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Abstract

Heat flow from both internal and external sources and temperature of the
environment create machine deformations, resulting in positioning errors between the tool
and workpiece. If the error can be predicted from a reasonable number of inputs, it can then
be removed in real time by the machine controller. Although much research is currently
being performed in the field of thermal error compensation, there is no industrially accepted
method. There are many possible input-output correlations, and the models can be
established empirically, analytically, or by some combination of these. I have selected a
simple model that linearly relates discrete temperature measurements to the deflection. The
largest barrier to the success of this type of model is how to (1) locate the temperature
sensors and (2) determine the number of required temperature sensors so the model is
robust enough to perform under varying operating conditions. This research develops a
method to determine the number and location of temperature measurements. The approach
assumes that adequate knowledge of the temperature distribution completely determines the
deflection at any instant in time, so the model is not time dependent. An advantage to this
approach is that warm-up and cool down situations can be represented by the same model
as steady state conditions. Furthermore, the model is based on the analytical solution to
thermally induced deflections.
Introduction

Machine deformation is caused by a varying temperature field throughout the
machine due to changing operating conditions. The cause-effect relationship is pictorially
represented in Figure 1. The most complex model first relates the operating conditions to
the imposed heat flows. The heat flows are used to determine the temperature field and the
temperature field is then used to determine deformations. Finite element analysis is a useful
tool to determine the model. However, in practice this method has not been successful
because the output is very dependent on the particular boundary conditions.

Simpler models relate experimentally measured deformations to measured inputs.
The form of the model can be analytically determined or purely empirical. There are three
types of inputs that can be considered: (1) operating conditions, (2) heat flows, and (3)
temperature field. A model based on heat flows or temperature fields measures discrete
locations. Difficulties with these approaches are (1) where to measure the input and (2)
how many inputs are required. The number and location of inputs may vary as the
operating conditions change. A model based on operating conditions is usually very
complex. Furthermore, models using either heat flow or operating conditions as inputs are
time dependent due to the thermal capacitance of the machine structure.
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Figure 1: Causes of Thermal Deformation

Possibly because the last mentioned difficulty, most current research is attempting
to capture the temperature profile. Given the complete temperature distribution through the
machine, the tool point error can be precisely determined with no time dependencies. A
variety of approaches are being employed to determine optimal temperature sensor locations
and the number of required temperature sensors. The focus of this research is to develop a
procedure for determining the optimum number and location of temperature sensors that
lead to a robust model.

Current Methods

The basic approaches include finite element analysis (FEA), which is purely
analytical, and both neural network and statistical approaches, which are purely empirical.
Combinations of empirical and theoretical approaches also exist, where an empirical
approach is taken to determine the temperature distribution and a theoretical approach is
taken to determine the resulting deflection. Purely analytical approaches have not been
successful since the boundary conditions are not typically known.

The simplest empirical approach attempts to relate selected measured temperatures
to the tool point deflection. The largest barrier to the success of these methods is how to (1)
locate the temperature sensors and (2) determine the number of required temperature
sensors. Some researchers have used engineering expertise to locate temperature sensors
near thermal sources. However, the relationship between the source temperatures and tool
point deflection is often non-linear. Therefore a large amount of data is required to
adequately train the model. Other researchers have placed many temperature sensors on the
machine and have used either statistics or neural networks to determine the optimum subset
of sensors. The most popular approach is a combination, where engineering expertise is
used to place more sensors than the system requires and then statistics or a neural network
is used to determine the optimum location and number of sensors. Some researchers have
used as many as 100 temperature sensors on the machine to determine the optimum subset.



Researchers usually assume that this process must be performed only once for a
given machine configuration and then the results can be applied to any other machine of
similar design. However, the process of selection usually requires large amounts of data,
temperature sensors, and time and is often not practical to the common machine user.
Furthermore, it is not apparent that the optimum sensors for one particular machine are the
same optimum sensors for another machine in a different operating environment.

For these reasons, this work focuses on developing a method of determining the
number and location of temperature measurements. This approach assumes that knowledge
of the temperature distribution completely determines the deflection at any instant in time.
Therefore, the point is to determine the number and location of temperature measurements
required to represent the machine deformation under varying operating conditions. An
advantage to this approach is that warm-up and cool-down situations can be represented by
the same model as steady state conditions. Furthermore, a model has been selected that is
based on the physics of the system.

Technical Approach

The heart of this approach is based on the assumption that a temperature distribution
in a particular region on a machine can be estimated by a polynomial. As boundary
conditions change, the coefficients of the polynomial change, but the order of the
polynomial is always equal to or less than a finite value. The model must have the ability to
track the error under varying boundary conditions. This includes warm-up and cool-down
cycles as well as changing velocities and changing environmental conditions. To achieve
this robustness, the model must be independent of the coefficients of the polynomial. An
approach has been chosen where the location and number of sensors are dependent on the
order of the polynomial but not on the actual coefficients of the polynomial. This will
produce a robust model that has good tracking capability. Furthermore, less data is required
to fit this model and the model will have better extrapolating abilities.

Simplified one-dimensional heat flow
The one-dimensional deflection caused by a temperature distribution is

L
Ax= f[‘a(x)T(x)dx =0 f T(x)dx
0 0 1)

where
Ax = deflection in the x direction,
a(x) = coefficient of thermal expansion as a function of x,
T(x) = temperature distribution as a function of x, and
L = length in the x direction.



For a given region, assume that the thermal coefficient of expansion is constant in x. The
estimate of the deflection in x can then be thought of as a numerical integration problem,
where the intcgral is numerically approximated as

]T(x)ix [wl T(x1) +waT(x3) + ...+ w, T(x, ] 2‘, w;T(x;), 2

i=1
so the numencal approximation of the deflection is
n
Ax = a{wlT(xl) +woT(xp) + ... + W, T(x,, )] = a.Zl T(x;). 3)
=
There are many common forms of numerical integration such as the Forward and
Backward Cauchy Euler methods. However, in order to integrate the above equation
exactly with the minimum number of points, Gaussian integration is used. First, assume
the temperature distribution can adequately be represented by a polynomial of order k,
k
T(x)=a, +ax+ax +..+ax* =Y ax' . @)
j=0
Then the deflection in x is approximately proportional to the integral of the temperature
distribution in Equation (3). Substituting (4) into (1) and integrating results in,

L j+1
Ax = a[aox + a1;2 . % +ot “2'—:(;’%1—)}‘ = “éo%L(le)_)' )
Equation (5) is then set equal to (3),
, k a U+
Ax =~ al)_:‘[w, (an ix] J] =0T (J me (6)
Rearranging,
algoa,z wix] | = a§ aj (L](J:?) ¥

Since the polynomial coefficients are completely arbltrary, the terms in front of each
coefficient on each side of Equation (7) can be equated, resulting in k+1 equations and 2 n
unknowns, where n is the number of integration points and k is the order of the
polynomial. Therefore, the optimum number of integration points is

k+1

n=—- ®

Canceling out like terms results in the following k equations.
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Each individual equation is

n L .
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The order of the polynomial can be determined by theoretical analysis such as FEA. Even
simpler, the order of polynomial can be directly determined by the number of boundary
conditions (heat sources and convection surfaces).

The procedure is to determine the order of polynomial that best represents the
temperature field. Then based on the polynomial order and limits of integration, determine
the optimum number and location of temperature sensors. Since the effective coefficient of
expansion is not known, temperature data and resulting deformations are measured
throughout the expected operating conditions. The appropriate weighting is determined
using a least squares procedure. This linear equation can then be used to predict
deformations from measured temperatures.

Position dependent errors

Some thermally induced errors are also position dependent. This is due to the fact
that the position of the axes changes the effective structural loop between the tool point and
workpiece. As an example, the pitch error of the x axis is not only dependent on
temperature but also on the x position. On the other hand, spindle axial growth is not
dependent on the position of the axes since the entire spindle is always included in the
structural loop. Up to this point, the proposed method is only applicable to position
independent errors. This method can be extended to position dependent errors in the
following way.

A similar numerical integration procedure is used for position dependent errors.
However, since the limits of integration change for different axes positions, the location of
temperature sensors cannot be dependent on the limits of integration as they were in the
previous case. Instead, the procedure sets the temperature sensor locations, and the weights
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now become a function of position. As shown in Equation (8), there are still k+1
equations. However, the location of the temperature measurements are pre-set, so there are
only n unknowns. Therefore, the optimum number of integration points is

n=k+l. (13)
As an example, consider a simplified first order temperature distribution where
T(x)=a1x+ag, x € {0,L}. (14)

According to Equation (13), this temperature distribution requires two discrete temperature
measurements. First the locations of these two measurements are pre-set to specific values,
x; and x,. Plugging this into Equation (7) and integrating between 0 to an arbitrary value x
results in

2
[wl(alxl +ag)+wy(amxy + ao)] = apx + al%. (14)

The coefficients of the polynomial are completely arbitrary and the weight functions are not
dependent on these coefficients. Relating terms containing each coefficient on the left hand
side of Equation (14) to the right hand side results in two equations,

x2

Wix] +WoXxg = 7, 15)
W +wy = x. (16)
Solving Equations (15) and (16) for the weights results in

_x-20x _ 3

w = =ax“ +bx, a7
2(x1 —x2)
—_y2

I . LI S (18)
2(x; - xp)

The procedure is to set the location of the two sensors (for this first order example). Then
temperature data and resulting deformations are measured throughout the expected
operating conditions. Using a least squares procedure, the appropriate coefficients for the
weights (a, b, ¢, and d in Equations (17) and (18)) are determined. This linear equation can
then be used to predict deformations from measured temperatures.

As a general rule, the weight function contains terms from x to x**!, where k is the
order of polynomial that adequately represents the temperature field.
Multi-dimensional heat flow

This procedure can be easily extended to multiple dimensions. For a complete p
order polynomial in d dimensions, the number of terms in the polynomial is
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m= (p+a) .
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For example, a complete second order polynomial in three dimensions is

(19)

T(x,y,2) = ag + ax* +apx + a3y +agy+ asz? +agz + ajxy +agyz+agxz. (20)
Equation (20) contains ten terms. According to Equation (19), the number of terms is
1
m= (—25-:'3—?) =10.
This temperature distribution will result in m equations, one for each arbitrary coefficient.
If the particular error is not position dependent, there are (d+1)*n unknowns, where n is

@1

the number of temperature measurements. Therefore, the required number of temperature
measurements is
m _ (p+d)
d+1" pi{d+1)
For the complete second order polynomial in three dimensions, three temperature
measurements are required. This results in twelve unknowns (w,, X, ¥,, Z;, W,, X,, Y5, Z;,

(22)

W3, X3, ¥3, Z3). Two of the locations can be set arbitrarily and the remaining ten unknowns
are found by solving the ten equations.

Conversely, if the error is position dependent, the position of the sensors are pre-
sct as explained in the previous section and the weight functions become a function of
position. If the error is dependent on the position of only one axis, the n positions along
that axis are pre-determined pre-set. Then the number of unknowns reduces by n, so the
number of required sensors is

nxm_(p+d) 23)
d pldd
For the complete second order polynomial in three dimensions, four temperature
measurements are required.

This option is more practical when designing a new machine where embedding the
sensors into the machine structure is an option. If retrofitting an existing machine, this may
not be an option. In this case, as more locations of the sensors are pre-determined, more
sensors are required.

Test Set-Up

Two test set-ups have been designed. The purpose of the first set-up is to study this

approach using a simple, one dimensional heat flow problem with a known, controlled heat

source. The purpose of the second set-up is to apply this theory to an actual spindle.



The first test stand consists of a hollow, 305 mm aluminum tube mounted
vertically, shown in Figure 2. One end is attached to a granite block while the other end is
free. A capacitance gage is used to measure growth at the free end. A total of nine
thermistors are mounted along the length of the tube, and the temperature of the granite
block along with ambient temperature are also monitored.

gage
thermistor

S

Figure 2: Test Set-Up 1

The second test stand consists of a horizontally mounted spindle attached to a
granite block. The spindle has an integral motor with chilled water cooling around the
motor. In this configuration, only axial growth was madeled because the radial growth and
tilt were insignificant due to symmetry. Thermistors are mounted along the body of the
spindle to measure the temperature distribution. The mandrel in the spindle is super invar
to reduce its thermal growth. Differential eddy current sensors are used to measure radial
growth and tilt while a capacitance gage is used to measure axial growth. The test set-up is
shown in Figure 3.
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Figure 3: Test Set-Up 2

Results
Test Set-Up 1 - Aluminum Tube

Nine temperature sensors were placed along the length of the aluminum tube. A thin
wire with current running through it was used as a single point heat source. Axial growth
was measured for the heat source at 8.75” from the granite block. Temperature and growth
measurements were taken when maximum current was applied for 20 minutes. Then the
heat source was removed and data were taken for 20 more minutes while the aluminum
tube cooled. The temperature profile could be represented by a third order polynormal By
Equation (6), two points are required for numerical integration.

Five additional sets of data were acquired for model verification, using equal or less
current through the heat wire. The statistical approach selected the same optimum sensor
locations as the Gaussian integration approach. As a quantitative measure of the fit, the
mean squared error between predicted and measured growth are calculated reported in
Table 1.

Table 1: Mean Squared Error, Aluminum Tube Tests

Stanstlcal (],un uss1an JJ,
| 1.85*10 1.85*10*

2.58*10* 2.58*10*
5.00*10™ 5.00%10*
5.83*10* 5.83*10*

3.23*10*
18.50*10*

3.23*10*
18.50*10*




Table 2: Mean Squared Error, Aluminum Tube Tests with Reduced Data Set

Data Set | Statistical (um?) | Gaussian (um?)
1 3.28*10™ 1.80*10™*
2 2.65*%10* 2.52*10*
3 5.44*10* 4.73*%10*
4 5.64*10* 5.59*10*
5 2.89*10* 3.19*10*
TOTAL 19.90*10* 17.83*10*

To test the robustness of the approach, the size of the data used to fit the model was
reduced by selecting every twentieth point. The model was then fit with the smaller data
set. For comparison, a statistical approach was used to select the two best temperature
measurements. Using the reduced data set, the statistical approach selected different
optimum temperature sensors. The performance of the Gaussian model remained
approximately the same, while the performance of the statistical model was degraded, as
reported in Table 2.

Test Set-Up 2 - Spindle Test Stand

Nine temperature sensors were placed along the spindle body. The spindle speed
was varied from 1000 RPM to 6000 RPM over a 24 hour period. Spindle cycling during
the test is plotted in Figure S. This data was then used to fit the model. To assess the model
performance, the model prediction was compared to measured growth of nine sets of
independently acquired data.

The observed temperature distribution could be adequately represented by a fifth
order polynomial for all boundary conditions, as shown in Figure 4. According to Equation
(6), the optimum number of Gaussian integration points is three.

Using three temperature sensors, a comparison of the statistical approach versus the
Gaussian integration approach to determine optimum sensor locations was made. The
residual mean squared error (difference between model prediction and measured data) for
the data used to fit the model was less for the statistical approach. However, when
comparing the model prediction to a set of independently acquired measurements not used
during the fitting process, the Gaussian integration approach performed better.
Furthermore, as less data is used to fit the model, the performance of the statistical
approach decreases significantly, while the Gaussian integration approach only slightly
decreases. This indicates that the statistical approach requires more data to achieve an
adequate fit.
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Table 3: Sum Squared Error

Statistical (um?) | Gaussian (um?)
1 2.1150 0.9517
2 1.7384 1.1953
3 0.8315 0.8641
4 0.5247 0.8859
5 0.6891 0.4538
6 0.6891 2.7146
7 5.7754 1.4842
8 2.3671 3.1123
9 | 27071 13786

As a quantitative number to assess performance, the mean squared error between
predicted and measured growth for nine independently acquired data sets was calculated.
During the nine tests, spindle speed was varied. Three of the nine tests are plotted in
Figures 6 - 8. The mean squared error for each of the nine data sets is reported in Table 3.

J0silon ¢mm)

Figure 4: Temperature Profile Across Spindle Length at (a) warm up and (b) cool down
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Conclusion

We have demonstrated that the Gaussian integration approach is a viable method for
selecting the optimum temperature locations for the thermal growth model. The approach is
robust, performing under a variety of operating conditions. Advantages over statistical
approaches include (1) the model is related to the actual physics of the system, (2) the
optimum number and location of temperature measurements can be determined without
acquiring any data, and (3) less data is required to train the model.

To implement this approach on a machine, we must first determine a method of
breaking the machine into individual units. The temperature profile of each unit must be
adequately represented by a finite order polynomial. Next we must determine a method to
determine the highest order polynomial that can adequately represent the temperature profile
under varying operating conditions. This method ideally will not require additional
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temperature measurements. Instead, the polynomial order will be directly related to the
location and number of boundary conditions on the individual unit.
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