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ABSTRACT

We describe here a numerical model of a free boundary axisymmetric

tokamak plasma and its associated control systems. The plasma is modeled with

a4 hyhrid method wusing two-dimensional wvelocity and Fflux functions with

surface-averaged MHD equations describing the evnlution of the adiabatic

invariants. Equations are solved for the external circuits and for the

effects of eddy currents in nearby conductors. The method is verified by

application to several test problems and used to simulate the formation of a

bean-shaped plasma in the PBX experiment.
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1. INTRODUCTION

There 1is a growing body of evidence from both thesoretical and
experimental studies that tokamaks with shaped, noncircular cross sections
offer significant advantages over conventional circular cross section tokamaks
[1]. Onset conditions for ideal magnetohydrodynamic (MHD) instabilities,
resistive tearing instabilities, beam-driven plasma instabilities, and the
ampli tude of residual microinstabilities are all expected to improve when the
tokamak cross secticn becomes highly shaped [2-5].. The ohmic¢ heating power is
also increased and transport is expected to improve.

However, there are several disadvantages associated with highly shaped
tokamaks. The external shaping fields mst be carefully programmed to
establish the desired confiquraticn. Also the positional control problems are
compounded. In the abhsence of nearby conducting walls, the plasma is
generally unstable to an axisymmetric displacement. Close fitting passive
conductors can normally slow down these instebilities to times comparable to
the resistive time of the conductors, but active feedback systems are
generally necesszry to provide complete stability [6,7]. The time scales over
which the external shaping fields change and the feedback systems respond are
generally comparable to the resistive diffusion time of the plasma.

This paper describes a computational mathematical model developed to
study the control requirements for shaping tokamak discharges. The model
congists of a two-dimensional transport description of a plasma interacting
with a discrete set of axisymmetric conductors which cbey circult equations
with ac’tive feedback amplifiers being included. A sclution method is utilized
in which the plasma force balance egquation 1s modified by scaling up the
plasma mass and viscosity. This technique keeps the plasma in near force

balance equilibrium while alleviating the severe time scale discrepancy
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between wavelike and diffusionlike phenomena. Also the vacuum egquaticns are
modifiedl to describe a very high resistivity zero pressure plasma. The
parameter scaling does not affect the bulk motien ~f a tokamak plasma that is
stable on the ideal MHD time scale.

In the following sections we present the modified equations, discuss the
relevant time scales, and present the numerical methods utilized in the
simalation. We verify the computational technigue in Sec. V by computing
several test problems in some detail, Then in 3ec. VI we apply this method to
the modeling of an actuzl tokamak experiment, the Princeton Beta Experiment
(pBX) [B]. It is shown that a system of shaping coils plus passive and active
feedback conductors should be sufficient to shape the tokamak into a kidney

bean shape and hold it there in a controlled manner.

II. EQUATIONS
In an axisymmetric toroidal geometry with symmetry angle ¢, the magnetic
field is expressible in terms of the poloidal flux per radian ¥ and the

toroidal field function g in the standard way
-+
B=Vy x 9 +gvd . ()

The function g is a general two~dimensional function whose contours will align
themselves with constant poloidal flux contours when the system is in static
force balance, i.e., g = g(¥) in equilibrium. The toroidal filux & within a
constant ¥ coatour ¥ = Wc is obtained by performiang an integral over the

curves intericr

@Elz-n—J gt BeUp = | axaz TUEL (2)
Yoy ¥a¥_ *
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where (x,$,2z)} form a cylindrical coordinate system (Fig. 1).
We find it advantagecus to express the plasma momentum density # = M-ln'x’r

in terms of a stream function A, a toroidal component w, and a potential Q,

thus

mo= U X VA + Vo + VR . (3)

This form for the wvelocity field allows separate numerical treatment of the
incompressible and compressible parts of the flow field. Since the physics
governing the wave dynamics of V +» # = VX and V9 * ¥ x 2 =V » x 2 7a are
determined, respectively, by the longitudinal and transverse characteristics,
the time evolution of these two quantities can be quite different. The
nymerical method presented in Sec. III makes use of this representation to
deal with the time scale disparity.

We describe here the set of dynamical eguations solved 1in the
computational domain illustrated in Fig. 1. We take a uniform fixed spatial
mesh and divide it into three regions: the plasma ragion, the vacuum region,
and the solid conductors. The interface between the plasma and the wvacuum
regions will change in time, being defined as the first poloidal flux surface
¥ = const. touching a limiter point or containing an x~peint (magnetic
limiter). Transparent houndary conditions are applied at the computational
boundary so that its placement will not affect the plasma evolution.

In each regicn, a modified form of the MHD-Maxwell equations are
solved. The modifications take the form of introducing several continuous
parameters such that the true (inertialess) MHD and vacuum equations are

ohtained when these parameters approach zero. These parameters are the

&
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enhanced plasma mass density and viscosity, and the electrical conductivity of
the vacuum region. For finite values of these parameters, the equations do
not change their +type acros® region boundaries, and solutions remain

continuous. We describe next the exact equations sclved in each region.

A. Plasma Region

We are concerned with obtaining accurate solutions to the resistive MHD
equations on the time scale governed by resistive dissipation and cross field
transport in the plasma, and by the rate of change of the currents in the
poloidal field circuits due to resistivity and to externally applied driving
voltages. Thig time scale is long compared to the time it takes for densities
and temp=ratures to eguilibrate along the magnetic field lines so that we can
take these quantities to be cne-dimensional spatial functions, uniform on each
magnetic surface. It is also long compared to the time that Alfv;n waves Act
to equilibrate force imbalances 20 that the static equilibrium condition § x B
= Vp will remain nearly satisfied.

In the absence of Alfvén transit time scale (ideal MHD) instabilities,
the ipertial terms in the plasma force balance equation are negligihle,
smaller than the magnetic forces hy the square of the inverse magnetic
Reynolds number, Saz, where

sit= () (Ti‘-)"/2 << 1. (4)

]J.O

M aB
o]

with 7 the plasma resigtivity and a the minor radius. Since the magnitupde of
the true time~averaged inertial terms are small, we replace them with a more
convenient modified inertial term which is equivalent to enhancing the plasma

mass, dropping the convective derivative term, and choosing a specific form



for the plasma viscosity operator,

Fm) =~ (95 - 9(Y « B)) - v, WY 0 W) . (5)

Thus the plasma force balance equation becomes
a* > ¥ > >
L +F (m =JIxB-Vp . (8)

The mass enhancement and viscosity parameters are chpsen so that the left-hand
side of Eq. (6) remains small enough to be negligible compared to the right-
hand side, hut not so small as to make forward time integration prohibitive.
Further motivation for the modified inertial technique is given in Ref. 9. It
7ast be verified a posteriori that the modified inertial terms indeed remain
small and that the physical results are independent of the fictitious mass an3
viscosity values over a wide range.

Scalar forms of the momentum equations are obtained by operating on the
modified force balance eguation, Bg. (6) with {Ve}, {VoeVx}, and {V$+}. Thus,

we gbtain

*
3 Ay
ﬁvz’g + Ve [Boww v S ovg 4 V0 -y, Wrk)) =0, (6a)
nx B X
2 a'y v <
Sraa s T B 79+ Lovgx Ve - LW =0, tab)
Ty n X X
9—-w + u-l Vo x Vg s 9¥ - v A*w =0 (6c)
ot [ 1 ’

where A% = x2V . x-ZV ig the standard toroidal elliptic operator.

We note here that static solutions to EBgs. (Ba-6c} with (2, A, w) and
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their time derivatives zero are egact solutions to the full Grad-Shafranov
equilibrium equation, i.e.,

14

2
7 w73 ¥ =0. (7}

* 24
A‘Y+uox *d—\fp(‘lﬂ +

Transient solutions for ¥, p, and g are always within g = SM'2 o»f satigfying

EQ. (7).

Faraday's Law, and an Ohm's law of the form

> > >
vxXB=R, (8}

my
+

where ﬁ contains the nonideal +terms, yield evolution equations for the

poloidal flux and toroidal field functions

g-t-:{f+;—(v¢xva-VW+vsz-vw)=x2v¢-?z, (9)
=]
S gex?ul Lo (voxva+ve) - LovoxvE-Vp xR 0. (10
g _x e x
o] =]

Here, Po = n, M is a constant, having the role of the enhanced mass density.
Since the toroidal magnetic field is due primarily to e..iernal currents,
it is relatively immobile, making it convenient to evolve the surface-averaged
thermodynamic variablea relative to magnetic cuordinate surfaces containing a
fixed amount of toroidal flux. To derive the surface-averaged evolution
equations, we decompose the gross~field fluid velocicy into two parts
>

VeVE = VE 4T e VY 1)
[+ R



where 3& * VW is5 assoclated with the evolution of the coordinate surfaces, and

$R *V¥ is the fluid flow relative to these surfaces. For magnetic cocrdinate

surfaces evolving with fixed torolidal flux ¢, we have from Eq. (10)

2
“",R.w=:_;_.v¢x§ow (12>
and
3 1 dk 3 1, 4
st g bil-ﬁigbgp"’c'v‘ﬂ- t13)

Here, q = (21)”' 3@ AY¥ is the safety factor, B, = |V6 x V¥| is the magnitude
of the poleidal magnetic field, and the line integrals are around a contour in
a polocidal c¢ross scction at ¥ = const. TUsing Egqg9. (11) through (13) to
eliminate the velocity from the mass and energy conse;vation equationg, we
obtain [10] one-dimensional evolution equations for the differential number
density N' I n dv/0®, and the differential total and electron entropy
dengities ¢ = p(ﬁV/@@)s/g and o = pe(aV/a®)5/3, with respect to magnetic

surfaces contajining a fixed toroidal flux.

<) v - 0

3N T (T 4+ S. (14)

D . 20v,2/3 9K _ 0_ av

Bt ¢ = 3‘(3(1,} I.VL F%) 3% th‘" Qe) + ¥ (Se + SiJJ . {15}
a0 dp.

? - 20v,2/3 3K _ Ye OV . o i

% "3 @ Mm@t (Tw t Qe tSJ! - e

Time derivatives are wlith respect to surfaces containing fixed toroidal

flux P, UWe have defined the differential volume

1
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By _ 2 g
% = oD par = T b B, (17)
the ioop voltage
> >
v, = ZACR*B> (18)

L Beves

and the total toroidal current within a flux surface
> -+ v
K = § B » Q) = b E&J.ELL (19)

The particle flux and electron and ion heat fluxes are defined as

I' = 2nq L(xZE-V¢> - <§-E>/<B-V¢>] . : (20)
ov [ 5

Q =l * @ >+35pT) ., (21}

o, =@, > +2pl] . (22)

where Ei and Ee arae the random heat flux vectors. We have introduced the flux

surface average operator in Egs. (18}, (20}, (21}, (22)

$(dA2/B Ja
Z e B
{ar» = ﬁ)(ﬂl/BP) -

ol

The equipartition term 1s classical
2

w_.
= 3f_Pi -
Qe = 3 cz} nlne('ri T,) (23)
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with ny = 2.0 ny the perpendicular resistivity. The Sye Sgr Sy are external
sources of particles, elsctron energy, and ion energy.
We note here that Egs. (9) and (10) imply an evolution eguation for the

transform 1 = q'1,

a 2

3¢ T VL . (24)
Fquation (24) is redundant, but can serve as a ~heck and possibly also as a
corrector to the ¥ and g functions evolved through Fgs. (9) ana (10). The
correction feature is discussed in Sec. TII B.

We take the nonideal dissipavion vector B in Ex. (8) to conzist of a
classical part ﬁc and an anaomaloust part ﬁA' perpendicular to the magnetic

fisld

> > -2 > >
R = Rc + B "B x aA x B . (25)

For the classical part we take

>
J (26)

b

with ny = 0.51 x 1074 z 4n 4 Te'3/2 ohms when the electron tewperature T, 1s
measured in electron volts. Here, Te = kB_1 pe/n as determined from EBgs. (14)
and (16). Tn evolving the 2-D flux functiona ¥ and g in Egs. {9} and (10), it
is permiggible to take "= ﬁc since the anomalous ﬁA is perpendicular ta 1.

Includi- o ﬁA in BEgs. (9) and (10) would be equivalent to using a slightly

modified velccity field ¥' = ¥ &+ Ry * B/82 which would lead to no additional

]
¢
I
V

|
'
1
i

I8
3
£



!
i
]
El
1

11

flur diffusion. Thus, in Egs. (3) and (10;, we can evaluate

™ x
x%s « R = La'y ’ {27)
c u
o
n
> 1
U X R, = 3 Vg , (28}
HOX

while in BEq. (18), an explicit expression for the loop voltage can be obtained

! 2
—_ Zﬂ‘_a_
VL - nﬂ 2 D (aK IJ ' (29)
@

where we have defined

R . (30)

9 B x
P

In the evaluation of the particle flux I' and the heat flixes <§; °* V2>

and <§e « P&>, it is the anomalous part that dominates. We take this to be of

the farm
D1 2 2 dn
r,o= - — 9" {=q)” 55 (312)
-D Ap
s AN -2 2 2 _e
<q, * %8>, = = |v¥|” (2nq)” 55— (31b)
=D OT.
> _ 3 2 2 i
g+ Wy, = == |v¥|” (2nq) T ¢ (31¢)
We have taken (D1, DZ' D3) = (0.7, 1.0, 1.0} mz/sec to give a reagonable fit

to PBX data.



8. Vacuum Region

The vacuum region is defined by either having ¥ » ‘I’L, where ‘FL is the
first plasma flux surface in contact with a limiter or by being separated from
the plasma by a magnetic x-point. We treat the vacuum region as a low
temperature, zero pressure dradient plasma in which force-free currents can
appear. In the 1limit as t“he vacuum conductivity approaches =zero, the
magnitude of these currents will go to zero and the magnitude of the magnetic
diffusion coefficient will approach irfinity. fThus, Eg. (6) (with Vp = 0},
and Eqs. (9) and (10) are solved in the wvacuum region, with a classical
resistivity, Eq. (26), based on a constant electron temperature Tg = Ty« The
vacuum temperature, normally a few eV, is much less than the central plasma
temperature, normally 0.1 ta 3.0 keV; howevey, it is not zero. This vacuum
temperature and a vacuum density, n,, serve as boundary conditions on the
surface-averaged plasma evolution Eqs: {14) through (16). Since the plasma
temperatures and densities will approach these values smoothly, all physical
guantities are smooth and continous across the plasma-vacuum interface, and no
special boundary treatment is required there, Again, we must verify a
posteriori that the physical results converge to a value independent of the
vacuum temperature T,.

At the outer boundary of the vacuum region, i.e., the computaticnal
domain boundary, we model an insulating, magnetically transparent houndary by
prescribing that the toroldal field strength g and the poloidal flux ¥ be
consistent with the instantaneous plasma and coil currents. Thus, on the

boundary points %,

-
alx,) =9, =—5—. (32)
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> [} > > > 2 > N
Yx,, t) =5 JP elx,, x) J¢(x, t) a% x + )

=

n
o > >
. EE'G(xb' xiJ I; - (33)

[

Here, ipe is the total current in all the toroigal field coils, Gt}b' T is
the =nalytic exterior Green's function for an axisymmetric current filament
1, Ty = (pox}'lﬂﬁw, and the integration and summation in Fg. (33} are over
the plasma wvolume and discrete coils, regpectively,

The two-dimensional integral in Eg. (33) is expensive to evaluate
numerically, having to be performed at each boundary point each time step. We

therefore apalytically expand the Green's function G(ﬁb, %) about the current

centroid source peoint

6lx,, %) = 6, x) + 1% - %) valx,, ¥,
-9

+

N

> > > > + )
(x - xo) (x - xo) : VVG[xb, x]|xo ¥ oaan . 34)

If we perform the expansion, Eg. (34}, about the current centroid

> 1 > > 22
x (8) = 3753 ] x J¢[x, t) 4% x (35)
p
with
I(t) =) J¢[;. t) a’x, (36)

then the integral appearing in Bq. (33) becomes

>
| G(?cb, 3’:)J¢{§, t) = G[';’;b,'io(t)JI(t) + ;—E(t)-.vv G[?cb,?cj L +ees  37)
P %
o(t)
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with the guadrupole tengor defined by
1 hd > +> > + 2+
=] [x - xO(t)j[x - xo(t]J Jq)(x, t) d%x . {38)
P

The normal component of the momentum density at the boundary consistent

with Bgs. {32}, (33), and (6) throuwgh (10) with the inertial termy vanishing

is
- P By ~ -
7 - =20 . = . .
xn e+ (2 + V¢ x Va) 3 Nz, t) (39)
B x
Thus, it n and 2 = n x % are th2 directions normal and tangential to the

houndary, we have the boundary conditions

d3a _ ¢

Ey N(xb, t} - N(t) . (40)
oR

b n N{t) ; {41)

where N(t} is the average value of N(_:Eb, t) on the boundary,

b wix , t) a2
N(t) = P T . (42)

bat

The decomposition of the normal boundary wvelocity as prescribed by Egs.
(39) through (42) is not unique. 1Indeed, consider the transformation where we

add to the velocity field two functions Ay and QH such that

AT A+ AH . (43a)

ER—
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Q-+ Q + QH , {43b)
with

2 *
v'a. =An_ =20 (43¢)

in the interior and

BA oQ
1 1 H
A RO | 4
x50 *an -0 (434)
on the boundary. Such a transformation leaves all physical quantities
unchanged.

Finally, we note that the error one would introduce by using homogeneous
boundary conditions: i.e., Eqs. (40) and (41) with W = 0, would not be

large. An acceleration term would be forced to appear near the houndary

obeying

3 .2 3 1 oY +
—E—Vvv-ﬁ(la—zx—z—atv‘fﬂ-vj . (44)

This would result in a wunphysical boundary 1layer velocity gradient of

thickness & = (nv/Bo)(po/p°)1/2 in which the velcecity is accelerated to the

value of BEq. (39).

C. Solid Conductors

The physical material velocity is zero in the solid conductors. Allowing

for the possibility of an external circult connestion =supplying an applied
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veltage v(t), the poloidal flux evolution eguation, the analogue of Eq. {(9) in

the plasma, becomes

- * -
v=u 'y s 27 v (45
o]

We note here a direct analogy hetween the poloidal flux evolution equation in
the c¢onductor, Eg. (45), and a discrete circuit eguation. Suppose a single

isolated mesh point (x,z} = (xi,zj) is treated as a solid conductor. The mesh

voint has associated an area AA = AxAz, a resistance LTOL and a current I, i
’

aiven by

21n. .X,

= ——el] 1
r‘l‘] = AR ' (46)

"

ARA ‘l’i .
1. = 2l (47)
1,7 Box ‘

The poleoidal flux at the megsh point is due to a self-inductance and a mutual

inductance Jart,
4

]
-27¥, . =L. .I. . + M, A 48
2n i,] 1,3 1.3 iz':j' i,3:i'5¢ Il'J' {48)

where the sum is over all other currents, being in the grid conductors, the

plasma, and external to the grid. The mutual inductance in Eg. (48) is the
Green's function appearing in Bg. (33)
> >

=p G[x

PO TN ST (49)

while I"i,j' the intrinsic 1inductance of a mesh point, is obtained by
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substitution of the asymptotic small arqument expansion for G into the five-
point-centered, finite difference representation of Eg. (47). Thus,

taking Ax = Az, we have

Sxi %
. | —_) -
Li'j =i xitkn[ Ax) 2] . (50)

With the definitions in Bgs. (46) through (50}, we see that the discrete form

of Bg. (45) becomes

d

ac {Li'ili‘j I +vit) =0 . (51)

1]
+ s sgaeXiy s4) L JI. o
i;je MI:J?l'J' 1':]') "1,57,3

The differential form, Bg. {(4%), i3 actually used, but it is useful to keep
thig correspordence in mind.

To model the control systems in the tokamak, we allow the applied voltage
Vvit) appearing in Egs. (45)‘-and (51) to be a Ffunction of the instantaneous
poloidal flux wvalues at two or more observation points ':':OBS. and of other
global parameters, A usefut form for most applications is to speciily the

+08BS

OBS  ana X577, a linear gain ¢ and a

positions of two observation points 3':1

normalize? Flux offset B so that

BI(t)

“’OBS) ‘W["GBS) -

v(t) = a|¥{x] %, g (s2)
where Ip(t) and IPO are ingtantaneous and reference values of the total plasma
current.

It is necessary to generalize the circuit Eg. (45} in order to model
canductors with toroidal cuts or toroidally localized high resistance regions

such as bellows or vacuum vessels with toroidal breaks. We take a group of N
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poloidal field conductors ta be connected as in Fig. (2) with a small common
gap with gap resistance rg and gap current

1= ) I =8a § u A'wn/xn . (53)

The generalization to Bg. (45) is then simply, for n = 1, N
Sy -y s v+ . (54)
dt n [+) n 0 n GG

We verify that Bgs. (53) and (54) have the correct limits, reducing to %Eq.
{45) when Tg + 0 and forcing IG = 0 when rg > o,

Finally, we consider the boundary conditions on the velocity varlables A
and Q at the interface between the conducters and the vacuum region. For the
same considerations-' as discussed in Sec. TIIB the appropriate boundary
conditions are given by ®Bg. (39). However, imposing internal bhoundary
conditions and thus making the computational region multiply-connected would
rule out the use af fast elliptic solvers to invert the elliptic operators for

Q and for A. Instead, we define ¥4 and A*A inside the conductor region as

P
24 _ g . o d¥
VR =V ¢ [~ W) {55)
B x
* Po aw
A'a =W . (- Ve x Vo) . (56)
22,2 Ot

Outslde the conductors, this appears equivalent to defining boundary values

for A and OR/On from Eq. 639).
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ILI. RNUMERICAL METHODS

A, Two-Dimensional Variables

The variables are defined at staggered locations on an egually spaced
grid. This leads to a scheme consistent with the imposition of accurate
boundary conditions, and cne that ¢ouples together the minimum number of grid
points. As shown in Fig. 3, the variables ¥, A, and A*A are defined to lie on
grid line intersections, while the variables g, w, 2, and V% 1lie on cell
centers.

As discussed previously, by artificially enhancing the plasma density,
the frequency of the Alfv;n wave oscillations are greatly reduczd. However,
there remain disparate time scales in the egquations due to the differences in
the propagation speeds of the compregsible and transverse Alfv’en waves, and
also due to the differences between the value of the resistivity in the hot
plasma and in the cold wvacuum regions. We therefore use the techri.q'ue of
subcycling to evaluate the diffusive and Ffast wave terms N times (typically
N = 10-9Q) during each time step used by the rest of the problem. This leads
to a considerable time savings since the subcycled terms are relatively simple
and are evaluated in a tight loop well-suited to a wvector computer.

We introduce a wvariable U for the divergence of the velocity, U = VzQ.

The forms of ®as. (6a), (9), and {10) appropriate to apply subcycling are:

[+14) -1 3
At + I.I.O gO v x—ZVg +Q=V V2 vo ’ (57)
8 yisg=up"na'y 58
ac =Ha M r (58)
a3 -1 -1 2 My

* FpIrP, FUFTE=p, x ‘—Z'VQ ' (59)
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where g,/x, as in Fq. {32), 1ia the toroidal field strength away from the

plagma, and the glowly varylng 2, S, and T are defined as

. g-g
0=V (A.‘.l’.fw + —=2 Vg + Yp) , (50)
H X B X
s =p°-1 (V¢ x Va» 9¥ +VQ - v¥} 61)
-9
2=k’ V(Lo xva s —2va - LTy xVE) s gxPUR eV L
£ Po% Po* Po¥

Thus, Egs. (57) through {59) for U, ¥, and g are updated N times with a
time step 8t = At/N for each major time step when ¢, S, and T are evaluated
from Eqs. (60) through (62), A*A and w are updated from Eqs. (6b) and (6c),
the surface-ayeraged equations for W', ¢, g, are advanced, and the elliptic
equaticns for A and © are inverted. An explicit time advancement scheme is
ucilized, in which the wave and convection terms are differenced by using the
leap-frog method [12) and the diffusive terms by using a mix of a forward-time

zentered-space method and the method of Dufort and Frankel [12]. Thus, for

example, Eq. (59) is differenced as

1 1 n
el -9 )+p, g U +T
1,] i,3
3 1 n 4 n+1 n-1
= —— [n, Ll J{elg -zle +a )]
p.o(Ax)z 1417243 xi-r-1/2 i+1,5 2 i,j i,j
n=-1 n-1
+ (1t -06) (g -g J}
i+1,3 i,j
xi 1 n+1 n-1 n
- A ——] {0{= + .
“1-1/2,3(:(1_1/2] tof3 (gi’j gi'j) 9 1,3)
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n-1 n-1
+(1-0)|g -g J}H]
i:j i-1lj
1 n 1 n4+1 n=-1
+ ————[n, ... 18[9 -5lg +9 )]
poaz? RN g 2
n-1 n-1
+ (1 -0){q - g Jt
i,3+1 i, 5
1 n+1 o n
- ﬂi,j-‘l/z{ei-é_[gi'q + gi'jJ = :;-':-'-1]
n-1 n-1
+ 00 -0)g -9 )} . (63)
i,i i,9-1

Here, 0 < 6 < 1 measures- the relative mix between the two difference

schemes, gsuperscript n denotes time (sub) cycle, and subscript i and j denote

n+1
x and z locations. Equation (63) is solved algebraically for g at each
1,7

location, with T being recomputed only every N subcycles.

The condition for stability of the wave terms is that, assuming Ax = Az,

1/2
ax(kp ) /
ot £ __‘IW‘—— {64)
(3) BT
and
/2
Ax[udooj /
At:n&ts—-uz—— (65)
(2) B
p
where Bp and B’l‘ denote the poloidal and torocidal field strengths. 1If we set
N = ZBT/BP, then the two criterion become identical. The explicit

differencing of the diffusive terms impose a time step rvestriction for

stability,
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b (o)

E_EI;TT:ET . (66}

6t <
The restriction in Eq. (66) appears to he avoidable by letting & » 1.
However, we find empirically that for 9 > 0.9, the odd and aven space and time

points can become decoupled, leading to numerical instability.

B. Surface-Averaged Variables

The one-dimensional surface-averaged Bgs. (14), {15}, (16), and (24) for

N', o, o, and 1 are integrated in time simultaneously with the two-

dimensional equations using the numerical scheme described in sec. 3 of Ref.

13 . The transport quantitieg I, Qgr Qi and Vv, are allowed to be linear
combinations of any functions multiplying gradierts of n, p, p,. or q". We
note here that N', o, Tor and 1 are the adizbatic variables, so that if I = Qe
=0 =V, = 0 and if all the sources vanish so that Sy = S5, = §; = 0 and
Ohe= 0, these quantities are exactly conserved. The finite difference method
used here will preserve this property.

Bvery few time steps, the surface-averaged quantities 4v/dP, K, and a are
avaluated by performing contour integrals on ¥ = constant surfaces using the
definitions in Egs. (17), (19), and (30). The contour integrals are evaluated
at N, points, equally spaced in toreoidal flux, AD? = 2rngA¥. The number of
points N, may change during the time evolution problem so that the range of
toroidal flux can accommod;te a growing or shrinking plasma reqgion 0 < < @P
with the incrementa A®? remaining fixed.

The surface-aveyaged trangport densities W', g, Ogr \ are defined at cell
centers, or half-integer values, to allow accurate treatment of the bhoundary

and the magnetic axis, e.g., Ly-1/2 H 1(Tj_1/2). A matrix Craunk-Nicolson
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[12,13) implicit scheme 1s used to advance variableg from time step n to n +

1. Thus, for example, Egs. {24) and (29) for the transform beconme

n+i n+1 n+l
W - B,1, + C,1, +D, =0 (67
35+ 53 3 3= h| ! y

with

Aj = saj+1/2bj+1 ’ {68a)
Cc. = . . A
3 saj_uzb]_1 R (A8b)
By = 1+ 5(aj+1/2 + aj_1/2)bj . (68c)
D, ="+ att1-) & P t68d}
j B w L L] ’

Here, s = AtB/(A@)z, aj = (Zn)zﬂ”j/(a%l%), bj = Kjuj, and 0 < 8 < 1 is again a
parametcer measuring the implicitness of the method.

After many time steps the transform 1(®) obtained from integrating Eq.
(24), i.e., evaluating Eg. (67}, will not eXactly agree with that obtained
from integrating Bgs. (9) and (10}, The Qifference is due to the differences
in the finite-grid truncation error. To avoid accumulating error, we correct
the two-dimensional toroidal field function g{x,z) from its value as computed

from Eg. (63), Thus, if gTT% is the valne as computed from Egq. {(63), we

correct it as follows

~n+l _ _n+d | At 2n o At
9,57 9%,5 % ( n+ gi'j) . (69)

P B
1,3 1,1

ol
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Here, T 1s a relaxation time, typically T = 10 At.

IV. CODE VERIFICATION

A. Green's Functi~n Expangion Test

To test the accuracy of the Green's function expansion method for
updating the boundary poloidal magnetic flux, Egs. (33) and (37), we have
computed the exact value of the poloidal magnetic flux at the computatiocnal

boundary for an elliptical cross-sectional eguilibrium
Y k) =22 ) G, By 1 0x) (70)
e *p 'z'n‘JP Fpr Xy r

and also the values obtained by retaining only the first one and the ficst two

termg in the expansion

bd u’o Ed Ed ’
b = =
F1(Kb) - G(xb, xol 1(t) ' (71)
¥ - 1Yo} weik, bl (72}
z(xb) = ‘!’1 (xb) + E F XK = G(xb, x X '

R
where I{t), ¥, and K are defined in Egs. (35), (36), and (38). we display

graphically in TFig. 4 the relative errors in the boundary flux due to
truncating the expansion after the firat and second terms, i.a,, we plot
normalized values of [¥,(%,) - ¥ (%,)] and [¥,(%,) - ¥.(%,)] for computational
boundaries separated from the plasma by about 0.5 and 1.0 minor radii. The
=3

expansion in Eq. (37) is seen to be rapidly converging, yielding 107~ relative

errnrs when keeping only the first two terms for a boundary as close as 0.5

minor radii.

s e g s

pEmm———
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B. Coils Only PRecay Test

Ta verify that the circuits part of the code is computed correctly, we
set up a test problem with two colls l.cated symmetrically above and below the
midplane at {x = 1.2, 2z = £ .75). The remainder of the computational region,
D38 ¢ x < 2.6, =1.6 ¢ 2 < 1.6 i5 a vacuum, l.e., 1.5 ev resigtive plasma with
zero pressure gradient. The nuamber of gpatial grid points in % and z were 49
and 57, respectively. At t = 0, the coils are initialized with equal and
opposite currents. As time advances, the coil currents decay and we plot
their currents vs. time for two cases with different coil resistivity in Fig.
5 ccaparing with the exact L/R decay time. The agreement is seen to he

excellent.

C. Regigtive Axisymmetric Stability Test

A model probiem consisting of an elliptical cross-sectional plasma and
top/bottom finite resistivity plates is set up asg shown in Fig. 6, At t = 0,
the plasma is given a perturbaticn by applying a radial magnetic field to
induce asymmetry ian the vertical direction. The conducting plates stabilize
the plasma on the ideal MHD, Alfvén wave transit time scale, but an
instability persists on the much slower time scale characteristic ef the
resistive L/R time of the conducting plates. ©Pairs of observation points,
symmetrically located above and below the plasma midplane record the value of
the poloidal magnetic f£leux versus time. The difference in the {lux
measurements between the members of u pair give a measure of the plasma
displacement. Thk: flux differences exhibit exponential growth and from these
we calcoulate a growtﬁ rate,

We plot in Fig. 7 the range of growth rates obtained from these flux

neasurements for different size condusting plates, and for comparison, the

i
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growtl: rates obtained assuming the plasma was a filanentary conductor lacated

on the midplare within 14% of the minor radius about the current centroid.

D. Scaling Tes:s

We have taken one of the cases of Fig. 7, with 12 conductors, and have
rerun it repeatedly, changing a single numerical or physical parameter each
time, and record how the measured growth rate varies. We seek to verify the
theoratical predictions that the growth rate is proportional to the
resistivity in the plates and is independent of the plasma mass, vacuum
resistivity, and other numerical parameters.

The results of these scaling tests are illustrated in Fig. 8. Where we
plot a single growth rate, it represents an average over the four observation
pairs for each case. We see that to within the error bars on our growth rate
measurements, the results are independent of factor of two variations in the
plasma mass, location of computational boundary, computational 3zone size,
numerical viscosity, plasma resistivity, and vacuum resistivity. 1In additionm,
the growth rate scales linearly with a factor of two increase in the conductor

resistivity.

B. Field Diffusion Test

We .ave set ug a test problem to compute poloidal magnetic field
diffusion in a 1large aspect ratio, circular cross-secticnal plasma with
uniform plasma resistivity so that an approximate analytical solution is
valid. A numerical equilibrium is formed with x, = 25.2 m, a = 0.5 m, and
with an initially peaked current distribution. We let the syatem evolve‘wi th
the ohmic heating system on to keep the total plasma current constant in l;irﬁé,

I, = 6 MA. In Figs. 9a and 9 we plot the computed profiles of the poloidal
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magnetic field, Bp = IV‘I’]/x as computed from Egs. (9) and (27), and the safety

factor q = (2n)"'@d/d¥ as computed from Eqs. (24) and (29) at 0.5 msec

intervals. FPor comparitive purposes, we also plot the approximate analytical

solution in Figs. 9 and 94,

u -]
e 2 L a2
Balrit) = o 5T+ stAmJ1(Am Jexp(-a t/t ) (73)

1]

where the coefficients A, are obtained from initial conditions

3 1 a r J (Am)
A = —=——>=|—] ar rBy{r,0)J,(A_ =)} -~ B (a,0) S— . (74}
m 2 1 2] 1"'m a -] kN
i N a o m
o m
Here, t_ = u,_.,azfﬂ = 8.16 ms is the skin time, r = [(x - xo)2 + z2]1/2, the J.
are Bessel functions, and the hm are zeros of J,. The safety factor g for the

analytical solutions is calculated from g = rBfE/RBP(r,t), with the toroidal

flux ¢ = nrza,?., and the taroidal field Bg taken as constant.

V. RAPPLICATION TO PBX

As an illustracion of the application and use of this method, we present
a simulation of the current buildup and shaping phase of the plasma in the PBY
exéetiment at the Princeton Plasma Physics Laboratory. Detailed comparison of
the predictions of this code with the actual magnetic measurements from the
experiment will be pregsented in a companion publication.

The PBX coil systems are summarized in Table I. The equilibrium field
(EF) system provides a relatively uniform vertical field, while the shaping
field (SF) system is such as to indent the plasma and deform it into a kidney
bean shape. A radial field (RF) system is connected to a feedback amplifier

S0 as to Keep the plasma centerad on the midplane. Three passive caonducting
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plate systems are installed to stabilize the plasma to axisymmetric modes on
the fast ideal MHD time scale. Thes2 are connected in top-bottom pairs so
that no net current can flow through an antisymmetric pair.

The ohmic heating (OH) system is modeled by a "perfect" OH system, which
increases the value of the poloidal flux uniformly on the plasma boundary at a
rate that keeps the total plasma current on the trajectory described in Table
II. The other coil systems also have voltages applied, as descrived in Eq.
(45), to keep the currents on specified trajectories. for the EF and RF
systema, thegse nominal current trajectories are modified by feedback signals

to provide radial and vertical position control. Thus,

H
r
[}

Q
EF Tgp (8) + @ l¥0(1.1, 0.0, ) - ¥(2.0, 0.0, t) +§] . (75a)

Top(t) =a2[&1(1.01, 0.12, t) - ¥(1.01, -0.12, t)] ' (75b)
where § = =0.025 ¥ [I (£}/I,(®)] X [Igp(t)/Igp(=)] is an offset, Ig 't} is
the trajectory described in Table II, ¢, =4 x 103 and Gg = 2% 107 are
proportionality constants, and %({(x, z, t) is the wvalue of the poloidal
magnetic flux per radian at locaton x, z at time t.

We illustrate in Fig. 10 the poloidal magnetic flux surfaces at several
times during the simulation. The profiles of the toroidal current and
pressure across the plasma midplane are shown in Fig. 11. It is seen that the
current peaks on the outside of the discharge during the current rampup phase
but eventually penetrates into the plasma. In Fig. 12 we plot the
distribution of induced axisymmetric eddy currents in the three sections of
passive conducting plates in the upper half of PBX. The presence of a gap in

each of the plates constrains the net current in each 6f the plates to be

e o} e e s bt 1 R e s e

[
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Zero.

One measure of the accuracy of the simulation is the ratio of the kinetic
energy to the magnetic energy in the computational domain. This quantity
remained smaller than 5 % 10-6 during the entire calculation, verifying that
the inertial terms in the force balance Eg. (6) are indeed always small. This

implies that the plasma evolves through a geries of near-eguilibrium states.

Vi, SUMMaRY

We have described a new method for computing the free boundary time
evolution of an axisymmetric toroidal plasma evolving due to plasma transpert
and resistive dissipation, external heating, and changing currents in the
poleidal fleld coiis. The method is hased on introducing several artificial
parameters into thf zero inertia MHD and vacuum eguations, and hy taking the
limit ag these parameters become small. Code verification examplec were
presented as well as an application demonstrating the formation and positional
stahility of a bean-gshaped plasma in the PBX device.

The present method does not sgolve the adiabatic eguilibrium (Grad-
Shafranov-Schliter) equation each time step, but rather evolves a velocity
field through a modified equation of motion, Eg. (6), which forces the system
to remain very ¢lose to equilibrium. Instead of Solving elliptic eguations
for the peloidal flux in the vacuum region, we take the vacuum as the limit of
a vary high resistivity, zero pressure gradient plasma and solve a parabolic
equation, BEgs. (%) and (27) for the evolution of the poloidal flux. In the
plasma region itself, the adiabatic variables describing the differential
number density, the differential total and electron entropy dansity, and the
rotational transform are also advanced by Egs. (14), (15), (16}, and (24).

The murhod is especially well suited to medeling problems in which the
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plasma is interacting with nearby conductors. Since the equation for the
polnidal flux evolution does not change its type across plasma-vacuum or
vacuum~-conductor interfaces, matching problems are eliminated and the solution
procedure simplifies greatly. Since the eguilibrium equation is solved only

to initialize at time t = 0, there are no bifurcation or nonconvergence

difficulties.
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FIGURE CARTIONS

1. Computational Domain: Inside a magnetically transparent boundary are
a plasma region, a wvacuum reglon, and one or more solid conductor
regions. The plasma-vacuum interface is in contact with a limiter

point. Observation points measure the poloidal flux vs. time.

2. Generalized poloidal field c¢ircuit configuration allows for a gap

with gap current I; and gap resistivity r..

3. The variables ¥, A, A*A are defined at grid point intersection
{(integers) while g, U, wo, 2y are defined at cell centers (half

integers). Note that Wi’ s Py, zj), etc.

j
4. Relative boundary error in keeping 19t and 2™ corraction taruws in

Green's function expansion for two computational boundary lecations.

5. Coils only decay test exhibits exponential decay at L/R time of

coils.

6. Elliptical plasma is stabilized on fast {ideal) time scale by
conducting plates. Obgervation pointgs record flux difference of

instability caused by finite resistivity of conductors.

7. Growth rates va. conductor gize for elliptical plagma instability of
Fig. 6. Also shown are predictions of a wire filament model located

within 4% of the minor radiua about the current centroid.

i | s
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8. Scaling tests on 12 conductor case of Fig., 7. Growth rate is
computed with 1) plate resistivity doubled, 2) plasma mass doubled, 3)
computaticnal Tboundary distance doubled, 4) zone size doubled,
S) viscosity doubled, 6) vacuum <zesistivity doubled, and 7) plasma

resigstivity doubled.

9. Comparison of computed and analytical solutions for large aspect

ratino field diffusion test with constant resistivity.

10. Snapshots of computed poloidal flux surfaces in PBX experiment at

times t = 0.0 mg, 150 ms, 200 ms, 300 wma during current rampup and

shaping phase.

11. Profilea across midplane of (a) plasma pressure and (b) toroidal

current density for PBX calculatian of Fig., 10.

12, Time history of current distritution in passive conducting plate

segments for PBX caleulation of Fig. 10.

R
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TABLE I

PBX COIL SYSTEM

R Z TURNS
EF 1.650 £0.800 =7
2,255 +0.600 -13
2.255 £0.254 -8
SF 0.990 40.065 -8
1.932 20.705 -3
0.667 £0.600 +3
N.,667 +0.705 +3
0.665 £0.071 +5 %

RE 1,210 +0.75 8
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TABLE IY

PBX PREPROGRAMMED TRAJECTORIES

0.025

200

0.135

325

3.60

7600

0.175
375

6.0

7.0

10,000

0.275

525

&0,000
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