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SYMMETRY, STABILITY, AND DIFFRACTION
PROPERTIES OF ICOSAHEDRAL CRYSTALS.

Per Bat

Physics Department
Brookhaven National Leborstory
Upton, New York 11973

ABSTRACT

In a remarkable experiment on an Mn-Al elloy Shechtman et al. observed a diffraction
spectrum with icosahedral symmetry. This is inconsistent with discrete translational
invariance since the symmetry includes & five-fold axis. In this paper it will be shown that the
crystallography end diffraction pattern can be described by a six-dimensional space group. The
crystal structure in 3d is obtained s a cut along a 3d hyperplene in a regular 6d crystal.
Displacements of the 6d crystal aiong 6 erthogonsl directions define 6 continuous symmetries
for the icosahedral crystel, three of which are phase symmetries describing internal
resrrangements of the atoms.

To be presented at “international conference on neutren scattering”, Aug 19-23,1985
Senta Fe, New Mexico.



1. INTRODUCTION

The symmetry of three-dimensional crystals on a reguier discrete iattice can be
described in terms of spece groups composed of a Bravais lattice of translational symmetries
ond a point group of rotation and reflection symmetries. Only 2, 3, 4, and 6 -foid rotation
symmetries are allowed. Kowever, in a recent electron diffraction experiment on a rapidly
quenched alloy of manganese and aluminum Shechtmen et al. { 1] observed a spectrum including a
5- fold rotation axis and overall symmetry identical to that of a regular i~gsshedron (Fig. 1).
The diffraction spots do net form a regular periodic lattice, but the spectrum has a scaling
structure: if the pattern is blown up by a fector G ( the golden mean) the position, but not the
intensities, remain inveriant. The diffraction spots were rathe: sharp, indicating long range
order of some sort. How can this be possible in wiev of the considerations above?

A similar picture emerges for incommensurate modulsted systems which also display 8
nonperiodic spectrum reflecting the lack of discrete translational symmetry. However, in this
case the diffraction spots occur at positions which can be formed s lineer combinations of the
raciprical lsttice vectors g; of a basic lattice and the modulation vectors g, of the

incommensurate structure {2]. In the icosshedral structure one can not isolate a set of basic
vectors, and there is in fact only one length scale. Nevertheless it turns out that one can apply
idess originating from the study of incommensurate systems to describe symmetries and
physical properties of icosshedral crystals.

in this paper it will be shown that the usual three-dimensional space group should be
repleced by a six-dimensional space group formed by a six-dimensional discrete lattice of
translations and a peint group which is isomorphous with the icosshedral group. The actusl
physicai density is the density along a three-dimensional hyperplane in this 6d crystal. All the
symmetry operations in 6d space represent actual symmetry operations in 3d. The diffraction
pattern should be thought of as the diffraction pattern of the 6d crystal. The five-fold symmetry
found by Shechtman reflects the existance of a five-fold axis in the 6d point group. The
crystallographer s task is to find the basis associated with the primitive unit cell, which is in
fact a quite formideble problem! Just 8s the basis in regular 3d crystals usually consists of an
orrangement of point-like objects (atoms), the basis for an icosehedrsa! arrangement of atoms
consists of an arrangement af 3d hypersurfaces imbedded in 6d space. These hypersurfaces
intersaect the 3d real world space at the pasitions of the atoms. The only requirement for the
hypersurfaces is that they obey the 6d point group symmetries, and this lsaves us with an



enorimous amount of flexibility. If the surfaces are chosen to be hyperplane segments the
resulting structure becomes o space-filling non-periodic arrangement of tilea. such tilings have
been described by several authors [3])-[S]). It is important to stress that the tilings or
“quasicrystalline” arrangements only represent a limiting case of 8 much more general class of
structures. There seems to be no a priori reeson to believe that the actual structure found by
Shechtman et al. is related to the tiling iimit. In addition to the 6d case we shall first discuss, for
pedagogical reasons, the much simpler case of a one-dimensional incommensurate system and a
two dimensional sysiem with a 5-folg axis. The latter system has essentially the same symmetry
as a plane-filling system of tiles invented by the mathematicien R. Penrose [6).

The icosahedrsl structures have 6 continuous symmetries corresponding to
displacements of the underlying 6d crystal in 6 orthogonal directions, compared with 3
continuous displacement symmetries for 3d crystals. The remaining continuous symmetries
describe internal resrrangements of the atoms, very similar to the phase symmetries in
incommensurate systems. For a more complete account of the work presented here see the
original references [ 7] and [ 8].

2. 6d CRYSTALLOGRAPHY OF ICOSAHEDRAL CRYSTALS AND PENROSE STRUCTURES.
In order to illustrate the concepts that will be introduced to explain the icosahedral
crystals let us first consider a simple 1d incommensurate structure. The density of the most

general 1d tncommensurate crystal with two length scales or wave numbers q; 8nd go can be
written
f(x) = E‘n Amn cos(ma;x + ngx) = folqyx, gpx), (1)

where m end n ere integers. This equation defines a two-dimensional function fo(v, \ v2) which
is periodic in both its arguments with period 2 . Hence the function defines a two dimensional
periodic structure or crystal. The density in the reei 1d space is the density slong the line v =
qyx , ¥2 =gx (Fig.2). The slope of the line, gp/q , represents the incommensurability of the

structure which for instance could be the golden meen 0. Because of the incommensurability the
line gets infinitely close to 811 points belonging to the basis, so all the information in the 2d
Jettice is used io generate the 1d incommensurate structure. The smplitudes of iiw diffraction

spots are simply the Fourier trensforms of *he 2d function fyy:
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so the diffraction pattern of eny one dimensionsl incommensurate structure can be thought of as
the diffraction pattern of a requler periodic two-dimensional crystal. The various
incommensurate structures differ simply in the basis associated with each unit cell in the 2d
lattice. Choose first a basis consisting of a line of delta-functions crassing the unit cell
diagonally (Fig. 2b), i.e. fp(vy,v5) = o) (v - vo). The resulting structure is en
uninteresting array of equidistant delta function aloms. If the straight line is modulated by &
sine function, or some other periodic function (Fig. 2c) the resulting structure is an array of
atoms with modulated displacement around equidistent positions.

An interesting case is the one where the basis is chosen to be & line segment of delta
functions perpendiculcr to the real world line (Fig. 2d), folvy.vp) = &¢( AT A 2))

The resulting structure is a chain of etoms with interetomic distances which interchange in e
reguler pattern between two different values. The incommensurate structure can thus be
formed by an arrangement of two different one-dimensional building blocks or "tiles” . This is
precisely the quasicrystal introduced by Levine and Steinhardt [4], which is merely a special
limit of an incommensurate structure. Note thet in the quasicrystal limit one can alternatively
think of the incommensurate structure &s a projection of 2d lattice points onto the line. In an
experiment the actual function f must be found by fitting io the intensities of the Bragg spots
and the actual density can then be found by cutting the 2d space along the spproprfate 1ine defined
by Eq. { 1). The various cases discussed here do not exhaust the possii ilities for 1d
incommensurate structures. For some simple models the structures sre highly nonanalytic
pinned incommensurste configurations. Such structures would correspond to a “fractal” choice
of basis.

Consider now & two-dimensional structure formed by superimposing density waves with

wave vectors gy .......gg ferming & regular pentagon, and thetr higher harmonics:



The structure has been built in 6 way which preserves the permutaticnal symmetry of the
wavevectors dafined by the pentagon. Equation 3 defines a functicn fo( vy, ... ,vg) of five
variables, and the equation expresses that the actual physical density is found along a 2d piene in
the Sd hyperspace. The function fpy defines a Sd crysial lattice since it is invarisnt under
trenslstions 2 in all its arguments. In addition the function is invarient under certain
permutation operations on its arguments. These operations form the point group of the five
dimensional crystal. For instance, the five-fold rotation v; - vy, | isa symmetry operation. It
is this symmetry operation which is rzsponsible for the peculiar fivefold symmetry of the

Penrose structures. Thus, the symmetiy group which describes the “generalised” Penrose
structures is a Sd space group formed by 8 5d Bravais lattice combined with a point group which

is isomorphous with Cs,,, the symmetry group of the pentagon.

Finaily, let us proceed to the icosshedrel crystals which should by now be quite eesy to
understand. Consider a 3d density function f{) which is formed as a superposition of weves
with wave vectors given as the six pairs of vertors pointing to the vertices of 8 regular
icosshedron. Again, we shali allow sl possibie higher harmonics as long as they do not lower the
icosahedral permutation symmeiry of the basic vectors:

f(p) = zAcos(qn'E) + higher harmonics (4)
= fo(Q4 Ly e .GgL) .
The function f (v P , v6), defined in six-dimensional space, has the symmetry of

a 6d bravais lattice since it is invariant under translations of 2 of all its arguments. As the
vector ¢ traverses 3d space, a 3d plane is traced out in 6d space. The 3d plane is spanned by the

vectors (Qyy, ...... +06x): (Q1y, . Mgy). (942, ... Ggp). Hence, the reel 3d quesicrystel
is to be found along a 3d hyperplane in 6d space. The point group consists of the permutetion
operations among v; which leaves the function fy invariant. This point group is obviously by
construction isomorphous with the icosahedral group which has 120 elements. One of these
elements is @ S-fold axis, vy, vo-w3-W4WgWgNo. It is this S-fold axis which is
responsibie for the surprising 5-fold symmetry observed by Shechtman et &l.!

A structure analysis could in principle be done as follows. First, the function fO could



(again in principle) be determined by analysing the di7fraction pattern. The spots at positions q
=NnyQy + .. +Nghg Should simply be thought or as the (ny ... ng) spots of a six dimensionel

crystal! Once the basis to associate with aach unit cell in 6d space has been determined the real
structure can be found simply by cutting the 6d crystal along the hyperplane. Note thet since
the vectors q; ere incommensurate with the basic vectors of the 6d lattice the density along the

3d plane samples the whole 6d unit cell, so all information in the 6d lettice is relevant for the
3d icosahedral crystal.

The choice of basis must be compatible with the point group symmetry defined sbove. So
far we have igrored the fect that the crystal should be formen 1y an arrangement of Mn and Al
atoms. So where are the atoms? An arrangement of delta-function stoms in 3d space must
correspond to o periodic arrarnigement of 3d hypersurface segments in 6d space which intersect
the 3d real-world hyperplane st tha positions of the atoms. This is completely analegous to the
1d incommensurate case discussed above where the positions of atoms are given as the
intersection points between 1d curves and the 1d real space ling. If the positions of the 3d Al and
Mn hypersurfaces are not chossen carefully the resulting arrangement of atoms becomes
unphysical. For instance, the surfaces can not intersect each other since this would lead to
overlapping atoms. If the surface is nct pleced at 8 symmetry position the point group symmetry
raquires 120 surfaces in the unit cel!, many of which would in general intersect, However, it is
possible to choose a surface which is invariant under all 120 point group operations.

The surface does not have to be a hyperplane, but tc be specific let us assume for ine
moment that it 1s. A "natural” arrangement with Mn atoms surrounded icosahedrally with 12 Al
atoms arises if the Mn surfece is & iwperplane perpendiculsr to the 3d plane through the point
(000000) and the Al positions correspond to 6 Al surfaces through the 6 symmetric points
(1/2 00000). Thus,the basis of the 6d unit cell consists of one Mn 3d hyperplane and 6 Al
hyperplanes. This limit corrasponds to an arrangement of identical three dimensional tiles, so
this would again be the quasicrysial limit. Note thet the positions of atoms are given as
projections of all 6d lattice points within a certain distance from the 3d plane onto this plane. It
has thus been demonstrated that the projection methods introduced by others [3}-[6], [9) can
be recovered as special, and probably rather unreelistic, 1imits. More general structures can be
constructed by modulating the positicns of the hypersurfaces in analogy with the construction
for 1d incommensurate systems depicted in Fig. 2c. The general icosahedral crystal is related to
the tiling structures in a way which is quite analogous to the way incommensurate structures
are related to regular periodic structures.



In addition to the operations which leave the siructure invariant there are also
continuous cperstions which leave the energy fnvarient, ir: enalogy with rigid displacements of &
reqular 3dcrystal. A rigid shift of the underlying 6d crystal in any direction must correspond to
a continuous symmetry sirice the 3d plane traverses the unit cell ergodically. It is easy to see
that e shift of the 6d crystal parallel to the 3d real space hyperplene corresponds to a rigid
dispiacement of the icosahedral crystal. Displacements of the 6d crysta! perpendicular to the
plane define the three remeining symmetries which in general describe certain internal
rearrangements or “phase shifts” of the stoms. The density along the broken lines in Fig. 2
represents the result of s phase displacement perpendicular to the real-space line in the case of
a 1d incommensurate structure. In some cases (Fig. 1¢) the atoms are displaced continuously
while in other cases ( Fig. 2d) the ectual displacements of the atoms are discontinuous despite the
fact that the phase shift is a continuous symmetry. The iwo ceses are usually dencted unpinned
and pinned incommansurate structures, respectively [2).

Once the continuous symmetries have been defined one can construct the elastic energy
associated with strains in these hydrodynamic coordinates. A little group theory revesls that for
the Penrose structures there sre in general two elastic constants for the displacement strains,
two elastic constants for the phase strains, and one elastic constant mixing the strains, so
altogether there are 5 elastic constants. The situation is precisely the same for the icosshedral

crystals [8).

So far we have discussed anly the crystellographic properties of icosahedral crystals, and
totally ignored the question as to what makes such structures stable. in order to resily answer
this question one must in principle perform an enormous electronic structure calculation,
invalving a determination of the total energy, and compore with all other possibie structures.
Such calculations are just on the borderline of the state-of-the-art for simple regular lattices,
and it seems prohibitively difficult in a situation where one does not have a periodic lattice. Any
discussion on the stability of icosahedra: structures must necessarily be quite phenomenolagica)
at present. A Landeu theory [ 7-8) reveals that the icosshedrsl structures may indeed in
principle be stable compared with all other structures, in particuler compared with bec cubic
crystals. The density wave description used here to describe the crystallographic properties of
icosshedral crysials arises in a natural way from the Landeu theory.

Work supported by the Division of Materials Sciences U. S. Department of Energy under
contract DE~ACO2- 76CHO00 1 6.
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FIGURE CAPTIONS

Fig. 1 Diffraction pattern of Mng ¢ 4 Alg g¢ & measured by Shechiman et al. [ 1] alonga

five~fold axis ( Schematic). Note the lack of trensistional invariance.

Fin. 2 Cne-dimensiona! incommensurate structure as a 2d periodic crystal. The
physical density along the x-direction is the density along a line through (0,0)
with slope g/q,. The verious incommensurate structures differ only with
respect to the basis associated with each lattice point. ®) General case. The cases
b)-d) srediscussed in the text. The braken line represents the density essociated
with e phase transletion.
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