o n  and (1) i s  assumed 

to  have an index o f  r e f r a c t i o n  of  one; (2) i s  assumed to  be gray and 

have uniform tem pera tu re - independen t  p r o p e r t i e s ;  and (3) may g e n e r a te



energy because o f  a uniform v o lum etr ic  so u rce .  F igure  1 p r e s e n t s  the  

geometry and d e f in e s  the  nondimensional c o o rd in a t e  systems and_____________ ______
V 0k.-*-vaU l«. 1 V W  «.w clftV'Hi.

tempera ture  boundary c o n d i t i o n s F o r  t h i s  problem, the  energy equa t ion  

i s  expressed  as

■J>X, -ix-t } i t 3  (1) ------

where

X i  = (2)

s u b s t i t u t i n g  f o r  , the  conduction energy t r a n s f e r ,  and normaliz ing 

the  geometry by the  o p t i c a l  th i c k n e s s e s  in the  X-j and d i r e c t i o n s ,  the  

fo l low ing  nondimensional energy ex p re ss io n  i s  o b t a in e d :

•b x  > 1 .  '  X ,  y  ( 3 ,

The nondimensional t e m p e ra tu re ,  ip, and r a d i a t i v e  t r a n s f e r  in  the  i 

d i r e c t i o n ,  , a r e  d e f in ed  r e s p e c t i v e l y  as

-  T» (4)

and

'■ (5)

I t  i s  assumed in  t h i s  development t h a t  s u r f a c e  one w i l l  have the  h ig h e s t  

wall  tem p e ra tu re .  In troduced in  Eq. (3) a re  two a d d i t i o n a l  te rm s ,  the  

c o n d u c t i o n - r a d i a t i o n  paramete r  (S ta r k  number),  N-j, and the  vo lumetr ic  

g e n e ra t io n  e x p re s s io n ,  S ,  de f ined  below:

' (6)
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Figure  1: Schematic o f  the  geometry cons ide red  in the

a n a ly s i s



■5 =

-------- -  - J *

(7)

The r a d i a t i v e  terms a re  ob ta ined  by i n t e g r a t i o n  o f  the  r a d i a t i v e  

i n t e n s i t y  d i s t r i b u t i o n  ( m u l t i p l i e d  by th e  normal d i r e c t i o n  c o s in e )  over 

4ir s t e r a d i a n  s o l i d  ang le .

J  'X;

( 8 )

where < iuo=

The i n t e n s i t y  I '  i s  made nondimensional by the  wall  one emiss ive  

power. The a p p r o p r i a t e  d i r e c t i o n  cos ines  f o r  the  n and x d i r e c t i o n s  a re  

given as

A
31, =r C o s e

(9a)

A
S \ n e s ‘n<i>

^  ‘ (9b)

The r a d i a t i v e  i n t e n s i t y  i s  ob ta ined  from s o l u t i o n  of  the  two-

dimensional equat ion  of  t r a n s f e r

( 10)

Eq. (10) and Eq̂ . (8) and (3) c o n s t i t u t e  the  ex p re s s io n s  necessa ry  f o r
A

s o l u t i o n  o f  the  two-dimensional t em pera tu re  and hea t  t r a n s f e r  f i e l d s  f o r  

t h e  r e c t a n g u la r  e n c lo s u re .  Note t h a t  s u b s t i t u t i o n  o f  Eq. (8) i n to  Eq. 

(3) r e s u l t s  in an i n t e g r o - p a r t i a l  d i f f e r e n t i a l  equa t ion  which must be 

so lved  s im ul taneous ly  with  Eq. (10) to  o b t a i n  I '  and i{;.
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2 .2  Spher ica l  Harmonics Approximation

To s im p l i fy  the  a n a l y s i s ,  th e  i n t e n s i t y  d i s t r i b u t i o n  may be 

r e p re se n te d  by using an i n f i n i t e  s e r i e s  of s p h e r i c a l  ha rmonics ,  as given 

by Eq. (11) [1 1 ] .

ao

(11)

51=0 n%=-S

where A^(r) a re  p o s i t io n -d e p e n d en t  c o e f f i c i e n t s  and a re  normalized

sp h e r i c a l  harmonics given by

-  Z%±\ CSl-m) I \
C a + n Ol  1 ^  P j ( c o 5 G )  (12)

Note t h a t  Pj^(cos 9) a re  th e  a s s o c i a t e d  Legendre polynomials  o f  th e  f i r s t  

k ind .  Following Cheng [12] and Bayaz i tog lu  and Higenyi [ 1 3 ] ,  the  

i n t e n s i t y  d i s t r i b u t i o n  i s  approximated by t r u n c a t i n g  th e  s e r i e s  a f t e r  a 

f i n i t e  s e t  o f  te rm s ,  i  = 1 and £ = 3 f o r  the  P-1 and P-3 app ro x im a t io n s ,  

r e s p e c t i v e l y .  The i n t e n s i t y  ex p re ss io n  i s  a l s o  r e c a s t  in  terms o f  

moments o f  i n t e n s i t y  def ined  by Eq. ( 1 3 ) ,  by s u b s t i t u t i n g  Eq. (11)

Zeroth  Moment

l o C r " )  J   ̂ 0 3 a )

to=ATT

F i r s t  Moment

(13b)

u»-«nr



Second Moment

(13c)

lu i
(13 d)

Nth Moment

u>=4Tr

i n to  Eq. (1 3 ) ,  performing a p p r o p r i a t e  i n t e g r a t i o n s ,  and then 

a l g e b r a i c a l l y  so lv ing  f o r  the  unknown c o e f f i c i e n t s  A'I'(r) in terms o f  the
X j

moments. For the  two-dimensional geometry c o n s id e r e d ,  the  r e s u l t i n g  

i n t e n s i t y  d i s t r i b u t i o n s  f o r  the  P-1 and P-3 approximations  a re  g iven by 

Eq. (U) [14],
P-1 Approximation

X +'2>X, cose+5l 3*s-.Aesm̂  (14a)

P-3 Approximation

X ' ^  nu .  + SX. c os e  ( • iI„ -X » )  ( 3 C o s \  - 1")

+ *2>X3^\n©s\r.^ + lSX»3"sm<fcos^*sme (5X uj~'5ir)(5co?e-3ccsa  

+  ( X c -  X „ -  Z X i:^  cc.s^(^ ^  sm e5in<j(sco?6-\y

+ ZXjiC)

•*■ (14b)
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The equa t ion  of  t r a n s f e r  i s  t ransformed i n t o  a s e r i e s  o f  moment 

equat ions  by m u l t ip ly in g  Eq. (10) by a p p r o p r i a t e  d i r e c t i o n  co s in e s  and 

i n t e g r a t i n g  over  the  4tt s o l i d  a n g le .  "Closure"  c o n d i t i o n s  [13] a r e  

r e q u i r e d  f o r  the  second o rd e r  moments o f  the  P-1 approximation and f o r  

th e  f o u r th  o rd e r  moments o f  the  P-3 approxim ation  developed in the  

moment p a r t i a l  d i f f e r e n t i a l  e q u a t i o n s .  These ex p re s s io n s  a re  ob ta ined  

by s u b s t i t u t i o n  o f  Eq. (14) i n to  a p p r o p r i a t e  forms o f  Eq.

(15) and (15) a re  the  summarized P-1 moment of  i n t e n s i t y  p a r t i a l  

d i f f e r e n t i a l  eq ua t ions  and c lo su r e  c o n d i t i o n s .  To conserve  sp ace ,  the  

P-3 moment exp re ss ions  and c lo su r e  c o n d i t i o n s  a r e  o m i t t e d ;  the  i n t e r e s t e d  

r e a d e r  should c o n s u l t  r e fe re n ce  [14] f o r  t h e se  d e t a i l s .

P-1 Moment Equations

(15a ,

^  —  O' T
—T  -  ' -H -l-l

^  (15b)

. (15c)

Closure  Condit ions  —  . . * -  -

3  (16)

Eq? (15) and (16) a r e  combined to  reduce the  t h r e e  f i r s t - o r d e r  p a r t i a l  

d i f f e r e n t i a l  equa t ions  to  one second-o rde r  e x p re s s io n .

- fT



H  ^  /  (17)

Since the  nondimensional moments and a re  e q u i v a l e n t  to  and 

r e s p e c t i v e l y ,  the  energy e q u a t io n  can be s i m p l i f i e d  us ing  Eq. (15a)

t o

(18)

Eq. (18) i s  a l s o  v a l id  f o r  the  P-3 approxim ation  method.

S i g n i f i c a n t  a l g e b r a i c  m an ipu la t ion  to  reduce the  P-3 moment 

eq ua t ions  to  fo u r  coupled s econd-o rde r  p a r t i a l  d i f f e r e n t i a l  equa t ions  in 

terms o f  Iq ,  I-j-j, l 2 3 > and has been o m i t t e d .  The f o u r  r e s u l t i n g  

e x p re s s io n s  a r e  summarized below [ 1 4 ] .

+
W  ^  ^  \  (19)

. J _ 1 L A =  o

^ SI^Xc 4
^  \  >x!- y  (20)

- J L o  r +  3 5  x j  X m  -  ^ z \.  ̂a
i x H  3

- i C ^ t  (21)

10



-  1 , 3  +  r *  4- U r

-  -i(^  T ?  % V  ^ x l H > “ = o  ^ U 2 )

The r a d i a t i v e  hea t  t r a n s f e r  r a t e s ,  in  terms o f  and I ^ ,  a re  

de f ined  f o r  th e  P-3 approximation below.

£^oa.-l.len9

(23a)
H ' ^ X  )

+ r
(23b)

; (17) and (18) and Eq̂ . (18) >-0-9) v- S o h -' l k ^ - r - ^  (22) 

c o n s t i t u t e  the  governing exp ress ions  necessa ry  f o r  s o l u t i o n  o f  the  two- 

d im ens iona l ,  r e c t a n g u la r  geometry c o n d u c t i o n - r a d i a t i o n  problem us ing the  

P-1 and P-3 i n t e n s i t y  a pp rox im a t ions ,  r e s p e c t i v e l y .

2 .3  Boundary Conditions

In i n c o rp o ra t in g  the  s p h e r i c a l  harmonics approximation  f o r  the  

i n t e n s i t y ,  f o u r  boundary co n d i t io n s  f o r  I q  and f o r  I q ,  I - j -j ,  I ^ q ,  and I-j^ 

a r e  r e q u i re d  f o r  the  P-1 and P-3 a p p ro x im a t io n s , r e s p e c t i v e l y .  (Boundary 

c o n d i t io n s  f o r  the  nondimensional t e m p e ra tu re ,  ip, have p re v io u s ly  been 

s p e c i f i e d  by Figure  1 . )  Express ions  f o r  the  moment boundary c o n d i t io n s  

a r e  ob ta ined  by f ind ing  the  i n t e n s i t y  leav ing  the  boundary su r f a ce s

Susi-tcK
-tV\is exp ress iO f t  

w  I ky^t, 
Or\€, on 11



and in c o r p o r a t in g  the  modif ied Marshak boundary c o n d i t i o n s  [1 0 ,  1 5 ] ,  

de f ined  below

J  l U - .  U i )  F "  ( c o . e - )  p -  d
^  ( 24)

Ui-cZTt U>-=2Tr

A p p l ic a t io n  o f  Eq. (24) r e s u l t s  in a s e t  o f  two boundary co n d i t io n  

eq u a t io n s  f o r  the  P-1 approximation and a s e t  of e i g h t  eq ua t ions  f o r  the  

P-3 approxim at ion .  These a re  summarized in  the  appendix .  Reference 

[14] p rov ides  f u r t h e r  d e t a i l  on the  boundary c o n d i t io n  development .

S o lu t io n  Method

Two numerical  methods were used to  so lve  the  s e t s  o f  coupled 

n o n l in e a r  p a r t i a l  d i f f e r e n t i a l  equa t ions  [ 1 4 ] .  A f i n i t e  e lement computer 

program, TWODEPEP [16 ,  17 ] ,  developed and i s sued  by I n t e r n a t i o n a l  

Mathematical  and S t a t i s t i c a l  L i b r a r i e s ,  I n c . ,  was used f o r  th e  s o l u t i o n  

o f  t h e  two coupled P-1 e x p r e s s io n s .  The f i n i t e  e lement used i s  the  

s t an d a rd  s ix -node  t r i a n g l e  with  q u a d r a t i c  b a s i s  f u n c t i o n s ,  and the  

a l g e b r a i c  equa t ions  developed a r e  so lved  by a damped Newtons method. 

E i g h ty - e ig h t  t r i a n g l e s  were s y i im e t r ic a l ly  p o s i t io n e d  in  th e  f i e l d  f o r
_3

a l l  P-1 a n a l y s e s ,  y i e l d i n g  an e s t im a te d  e r r o r  of  the  o rd e r  10 f o r  the  

fu n c t io n s  and I q .

The TWODEPEP program was no t  used f o r  the  P-3 e q u a t io n s  s in c e  the  

a d d i t i o n a l  equat ions  req u i red  o u t - o f - c o r e  s t o r a g e .  Hence,  e s t im a te d  

computer running time was expected  to  be a f a c t o r  o f  t e n  t o  twenty 

g r e a t e r  than the  P-1 computat ion t imes o f  45 to  90 seconds on th e  Cyber 

170/750 computer system used a t  The U n iv e r s i t y  of Texas a t  A u s t in .

12



I n s t e a d ,  the  f i v e  coupled eq ua t ions  were so lved  us ing s tan d a rd  e l l i p t i c  

equat ion  s u cc e ss iv e - fo v e r - r e l a x a t io n  (SOR) techn iques  [ 1 8 ] .  In th e  SOR 

method, th e  f i v e  e l l i p t i c  equa t ions  were so lved  independen t ly  with  fo u r  

o f  th e  v a r i a b l e s  being t r e a t e d  as knowns dur ing  each in d iv id u a l  SOR 

computa tion.  This procedure  e s s e n t i a l l y  l i n e a r i z e d  th e  moment o f  

i n t e n s i t y  e x p r e s s io n s .  To e x p ed i t e  th e  computa tional p r o c e s s ,  the  P-1 

approximation s o l u t i o n  o r  p r e v i o u s l y  ob ta ined  P-3 r e s u l t s T ^ r o m ^ i m i l a r

^  ^  -̂|̂ ^"m?recu T e^ u sed  in  the  fo rm ula t ion  were o f  s econd-o rde r  a ccu racy ,  and 

s p a t i a l  increment s i z e s  were f i x e d  by

^  O . O Z 5

problemi-wei=e used to  i n i t i a t e  the  SOR a lg o r i th m .  All f i n i t e  d i f f e r e n c e

and

(27)

_3
y i e l d i n g  e s t im a te d  e r r o r s  o f  the  o r d e r  10 . Typical  computa tion t imes

f o r  a s p e c t  r a t i o s  l e s s . t h a n  th r e e  ranged between 70 and 300 seconds ,  

depending upon choice  o f  i n i t i a l  da ta  and g r i d  a r ra y  s i z e .  For the  

a sp e c t  r a t i o  o f  f i v e ,  running t ime approached 600 seconds on th e  Cyber 

170/750.

3 .  RESULTS

S o lu t io n s  f o r  a range of  S ta rk  numbers and a s p e c t  r a t i o s  were 

c o n s id e re d ,  ho ld ing the  o p t i c a l  depth f i x e d  a t  one.  In t h i s  way, 

problems in  the  range of o p t i c a l l y  t h i n  to  o p t i c a l l y  t h i c k  in  the  x

13



d i r e c t i o n  could  be cons idered  w i th  moderate o p t i c a l  th ic k n e s s  in the  n 

d i r e c t i o n .  Two wall  tem pera tu re  com bina t ions ,  summarized below, were 

cons idered  in th e  a n a l y s i s .

No Volumetric Source

(28a)

^  0 . 5
(28b)

Volumetric Source Included

H’C -  1 . 0  ( .1 =  (29)

Figure  2 compares r e s u l t s  from the  P-1 and P-3 approximation 

a n a l y s e s ,  f o r  a square  en c lo su re  (t^ = 1 . 0 ) .  There i s  c l o s e  agreement 

o f  th e  c e n t e r l i n e  nondimensional tem pera tu res  f o r  S ta rk  numbers o f  0.1 

and g r e a t e r .  Below = 0 . 1 ,  r a d i a t i v e  t r a n s f e r  dominates and th e  P-1 

approximation would be expected  t o  be l e s s  a c c u r a t e .  Previous  two- 

dimensional r a d i a t i v e  s tu d i e s  [1 9 j  have i n d i c a t e d  th e  c lo s e  agreement of

the  P-3 approximation method w i th  r e s u l t s  r e p o r t e d  by Modest [ 9 ] .
moac

Figure  3 p r e s e n t s  n o n d i m e n s i o n a l ^ o t a p h e a t  t r a n s f e r  from th e  hot wall  

o f  t h e  e n c l o s u r e ,  d e f ined  by Eq. (3 0 ) .  Again,  s eco n d -o rd e r  a c c u ra te  

computational pt^T ecu^^ were used f o r  a l l  d e r i v a t i v e s .

= X, -  ( 4 ^ ' )

These r e s u l t s  compare well f o r  h ig h e r  S t a rk  numbers,  bu t  d e v ia t e  as 

approaches  ze ro .  In pure ly  r a d i a t i v e  problems [ 1 9 j ,  t h e  P-1 h ea t  

t r a n s f e r  r a t e s  a re  much g r e a t e r  than th e  Hot te l  zone and Modest r e s u l t s .  

While P-3 approximation h ea t  t r a n s f e r  r e s u l t s  a l s o  tended  to  be h ig h e r ,  

they  more c l o s e l y  matched the  t r e n d s  of  the  o t h e r  s o l u t i o n  methods [1 9 ] .

14
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Figure  2: Comparable nondimensional c e n t e r l i n e  tempera ture  p r o f i l e s  f o r

the  P-1 and P-3 approximation methods in a square  e n c lo su re  I
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Note t h a t  the  comparative  Hot te l  r e s u l t s  p re sen te d  in F igures  2 and 3 

were ob ta ined  using 225 volume and 60 s u r f a c e  e lements  [2 1 ] .  F igure  4 

d i s p l a y s  two nondimensional tem pera tu re  f i e l d s  f o r  the  P-3 approximat ion .  

P-1 con tour  p l o t s  o f  these  cases  fo l low  the  same t r e n d s  and have thus 

been o m i t te d .    -

F igures  5 and 6 p r e s e n t  P-3 approximation r e s u l t s  f o r  th e  c e n t e r l i n e  

t em pera tu re  p r o f i l e s  o f  r e c t a n g u l a r  e n c lo su re s  (x^ = 1 .0 )  f o r  S ta rk  

numbers o f  1 .0  and 0 .0 1 .  Comparative "exac t"  s o l u t i o n s  f o r  th e  l i m i t i n g  

one-dimensional r e s u l t s  [2 ]  show t h a t  the  c e n t e r l i n e  tem pe ra tu res  a re  

l e s s  a f f e c t e d  by the  s idew al l  tem pera tu re  as the  a sp e c t  r a t i o  i n c r e a s e s .  

Table  1 shows the  v a r i a t i o n  o f  c e n t e r l i n e  ho t  wall  h e a t  t r a n s f e r  and 

average^v/all  h e a t  t r a n s f e r  f o r  t h e  d i f f e r e n t  a s p e c t  r a t i o s g e o m e ^ r f e s ^  

The in c re a s e  in the  average nondimensional h e a t  t r a n s f e r  compared with 

c e n t e r l i n e  h e a t  t r a n s f e r  occurs  because o f  the  lower bounding sidev/all  

tem p e ra tu res .  The^heat t r a n s f e r - e w v e ^ f r o m  the  hot wall  f o r  th e se  

cases  f o l l o v ^ t h e  t rends  p re sen ted  in F igure  3 and a re  o m i t t e d .

For the  r e s u l t s  p r e s e n te d ,  a l l  c o rn e r  p o in t  nondimensional 

t em pera tu res  were f ix e d  a t  the  a r i t h m e t i c  average o f  th e  a d j a c e n t  w a l l s  

t o  avoid  co rne r  p o in t  d i s c o n t i n u i t i e s .  The h e a t  t r a n s f e r  from th e  hot 

w a l l  a t  the  corners  i s  thus " f i c t i t i o u s " ,  and has been om i t ted  from 

F igure  3 ,  a l though i t  i s  inc luded  in  a l l  energy b a la n c e s .  Comparative 

two-dimensional  isotherms f o r  a sp e c t  r a t i o s  o f  0 . 5 ,  1 . 0 ,  and 5 .0  and a 

S ta rk  number o f  0.01 a r e  given in F igures  7a ,  4b,  and 7b ,  r e s p e c t i v e l y .

As a f i n a l  example of  the  a p p l i c a t i o n  o f  the  d i f f e r e n t i a l  

approximation to  combined mode problems in two-dimensional  f i e l d s ,  a 

uniform volume source o f  S = 4 .0  i s  cons ide red  in a square  en c lo su re

17
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Table 1 Heat t r a n s f e r  r e s u l t s  f o r  d i f f e r e n t  a sp e c t  r a t i o  r e c t a n g u l a r  
e n c lo su re s  where = 1 .0

S ta rk Aspect
Nondimensional 

C e n t e r l i n e  Heat Flux*
Nondimensional 

Average Heat Flux*
Number Rat io

P-1 P-3. P-1 P-3

1.0

0 .5
1.0
2 .0
5.0

CO

9.852
5.203
3.155
2.640
2.615

9.328
4.877
3.032
2.592
2.580

(2.572)**

17.80 
11.57 
6.811 
4.582 
2.615

17.17 
. 10.75 

6.797 
4.270 
2.580 

(2.572)

0 .5 2.053 1.791 2.820 2.564
1.0 . 1.418 1.194 2.063 1.830

0.1 2.0 1.026 0.888 1.450 1.342
5 .0 0 .827 0.788 1.110 1.005
oo 0.809 0.776

(0 .7694)
0.809 0.776

(0.7694)

0 .5 1.263 1.035 1.317 1.100
1.0 1.019 0.818 1.094 0.923

0.01 2.0 0.779 0.667 0.891 0.779
5 .0 0.625 0.587 0.730 0.658

OO 0.595 0.572
(0 .5675)

0.595 0.572
(0.5675)

^ R e su l t s  given f o r  = 1 . 0 ,  = 1 . 0 ,  = 0 .5  ( i = 2 , 3 , 4 ) ,  S = 0 .0

**Numbers in  pa ren theses  a re  e x a c t  one-d imensional r e s u l t s  taken from 
Reference [ 2 ] .
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w ith  equal tempera ture  w a l l s .  F igure  8 g ives  the  c e n t e r l i n e  t em pera tu re

d i s t r i b u t i o n  f o r  a range o f  S ta rk  numbers f o r  t h e  P-1 and P-3

approx im at ions .  The t r e n d s  a r e  s i m i l a r  to  th o se  no ted  in  one-d imensional

conduction  and r a d i a t i o n  s t u d i e s  us ing  the  s p h e r i c a l  harmonics expans ions

[ 4 ] ;  i . e . ,  the  P-1 approximation u n d e r p r e d i c t s  the  t em p e ra tu re  f i e l d

n ea r  the  i n t e r i o r  o f  the  medium as  the  S ta rk  number d e c r e a s e s .  S i m i l a r l y ,

i t  was found t h a t  the  P-1 approxim ation  u n d e rp re d i c t s  t h e  wall  h ea t

t r a n s f e r  nea r  the  c e n t e r l i n e  o f  th e  e n c lo su re  in  p u re ly  r a d i a t i v e

s t u d i e s  [19] when volume source  terms a r e  i n c lu d e d .  The h ighe r  o rder

approximation has been found to  approach more c l o s e l y  e x a c t  one-dimensional  
•

work and zonal two-dimensional work and i s  recommended f o r  S ta rk  numbers 

below 1 . 0 .  F igure  9 p re s e n t s  t y p i c a l  i so therms f o r  S = 4 .0  w i th  S ta rk  

numbers o f  0 .0  and 0 .1 .  These con tou r  p l o t s  a r e  p rovided  to  show the  

" n o - s l i p "  co n d i t io n  a t  the  wall  when conduct ion  i s  i n c lu d e d .  For the  

p u re ly  r a d i a t i v e  c a s e ,  the  gas t em pera tu re  d i s c o n t i n u i t y  a t  th e  wall  

r e s u l t s  in  c i r c u l a r  i so therm s .

4 .  CONCLUSIONS

The d i f f e r e n t i a l  approx im a t ion ,  u s ing  th e  P-1 and P-3 s p h e r i c a l  

harmonics approximations  f o r  the  i n t e n s i t y  d i s t r i b u t i o n ,  has been shown 

t o  be use fu l  f o r  o b ta in in g  tem pera tu re  and h e a t  t r a n s f e r  r e s u l t s  in 

combined conduction and r a d i a t i o n  problems in r e c t a n g u l a r  geom et r ie s .

The fo rm u la t ion  o f  t h £ - ^ v e r n i n g  p a r t i a l  d i f f e r e n ^ l  e q u a t i o n y a n d  

b o u n d a ^  c o n d i t io n s /T o r  the  momen^is o f  i n t e n s j ^  f o r  th e  tywo 

appjroximation methods has been summarized, and the  soVution techn iques

23
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Ik.

used a re  d\scus,3^ .  /Represetrbative examples have been p re sen te d  f o r  

square  and r^c jtangbla r  e < i ^ o s u r ^  f o / " ^ a n g e  o l ^ t a r k / n u m b e r s / a n d  

j / oTumetn’c gen^eration has been c o n s i d e r e d t o r  a square  geometry .| ^  

g e n e r a l ,  th e  P-1 and P-3 approximation methods have been found to  y i e l d  

s i m i l a r  r e s u l t s  f o r  ^  l . Q ,  b u t  f o r  r a d i a t i o n  dominated problems,

(N^ < 1 . 0 ) ,  th e  P-3 approximation method i s  p r e f e r r e d .  The P-1 

approximation tends  to  o v e r p r e d i c t  h o t  s u r f a c e  h ea t  t r a n s f e r  r a t e s  when 

t h e r e  i s  no v o lum etr ic  g e n e r a t io n  and to  u n d e rp re d ic t  the  medium 

tem pera tu res  i f  g e n e ra t io n  i s  i n c lu d e d .  Although no "exac t"  two- 

d imensional r e s u l t s  a re  a v a i l a b l e  f o r  comparison, th e  d i f f e r e n t i a l  

methods a r e  b e l i e v ed  to be a c c u r a t e  f o r  p r e d i c t i n g  tem pera tu re  p r o f i l e s  

and h e a t  t r a n s f e r  r a t e s .  Pure ly  r a d i a t i v e  tv;o-dimensional P-3 

approxim.ation r e s u l t s  [19] have been shown to  compare f a v o ra b ly  with  

Hot te l  zone [2o]  and Modest [9]  s o l u t i o n s ,  and l i m i t i n g  cases  f o r  l a rg e  

o p t i c a l  width en c lo su re s  have approached e x a c t  one-dimensional  combined­

mode s o l u t i o n s .  This paper  i s  b e l i e v e d  to  r e p r e s e n t  the  f i r s t  p u b l i sh ed  

r e s u l t s  f o r  t h e  coupled two-dimensional  problem in  a r e c t a n g u l a r  

e n c lo s u r e .

5 .  APPEMDIX; BOUNDARY CONDITIONS

v<

P-1 Approximation

* f  XlIo (oXl'V; = o

(27a)

(27b)
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P-3 Approximation

X , :  ± - ^  -  ( - x i  -

/  ^ ^T.ll \ ^  —

-  - | t ° -  ^  ■"
+  r  i l a ^  =  0

o
(29a)

+ T  X t  +  ^  T  1

(29b)

" ^  (I f  -^ ^ - '  '̂<’0
+ [  VLw . 3 X̂t3 1 X̂o\  _ ^  (30a)
”  V 5  ^

^ x

(30b)

^  4- ^X|-i 35 -r T 4- ' /  . ^Xh i X̂o\
-  X T  ” u  5 ' s : ) = ‘=’

(31a)

4- ^ I,^  3̂ » -Y" X  4- ^X33 “>>X\»______L ^Xs\ « ^
'  i v .  “  " S  '■ ' ^  -  3  V •" 'JK s  > 0 - °

(31b)

Equation numbers w i th  (a) d e s ig n a t e  eq u a t io n s  f o r  v/a lls  one and 

two,  and those  with (b) d e s ig n a te  e x p re s s io n s  f o r  w a l l s  t h r e e  and .
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f o u r .  P o s i t i v e  s igns  a r e  used f o r  w a l l s  one and t h r e e ,  and neg a t iv e  

s ig n s  a r e  used f o r  w a l l s  two and f o u r .
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NOMENCLATURE
,V

b l

w

H

I

w

0

i

i j

i j k

s -

L

" l
Q l  I I

\ i

'C l

‘’Ri

^Ri

'T v'^

a b so r p t io n  c o e f f i c i e n t  

blackbody em iss ive  power o f  wall 1
cl O.L - A.

r i g h t - hand s id e  of - i n tc n e ife^  Eq. (25) 

h e ig h t  o f  r e c t a n g u l a r  en c lo su re  

r a d i a t i v e  i n t e n s i t y  d i s t r i b u t i o n  

nondimensional r a d i a t i v e  i n t e n s i t y  d i s t r i b u t i o n  

nondimensional i n t e n s i t y  l e av ing  e n c lo su re  s u r f a c e  

nondimensional z e r o th  moment of  i n t e n s i t y  

nondimensional f i r s t  moment o f  i n t e n s i t y  ( i= l  ,3) 

nondimensional second moment of  i n t e n s i t y  ( i , j = l , 3 )  

nondimensional t h i r d  moment of  i n t e n s i t y  ( i , j , k = l , 3 )  

thermal c o n d u c t i v i t y  

d i r e c t i o n  cos ine  ( i = l ,3) 

wid th  o f  r e c t a n g u l a r  e n c lo s u re

c o n d u c t i o n - r a d i a t i o n  paramete r  (S ta rk  number); Eq. (6) 

uniform vo lum etr ic  source

conduction h e a t  t r a n s f e r  r a t e  in i t h  c o o rd in a t e  d i r e c t i o n  

(1=1.3)

nondimensional i t h  d i r e c t i o n  conduction h e a t  t r a n s f e r  r a t e  

( i=1 .3 )

r a d i a t i v e  h ea t  t r a n s f e r  r a t e  in i t h  c o o rd in a te  d i r e c t i o n  

(1=1.3)

nondimensional i t h  d i r e c t i o n  r a d i a t i v e  h e a t  t r a n s f e r  r a t e  

(1=1.3)
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^ 1  nondimensional t o t a l  h e a t  t r a n s f e r  r a t e  from wall  1

r  a s p e c t  r a t i o  (=L/H)

r  v e c to r  p o s i t i o n  in medium

S nondimensional vo lum etr ic  s o u rc e ;  Eq. (7)

T temperature

tem pera tu re  o f  wall  i ( i = l , 2 , 3 , 4 )

X. p o s i t i o n  c o o rd in a te  i ( i = l , 2 , 3 )

f i n i t e  d i f f e r e n c e  s t e p  s i z e  in  i d i r e c t i o n  ( i = l , 3 )

Greek Symbols

n normalized p o s i t i o n  in  X-j c o o rd in a te  d i r e c t i o n

9 e l e v a t i o n  ang le  (O<0<7t)

nondimensional o p t i c a l  p o s i t i o n  in c o o r d in a te  d i r e c t i o n  i 

(1=1.3)

o p t i c a l  depth  in X-j d i r e c t i o n

o p t i c a l  depth  in X^ d i r e c t i o n

(|> azimuthal ang le  (0<4i<27t)

X normalized p o s i t i o n  in X^ c o o rd in a te  d i r e c t i o n

nondimensional tem pera ture  o ?

0) s o l i d  angle

30



REFERENCES

1 .  V isk an ta ,  R.,  and Grosh, R. J . ,  Heat T r a n s f e r  by Simultaneous  
Conduction and Radia t ion  in an Absorbing Medium, J .  Heat T r a n s f e r ,  
v o l .  84,  no.  1,  pp. 63-72, 1962.

2 .  C ro sb ie ,  A. L . ,  and V iskan ta ,  R . ,  I n t e r a c t i o n  o f  Heat T r a n s f e r  by
  Conduction and Radia t ion  in a Nongray P lan a r  Medium, Warme-und

S to u f f u b e r t r a q u n g , v o l .  4,  pp. 205-212, 1971.

3 .  Yuen, W. W., and Wong, L. W., Heat T r a n s f e r  by Conduction and 
Rad ia t ion  in a One-Dimensional Absorbing, E m i t t in g ,  and 
A n i s o t r o p i c a l l y  S c a t t e r i n g  Medium, J . Heat T r a n s f e r , v o l .  12,  
no .  2 ,  pp.  303-307, 1980.

4 .  R a t z e l , A. C . ,  and Howell,  J .  R . ,  Heat T r a n s f e r  by Conduction 
and Rad ia t ion  in One-Dimensional P lan a r  Medium Using the  
D i f f e r e n t i a l  Approximation,  ASME paper  81-HT-72, August 1980.

5 .  D e i s s l e r ,  R. G.,  D i f fu s io n  Approximation f o r  Thermal R ad ia t ion  in 
Gases with  Jump Boundary C o n d i t io n ,  J .  Heat T r a n s f e r ,  v o l .  86,  
no .  2 ,  pp.  240-246, 1964.

6 .  H o t t e l ,  H. C . ,  and Cohen, E. S . ,  Radiant  Heat Exchange in a Gas- 
f i l l e d  Enc losure ;  Allowance f o r  Nonuniformity  o f  Gas Temperatu re ,  
AIChE J . , v o l .  4 ,  no.  1, pp.  3 -1 4 ,  1958.

7 .  Cheng, P . ,  Exact So lu t io n s  and D i f f e r e n t i a l  Approximations f o r  
Multi-Dimensional R ad ia t ive  T r a n s f e r  in C a r t e s i a n  Coordina te  
C o n f ig u r a t io n s ,  Thermal Control  and R a d i a t i o n , Progress  in 
A s t r o n a u t i c s  and A e ro n a u t i c s , C. L. T ien ,  e d . ,  v o l .  31 ,  pp.  
2 6 9 - 3 0 8 ,1 9 7 2 .

8 .  G l a t t ,  L . ,  and O l fe ,  D. S . ,  R a d ia t iv e  Equi l ib r ium  o f  a Gray 
Medium in  a Rectangula r  E nc losu re ,  J .  Quan. S o e c . ,  v o l .  13,  no.  9 ,  
pp. 881-895, 1973.

•

, 9 .  Modest,  M. F . ,  R ad ia t ive  Equ i l ib r ium  in  a Rec tangu la r  Enclosure  
Bounded by Gray Wal ls ,  J .  Quan. S p e c . ,  v o l .  15,  no. 6 ,  pp.  445- 
461, 1975.

10. Marshak, R. E . ,  Note on th e  Sp h e r ica l  Harmonic Method as Applied 
t o  th e  Milne Problem f o r  a Sphere ,  Phys.  R ev . ,  v o l .  71 ,  pp.  443- 
446 , 1947.

11. J e a n s ,  J .  H.,  The Equations  o f  R ad ia t iv e  T r a n s f e r  of  Energy , 
Monthly Notices  o f  Royal Astronomical S o c i e ty ,  v o l .  78,  pp.
28-36 , 1917. ;

12.  Cheng, P . ,  Dynamics o f  a R ad ia t ing  Gas with A p p l ica t io n  to  Flow 
over  a Wavy Wall , AIAA J . , v o l .  4 ,  no.  2 ,  pp.  238-245,  1966.

31



13. B ay az i to ^ lu ,  Y.,  and H ig e n y i , J . ,  Higher Order D i f f e r e n t i a l  
Equations  o f  R ad ia t ive  T r a n s f e r :  P-3 Approximation,  AIAA J . ,  v o l .17, no. 4 ,  pp. 424-431.

One.—
14. R a t z e l ,  A. C . ,  D i f f e r e n t i a l  Aooroximation f o r  S o lu t io n  o f ^ w o -  

Dimensional Fktti«.p«*in- 
Media, Ph.D. d i s s e r t a t i o n .  The U n iv e r s i ty  of  Texas a t  A u s t in ,
December 1981.

15. Davison, B . ,  Neutron T r an s p o r t  Theory , Oxford,
Clarendon P r e s s ,  1958.

16. TWODEPEP Users Manual, I n t e r n a t i o n a l  Mathematical  and S t a t i s t i c a l  
L i b r a r i e s  Manual, IMSL TDP-0003, Houston, September 1981.

17. Sew el l ,  G . , A F i n i t e  Element Program with  Automatic ,  U se r -C o n t ro l led  
Mesh Grading, Proc.  3d IMACS I n t .  Sym. on Computer Methods f o r  
P a r t i a l  D i f f e r e n t i a l  E q u a t io n s , New Brunswick, N J . ,  pp.  8 -10 ,  1979.

18. Ames, W. F . , Numerical Methods f o r  P a r t i a l  D i f f e r e n t i a l  E q u a t io n s ,
New York, Academic P r e s s ,  1977.

19. R a t z e l ,  A, C . ,  and Howell ,  J .  R . ,  Two-dimensional Rad ia t ion  in 
A b so r b in g -E m i t t in g -S ca t te r in g  Media Using the  P-N Approximation,  
Submitted to  ASME/AIAA Thermophysics and Heat T r a n s f e r  Meeting,
S t .  Louis ,  1982.

20. Larsen ,  M., Hot te l  Zone Code, developed f o r  PH.D. r e s e a rc h  a t  The 
U n iv e r s i ty  o f  Texas a t  A u s t in ,  August 1981.

32


