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Historically, safety analyses and plant dynamic simulations have been and
still are being carried out by means of detailed FORTRAN codes on expensive
mainframe computers in time-consuming batch processing mode. These codes
(e.g., TRAC—PFI,1 TRAC-BD12 and RELAPS53) have grown to bbe so expensive to exe-~
cute that their utilization depends increasingly on the availability of very
expensive supercomputers.

Thus, advanced technology for high-speed, low-cost and accurate plant
dynamic simulations is very much needed. Ideally, a low-cost facility based
on a modern minicomputer can be dedicated to the staff of a power plant, which
is easy and convenient to use, and which can simulate realistically plant
transients at faster than real-time speeds. Such a simulation capability can
enhance safety and plant utilization.

THE BNL PLANT ANALYZER

Oce such simulation facility that has been developed is the BNL Plant
Analyzer,l’,5 currently set up for BWR plant simulations at up to seven times
faster than real-time process speeds. The principal hardware components of
the BNL Plant Analyzer are two units of special-purpose parallel processors,
the AD10 of Applied Dynamics International® and a PDP-11/34 host computer.

The AD1O is specifically designed for time-critical system simulations,
utilizing the modern parallel processing technology with pipeline architec-

ture. The ADIO consists of six task-specific microprocessors, a multibus, one
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million words of data memory, and versatile input/output channels which aeccept
both analog signals and digital data. The six processors are synchronized at
the computing cycle frequency of 10 MHz. Two additions and one multiplication
can be carried out in one computing cycle, resulting in 30 million fractional
operations per second. With two AD10s working in parallel, the BNL Plant Ana-
lyzer has a maximum computing capacity of 60 MFLOP.

The AD1Q is programmed by the host computer in the high-level continuous
simulation language MPS10 which makes it easy for a programmer to achieve 707

of the maximum computing capaecity of the ADIOQ.

ADVANCED MODELING TECHNIQUES

Efficient simulations require an integrated concept which cptimizes the
formulation of mathematical models, the application of numerical methods, the
selecticn of computer architecture, and the implementation of program instruc-
tions. The BNL Plant Analyzer represents a new technology based on such an
itegrated concept. The model formulations are based on the foilowlng five
modeling principles:

l. Principle of Model Selection. Select the least complicated models
which accommodate all the available experimental information.

2. Principle of Relevance of Phenomena, Eliminate from the selected
models all irrelevant phenomena, while accounting for all important
physical processes.

3. Principle of Analytical Solutions. Carry out as many integrations as
possible in analytical form, then evaluate the closed-form solutions

dynamically during the simulation.



4, Principle of Iterative Loop Elimination. Execute in advance all
iterative procedures required for the solution of implicit nonlinear
equations and tabulate the results in terms of explicitly known vari-
ables, then interpolate the tables during the simulation.

5. Prineciple of Pretabulated Functions. Combine analytically in every
equation all constitutive relations (material properties, empirical
correlations) into the smallest possible number of composite expres-
sions, then tabulate the expressions for linear interpolation during
the simulation.

Detailed applications of these modeling principles are given in Reference 5.

EFFICTENT INTEGRATION TECHNIQUES

Numerical integration techniques are either implicit, explicit, or a com-
bination of both. Implicit integration involves iterative solutions to trans-
cendental equations. The associated frame time Ty, or the clock time re-
quired for advancing the entire simulation from one time level to the next is
orders—of-magnitude larger than the frame time T, associated with the ex~
plicit integrationm.

The permissible integration step size is controlled by accuracy and sta-
bility requirements. The rational choice between the explicit and implicit
scheme is based on: (i) the frequency f, of system stimulants (input data)
and system responses (output variables), (ii) the permissible integration step

sizes Hy and Hg for implicit and explicit integration, respectively, and

(iii) the frame times Ti and Tg.



Figure 1 illustrates the selection of optimum integration algorithms for
a variety of system transients. The abscissa represents the relevant frequen-
cy £, of the system stimulant and response, with the steady state at the
left and with extremely rapid transients at the right., The permissible step
size Hj for implicit schemes depends on truncation errors which increases
with f“, causing Hi to decrease with increasing f“. The permissible step size
He for rapid transients is larger than H; because explicit algorithms are
often of higher-order accuracy (e.g., Runge-Kutta methods). However, Hy is
limited by the stability limit as indicated by the flat segment of the Ha-
curve.

The intersections of T and H curves give the relevant simulation frequen-
cies for real-time computing speeds. Clearly, explicit integration is superi-
or for fast transients, while the implicit scheme is better for slow, near
quasi-steady transients. An optimum model formulation can be achieved by
eliminating the irrelevant frequency content or numerical stiffness from the
model, so that the explicit int«<3jration scheme integrates for most transients

of interest with the permissible step size lying just below the stability
limit.

CONCLUSIONS

Ultra-high simulation speeds can only be achieved by a good match between
mathematical models, numerical algorithms, program language and computer ar-
chitecture. Such a match implies an integrated approach which requires
advance planning, careful evaluation and judicious selection of mathematical

models, numerical algorithms and computer crchitecture.
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Figure 1 Selection of optimum integration method.
H - permissible time step, t — frame time.,
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