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SYMMETRY, STABILITY, AND DIFFRACTION
PROPERTIES OF ICO5AHEDRAL CRYSTALS.

Per Bak
Physics Department

Brookhaven National Laboratory
Upton, New York 11973

ABSTRACT

In a remarkable experiment on an Mn-Al alloy Shechtman et al. observed a diffraction

spectrum with icosehedral symmetry. This is inconsistent with discrete translational

invariance since the symmetry includes e five-fold axis. In this paper it will be shown that the

crystallography and diffraction pattern can be described by a six-dimensional space group. The

crystal structure in 3d is obtained es a cut along a 3d hyperplane in a regular 6d crystal.

Displacements of the 6d crystal along 6 orthogonal directions define 6 continuous symmetries

for the icosahedral crystal, three of which are phase symmetries describing internal

rearrangements of the atoms.

To be presented at "International conference on neutron scattering", Aug 19-23,1985

Santa Fe, New Mexico.
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1. INTRODUCTION

The symmetry of three-dimensional crystals on a regular discrete lattice can be

described in terms of space groups composed of a Bravais lattice of transiational symmetries

ond a point group of rotation and reflection symmetries. Only 2 , 3 , 4 , and 6 -fold rotation

symmetries are allowed. However, in a recent electron diffraction experiment on a rapidly

quenched alloy of manganese and aluminum Shechtman et al.[ 1 ] observed a spectrum including a

5-fold rotation axis and overall symmetry identical to that of a regular {"osahedron (Fig. 1).

The diffraction spots do not form a regular periodic lattice, but the spectrum has a scaling

structure: if the pattern is blown up by a factor G (the golden mean) the position, but not the

intensities, remain invariant. The diffraction spots were rathei sharp, indicating long range

order of some sort. How can this be possible in wiev of the considerations above?

A similar picture emerges for incommensurate modulated systems which also display a

nonperiodic spectrum reflecting the lack of discrete translations symmetry. However, in this

case the diffraction spots occur at positions which can be formed as linear combinations of the

reciprocal lattice vectors 9| of a basic lattice and the modulation vectors ĝ  of the

incommensurate structure [2 ] . In the icosehedral structure one can not isolate a set of basic

vectors, and there is in fact only one length scale. Nevertheless it turns out that one can apply

ideas originating from the study of incommensurate systems to describe symmetries and

physical properties of icosahedral crystals.

In this paper it will be shown that the usual three-dimensional space group should be

replaced by a six-dimensional space group formed by a six-dimensional discrete lattice of

translations and a point group which is isomorphous with the tcosa'iedral group. The actual

physical density is the density along a three-dimensional hyperpiane in this 6d crystal. All the

symmetry operations in 6d space represent actual symmetry operations in 3d. The diffraction

pattern should be thought of as the diffraction pattern of the 6d crystal. The five-fold symmetry

found by Shechtman reflects the existence of a five-fold axis in the 6d point group. The

crystallographer >s task is to find the basis associated with the primitive unit cell, which Is in

fact a quite formidable problem! Just as the basis in regular 3d crystals usually consists of an

arrangement of point- like objects (atoms), the basis for an icoaehedral arrangement of atoms

consists of an arrangement of 3d hypersurfaces imbedded in 6d space. These hypersurfaces

intersect the 3d real world space at the positions of the atoms. The only requirement for the

hypersurfaces is that they obey the 6d point group symmetries, and this leaves us with an
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enorrnous amount of flexibility. If the surfaces ere chosen to be hyperplane segments the

resulting structure becomes a space-filling non-periodic orrangement of tiles, such tilings hove

been described by several authors [ 3 ] - [ 5 ] . It is important to stress that the tilings or

"quasicrystalline" arrangements only represent a limiting case of a much more general class of

structures. There seems to be no a priori reason to believe that the actual structure found by

Shechtman et al. is related to the tiling limit. In addition to the 6d case we shall first discuss, for

pedagogical reasons, the much simpler case of a one-dimensional incommensurate system and a

two dimensional system with a 5-fold axis. The latter system has essentially the same symmetry

as a plane-filling system of tiles invented by the mathematician R. Penrose [6 ] .

The icosahedra) structures have 6 continuous symmetries corresponding to

displacements of the underlying 6d crystal in 6 orthogonal directions, compared with 3

continuous displacement symmetries for 3d crystals. The remaining continuous symmetries

describe internal rearrangements of the atoms, very similar to the phase symmetries in

incommensurate systems. For a more complete account of the work presented here see the

original references [7] and [8 ] .

2. 6d CRYSTALLOGRAPHY OF ICOSAHEDRAL CRYSTALS AND PENROSE STRUCTURES.

In order to illustrate the concepts that will be introduced to explain the fcosahedrai

crystals let us first consider a simple 1 d incommensurate structure. The density of the most

general 1 d incommensurate crystal with two length scales or wave numbers q j and c^ can be

written

where m and n are Integers. This equation defines a two-dimensional function f o ( v 1 , v 2 ) which

Is periodic In both its arguments with period 2 . Hence the function defines a two dimensional

periodic structure or crystal. The density in the real 1 d space is the density along the line v j =

q^x ,V2-q2* (F ig .2 ) . The slope of the line, o^ /q j , represents the incommensurability of the

structure which for instance could be the golden mean 0. Because of the incommensurability the

line gets infinitely close to all points belonging to the basis, so all the information in the 2d

lattice is used to generate the 1 d incommensurate structure. The amplitudes of the diffraction

spots are simply the Fourier transforms of the 2d function f0:
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S(q) = l/l fdxf(x)exp(iqx)- 1/L ( dxfo(q,x,q2x) exp(iqx) (2)

0 o

= J dv1 \>dv2fo(v,,v2)exp(iqx)= j ^ , Anm3'(mq1x + nq2x -q),

0 0

so the diffraction pattern of any one dimensional incommensurate structure can be thought of as

the diffraction pattern of a regular periodic two-dimensional crystal. The various

incommensurate structures differ simply in the basis associated with each unit cell in the 2d

lattice. Choose first e basis consisting of a line of delta-functions crossing the unit cell

diagonally (Fig. 2b), i.e. f Q ( v j , v 2 ) = 5 ^ ( v j -V2>. The resulting structure is an

uninteresting array of equidistant delta function atoms. If the straight line is modulated by a

sine function, or some other periodic function (Fig. 2c) the resulting structure is an array of

atoms with modulated displacement around equidistant positions.

An interesting case is the one where the basis is chosen to be a line segment of delta

functions perpendicular to the real world line (Fig. 2d), f(j(V],V2) = 6^(Q2 v i " { 1l v 2^

The resulting structure is a chain of atoms with interatomic distances which interchange in a

regular pattern between two different values. The incommensurate structure can thus be

formed by an arrangement of two different one-dimensional building blocks or "tiles". This is

precisely the quasicrystal introduced by Levine and Steinhardt [ 4 ] , which is merely a special

limit of an incommensurate structure. Note that in the quasicrystal limit one can alternatively

think of the incommensurate structure as a projection of 2d lattice points onto the line. In an

experiment the actual function f 0 must be found by fitting io the intensities of the Bragg spots

and the actual density can then be found by cutting the 2d space along the appropriate line defined

by Eq. ( 1 ) . The various cases discussed here do not exhaust the possil ilitiesfor Id

incommensurate structures. For some simple models the structures are highly nonanalytic

pinned incommensurate configurations. Such structures would correspond to 8 "fractal" choice

of basis.

Consider now a two-dimensional structure formed by superimposing density waves with

wave vectors qj q5 farming a regular pentagon, and their higher harmonics:

f(n) = frAcos(qn£) + Bcosdqp+qn+jJn) + Ccos([qn+qn+2JE) + (3)
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The structure has been built in a way which preserves the permutational symmetry of the

wavevectors defined by the pentagon. Equation 3 defines a function f o ( v , , .... ,v s )of f ive

variables, and the equation expresses that the actual physical density is found along a 2d plane in

the 5d hyperspace. The function fg defines a 5d crystal lattice since it is invariant under

translations 2 in all its arguments. In addition the function is invariant under certain

permutation operations on its arguments. These operations form the point group of the five

dimensional crystal. For instance, the five-fold rotation Vj - Vj+ j is a symmetry operation. It

is this symmetry operation which is responsible for the peculiar fivefold symmetry of the

Penrose structures. Thus, trie symmeti7 group which describes the "generalised" Penrose

structures is a Sri space group formed Dy a 5d Bravais lattice combined with a point group which

is isomorphous with C5V, the symmetry group of the pentagon.

Finally, let us proceed to the icosahedral crystals which should by now be quite easy to

understand. Consider a 3d density function f(r_) which is formed as a superposition of waves

with wave vectors given as the six pairs of vectors pointing to the vertices of a regular

icosahedron. Again, we shall allow all possible higher harmonics as long as they do not lower the

icosahedral permutation symmetry of the basic vectors:

f(n) = ff Acos(qnT.) + higher harmonics (4)

The function fQ (v 1, , v^ ) , defined in six-dimensional space, has the symmetry of

a 6d bravais lattice since it is invariant under translations of 2 of all its arguments. As the

vector £ traverses 3d space, a 3d plane is traced out in 6d space. The 3d plane is spanned by the

vectors(q t x % x ) , ( q l y % y ) , ( q ) z . q^ ) . Hence, the reel 3d quasicrystal

is to be found along a 3d hyperplane in 6d space. The point group consists of the permutation

operations among Vj which leaves the function fg invariant. This point group is obviously by

construction isomorphous with the icosahedral group which has 120 elements. One of these

elements is e 5-fold axis, v j-*v j , '*2'*/3'*/4'*/SJ"6~*'2- '* 's tn1s 5" f o w **& * " ' * is

responsible for the surprising 5-fold symmetry observed by Sbechtman et el.!

A structure analysis could in principle be done as follows. First, the function (Q could
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(again in principle) be determined by analysing the diffraction pattern. The spots at positions q

= n\Q] + ... +%% should simply be thought, of as the ( n j n 6 ) spots of a six dimensional

crystal! Once the basis to associate with each unit cell in 6d space has been determined the real

structure can be found simply by cutting the 6d crystal along the hyperplane. Note that since

the vectors qj are incommensurate with the basic vectors of the 6d lattice the density along the

3d plane samples the whole 6d unit cell, so all information in the 6d lattice is relevant for the

3d icosahedral crystal.

The choice of basis must be compatible with the point group symmetry defined above. So

far we have igrared the fact that the crystal should be formed cy an arrangement of Mn and Al

atoms. So where are the atoms? An arrangement of delta-function atoms in 3d space must

correspond to a periodic arrangement of 3d hypersurface segments in 6d space which intersect

the 3d real-world hyperplane at the positions of the atoms. This is completely analogous to the

1 d incommensurate case discussed above where the positions of atoms are given as the

intersection points between 1 d curves and the 1 d real space line. If the positions of the 3d Al and

Mn hypersurfaces are not chosen carefully the resulting arrangement of atoms becomes

unphysical. For instance, the surfaces can not intersect each other since this would lead to

overlapping atoms. If the surface is net placed at a symmetry position the point group symmetry

requires 120 surfaces in the unit cell, many of which would in general intersect. However, it is

possible to choose a surface which is invariant under all 120 point group operations.

The surface does not have to be a hyperpjaoe, but to be specific let us assume for the

moment that it Is. A "natural" arrangement with Mn atoms surrounded Icosahedrelly with 12 Al

atoms arises if the Mn surface is F, hyperplane perpendicular to the 3d plane through the point

(000000 ) and the Al positions correspond to 6 Al surfaces through the 6 symmetric points

(1 / 2 00000). Thus.the b8sis of the 6d unit cell consists of one Mn 3d hyperplane 8nd 6 Al

hyperplanes. This limit corresponds to an arrangement of identical three dimensional tiles, so

this would again be the quasicrystsl limit. Note that the positions of atoms are given as

projections of all 6d lattice points within a certain distance from the 3d plane onto this plsne. It

has thus been demonstrated that the projection methods introduced by others [ 3 H 6 ] , [9] can

be recovered as special, and probably rather unrealistic, limits. More general structures can be

constructed by modulating the positions of the hypersurfaces in analogy with the construction

for 1 d incommensurate systems depicted in Fig. 2c. The genera? icosahedral crystal is related to

the tiling structures in a way which is quite analogous to the way incommensurate structures

are related to regular periodic structures.
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In addition to the operations which leave the structure invariant there are also

continuous operations which leave the energ/ invariant, in analog/ with rigid displacements of a

regular 3d crystal. A rigid shift of the underlying 6d crystal in any direction must correspond to

a continuous symmetry since the 3d plane traverses the unit cell ergodically. It is easy to see

that a shift of the 6d crystal parallel to the 3d real space hyperplane corresponds to a rigid

displacement of the icosahedral crystal. Displacements of the 6d crystal perpendicular to the

plane define the three remaining symmetries which in general describe certain internal

rearrangements or "phase shifts" of the atoms. The density along the broken lines in Fig. 2

represents the result of a phase displacement perpendicular to the real-space line in the case of

a Id incommensurate structure. In some cases (Fig. 1c) the atoms are displaced continuously

while in other cases (Fig. 2d) the actual displacements of the atoms are discontinuous despite the

fact that the phase shift is a continuous symmetry. The two cases are usually denoted unpinned

and pinned incommensurate structures, respectively [2] .

Once the continuous symmetries have been defined one can construct ths elastic energy

associated with strains in thsse hydrodynam ic coordinates. A little group theory reveals that for

the Penrose structures there ere in general two elastic constants for ths displacement strains,

two elastic constants for the phase strains, and one elastic constant mixing the strains, so

altogether there are 5 elastic constants. The situation is precisely the same for the icosahedral

crystals [8 ] .

So far we have discussed only the crystallographic properties of icosahedral crystals, and

totally ignored the question as to what makes such structures stable. In order to rally answer

this question one must in principle perform an enormous electronic structure calculation,

involving a determination of the total energy, and compare with all other possible structures.

Such calculations are just on ths borderline of the state-of-the-art for simple regular lattices,

and it seems prohibitively difficult in a situation where one does not have a periodic lattice. Any

discussion on the stability of icosahedras structures must necessarily be quite phenomenological

at present, h Landau theory [ 7 -8 ] reveals that the ieosahedral structures may indeed in

principle be stable compared with all other structures, in particular compared with occ cubic

crystals. The density wave description used here to describe the crystailographic properties of

icosahedral crystals arises in a natural way from the Landau theory.

Work supported by the Division of Materials Sciences U. S. Department of Energy under

contract DE-AC02- 76CH00016.
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FIGURE CAPTIONS

Fig. 1 Diffraction pattern of Mn0 j 4 Al0 gg as measured by Shechtman et al. [ I ] along a

five-fold axis (Schematic). Note the lack of translational invariance.

Fig. 2 One-dimensionaUncommensurate structure as 8 2d periodic crystal. The

physical density along the x-direction is the density along a line through (0,0)

with slope q2/q 1 The various incommensurate structures differ only with

respect to the basis associated with each lattice point, a) General case. The cases

b)-d) ere discussed in the text. The broken line represents the density associated

with a phase translation.
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