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ABSTRACT

The combined steady state conduction and radiation heat transfer
problem for a gray medium within a rectangular enclosure is considered
using the differential approximationT The P-1 and P-3 spherical
harmonics approximations for the intensity distribution are incorporated
in the equation of transfer, and modified Marshak-type boundary
conditions are used in the formulation. The enclosure walls are assumed
to be isothermal black surfaces.

Twoﬂ/and five;zgupled second order nonlinear partial differential
equations are developed for the P-1 and P-3 approximations, respectively,
using the energy conservation and moment-of-intensity expreésions. The
P-1 equations have been numerically solved using finite element
techniques, while the P-3 relations have been solved using a finite
difference successive;g;er-relaxation (SdR) algorithm. Two-dimensional
temperature profiles and hot wall heat transfer results are presented
for square enclosures and different optical width rectangular enclosures

for a range of Stark numbers.
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1. INTRODUCTION

Heat transfer by simultaneous conduction and radiation in a planar
medium capable of absorbing and eﬁitting thermal radiation has received
-considerable attention owing to its importance in such fields as

cryogehics, ablation protection, glass manufacture,.and energy
conservation. The mathematical difficulties involved in solving such
'Efbblems are substantial since the descriptive energy relation is a
Anonlinear integro-differential (or integro-partial differential)
equation.

While significant aitention has been addressed to one-dimensional
problems of combined mode energy transfer, e.g. [1-4], only limited
efforts have been directed to multidimensional problems. Typical
solution methods include use of the diffusion approximatioq,’tS], valid
only for optically thick media, and the Hottel zone method [6] for the
radiation exchange. In the latter method, an iterative scheme must be
applied, with the temperature distribution initially assumed in the
radiative computation and then updated when the multimode energy
balance is obtained. In addition, the zonal method requires significant
subdivision of the volume in order to obtain realistic representations
of the temperature field. Multidimensional radiative transfer studies
in planar media have also been limited [7-9], with efforts primarily
directed to approximation methods. Unfoftunately, use of tﬁese methods
in multimode heat transfer problems would require soﬁution techniques

similar to those used with the Hottel zone method and thus would

1ﬂ1ﬂﬁ¢ﬁ?§3€ computaticnally quite lengthy.
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An alternative method of solution for coupled conduction and
radiation problems, which may be used for multidimensional geometries,
incorporates the differential approximation (moment method). 1In this
method, the radiation intensity is approximated by a series of spherical
harmonics. This simplification transforms the integral equation of
radiative transfer to a series of partial differential equations. The
resulting equations and Marshak-type boundary conditions [10] can be
- solved together with the conservation of energy expression. One obvious
advantage of this method is that it simplifies the solution technique,
since the partial differential equations may be solved by standard
numerical methods.

In this paper, the combined conduction and radiation heat transfer
problem for a gray medium within a rectangular enclosure compoéed of
isothermal black walls is considered using the differential
approximation..~The P-1 and P-3 spherical harmonics approximations for
the intensity are used to predict both temperature ahd heat transfer in

the two-dimensional fieild.
2. FORMULATION

2.1 Background

The problem to be considered is that of two-dimensional heat
transfer in a rectangular enclosure composed of black isotherma]lwalls.
The intervening medium may absorb and emit radiation and (1) is assumed
to have an index of refraction of one; (2) is assumed to be gray and

have uniform temperature-independent properties; and (3) may generate
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energy because of a uniform volumetric source. Figure 1 presents the
geometry and defines the nondimensional coordinate systems and

T'lhe vaviablas «arg de;‘ncé v e Nle.uC\A\'k—l.
temperature boundary conditions., For this problem, the energy equation
is expressed as

B, 2ma , e, e . G
N o> + S + =
Ty Ty 3T, Y & (1) —_

where
T = axi (i=1,3) - (2)
substituting for ei> the conduction energy transfer, and normalizing

the geometry by the optical thicknesses in the X] and X3 directions, the

following nondimensional energy expression is obtained:

lg_:ﬁ} : BQJ’\\ - 4 N, ‘{B‘f e
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The nondimensional temperature, Y, and radiative transfer in the i =
direction, QRi’ are defined respectively as
. Txmy
?(E‘\) = T, ()

and , : R S

.1("1) w 1=
Qri (%) = 3‘5—3—‘"—1 (i=13) 5)

It is assumed in this development that surface one will have the highest
wall temperature. Introduced in Eq. (3) are two additional terms, the
conduction-radiation parameter (Stark number),'N], and the volumetric
generation expression, S, defined below:

- KO.Tq . )
N' 43.\" (6)
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Schematic of the geometry considered in the

analysis
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The radiative terms are obtained by integration of the radiative

intensity distribution (multiplied by the normal direction cosine) over

41 steradian solld angle

W4T ‘ (8)

where dw= s\nedeé?

The intensity I' is made nondimensional by the wall one emissive

power. The appropriate direction cosines for the n and x directions are

given as
A
-, = cese .
(9a)
h .
93‘-'-' Swnesing (5b)

The radiative intensity is obtained-from solution of the two-
dimensional equation of transfer
!
Rr 2 s bR 2 g (¢ -1
| n
(10)
Eq. (10) and qu (8) and (3) constitute the expressions necessary for
solution of the two-dimensional temperature and heat transfer fields for
_the réctangu]ar enclosure. Note that substitution of Eq. (8) into Eq.
(3) results in an integro-partial differential equation which must be
solved simultaneously with Eq. (10) to obtain I' and y.
6



2.2 Spherical Harmonics Approximation
To simplify the analysis, the intensity distribution may be

represented by using an infinite series of spherical harmonics, as given

by Eq: (11) [11].

, - p. '
t m ;. m ,
I(Fw) = E E A,(ﬂ\f;(@ (1)
R=0 m=-]

where AQ(F) are position-dependent coefficients and Y?Oﬂ) are normalized
spherical harmonics given by '

| T:(w)= [?_su\ (-md!

l[z

.m N 14 '
T (el ™t Py (cese) - (2)

Note that Pz(cos ) are the associated Legendre polynomials of the first
kind. %o]]owing Cheng [12] and Bayazitoglu and Higenyi [13], the
intensity distribution is approximated by truncating the series a%ter a
finite set of terms, £ = 1 and 2 = 3 for the P-1 and P-3 approxjmations,
respectively. The intensity expression is also recast in ferms of
moments of intensity defined by Eq. (13), by substituting Eq. (11)

Zeroth Moment

I ='§ T (7)) dw (13a)
w= ATY .

First Moment

1-,(7') ‘-'5 1'(?,w)/§;3uo Ci=1,3) | (13b)

w=4T




Second Moment

I3 = S I (F W) '§;’§; deo

(13c)
w= 4 (i,5=1,2,2)
Nth Moment
NOA A
L. (F) = S T'(78) 3 9~s Rx deo (134)
W4T ( K$=!5Z;§>

~into Eq. (13), performing appropriate integrations, and then

algebraically solving for the unknown coefficients A?(F) in terms of the

moments. For the two-dimensional geometry considered, the resulting

intensity distributions for the P-1 and P-3 approximations are given by

Eq. (14) [14].

P-1 Approximation

' _ A
XI (7.,%9,?) e L, +3T,cose *513Su\esm? (14a)

P-3 Approximation

I'(K,'\',e,cﬂ = I‘:TT Y‘I_o +37,Ccose +—E‘_— (’31“-10> (3(.057'9 - l)

+ 3Tasinesing + \51|35‘“‘?C°’595‘“9 “‘L, (ST~ ?’I»("C%e-sc’csg

+ .E—l (Io_ Tu- 2_1337 cos1P sine + -%‘- (513u - I3> StneSm? (S(,o;e-\}

+ _2__5_(1‘—1,“-7_1‘33 cos2Q cos O SIS

¥+ 35—(313 ER %Y i 41—3333 S‘“?’?s‘n = (14b)




The equation of transfer is transformed into a series of moment
equations by multiplying Eq. (10) by appropriate direction cosines and
integrating over the 4w solid angle. “Closure" conditions [13] are
required for the second order moments of the P-1 approximation and for
_ the fourth order moments of the P-3 approximation developed in the
moment partial differential equations. These expressions are obtained
by substitution of Eq. (14) into appropriate forms of Eq. (13}):/£qfibimg““*‘°"‘
(15) and (16) are the summarized P-1 moment of intensity partial
differential equations and closure cond%tions. To conserve space, the
P-3 moment expressions and closure conditions are omitted; the interested
reader should consult reference [14] for these details.

P-1 Moment Equations

DL L 3Is . 49t
r vy + N T ( 3 (15a)

_x'_ .
B LA - - ’EH..‘;‘

n (15b)
D Ta ~ 1.,
?DL ' . (15¢)

Closure Conditions ——

. ) 1. | |
Iu - 1'33 3 o (16)

Eq:. (15) and (16) are combined to reduce the three first-order partial —_—

differential equations to one secondworder expression.




3L, b1°+3( c)ﬁo

¢ E (17)

" 'Since the nondimensional moments I, and I, are equivalent to QRiméE&

Qr3 respectively, the energy equation can be simplified using Eq. (15a)

to

2 XY \"‘% : -
N X | - (18)

Eq. (18) is also valid for the P-3 approximation method.

' Significant algebraic manipulation to reduce the P-3 moment
equations to four coupled second-order partial differential equations in
terms of IO’ I”, 133, and 113 has been omitted. The four resulting

expressions are summarized below [14].

\?.1‘3 . 2 g‘l&s _1.{‘ + 2 ( Ty --’53
S + v _f" 5 "L =13 3 bxky\’ BXB(’L (19)
O

3L, 45 8L 51c L S(Sf"é——-L‘ SLy
e g e e 2y (20)
2 :
'ZOTLI_\.}_ *35‘[3 lu":é_g.‘(_t L"q-.-.-o
X3 3 |

31133 + 6(" i}_\B'

W ) " ¥ ke
1/ Lo a2 93, 2e -1 &
...g_ o +3¢ -—B_\_\-i— + —%—T_‘.\P =0 | . (-2])
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The radiative heat transfer rates, in terms of I] and 13, are

defined for the P-3 approximation below.

- ..._L BIH bl\)
R, = T—L(r ¥ TR (23a)
_ =1 [ 31 2L )
L3= Qs = < e 2N (23b)
E-%oc.'llon’ % rowgl
(17) and (18) and Eq} (18) (22)

constitute the governing expressions necessary for solution of the two-
dimensional, rectangular geometry conduction-radiation problem using the

P-1 and P-3 intensity approximations, respectively.

2.3 Boundary Conditions

In incorporating the spherical harmonics approximation for the
intensity, four boundary conditions for I0 and for IO’ I]], I33, and 113
are required for the P-1 and P-3 approximations, respectively. (Boundary
conditions for the nondimensional temperature, ¥, have preyious]y been
specified by Figure 1.} Expressions for the moment boundary conditions

are obtained by finding the intensity leaving the boundary surfaces
S

LW o) (9

Swl"’-(.h
thwis expression
\l)l*)\ the
~one. on the 1
hext page.
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and intofporating the modified Marshak boundary conditions [10, 15],

defined below

! 1"”(“:_{,“’?_*?:_(.?"’93"“’-:S{« Py (coss)dwo ()

W=2T7 . W=

Application of Eq. (24) results in a set of two boundary condition'
equations for the #-ngﬁproximation and a set of eight équations for the
P-3 approximation. These are summarized in the appendix. Reference
[14] provides further detail on the boundary condition development.

Solution Method

Two numerical methods were used to solve the sets of coupled
nonlinear pariial differential équations []4]. A finite element computer
program, TWODEPEP [16, 17], developed and issued by International
Mathematical and Statistical Libfaries, Inc;, was used for the solution
of the two coupled P-1 expressions. The finite element used is the
standard six-node triangle with quadratic basis functions, and the
algebraic equations developed are solved by a damped Newtons method.
Eighty-eight triangles were symmetrically positioned in the field for
all P-1 analyses, yielding an estimated error of the order 10-3 for the
funcfions b and IO. | |

The TWODEPEP program was not used for the P-3 equations since the
additional equations réquired out-of—co;e storage. Hence, estimated
'computer'running time was expected t& be a factor of ten to twenty
greater than the P-1 computation times of 45 to 90 seconds on the Cyber

170/750 computer system used at The University of Texas at Austin.
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Instead, the five‘coupled equations were solved using standard elliptic
equation successive#BCer-fe]axation (SOR) techniques [18]. In the SOR
method, the five elliptic equations were solved independently with four
of the variables being treated as knowns during each individual SOR
_.a__w_u__icompdtation. This procedure essentially linearized the moment of
intensity expressions. To expedite the computational process, the P-1
‘ approximation solution oc:Ereviously obtained P-3 resu]tgz%rom:simi1ar
prob]e@?-;é;zyused to initiate the SOR algorithm. AT finite difference compvtetional

N C'e7]
Q £ @used in the formulation were of second=order accuracy, and —

spatial increment sizes were fixed by

T A%; & ©.025 | | (26)
and
A% 4
[y 8 £1LO (27)

yielding estimated érrors of the order 10'3. Typical computation times
for aspect ratios less than three ranged between 70 and 300 seconds,
depending upon choice of initial data and grid array size. .For the
aspect ratio of five, running time approached 630 seconds on the Cyber

170/750.
3. RESULTS

Solutions for a range of Stark numbers and aspect ratios were
considered, holding the optical depth Ty fixed at one. In this'way,

problems in the range of optically thin to optically thick in the 'y

13




direction could be considered with moderate optical thickness in the n
direction. Two wall temperature combinations, summarized below, were
considered in the analysis.

No Volumetric Source

"P_‘ = 1.0 . ' (28a)
;=05 (i=1,349)
' (28b)
—'Volumefric Source Included
Y;=lo li=1,23,4) (29)'

Figure 2 compares results from the P-1 and P-3 appfoximation
analyses, for a square enclosure (TH = 1.0). There is close agreement
of the centerline nondimensional temperatures for Stark numbers of 0.1
and greater. Below 1] = 0.1, radiative transfer dominates and the P-1
approximation would be expected to be less accurate. Previous two-
dimensiona] radiative studies [19] have indicated the close agreement of
the P 3 approximation method C\gmfi?}“craeitﬂ;ccs reported by Modest [9].
Figure 3 presents nondimens1ona]A@ota[}heat transfer from the hot wall
of the enclosure, defined by Eq. (30). Again, second-order accurate st

Kk o¥
computational nggggizb were used for all derivatives.

CQ ( 4N, B“’

These results compare well for higher Stark numbers, but deviate as N]

(30)

. approaches zero. In purely radiative problems [19], the P-1 heat
transfer rates are much greater than the Hottel zone and Modest results.
While P-3 apbroximation heat transfer results also tended to be higher,

they more closely matched the trends of the other solution methods [19].

14
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Note that the comparative Hottel results presented in Figures 2 and 3
were obtained using 225 volume and 60 surface elements [21]. Figure 4
displays two nondimensional temperature fields for the P-3 approximation.
P-1 contour plots of these cases follow the same tfends and have thﬁs
-been omitted. : e e

| Figures 5 and 6 present P-3 approximation results for the centér]ine
temperature profiles of rectangular enclosures (rH = 1.0) for Stark
numbers of 1.0 and 0.01. Comparative "exact" solutions for the limiting
one-dimensional results [2] show that the ceﬁter]ine temperatures are
less affected by the sidewall temperature as the aspect ratio increases.
Table 1 shows the variation of centerline hot wall heat transfer and
averagg:zg;l heat transfer for the different aspect ratioggeeme%rées:L
The increase in the average nondimensional heat transfer compared with
centerline heat transfer occurs because of the lower bounding sidewall

spatial variatiow o A

temperatures. TheAheat transfer.ea*veﬁ}from the hot wall for these
cases followW?the trends presented in Figure 3 and are omitted.

For the results presented, all corner point nondimensional
temperatures were fixed at the arithmetic average of the adjacent walls
to avoid corner point discontinuities. The heat transfer from the hot

‘wall at the corners is thus "fictitious", and has been omitted from
Figure 3, although it is included invall energy balances. Comparative
two-dimensional isotherms for aspect ratios of 0.5, 1.0, and 5.0 and a
Stark number of 0.01 are given in Figures 7a, 4b, and 7b, respectively.’

As a final example of the application of the differential '

approximation to combined mode problems in two-dimensional fields, a

uniform volume source of S = 4.0 is considered in a square enclosure

17
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Nondimensional Temperature ¢

Nondimensional Distance, n

Figure 6: P-3 abproximation results for nondimensional
. centerline temperature distributions with

' aspect ratios varied:ﬁa; = 1.037204 N] = 0.01
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Table 1 Heat transfer reSU]tS for different aspect ratm Y‘ECtangu’Iar it iy
enclosures where Ty = 1.0

Nondimensional Nondimensional
Stark Aspect Centerline Heat Flux* Average Heat Flux*
iew .nw -Number . Ratio T e e e e e
P-1 P-3. P-1 P-3
0.5 9.852 9.328 17.80 17.17
- B 1.6 5,203 4.877 11.57 . 10.75
1.0 2.0 3.155 3.032 - 6.811 6.797
5.0 2.640 2.592 4.582 4.270
2.615 2.580 2.615 2.580
(2.572)** (2.572)
0.5 2.053 1.791 2.820  2.564
1.0 . 1.418 1.194 2.063 1.830
0.1 2.0 1.026 0.838 1.450 1.342
, 5.0 - 0.827 0.788 1.110 1.005
© 0.809 0.776 0.803% 0.776
' : . (0.7694) (0.7694)
0.5 - . 1.263 1.035 1.317 1.100
1.0 1.019 0.818 1.094 0.923
0.01 2.0 0.779 0.667 0.891 0.779
- 5.0 0.625 0.587 0.730 0.658
© 0.595 0.572 0.595 0.572
(0.5675) (0.5675)

*Results gjven for €y = 1.0, Yl = 1.0, ¥ ; = 0.5 (i=2,3,4), S = 0.0

**Numbers in parentheses are exact one- d1menswonal results taken from
Reference [2].
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"with equal temperature walls. Figure 8 gives the centerline temperature

dlstr1but1on for a range of Stark numbers for the P-1 and P-3

approximations. The trends are similar to those noted in one-dimensional

conduction and radiation studies using the épherical harmonics expansions

[4]; i.e., the P-1 approximaiion underpredicts the temperafure field

near the interior of the medium as fhé Stark number decreases. Simi]ariy,
it was found that the P-1 approximation underpredicts the wall heat

transfer near the centerline of the enclosure in purely radijative

studies [19] when volume source terms are included. The higher order

approximation has been found to approach more closely exact one-dimensional
;ork and zonal two-dimensional work and is recommended for Stark numbers
below 1.0. Figure 9 presents typical isotherms for S = 4.0 with Stark
numbers of 0.0 and 0.1. These contour plots are provided to show the
"no-slip" eondition at the wall when conduction is included. For the

purely radiative case, the gas temperature discontinuity at the wall

results in circular isotherms.

4. CONCLUSIONS

The differential approximation, using the P-1 and P-3 spherical
harmonics approximations for the intensity distribution, has been shown
to be useful for obtaining temperature and heat transfer results in

combined conduction and radiation problems in rectangular geometries.

41 equationssand e"'ry
q “'&‘
o
w" ‘
. approximation methods has been”summarized, and the soMition techniques ° '
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. tive examples have been presented for
square and rictangylar for a\range tark /numders/ and
volumetric generation has been con¥idered a sduare geometfy.

general, the P-1 and P-3 approximation methods have been found to yield

-similar results for N] > 1.0, but for radiation dominated problems,

(N] < 1.0), the P-3 approximation method is preferred. The P-1

approximation tends to overpredict hot surface heat transfer rates when
there is no volumetric generation and to underpredict the medium
temperatures if generation is included. Although no "exact" two-

dimensional results are available for comparison, the differential

methods are believed to be accurate for predicting temperature profiles

and heat transfer rates. Purely radiative two-dimensional P-3
approximaticn results [19] have been shown to compare favorably with

Hottel zone [20] and Modest [9] solutions, and limiting cases for large

- optical width enclosures have approached exact one-dimensional combined-

‘mode solutions. This paper is believed to represent the first published

results for the coupled two-dimensional problem in a rectangular

~ enclosure.

S. APPENDIX: BOUNDARY COMDITIONS

P-1 Approximation

- P
;o : * —i—.fi + :éz—‘[u To + LTy L}’; o ‘ (27a)
E %{'.* %t\.l., + ‘oTL\P? =0 (27b)
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'P‘V-ﬂ3 Approximation

I.: i‘-%—L— ' t“I. 4-‘55'1:” -—I--‘- “)
zT-l\ B'L\
2 2= ———3} &S

*3 ( (28a)

S —— gf: ‘Z: ‘C...Io +35'CL(—- Tay "%—"‘.’;‘"

' ?3L >I
N T5(2 5 r zr‘fw (28b)
- — I“v: 7 -"; %&l - tHIl\ + TH (ZW 1 ) b:\’j

' L : (29a)

B]:l\ 25 -1 I¢ S
4 SN | 02 —_— =% L = A
R Todu+ 2T 2 c 32 wpt

+ ( 2133 33 §II3 1 BIO - o

3K 3 58
_ - (29b)
e + bI3 - 5 4
133 « = XPLB 't wlaz + “‘T-H (I_L: "'T;Iu +Y;
+ b'I.n 3 2L _ 1 L\ . A (30a)
-( a0, T TN S >
2 ¥
-_;-_}_I_,_—;, '{153 TL('Z..:*-‘S I)*“ » .o
A%
(30b)
- + 3Ly _ 35 x 2 Sn, 3Tn_ 1 3L\ _
Ioy - n Zg to = w3 §)To
' (31a)

- + oI 2 v [ 313, NIy R
= - ! T 1\3 : - R e v
- > ( P é'\. (3]b)

Equation numbers with (a) designate equations for walls one and

two, and those with (b) designate expressions for walls three.and.
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four. Positive signs are used for walls one and three, and negative

signs are used for walls two and four.
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(i=1,3)

o
L
NOMENCLATURE o7 )
- ¢ .,,\"\‘(&
a absorption coefficieﬁt
€1 blackbody emissive power of wall 1 o
dab.mecd S—
” ¥ ey Eq. (25) :
H height of rectangular enclosure ———
i radiative intensity distribution
1 nondimensional rad}ative intensity distribution
I& nondimensional intensity leaving enclosure surface —_—
I0 nondimensional zeroth momgnt of intensity
Ii nondimensional first moment of intensity (i=1,3) _
i3 nondimensional second moment of intensity (i,j=1,3) T
Iijk nondimensional third moment of intensity (i,j,k=1,3) ———
k thermal conductivity —_—
Ei direction cosine (i=1,3) -
L width of rectangular enclosure
Ny conduction-radiation parameter (Stark number); Eq. (6) —
Q! uniform volumetric source
Qi conduction heat transfer rate in ith coordinate direction |
’ (i=1,3) T
Qci nondimensional ith direction conduction heat transfer rate _
(i=1,3) -
Qi radiative heat transfer rate in ith coordinate direction o
(i=1,3) i
dRi nondimensional ith direction radiative heat transfer rate



QT] . nondimensional total heat transfer rate from wall 1}

r aspect ratio (=L/H)
r vector position in medium
S nondihensional volumetric source; Eq. (7)
T temperature
~ »~‘Ti temperature of wall i (i=1,2,3,4)
- A~m~ Xi‘ position coordinate i (i=1,2,3)
Axi finite d;%fereﬁﬁé step size in i direction (i=1,3)

Greek Symbols

n normalized position in X] coordinate direction
] elevation angle (0<6<m)
T4 nondimensional optical position in coordinate direction i
(i=1,3)
Ty optical depth in X] direction
T optical depth in X3 direction
¢ azimuthal angle (0<¢<2m)
X normalized position in X3 coordinate direction
xp’ ¥, nondimensional temperature ( of ma.\\)
w solid angle |
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