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ABSTRACT 

We de-cribe here a numerical model of a free boundary axisymmetric 

tokaraak plasma and i t s associated control systems. The plasma i s modeled v>ith 

a hybrid method using two-dimensional veloci ty and flux functions with 

surface-averaged MHO equations describing the evolution of the adiabatic 

invar i an t s . Equations are solved for the external c i r c u i t s and for the 

effects of eddy currents in nearby conductors. The method i s verif ied by 

applicat ion to several t e s t problems and used to simulate the formation of a 

bean-shaped plasma in the PBX experiment. 
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1 . INTRODUCTION 

There i s a growing body of ev idence from both t h e o r e t i c a l and 

expe r imen ta l s t u d i e s t h a t tolcamaks w i t h shaped , n o n c i r c u l a r c r o s s s e c t i o n s 

o f f e r s i g n i f i c a n t advantages over c o n v e n t i o n a l c i r c u l a r c r o s s s e c t i o n tokamaks 

[ 1 ] . Onset c o n d i t i o n s for i d e a l magnetohydrodynami o (MHD) i n s t a b i l i t i e s , 

r e s i s t i v e t e a r i n g i n s t a b i l i t i e s , beam-dr iven plasma i n s t a b i l i t i e s , and t h e 

ampl i tude of r e s i d u a l m i c r o i n s t a b i l i t i e s a r e a l l expec ted t o improve when the 

tokamak c r o s s s e c t i o n becomes h i g h l y shaped [ 2 - 5 ] . The ohmic h e a t i n g power i s 

a l s o i n c r e a s e d and t r a n s p o r t i s expec ted t o improve . 

However, t h e r e a r e s e v e r a l d i s a d v a n t a g e s a s s o c i a t e d with h i g h l y shaped 

tokamaks. The e x t e r n a l shap ing f i e l d s must be c a r e f u l l y programmed to 

e s t a b l i s h the d e s i r e d c o n f i g u r a t i o n . Also t he p o s i t i o n a l c o n t r o l problems a r e 

compounded. In t h e absence of nearby c o n d u c t i n g w a l l s , t h e plasma i s 

g e n e r a l l y u n s t a b l e t o an axisymmetr ic d i s p l a c e m e n t . Close f i t t i n g p a s s i v e 

c o n d u c t o r s can normally slow down t h e s e i n s t a b i l i t i e s t o t imes comparable t o 

the r e s i s t i v e time of t h e c o n d u c t o r s , bu t a c t i v e feedback systems a r e 

g e n e r a l l y n e c e s s a r y t o p rov ide comple te s t a b i l i t y 1 6 , 7 ] . The t ime s c a l e s over 

which the e x t e r n a l shap ing f i e l d s change and the feedback systems respond a r e 

g e n e r a l l y comparable t o t h e r e s i s t i v e d i f f u s i o n t ime of t h e p lasma. 

This paper d e s c r i b e s a computa t iona l mathemat ica l model developed t o 

s tudy the c o n t r o l r e q u i r e m e n t s fo r shap ing tokaraak d i s c h a r g e s . The model 

c o n s i s t s of a two-dimens ional t r a n s p o r t d e s c r i p t i o n of a plasma i n t e r a c t i n g 

wi th a d i s c r e t e s e t of axisymmetr ic conduc to r s which cbey c i r c u i t e q u a t i o n s 

wi th a c t i v e feedback a m p l i f i e r s be ing i n c l u d e d . A s o l u t i o n method i s u t i l i z e d 

i n which t h e plasma fo rce ba l ance e q u a t i o n i s modified by s c a l i n g up t h e 

plasma mass and v i s c o s i t y . This t e chn ique keeps the plasma in near fo rce 

b a l a n c e e q u i l i b r i u m w h i l e a l l e v i a t i n g the s e v e r e time s c a l e d i sc repancy 
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between wavelike and diffusionlike phenomena. Uao the vacuum equations are 

modified to describe a very high resistivity zero pressure plasma. The 

parameter scaling does not affect the bulk motion <»f a tokamak plasma that is 

stable on the ideal MHD time scale. 

Tn the following sections we present the modified equations, discus3 the 

relevant time scales, and present the numerical methods utilized in the 

simulation. We verify the computational technique in Sec. V by computing 

several test problems in some detail. Then in sec. VI we apply this method to 

the modeling of an actual tokamak experiment, the Princeton Beta Experiment 

(PBX) [81. It is shown that a systesi of shaping coils plus passive and active 

feedback conductors should be sufficient to shape the tokamak into a kidney 

bean shape and hold it there in a controlled manner. 

II. EQUATIONS 

In an axisyrametric toroidal geometry with symmetry angle $, the magnetic 

field is expressible in terms of the poloidal flux per radian ¥ and the 

toroidal field function g in the standard way 

B = V$ x V? + g?* . (1) 

The function g is a general two-dimensional function whose contours will align 

themselves with constant poloidal flux contours when the system is in static 

Force balance, i.e., g = g(T) in equilibrium. The toroidal flux <f within a 

constant ¥ contour ¥ • ¥ is obtained by performing an integral over the 

curves interior 

* s 1- J dt B'V* = J dxdz q(it-'z) . (2) 
c c 
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where (x,<t>,z) form a cy l indr ica l coordinate system (Fig. 1 ) . 

We find i t advantageous to express the plasma momentum density m = M n̂.̂  

in terras of a stream function A, a toroidal component u, and a potent ia l Q, 

thus 

m = v$ x VA + uV(J) + 72 . (3) 

'this form for the veloci ty f ie ld allows separate numerical treatment of the 

incompressible and compressible par ts of the flow f i e ld . Since the physics 

governing the wave dynamics of V • m - 7% and V<i> • M S = f • x~ 2 7A are 

determined, respect ively , by the longitudinal and transverse c h a r a c t e r i s t i c s , 

the time evolution of these two quan t i t i e s can be qui te d i f fe ren t . The 

numerical method presented in Sec. I l l makes use of th i s representation to 

deal with the time scale d i spa r i t y . 

Me describe here the se t of dynamical equations solved in the 

computational domain i l l u s t r a t e d in Fig- 1 . We take a uniform fixed spa t ia l 

mesh and divide i t into three regions: the plasma region, the vacuum region, 

and the solid conductors. The interface between the plasma and the vacuum 

regions wi l l change in time, being defined as the f i r s t poloidal flux surface 

'i = const , touching a l imiter point or containing an x-point (magnetic 

l imi ter> . Transparent boundary conditions are applied a t the computational 

boundary so that i t s placement wil l not affect the plasma evolution. 

In each region, a modified form of the MHD-Maxwell equations are 

solved. The modifications take the form of introducing several continuous 

Parameters such that the t rue ( ine r t i a l esa ) MHD and vacuum equations are 

obtained when these parameters approach zero. These parameters are the 
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enhanced plasma mass density and viscosity, and the electrical conductivity of 

the vacuum region. For finite values of these parameters, tha equations do 

not change their type across region boundaries, and solutions remain 

continuous. We describe next the exact equations solved in each region. 

ft. Plasma Region 

We aie concerned with obtaining accurate solutions to the resistive MHD 

equations on the time scale governed by resistive dissipation and cross field 

transport in the plasma, and by the rate of change of the currents in the 

poloidal field circuits due to resistivity and to externally applied driving 

voltages. This time scale is long compared to the time it takes for densities 

and temperatures to equilibrate along the magnetic field lines so that we can 

take these quantities to be one-dimensional spatial functions, uniform on each 

magnetic surface. It is also long compared to the time that Alfven waves act 

to equilibrate force imbalances so that the static equilibrium condition J x § 

= Vp will remain nearly satisfied. 

In the absence of ftlfven transit time scale (ideal MHD) instabilities, 

the inertial terms in the plasma force balance equation are negligible, 

smaller than the magnetic forces by the square of the inverse magnetic 

Reynolds number, S„ , where 

o o 
+ 

with n the plasma r e s i s t i v i t y and a the minor radius . Since the magnitude of 

the t rue time-averaged i n e t t i a l terms are small, we replace them with a more 

convenient modified i n e r t i a l term which i s equivalent to enhancing the plasma 

mass, dropping the convective der iva t ive term, ^inA choosing a specific form 
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for the plasma v iscos i ty operator . 

Fv(ra) = -v^V 2 ? . - V[V * mJJ - v27(V • raj . (5) 

Thus the plasma force balance equation becomes 

!=• + F v (n) - J x I - Vp (6) 

The mass enhancement and v iscos i ty parameters are chosen so tha t the left-hand 

side of Eq. (6) remains small enough to be negl ig ib le compared to the r i g h t -

hand s ide , but not so small as to make forward time in tegra t ion proh ib i t ive . 

Further motivation for the modified i n e r t i a l technique i s given in Ref. 9. I t 

•n'Jst be ver i f ied a_ pos te r io r i tha t the modified i n e r t i a l terras indeed remain 

small and tha t the physical r e s u l t s a re independent of the f i c t i t i o u s mass and 

v iscos i ty values over a wide range. 

Scalar forms of the momentum equations are obtained by operating on the 

modified force balance equation, Eq. (6) with {V»} , {V$«V*} , and {V$«}. Thus, 

"e obtain 

| ^ 7 ^ J + v [ — - 7 ¥ + - S - j Vg + 7p - v 2 V^V^JJ = 0 , (6a) 
U X II X 

o o 
* V 

~ A * A + X 27-[ ——-VF .. ?<. + -3-^ 7g x ?<(, - - I V(AV 'AJJ = 0 , (6b) 

— w + u~' V$ » 7g • 7y - v A (i) = 0 , (6c) 

where A* = x v • x V ig the standard toroidal e l l i p t i c operator . 

We note here that s t a t i c solut ions to Bqs. (6a-6c) with (£3, A, u) and 
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t h e i r t ime d e r i v a t i v e s a e r o a r e exac t s o l u t i o n s t o t h e f u l l Grad-Shafranov 

e q u i l i b r i u m e q u a t i o n , i . e . , 

A** + n 0 * 2 l r p < y ) + \ aV g 2 ( ¥ ) = ° • ( 7 ) 

T r a n s i e n t s o l u t i o n s fo r IS, p , and g a r e a lways w i t h i n a = s M of s a t i s f y i n g 

Eq. (7). 

F a r a d a y ' s Law, and an Ohm's law of t h e form 

E + V x B = R , (8) 

where * c o n t a i n s t h e n o n i d e a l t e r ras , y i e l d e v o l u t i o n e q u a t i o n s for t h e 

p o l o i d a l f l u x and t o r o i d a l f i e l d f u n c t i o n s 

| ^ ¥ + — [V* * 7A - V¥ + VQ ' 7!Fj = x 2 ^ • R , C9) 
o 

| j - g + x 2 7 ' L - 3 - j (V<t> x ? j + VGj - -*—- 7* * V? - V<j> * Rj = 0 . (10) 
p x p x 

o r o 

Here, pQ = n Q \ i s a c o n s t a n t , having t h e r o l e of t h e enhanced mass d e n s i t y . 

S ince t he t o r o i d a l magnet ic f i e l d i s due p r i m a r i l y t o e . n e r n a l c u r r e n t s , 

i t i s r e l a t i v e l y immobile, making I t c o n v e n i e n t t o evo lve t h e s u r f a c e - a v e r a g e d 

thermodynamic v a r i a b l e s r e l a t i v e t o magnetic c o o r d i n a t e s u r f a c e s c o n t a i n i n g a 

f ixed amount of t o r o i d a l f l u x . To d e r i v e t h e s u r f a c e - a v e r a g e d e v o l u t i o n 

e q u a t i o n s , we decompose t h e c r o s s - f i e l d f l u i d v e l o c i t y i n t o two p a r t s 

v • 7¥ = v • V¥ + v„ • VI? f l1) 
C R 



8 

where v c • VS is associated with the evolution of the coordinate surfaces, and 
Vj, *V,F is the fluid flow relative to these surfaces. For magnetic coordinate 
surfaces evolving with fixed toroidal flux *, we have from Eq. (10) 

2 
R g 

and 

6t Lq P B > aif l q P B c J 

Here, q = (2n)~ 1 B$/d'F i s the safety factor , B_ = |v* * VW| i s the magnitude 

of the poloidal magnetic f ie ld , and the l ine i n t eg ra l s a re around a contour in 

a poloidal cross section a t I = const. Using Eqa. (11) through (13) to 

eliminate the veloci ty from the raasa and energy conservation equations, we 

obtain [10] one-dimensional evolution equations for the d i f f e r e n t i a l number 

densi ty W z n oV/d$, and the d i f f e ren t i a l t o t a l and electron entropy 

dens i t i e s e = p(dV/o$) 5 ' and a = p (av/a$) ' , with respect to magnetic 

surfaces containing a fixed toroidal f lux. 

ft" 1 =-kwn + s* • C 1 4 ) 

Time derivatives are with respect to surfaces containing fixed toroidal 
flux $, We have defined the differential volume 
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9$ M> r q * B 
t> 

the joop v o l t a g e 

v = &&*L , ( 1 8 ) 
<B'V<|>> 

and t h e t o t a l t o r o i d a l c u r r e n t w i t h i n a f lux s u r f a c e 

K = * +B . & - j , *U?lL 

Qt = SffL<5i • w > + | P i r J 

*e 0$ L ^e 2 e J 

(19) 

The p a r t i c l e f lux and e l e c t r o n and ion h e a t f l u x e s a r e de f ined a s 

r = 2rcq [<x2R'Vi))> - <R>B>/<B^7if>>J , (20) 

(21 ) 

(22) 

where q^ and q are the random heat flux vectors. We have introduced the flux 

surface average operator in Eqs. (18), (20), (21), (22) 

£M*/B )a 
< a > = R d V B p ) 

The e q u i p a r t i t i o n term i s c l a s s i c a l 

2 
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vi th n, = 2.0 r), the perpendicular r e s i s t i v i t y . The S n , S e , Ŝ  are external 

sources of p a r t i c l e s , e l y t r o n energy, and ion energy. 

We note here that Eqs. (9) and (10) imply an evolution equation Eor the 

transform t = q - 1

r 

Equation (24) i s redundant, but can serve as a -rheck and possibly also as a 

corrector to the ¥ and g functions evolved through Eqs. (9) anu (10). The 

correct ion feature i s discussed in Sec. H I B. 

we take tne nonideal d iss ipa t ion vector % in Eq. (8) to consis t of a. 

c la s s i ca l par t R and an anomalousi par t R^, perpendicular to the magnetic 

f ield . . 

* -> - 2 * •* * 
R = R + B B X R X B . ( 2 5 ) 

c A 

For the classical part we take 

R = n.J (26) 
C 9 

with r||| = 0.51 x •\Q~4 Z Jin A T^'3'3 ohms when the electron tenperature T p i s 

measured in electron v o l t s . Here, T e = k B

- 1 p e / n as determined from Eqs. (14) 

and (16). In evolving the 2-D flux functions ¥ and g in Eqs, (9) and (10), i t 

i s permissible to take ±* = Rc since the anomalous 1L i s perpendicular to %. 

Includi-q RA in Bgs. (9) and (10) would be equivalent to using a s l igh t ly 

modified veloci ty f ie ld %' = "v + 1U x 'fe/B2 which would lead to no addit ional 
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fltu: diffusion. Thus, in Bqs. (9) and (10), we can evaluate 

x"^ • R = — A ? , (27) 
c ''o 

V* x E = — " — V q , C28) 
c 2 

while in Bq. (18), an explicit expression for the loop voltage oan be obtained 

a 

where we have defined 

a 5 2™L = J, JL. . (30) 
g B x 2 

P 

In t h e e v a l u a t i o n of t h e p a r t i c l e f lux T and t h e h e a t f 1 ixes <q^ • V$> 

and <q * V$>, i t i s t h e anomalous p a r t t h a t d o m i n a t e s . We t a k e t h i s to be of 

t h e form 

<% * M > A = "n 2 l ^ l 2 l ^ J 2 a ^ ' ( 3 1 b > 

<q. • 7 $ > A = - ^ | V ¥ | 2 [ 2 ^ q J 2 — ^ . (31c) 

We hav« taken (D^, D2, D,) = ( 0 . 1 , 1.0, 1.0) ra2/sec t o g ive a r e a s o n a b l e f i t 

t o PBX d a t a . 
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a. vacuum Region 

The vacuum region is defined by either having ¥ > ¥-_, where ^ L is the 

first plasma flux surface in contact with a limiter or by being separated from 

the plasma by a magnetic x-point. We treat the vacuum region as a low 

temperature, zero pressure gradient plasma in which force-free currents can 

appear. In the limit as the vacuum conductivity approaches zero, the 

magnitude of these currents will go to zero and the magnitude of the magnetic 

diffusion coefficient will approach infinity. Thus, Eq. (6) (with Vp = 0}, 

and Eqs. (9) and (10) are solved in the vacuum region, with a classical 

resistivity, Eq. (26), based on a constant electron temperature T e = T v. The 

vacuum temperature, normally a few eV, is much less than the central plasma 

temperature, normally 0.1 to 3.0 keV; however, it is not zero. This vacuum 

temperature and a vacuum density, n v, serve as boundary conditions on the 

surface-averaged plasma evolution Eqs. (14) through (16). Since the plasma 

temperatures and densities will approach these values smoothly, all physical 

quantities are smooth and continous across the plasma-vacuum interface, and no 

special boundary treatment is required there. again, we must verify a_ 

posteriori that the physical results converge to a value independent of the 

vacuum temperature T v. 

Rt the outer boundary of the vacuum region, i.e., the computational 

domain boundary, we model an insulating, magnetically transparent boundary by 

prescribing that the toroidal field strength g and the poloidal flux 1? be 

consistent with the instantaneous plasma and coil currents. Thus, on the 

boundary points ?L, 

gKJ -*o--2T' t32> 
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n V *J - fe Jp <* V *J V*' tj d2 5 + 1^ ^ G(\, 1 j I. . (33) 

Here, i T F i s the t o t a l current in a l l the toro ida l f ie ld c o i l s , G(x b , x) i a 

the analyt ic exter ior Green's function .for an axi symmetric current filament 

I n ] , j . = ( | i 0 x) - 1 &*?, and the in tegra t ion and summation in Eq. (33) are over 

the plasma volume and d i sc re t e c o i l s , respec t ive ly . 

The two-dimensional in tegra l in Eq. (33) i s expensive to evaluate 

numerically, having to be performed a t each boundary point each time s tep . We 

therefore ana ly t i ca l ly expand the Green's function G(x b , x) about the current 

centroid source point 

<s( V *J = G ^ , x j + [x - x o ) • VG(xb, x) | + 

O 

If we perform the expansion, Eq. (34), about the current centroid 

*o ( t ) 'TU)i * V * ' *J ̂  * t 3 5 ) 

P 

with 

I(t) = J J.(x, tj d 2 x , (36) 

then the integral appearing in Eq. (33) becomes 

/ G(i , x)j (x, tj = G[X.,X (t)Jl(t) + |-K<t):vV G(l ,xj! +••• <37) 
P 'Xo(t) 
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with the quadrupole tensor defined by 

K = J Lx - x (t)JLx - x <t)J J Ax, t j d 2 x . (38) 
p ° ° 

The normal component of the momentum density at the boundary consistent 

with Eqs. (32), (33), and (6) through (10) with the inertial terms vanishing 

is 

n • l?Q + V4 * VA) = - ^ ~ "n ' V¥ = N^^, tj . (39) 
B X 

Thus, if n and X = n x $ are ths directions normal and tangential to the 

boundary, we have the boundary conditions 

|~ = N(x b, t) - N(t) , (40) 

x ̂ - = N(t) , (41) 
on 

where N(t) is the average value of N(x^, t) on the boundary, 

j> N(x. , t) di 
N(t) = — S . (42) 

£d£ 

The decomposition of the normal boundary veloci ty as prescribed by Eqs. 

(39) through (42) i s not unique. Indeed, consider the transformation where w»» 

add to the veloci ty f ie ld two functions Â  and flH such tha t 

A •* A + A „ , (43a) 
n 
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a •* a + a , (43b) 
H 

wi th 

V 2Q„ = A A = 0 (43c) 
H H 

i n t h e i n t e r i o r and 

1 b A H M H 
x ox On 

on the boundary. Such a transformation leaves all physical quantities 

unchanged. 

Finally, we note that the error one would introduce by using homogeneous 

boundary conditions; i.e., Eqs. (40) and (41) with t] = 0, would not be 

large. An acceleration term would be forced to appear near the boundary 

obeying 

ot Tip l„2 2 ot ' 
O B X 

This would result in a unphysical boundary layer velocity gradient of 

thickness d = (nv/30> (p 0/(i 0> 1 / 2 in which the velocity is accelerated to the 

value of Eq. (39). 

C. Solid Conductors 

The physical material velocity is aero in the solid conductors. Allowing 

for the possibility of an external circuit conm jtion supplyincj an applied 
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voltage V(t), the poloidal flux evolution equation, the analogue of Eq. (9) in 

the plasma, becomes 

%-Tl = n"1 nA*V + (2u)"1 V(t) . (45) 
ot o 

We note here a direct analogy between the poloidal flux evolution equation in 

the conductor, Eq. (45), and a discrete circuit equation. Suppose a single 

isolated mesh point (x,z) = (x. ,z.) is treated as a solid conductor. The nesh 

point has associated an area AA = AxAz, a resistance r^ ., and a current i- . 

given by 

(46) 

(47) 

The poloidal flux at the mesh point is due to a self-inductance and a mutual 

inductance part. 

.1 = 
27171. . X . 

' l , 1 1 
j .1 = AA , 

, i = 
AAAV 

1 , i 
i , i = 

U X. 
O 1 

J. .1. . + 7 M. . . , . , I. . . . ir3 if3 i , ^ , l.DJi'D l']' -21^. . = L. .1. . + 7 H. . . . . . 1.,., (48) 
1,] 1, — -,-• 

where the sum is over all other currents, being in the grid conductors, the 

plasma, and external to the grid. The mutual inductance in Eq. (48) is the 

Green's function appearing in Eq. (33) 

M = u Gf x. x. . . .] (49) 
i,];i' , ] • *o l i,i i" , ] • ' 

while L^ J , the intrinsic inductance of a mesh point, is obtained by 
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substitution of the asymptotic small argument expansion for G into the five-

point-centered, finite difference representation of Eq. (47). Thus, 

taking Ax = Az, we have 

8x. 

With the definitions in Bqs. (46) through (50), we see that the discrete form 

of Eq. (45) becomes 

.. (.L. .1. . + I ». . • , . ,1. , ., ) + r. . I. . + V(t) = 0 . (51) dt L 1,3 1,3 *; i,]?! 1] 1 l',j" 1,3 1,3 

The differential form, Bq. (45), is actually used, but it is useful to keep 

this correspondence in mind. 

To model the control systems in the tokamak, we allow the applied voltage 

Vft) appearing in Egs. (45) and (51) to be a function of the instantaneous 

poloidal flux values at two or more observation points xr , and of other 

global parameters. A useful form for most applications is to specify the 

positions of two observation points x^ B S and tc^BS, a linear gain a. and a 

normalized flux offset |3 so that 

V(t) = aivCx™3) - n*?S) - ̂ J (52) 

whets lp(t) and I are instantaneous and reference values of the total plasma 

current. 

It is necessary to generalize the circuit Eg. (45) in order to model 

conductors with toroidal cuts or toroidally localized high resistance regions 

such as bellows or vacuum vessels with toroidal breaks. We take a group of N 
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poloidal field conductors to be connected as in Fig. (2) with a small common 

gap with gap resistance r Q and gap current 

S N 
I = I I = AA I n~n A ¥ /x . (53) G ", n , o n n n=1 n=1 

The generalization to Eq. (45) is then simply, for n = 1, N 

%-W = U _ 1 r| A*¥ + (2lt)-1|V tt) + r T J . (54) 
at n o n n L n G G J 

We verify that Eqs. (53) and (54) have the correct limits, reducing to I3q. 

(45) when r_ + 0 and forcing !_ = 0 when r r •*• ™. 

Finally, we consider the boundary conditions on the velocity variables A 

and Q at the interface between the conductors and the vacuum region. For the 

same considerations as discussed in Sec. TIB the appropriate boundary 

conditions are given by Eq. (39). However, imposing internal boundary 

conditions and thus making the computational region multiply-connected would 

rule out the use of fast elliptic solvers to invert the elliptic operators for 

Q and for A. Instead, we define V ^ and A*A inside the conductor region as 

P A*& = K2? . ( - -^_ || 7* x V*J . (56) 

Outside the conductors, this appears equivalent to defining boundary values 

for A and oQ/On from Eq. (39). 
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III. NOKERICM. METHODS 

A. Two-Dimensional Variables 

The variables are defined at staggered locations on an equally spaced 

grid. This leads to a scheme consistent with the Imposition of accurate 

boundary conditions, and one that couples together the minimum number of grid 

points. As shown in Fig. 3, the variables ¥, A, and A A are defined to lie on 

grid line intersections, while the variables g, w, fi, and V^Q lie on cell 

centers. 

As discussed previously, by artificially enhancing the plasma density, 

the frequency of the Alfven wave oscillations are greatly reduced. However, 

there remain disparate time scales in the equations due to the differences in 

the propagation speeds of the compressible and transverse Alfven waves, and 

also due to the differences between the value of the resistivity in the hot 

plasma and in the cold vacuum regions. We therefore use the technique of 

subcycling to evaluate the diffusive and fast wave terms H times (typically 

N = 10-80) during each time step used by the rest of the problem. This leads 

to a considerable time savings since the subcycled terms are relatively simple 

and are evaluated in a tight loop well-suited to a vector computer. 

We introduce a variable O for the divergence of the velocity, 0 = 7*0. 

The forms of Eqs. (6a), (91, and (10) appropriate to apply subcycling are: 

tr + ^ o 7 • V g + Q - V ' v 2 V D ' C 5 7 ) 

x 

ÎT + S-^V* , (58) 

X 
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w h e r e g Q / x , a s i n T3q. ( 3 2 ) , i a t h e t o r o i d a l f i e l d s t r e n g t h away from t h e 

p l a s m a , and t h e s l o w l y v a r y i n g Q, S, and T a r e d e f i n e d a s 

A % g _ g o 
Q = V • ( - - ^ - 7¥ + 1 7g + VpJ , «S0) 

o o 

S = p _ 1 [V* x 7 A • 7 ¥ + 7fl • 7 ¥ ] , (6 1) 

T = x

2 7 « [ - 3 — 7$ x VA + 1 </2 - —— V* x 7?) + g ^ x 2 VQ • 7 ~ ^ 
p x p x p x p x o r o r o r o . , . l o 2 ) 

Thus , E q s . ( 5 7 ) t h r o u g h ( 5 9 ) f o r U, 11, and g a r e u p d a t e d N t i m e s w i t h a 

t i m e s t e p fit = A t / N f o r e a c h major t i m e s t e p when 2 , S , and T a r e e v a l u a t e d 

from E q a . ( 6 0 ) t h r o u g h (62), A A and u a r e u p d a t e d from E q s . ( 6 b ) and ( 6 c ) , 

t h e s u r f a c e - a v e r a g e d e q u a t i o n s f o r M' , c , a p a r e a d v a n c e d , and t h e e l l i p t i c 

e q u a t i o n s f o r A and ft a r e i n v e r t e d . An e x p l i c i t t i m e a d v a n c e m e n t scheme i s 

u c i l i z e d , i n w h i c h t h e wave and c o n v e c t i o n t e r m s a r e d i f f e r e n c e d b y u s i n g t h e 

l e a p - f r o g method [ 1 2 ] and t h e d i f f u s i v e t e r m s b y U 3 i n g a mix of a f o r w a r d - t i m e 

c e n t e r e d - s p a c e method and t h e method o f D u f o r t and F r a n k e l [ 1 2 ] . T h u s , For 

e x a m p l e , Eq . ( 5 9 ) i s d i f f e r e n c e d a s 

n+1 n -1 
TTFT- ( g - g ) + p ~ g u + T 
2 0 t l . . 3 . . ' "o 3 0 

J-r] 1 , 3 

n+1 n-1 

• - rT2K + i / a , j l 5TT7rHeU . - ^ . . + g . " 
u (Ax) ' J 1 + 1 / 2 1 + 1 , ] i , ] 1 , 3 

n-1 n-1 
+ (1 - 0) (g - g J) 

n+1 n-1 

-"1-1/2 i ^ - J { 9C^ g + g J " g i - 1 i ] 

1 V Z , 3 X t _ 1 / 2 2 _ . ( j i T O 
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n-1 n-1 
+ (1 - 9) [g - g J ) ] 

n+1 n-1 

( i o W z ) J i , ) + 1 1,3 1,3 

n-1 n-1 
+ (1 - 6 ) [q - q ) \ 

i r j + 1 i f j 

n+1 a. •" n 

1»3 ! f J 

n-1 n-1 
+ (1 - 6 ) ( g - g JfJ • (63) 

i . j i r j - 1 

Here, 0 < 9 < 1 measures t h e r e l a t i v e mix between t h e two d i f f e r e n c e 

schemes, s u p e r s c r i p t n d e n o t e s t ime (suh) c y c l e , and s u b s c r i p t i and j d e n o t e 
n+1 

x and z l o c a t i o n s . Equa t ion (53) i s so lved a l g e b r a i c a l l y for g a t each 
i » j 

l o c a t i o n , w i th T be ing recomputed on ly every N s u b c y c l e s . 

The c o n d i t i o n for s t a b i l i t y of t h e wave terras i s t h a t , assuming Ax = Az, 

° t < T / T (64) 

and 

M V o J V 2 

At = S5t < — (65) 
( 2 ) V 2 B _ 

where B and B„ denote the poloidal and toroidal field strengths. If we set 

N = 2BT/B , then the two criterion become identical. The explicit 

differencing of the diffusive terms impose a time step restriction for 

stability. 
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|i (Ax) 2 

The restriction in Eq. (66) appears to be avoidable by letting 9 -> 1. 

However, we find empirically that for 9 £ 0.9, the odd and even space and time 

points can become decoupled, leading to numerical instabili ty. 

B. Surface-Averaged Variables 

The one-dimensional surface-averaged Eqs. (14), (15), (16), and (24) for 

N', o, a^i and i are integrated in time simultaneously with the two-

dimensional equations using the numerical scheme described in Sec. 3 of Ref. 

13 . The transport quantities V, Qs, Q^, and V̂  are allowed to be linear 

combinations of any functions multiplying gradients of n, p, p e , or q"1 . we 

note here that N', a, qB, and l are the adiabatic variables, so that if r = Q 

= î = V L = ° a n a i f a 1 1 t h e 3 0 u r c e s vanish so that Ŝ  = S e = Ŝ  = 0 and 

Q^e- 0, these quantities are exactly conserved. The finite difference method 

used here will preserve this property. 

3very few time steps, the surface-averaged quantities dV/d&, K, and a are 

evaluated by performing contour integrals on IT = constant surfaces using the 

definitions in Eqs. (17), (19), and (30). The contour integrals are evaluated 

at Nc points, equally spaced in toroidal flux, A$ = 2nqA¥> The number of 

points Nc may change during the time evolution problem so that the range of 
% 

toroidal flux can accommodate a growing or shrinking plasma region 0 < <5 < * 

with the increments A$ remaining fixed. 

The surface-averaged transport densities N' , tj, c B , l are defined at cell 

centers, or half-integer values, to allow accurate treatment of the boundary 

and the magnetic axis, e.g., x-\-;/2 5 x ^ i - 1 / 2 ' ' ^ matrix Crank-Nicolson 
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[12,13] i m p l i c i t scheme i 3 used t o advance v a r i a b l e s from t ime s t e p n t o n + 

1 . Thus, for example, Eqs . (24) and (29) fo r t h e t r a n s f o r m become 

R . l ? * ' - B . l f ' + C a " + ! + D . = 0 , (67) 
3 j+1 J J J j - 1 J 

w i th 

A j = S a j + 1 / 2 b j + 1 ' ( 6 8 a ) 

M j - 1 / 2 b i - 1 ' ( 6 8 b ) 

B j = 1 + s U J + 1 / 2 + 3 5 - l / 2 > h j ' ( 6 8 C > 

D. .= i n + A t ( 1 - 9 ) ~ v? . (68d! 
3 <KP L 

Here, s = AtO/fAS 1)*, a^ = (2n) T)|| j / ( a | i ? ) , bj = KjCtj, and 0 < 6 < 1 i s a g a i n a 

parameter measuring t h e i m p l i c i t n e s s of t h e method. 

After many t ime s t e p s t h e t r ans fo rm i ($) o b t a i n e d from i n t e g r a t i n g Eq. 

( 2 4 ) , i . e . , e v a l u a t i n g Eq. ( 6 7 ) , w i l l no t e x a c t l y a g r e e wi th t h a t o b t a i n e d 

from i n t e g r a t i n g Eqs . (9) and ( 1 0 ) . The d i f f e r e n c e i s due t o t h e d i f f e r e n c e s 

i n t h e f i n i t e - g r i d t r u n c a t i o n e r r o r . To avoid a c c u m u l a t i n g e r r o r , we c o r r e c t 

t h e two-d imens iona l t o r o i d a l f i e l d f u n c t i o n g ( x , z ) from i t s va lue a s computed 

from Eg. ( 6 3 ) . Thus, i f g " + l i s t h e va lue a s computed from 5q. ( 6 3 ) , we 

c o r r e c t i t a s fo l lows 

~n+t n+1 , i t , 2n n+1 > , „ „ . 

i , j i , j 
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Here , x i s a r e l a x a t i o n t i m e , t y p i c a l l y 1 = 10 A t . 

IV. CODE VERIFICATION 

A. G r e e n ' s F u n c t i " " Expansion Tea t 

To t e s t t h e a c c u r a c y of t h e G r e e n ' s f u n c t i o n expansion method for 

upda t ing the boundary p o l o i d a l magnetic f l u x , Eqs . (33) and ( 3 7 ) , we have 

computed t h e e x a c t va lue of t h e p o l o i d a l magnet ic f l ux a t t h e c o m p u t a t i o n a l 

boundary for an e l l i p t i c a l c r o s s - s e c t i o n a l e q u i l i b r i u m 

e b zit ' b (p 
P 

and also the values obtained by retaining only the first one and the first two 

terms in the expansion 

v ;

b > = *A> + i f e * : W G ( v hko • a2) 

where I(t), x Q, and K are defined in Eqs. (35), (36), and (38). We display 

graphically in Fig. 4 the relative errors in the boundary flux due to 

truncating the expansion after the first and second terms, i.e., we plot 

normalized values of [̂ (Xfc) - Y e(x b)J and [y 2(x b) - Y e(x b)J for computational 

boundaries separated from the plasma by about 0.5 and 1.0 minor radii. The 

expansion in Eq. (37) is seen to be rapidly converging, yielding 10~ 3 relative 

errors when keeping only the first two terms for a boundary as close as 0.5 

minor radii. 
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B > Coils Only Decay Test 

To verify that the circuits part of the code' is computed correctly, we 

set up a test problem with two coils located symmetrically above and below the 

midplane at (x = 1.2, z = ± .75). The remainder of the computational region, 

0.38 < x < 2.6, -1.6 < z < 1.6 is a vacuum, i.e., 1.5 ev resistive plasma with 

zero pressure gradient. The number of spatial grid points in x and z were 49 

and 57, respectively. At t = 0, the coils are initialized with equal and 

opposite currents. As time advances, the coil currents decay and we plot 

their currents vs. time for two oases with different coil resistivity in Fig. 

5 comparing with the exact L/H decay time. The agreement is seen to he 

excellent. 

C. Resistive Axisymmetric Stability Test^ 

A model problem consisting of an elliptical cross-sectional plasma and 

top/bottom finite resistivity plates is set up as shown in Fig. S. At t = 0, 

the plasma is given a perturbation by applying a radial magnetic field to 

induce asymmetry in the vertical direction. The conducting plates stabilize 

the plasma on the ideal MHD, Alfven wave transit time scale, but an 

instability persists on the much slower time scale characteristic cf the 

resistive L/R time of the conducting plates. Pairs of observation points, 

symmetrically located above and below the plasma midplane record the value of 

the poloidal magnetic flux versus time. The difference in the flux 

measurements between the members of a pair give a measure of the plasma 

displacement. Tt. i flux differences exhibit exponential growth and from thepe 

we calculate a growth rate. 

We plot in Fig. 7 the range of growth rates obtained from these flux 

measurements for different size conducting plates, and for comparison, the 
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growth ra tes obtained assuming the plasma was a filarr.entary conductor located 

on the midplane within ±4% of the minor radius about the current centroid . 

n . Scaling Tea :s 

We have taken one of the cases of Fig. 7, with 12 conductors, and have 

rerun it repeatedly, changing a single numerical or physical parameter each 

time, and record how the measured growth rate varies. We seek to verify the 

theoretical predictions that the growth rate is proportional to the 

resistivity in the plates and is independent of the plasma mass, vacuum 

resistivity, and other numerical parameters. 

The results of these scaling tests are illustrated in Fig. 8, Where we 

plot a single growth rate, it represents an average over the four observation 

pairs for each case. We see that to within the error bars on our growth rate 

measurements, the results are independent of factor of two variations in the 

plasma mass, location of computational boundary, computational zone size, 

numerical viscosity, plasma resistivity, and vacuum resistivity, in addition, 

the growth rate scales linearly with a factor of two increase in the conductor 

resistivity. 

T3. Field Diffusion Test 

We jve set up a test problem to compute poloidal magnetic field 

diffusion in a large aspect ratio, circular cross-sectional plasma with 

uniform plasma resistivity so that an approximate analytical solution is 

valid. A numerical equilibrium is formed with xQ = 25.2 m, a = 0.5 ra, and 

with an initially peaked current distribution. We let the system evolve with 

the ohmic heating system on to keep the total plasma current constant in time, 

I D = 6 MB. In Figs. 9a and 9c we plot the computed profiles of the poloidal 
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magnet ic f i e l d , B p = | V ¥ | / x a s computed from Eqs . (9) and ( 2 7 ) , and t h e s a f e t y 

f a c t o r q 3 t 2 n ) ~ 1 d * / d f a3 computed from Eqs . (24) and (29) a t 0 .5 msec 

i n t e r v a l s . For compara t i ve p u r p o s e s , we a l s o p l o t t h e approximate a n a l y t i c a l 

s o l u t i o n i n F i g s . 9b and 9d, 

B . t r . t ) = r ~ 5 _ I + I A J (X f-J exp ( - X 2 t / t ) (73) a <£ft 2 p " , R r in a ' m o a m=1 

where t h e c o e f f i c i e n t s ^ a r e o b t a i n e d from i n i t i a l c o n d i t i o n s 

l-rl d r r B 9 { r ' o ) J l ^m | J " V a , 0 ) " V ^ * ( 7 4 ) 
m [ J (X ) ] 2 a" o o m 

Here, t Q = li0a2/n = 8.16 ms is the skin time, r = [(x - x Q ) 2 + z 2 ] 1 ^ 2 , the J., 

are Bessel functions, and the X are zeros of J 1. The safety factor q for the 

analytical solutions is calculated from q = rB°/RB_(r,t), with the toroidal 

flux $ = ur 2B^, and the toroidal field B£ taken as constant. 

V. APPLICATION TO PBX 

As an illustration of the application and use of this method, we present 

a simulation of the current buildup and shaping phase of the plasma in the PBX 

experiment at the Princeton Plasma Physics Laboratory. Detailed comparison of 

the predictions of this code with the actual magnetic measurements from the 

experiment will be presented in a companion publication. 

The PBX coil systems are summarize!? in Table I. The equilibrium field 

(EF) system provides a relatively uniform vertical field, while the shaping 

field (SF) system is such as to indent the plasma and deform it into a kidney 

bean shape. A radial field (RF) system is connected to a feedback amplifier 

so as to keep the plasma centered on the midplane. Three passive conducting 
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pla te systems are i n s t a l l ed to s t a b i l i z e the plasma to axisymmetric modes on 

the fas t ideal MHD time s ca l e . Thesa a re connected in top-bottora pa i r s so 

that no net current can flow through an antisymmetric p a i r . 

The ohmic heating (OH) system i s modeled by a "perfect" OH system, which 

increases the value of the poloidal flux uniformly on the plasma boundary a t a 

ra te that keeps the t o t a l plasma current on the t r a j ec to ry described in Table 

I I . The other co i l systems also have voltages applied, ag described in Eq. 

(45) , to keep the currents on specified t r a j e c t o r i e s . For the EF and RP 

systems, these nominal cur ren t t r a j e c t o r i e s a re modified by feedback s ignals 

to provide radia l and v e r t i c a l posi t ion con t ro l . Thus, 

I E F ( t ) = I E F ° ( t ) + « 1 L * ( 1 . 1 , 0 .0, t ) - ¥ (2 .0 , 0 .0, t ) + 6J , (75a) 

I R p ( t ) = oc [¥ (1 .01 , 0.12, t ) - ¥ ( 1 . 0 1 , -0 .12, t ) ] , (75b) 

where 6 = -0.025 x [IptO/Ipt*-)! * [IgF(t)/Isp<<=) ] is an offset, I E F°(t) is 

the trajectory described in Table II, cc, = 4 x 10 3 and cc2 = 2 x 10 are 

proportionality constants, and ¥(x, z, t) is the value of the poloidal 

magnetic flux per radian at locaton %, z at time t, 

we illustrate in Fig. 10 the poloidal magnetic flux surfaces at several 

times during the simulation. The profiles of the toroidal current and 

pressure across the plasma midplane are shown in Fig. 11. It is seen that the 

current peaks on the outside of the discharge during the current rampup phase 

but eventually penetrates into the plasma. In Fig. 12 we plot the 

distribution of induced axiaymjnetric eddy currents in the three sections of 

passive conducting plates in the upper half of PBX. The presence of a gap in 

each of the plates constrains the net current in each of the plates to be 
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zero . 

One measure of the accuracy of the simulation i s the r a t i o of the k ine t ic 

energy to the magnetic energy in the computational domain. This quant i ty 

remained smaller than 5 x 10 during the e n t i r e ca lcu la t ion , verifying tha t 

the i n e r t i a l terms in the force balance Eq. (6) are indeed always small. This 

implies tha t the plasma evolves through a aer ies of near-equilibrium s t a t e s . 

VI. SUMMARY 

We have described a new method for computing the free boundary time 

evolution of an axisymmetric toroidal plasma evolving due to plasma transport 

and resistive dissipation, external heating, and changing currents in the 

poloidal field coils. The method is based on introducing several artificial 

parameters into tbf Zero inertia MHD and vacuum equations, and by taking the 

limit as these parameters become small. Code verification examples were 

presented as well as an application demonstrating the formation and positional 

stability of a bean-ahaped plasma in the PBX device. 

The present method does not solve the adiabatic equilibrium (Grad-

Shafranov-Schl'uter) equation each time step, but rather evolves a velocity 

field through a modified equation of motion, Eq. (6), which forces rhe system 

to remain very close to equilibrium. Instead o f solving elliptic equations 

for the poloidal flux in the vacuum region, we take the vacuum as the limit of 

a very high resistivity, zero pressure gradient plasma and solve a parabolic 

equation, Sjs. (9) and (27) for the evolution of the poloidal flux. In the 

plasma region itself, the adiabatic variables describing the differential 

number density, the differential total and electron entropy density, and the 

rotational transform are also advanced by Eqs. (14), (15), (16), and (24). 

The mt^hod is especially well suited to modeling problems in which the 
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plasma i s in te rac t ing with nearby conductors. Since the equation for the 

poloidal flux evolution does not change i t s type across plasma-vacuum or 

vacuum-conductor in te r faces / matching problems are eliminated and the solut ion 

procedure s impl i f ies g rea t ly . Since the equilibrium equation i s solved only 

to i n i t i a l i z e a t time t = 0, there are no bifurcat ion or nonconvergence 

d i f f i c u l t i e s . 
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FIGURE CAPTIONS 

FIG. 1. Computational Domain: Inside a magnetically transparent boundary are 

a plasma region, a vacuum region, and one or more solid conductor 

regions. The plasma - vacuum interface is in contact with a limiter 

point. Observation points measure the poloidal flux vs. time. 

FIG. 2. Generalized poloidal field circuit configuration allows for a gap 

with gap current I G and gap resistivity z-. 

FIG. 3. The variables f, A, A*A are defined at grid point intersection 

(integers) while g, U, ti>, 7 U are defined at cell centers {half 

integers). Note that * i . = ¥{xt, z^), etc. 

PIG. 4. Relative boundary error in keeping 1 a t and 2 correction terms in 

Green's function expansion for two computational boundary locations. 

PIG. 5. Coils only decay test exhibits exponential decay at L/R time of 

coils. 

FIG. 6. Elliptical plasma is stabilized on fast (ideal) time scale by 

conducting plates. Observation points record flux difference of 

instability caused by finite resistivity of conductors. 

FIG. 7. Growth rates vs. conductor size for elliptical plasma instability of 

Fig. 6. Also shown are predictions of a wire filament model located 

within ±4* of the minor radium about the current centroid. 
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FIG. 8. Scaling tests on 12 conductor case of Fig. 7. Growth rate is 

computed with 1) plate resistivity doubled, 2) plasma mass doubled, 3) 

computational boundary distance doubled, 4) zone size doubled, 

5) viscosity doubled, 6) vacuum resistivity doubled, and 7) plasma 

resistivity doubled. 

FIG. 9. Comparison of computed and analytical solutions for large aspect 

ratio field diffusion test with constant resistivity. 

FIG. 10. Snapshots of computed poloidal flux surfaces in PBX experiment at 

times t = 0.0 u , 150 ms, 200 ms, 300 ms during current rampup and 

shaping phase. 

FIG. 11. Profiles across midplane of (a) plasma pressure and (b) toroidal 

current density for PBX calculation of Fig. 10. 

FIG. 12. Time history of current distribution in passive conducting plate 

segments for PBX calculation of Fig. 10. 
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TABLE I 

PBX COIL SYSTEM 

TURNS 

EF 1.650 ±0.800 -7 

2.255 ±0.600 -13 

2.255 ±0.254 -8 

SF 0.990 

1.932 

0.667 

0.667 

0.665 

1.210 ±0.75 ±8 

±0.065 -8 

±0.705 -3 

±0.600 +3 

±0.705 +3 

±0.071 +5 
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TABLE IX 

PBX PREPROGRAMMED TRAJECTORIES 

Time (sec) 0 . 0 0.025 0.135 0.175 0.275 
i 

I p (kA) 1 0 0 2 0 0 325 375 525 

I w ( k A ) 1.19 2 . 0 3.60 6 . C 12.0 

I s ? (1cA] 0 . 0 0 . 0 4 . 0 7 . 0 14.0 

P 0 (N-m 2 ) 2400 4900 7600 10,000 60,000 
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