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A NEW SEARCH FOR CONVERSION OF MUONIUM TO ANTIMUONIUM

By
Bjorn Eckart Matthias

ABSTRACT

To search for conversion of muonium (M = p*e”) to antimuonium (M = p~et)
with very low background, a new signature was implemented that required the time-
coincident detection of the decay e™ (< 53MeV') with the atomic et(~ 13 eV) from
decay of an M atom. A 20 MeV/c u* beam was stopped in a 9 mg/cm? 5§10, powder
target. Muonium, formed in the powder, diffused into a vacuum region at thermal
velocities and was observed for a coincidence of M decay products. Any decay e~
was charge and momentum analyzed in a dipole magnet and tracked by an array
of MWPCs; any atomic et was electrostatically collected, accelerated to 5.7 keV,
and magnetically transported to a microchannel plate detector. To calibrate the
signature, M was observed for the first time by the coincidence of its decay e*
and, its atomic e”. A maximum likelihood analysis of the position distribution of
decay origins finds no M events and less than 2 at 90% confidence. This places
an upper limit on the conversion probability per atom of Sj7 < 6.5 x 107 (90%
C.L.), which corresponds to an upper limit of G757 < 0.16 Gr (90% C.L.) on the
effective coupling constant for a (V — A) conversion coupling. In a class of left-right

symmetric models, the value of G,,57 may be in this range.
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Chapter 1
Introduction

One of the simplest bound systems in which the fundamental interactions among
leptons may be studied is muonium. This atom is the Coulomb bound state of a
positive muon and an electron and is symbolized by M = u*e~. The structure of
this system is presently believed to be well-described by the standard electroweak
theory. Therefore, the experimental study of M is well-suited to check this model
and to search for any departures from it in the observations made.

Muonium was first formed in 1960 [Hug60,Hug70] by stopping a 4 beam in a:
Ar gas target. Its presence was unmistakably proven by the observation of the Lar-
mor precession signal, determined by the gyromagnetic ratio of 1.4 M Hz2/Gauss,
characteristic of the M atom, and the directional anisotropy of the muon decay dis-
tribution which is a consequence of parity violation. Further study of the formation
process focused on M production in noble gases [Tho69,5ta74] and on obtaining M
in vacuum by the beam-foil method [Bol81] and by thermal emission from hot W-foil
targets [Mil86] and from silica powder targets at room temperature [Bee86,Wo0088|.

The study of the hyperfine interval of the M 125, , ground state and the Zeeman
effect in its two hyperfine levels at weak and strong magnetic fields has been enthu-
siastically pursued over the years [Pre61,Zi062,Cle64,dV70,Fav71,Cas77,Ma.r82a],
since the theory here does not suffer from the finite structure effects of the proton,
as in the case of hydrogen. This allowed one to focus explicitly on checking quantum

electrodynamic predictions.



Spectroscopic experiments on the M n = 2 state were made possible with the
availability of M in vacuum, where previously any excited state of M in a gas
environment would suffer very rapid de-excitation to the ground state by collisions
with the gas atoms. The Lamb shift in the n = 2 state has been measured by
forming 25 metastable M with the beam-foil method [Bad84,0ra84] and directly
inducing the Lamb shift transition. Recently, the 225,/, — 22 Py, fine structure
interval was measured for the first time [Ket90b]. Finally, using the silica powder
source of thermal M in vacuum, the 1§ — 25 interval has been observed with
Doppler-free two-photon laser spectroscopy [Chu88).

This dissertation reports in detail on the most recent experiment addressing a
different aspect of the physics of M: the possibility of a spontaneous conversion
of M to its antiatom, antimuonium, which is symbolized by M = p~e*. This
process was suggested in analogy to the weak interaction mixing of K' and K’ by
Pontecorvo in 1957 [Pon57]. The M — M conversion was thought of as an allowed
second-order weak process, proceeding via an intermediate state of two neutrinos,
where it must be remarked that different neutrino flavors were unknown at the
time. It is clear that a direct reaction, if allowed, might proceed at a stronger rate.
Within the modern minimal standard model of electroweak interactions, however,
there is no channel available for this process. It has been forbidden, along with
other lepton-number violating interactions, by the imposition of a discrete symmetry
inherent in the grouping of leptons into distinct families between which no direct
couplings are included. The search for M — M is, therefore, a test of the validity
of this postulate and complements spectroscopic experiments on M in challenging
the present understanding of the interactions between muons and electrons.

Several earlier experiments have searched for the spontaneous M — M conver-
sion [Ama68a,Bar69,Mar82b,Ni87,Hub90]. With the exception of one that searched
for the cross-channel reaction e” e~ — p~ u~ [Bar69], these experiments have all
relied upon the radiations induced in matter by p~ from M breakup for a detection
signature. This necessarily entailed sensitivity to the M admixture in the M, M
system at only one point in time — when the system struck the material that served

as the detection medium in which the = was to induce the signature.



The experiment described in this dissertation is the first to be sensitive to the M
admixture to the system over its entire lifetime. This was made possible by the use
of a silica powder target to produce thermal M, which remained quite localized up
until its decay. Furthermore, the signature used required the coincident observation
of the energetic decay e~ and the “siow” atomic et , thus including both detectable
decay products of M disintegration. Establishing the viability of thisvsigna.ture
necessitated the first observation of M by the coincident observation of the decay
et and the atomic e~ produced in its breakup.

Energetic e* were observed in this experiment in an array of four position-
sensitive multiwire proportional chambers (MWPCs), where charge identification
was possible through separation in a dipole magnetic field between the second and
third MWPCs. This arrangement was used to detect particle tracks due to decay e*
and to trace their trajectories back to their points of origin near the M production
target. The corresponding atomic e¥ were detected by electrostatic acceleration
and magnetic transport to a microchannel plate (MCP). The most important data
characterizing the events recorded were the location of the decay point observed - it
was required to lie in the region of the vacuum near the downstream surface of the
target, the curvature of the track in the MWPCs to distinguish energetic e~ from
et , and the time difference between the track in the MWPCs and a pulse on the
MCP - it had to occur in a well-defined time window to be considered due to an
atomic e correlated to the decay e* track observed. To search for the M — M
conversion, as many M atoms as possible are produced and one searches for any
events fulfilling the M signature. The total number of M atoms formed must be
known, so that a value or a limit on the probability of M — M per atom may be
given.

The next chapter places the study of the M — M conversion into the context
of other searches for lepton-number violation, discusses the effecis of external fields
on the conversion, and establishes the quantities necessary to interpret the results
of the experiment. Chapter 3 surveys previous experiments and describes in detail

the apparatus used in this one. The analysis procedures and results are presented in



Chapter 4. Finally, Chapter 5 discusses the implications of the result of this exper-
iment. Several appendices detail the derivations of results used in both theoretical
and data analysis chapters and describe some of the data analysis procedures that

were too lengthy to fit comfortably into the relevant chapter.



Chapter 2
The Theory of the Conversion

Since the possible coupling of muonium to antimuonium involves new processes
among elementary particles, but is also affected by the atomic properties of these
bound states, the physics of this conversion is particularly rich. It is, therefore,
appropriate to present the theoretical description of the M — M conversion in
some detail. Also, I will try to place the study of this process into the proper
perspective among the many other efforts that seek to illuminate the origin and
possible limits of lepton family number conservation.

This chapter will briefly discuss the leptonic portion of the minimal standard
model of electroweak interactions; its predictions for processes involving muons will
be presented. Next is a survey of the theoretical work to date that attempts to
extend the standard model to incorporate leptonic interactions that are forbidden
in its minimal version. The process of M — M conversion will be focused upon
in more detail. Different possibilities of mediating the coupling will be discussed
and the implications of the conversion mechanism on the atomic properties of the
coupled M, M system will be noted. Finally, the connection to our experimental

situation and the measureable quantities will be established.



2.1 The Leptonic Sector of the Standard Model

The arguably most successful physical theory to date is the unification of weak
interactions with quantum electrodynamics (QED) into a single gauge theory, re-
ferred to as the standard model [Gla61,Wei67,5al68]. Its exact, local gauge group
is SU(2), ® U(1), where the 3-parameter special unitary group describes the sym-
metry properties of weak isospin and the l-parameter unitary group incorporates
the gauge invariance generated by weak hypercharge. The leptons in the model are

grouped via weak isospin and lepton flavor as

(), ), (),
(e)r (KR (T)r (2.1)

where the doublets have an isospin eigenvalue of t = } and a hypercharge eigenvalue
of y = —1 and the singlets have t = 0 and y = —2. The subscripts L and R denote
left- and right-handed components of the fermion fields in the chiral representation.
Maximal parity violation is evident from the absence of right-handed neutrinos.
The gauge bosons, which give rise to the physical vector bosons, W*, Z", and the
photon, enter through the minimal coupling prescription in the covariant derivative
for the gauge model. Because bare mass terms for the fermion fields would break
gauge invariance, they cannot be included in the theory. However, adding a complex
scalar doublet of elementary fields with explicit couplings to the fermion fields causes
a spontaneous symmetry breakdown when the neutral component is fixed to a non-
zero vacuum expectation value, a transformation which yields terms in the resulting
Lagrangian that may be interpreted as mass terms for the fermion and gauge boson
fields and leaves a single, physical neutral scalar field, the Higgs boson. Further
technical details of the standard model may be found in the numerous reviews in
the literature [Lon81,Sal72,Beg74).

The main prediction of the standard model pertinent to the search for M — M
is summarized in Table 2.1. The M — M conversion is forbidden! By construction,

the number of leptons from each family is required by the standard model to be



Additive Lepton Number Assignment

-

e~ v. e U, u vy, wu* U, |all others
L. |+1 4+1 -1 -1 O 0 0 0 0
L,| 0 0 0 0 +1 +1 -1 -1 0

Additive Lenton Number Conservation Laws:

w(Z,N) — e (Z,N)
L (Z,N) — et (Z -2,N)

ut — et iy,
ptem — ptet
e — pup

YL, = const.
¥ L, = const.
Forbidden Allowed ]
L — ey pt — et v, U,
| p—evY pt — et v Uy
p— e pt — ety v et e”

Table 2.1: Additive lepton number conservation.



separately, additively conserved in any reaction. Thus, the experiment described in
this dissertation is effectively a search for physics beyond the scope of the standard
model. The M — M conversion violates the conservation of electron and of muon

number by two units each.

2.2 Survey of Lepton Number Non-Conservation

To date, all experimental evidence supports the postulate that lepton family num-
bers are subject to an exact, separately additive conservation law in any physical
process. There is, however, significant interest in improving the experimental limits
on a possible violation of this symmetry, or, alternatively, in establishing the actual
strength of lepton family number non-conserving couplings, should they turn out
to occur at some level. Improving the observational sensitivity to rare muonic pro-
cesses helps to confirm the standard model as the appropriate effective theory to
higher energy scales. Actually observing such a rare process would reveal a break-
down of this effective theory and should provide insight into an underlying, more
general structure.

The rare muonic processes relevant in this context are not all strictly free decays
of the muon into forbidden channels. In addition to searches for p — ey, p — 3e,
i — e conversion on nuclei, and p decay into e and forbidden neutrinos, the study
of the M — M conversion provides yet another perspective in probing the limits
of the standard model.

Since its discovery {And36,Ned37], the muon has motivated efforts to illuminate
the principles of fundamental interactions among elementary particles. Although it
was first mistaken as the proposed Yukawa meson mediating the strong interaction,
its decay proved to be closely related to the process of nuclear beta-decay [Kon53].

Even before the identification of a muon neatrino, distinct from the electron
neutrino, interest in the decay of the muon motivated conjectures on the possi-
bility of the neutrinoless decay 4 — ey and attempts to forbid this unobserved
mode by proposing a conserved lepton number {Kon53,Fei6la]. With the discov-

ery of the muon neutrino {Dan62], the introduction of the intermediate (gauvge)



bosons as the mediators of the weak interaction [Sch57,Fey58], and the advent of
a unified description of the electromagnetic and weak interactions among leptons
[Gla61,Wei67,5al68], there seemed to be a natural scheme forbidding unobserved
muon decay modes by introducing an additively conserved quantum number for
each lepton family involved in an interaction.

But with the incorporation of the quark sector into the description of the weak
interaction [Gla70], in the framework of today’s standard model, new questions have
been raised. Is the classification of quarks and leptons into left-handed doublets
and right-handed singlets with respect to weak isospin artificial? Should a more
fundamental description be left-right symmetric? Is there a leptonic analogue to the
Cabbibo-Kobayashi-Maskawa mixing [Kob73] of weak interaction eigenstates of the
quarks to give their mass eigenstates? [s there then also a leptonic version of GIM
cancellation [Gla70] to ensure that the as yet unobserved muon decay modes are
not predicted above current experimental limits? Further investigation of rare muon
processes should, then, lead to improved understanding of the weak interaction and

may reveal new physics.

2.2.1 Early Theoretical Work

The idea of an intermediate boson to carry the weak interaction dates back to at
least 1957, to a remarkable paper by Schwinger [Sch57) that also addresses the
concepts of an internal symmetry space of particles — later to be formalized in a
gauge group — and of a neutral scalar field to generate masses for leptons and hadrons
without disturbing their “internal symmetries” - the idea of a Higgs field whose non-
vanishing vacuum expectation value generates particle masses while maintaining
the gauge invariance of the Lagrangian density of the interacting fields involved.
Further development of the concept that the weak interaction is carried by an
“intermediate charged vector meson of high mass” was presented by Feynman and
Gell-Mann [Fey58| and, in particular regard to the decay mode u — ey, by Feinberg
[Fei58] in 1958. In Feinberg’s approach, the M — M conversion would proceed as

a second-order weak process, with a v U virtual intermediate state (see Fig. 2.1).



Figure 2.1: The M — M conversion in the Feinberg model.
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But, since Feinberg found a tree-level contribution of 10~* to the branching ra-
tio for p — ey, at variance with the best experimental limit on this process then
available [Lok55] of 2 x 10~°, the intermediate boson hypothesis was thought to be
incompatible with observation:. Pontecorvo pointed ouvt [Pon60] that two different
types of neutrinos wouid rule out the process 4 — ey via such an intermediate
boson. The identification of the muon neutrino [Dan62] as distinct from the elec-
tron neutrino vindicated this viewpoint, but barred the M — M conversion from
occurring as in Fig. 2.1.

The relevant conservation laws that fsllow from assuming that the electron and
muon neutrinos remain distinct in all interactions can be formalized as in Table 2.1.
These separate, additive conservation laws for each lepton family number may easily
be extended to include further generations of leptons, i.e. the tau generation,  and
v,, and are a direct prediction of the minimal standard model.

An alternative to this additive conservation scheme was proposed by Feinberg
and Weinberg [Fei59,Fei61la] and by Cabbibo and Gatto [Cab60,Cab61]. Without
deeper foundation in a gauge model, they postulated a multiplicatively conserved
muon parity in addition to an additively conserved lepton number that distinguished
leptons and their antiparticles. The relevant muon parity and lepton number as-
signments and their consequences are summarized in Table 2.2. 'The difficulty with
this scheme is that it cannot easily be extended to include further lepton genera-
tions, but, since it allows M — M while forbidding p — ev, it directed attention
to the M — M conversion.

In a subsequent paper [Fei61b], Feinberg and Weinberg more carefully consid-
ered the possibility of the spontaneous conversion of muonium to antimuonium,
supposing an effective interaction Hamiltonian density of V — A form, characteristic

of low-energy weak processes:
G o 5\ 5
H = —_:'/I_iil_ 1![)# ’)’A(]. + v )wcwp 7,\(1 + ¥ )¢e + H.c. (22)

The consequences of this assumption will be investigated in sections 2.4 and 2.5.
As the minimal standard model has been extremely successful in describing ele-

mentary particle interactions and in predicting effects that were later experimentally
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Multiplicative Lepton Number Assignment

|

e~ v, et U, u vy ptowy | all others
L [+1 +1 -1 -1 +1 +1 -1 -1 0
Po|+1 +1 +1 +1 -1 -1 -1 -1] +1

Multiplicative Lepton Number Conservation Laws:
Y L = const.
I P, = const.

Forbidden Allowed
p— ey pt — et v Uy
p—eyy pt — et Uy,
p — 3e pte” — p et
p (Z,N) — e (Z,N) |ee” — pTp
4 (Z,N) — e (Z —2,N)

Table 2.2: Multiplicative lepton number conservation.
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confirmed, it is now widely believed that any extension to it should reduce to this
model in the appropriate limits. Rumors of the observation of 4 — ey at SIN in
1977 motivated a flurry of papers presenting models in this class that might allow
this process at an adequately suppressed level.

In order to allow for small but nonvanishing lepton number non-conserving cur-
rents, it is necessary to arfange for the leptonic mass eigenstates of a theory to differ
from the eigenstates of weak isospin. This requires that lepton number violating
couplings be introduced into the theory to give small mixings between the weak
eigenstates of the leptcns. Such couplings may be added by extending the standard
model with, for example, massive neutrinos [Che77a,Wil77|, additional Higgs fields
[Bjo77], or heavy leptons [Che77b,Lee77,Mar77].

One class of left-right isospin symmetric theories is particularly appealing and

will be discussed in more detail in the next section.

2.3 Mechanisms Mediating M — M

The M to M conversion is allowed in many extensions of the standard model [Ver86],
among which left-right symmetric theories [Pat74,Moh75b,Moh75a] are an appeal-
ing class. Of particular current interest is the left-right symmetric extension of
Mohapatra and Senjanovi¢ [Moh81a,Moh81b,Moh80]. They propose an additional
Higgs triplet as the minimal extension for achieving left-right symmetry. In this
model, parity violation becomes a low-energy symmetry breaking effect by giving
appropriate vacuum expectation values (VEV) to the extended Higgs sector. This
choice of VEVs gives the right-handed gauge boson a much larger mass than the
left-handed one, thus suppressing right-handed currents. Another effect is the ap-
pearance of massive Majorana neutrinos.

The new Higgs bosons have couplings to leptons that can induce lepton-number
violating processes. The doubly charged member of this triplet, A**, mediates the

M to M conversion as shown in Fig. 2.2. For a scalar coupling of this sort, the M
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Figure 2.2: Diagram of the M — M conversion mediated by a doubly charged Higgs
boson.
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to M effective low-energy conversion Hamiltonian has the form [Her89]

fcef-l -_— — c
Hamr = Enfi e(1 —vs)e B(1 + v5)u® + H.c. (2.3)

where f.. and f,, are Yukawa couplings and m_, is the mass of the mediating A*+,
A Fierz transformation on this Hamiltonian can be shown [Her89,Swa89] to give a

Hamiltonian of the form of Eq. 2.2 if one identifies the effective coupling constant

as .
feefuu

2
8m3 .,

G = V2 . (2.4)

Thus, all experimental results quoted as limits on the coupling constant of Eq. 2.2
are also valid as limits on the effective coupling in the case of M to M conversion
proceeding via A** exchange.

As a result of astrophysical constraints on this model and assuming that the
muon neutrino is no heavier than 65 eV, it places a lower limit on the conversion of
M to M of G,,57 > 4 x 1077 G [Her]. The upper limit within this model is given
simply by the present experimental limit on G ;57 .

The massive Majorana neutrinos may also mediate an M — M conversion, as
depicted in Fig. 2.3. This diagram has, however, been estimated [Hal82] to give
a contribution no larger than G,,57 ~ 107° GpF, using experimental limits from
searches for neutrinoless double-beta decay. |

Though it has been ruled out by its predictions of semi-leptonic, lepton-number
violating decays of the B meson, the 1979 model of Derman [Der79] was interesting,
as it allowed M — M to proceed via exchange of a neutral Higgs boson. The
relevant Higgs entered the theory as a Goldstone boson after breaking of the group
symmetry of SU(2), ® U(1) ® S4, where the permutation group operates on lepton
flavor. This model inspired the calculation of the neutral scalar M — M matrix
element given in Appendix A.

As there is active speculation about small, but nonvanishing neutrino mass in the
context of the problem of “missing” solar neutrinos, the possibility of the M — M
conversion proceeding by massive Dirac neutrinos must be mentioned. The relevant

diagram is shown in Fig. 2.4. This process has been considered by Swartz in analogy
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Figure 2.4: The M — M conversion mediated by massive Dirac neutrinos.
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to B® — B’ mixing [Swa89]. He gives the effective Hamiltonian as

G,y — _

Hysg = 7‘%4),‘7“(1 +95) Ye Buva (1 + 75) e
Gs
Y

where G4 and Gp are functions of lepton masses, neutrino masses, and mixing

;b_,,(l“‘Ys)lbe;b—u (1—75)11): + H.c. ’ (25)

angles. Swartz estimates a conservative upper bound on the coupling constants at

Grv2 2 _ 7y 100 Gr . (2.6)

871-2 H

G.-h GB <

This is far below the present limits of observability.

2.4 The Atomic Physics of M — M

The matrix elements of the M — M conversion place specific conditions on the
spin projections of the particles involved in the interaction by way of the coupling
operator’s action on the helicities of the particles involved. The significance of
this will not be fully apparent until the effects of external fields on the initial
and final states are carefully investigated. Under the assumption of a (V — A)
conversion coupling, Appendix B gives the relevant derivations of the n =1 M and
M Breit-Rabi levels, the eigenstates of the M, M system coupled by the M — M
conversion, and the probabilities of finding the system in an M state after preparing
it in an initial state of M. The resulting level diagrams for M and M are shown in
Figs. 2.5 and 2.6, respectively.

The spatial structure of the coupled system is determined by the kinetic energy
and central-field Coulomb terms in the Hamiltonian, in complete analogy to hydro-
gen. The reduced mass of the muonium atom differs by less than 0.5% from that
of hydrogen, so the spatial wave function of the M, M system is essentially that of
hydrogen. The electron and muon spins couple by the Fermi contact interaction,
giving rise to the hyperfine splitting of a = 1.85 x 107 %V, and these spins interact
separately via the Zeeman effect with any external magnetic field. Because the

system is assumed to be in the n = 1 spatial state, there is no spin-orbit coupling
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Figure 2.5: Energy levels of ground state muonium in an external magnetic field.
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to consider. Finally, the conversion Hamiltonian can change the charge state of the
electron and muon from that in M to that in M or vice versa, but only with proper
regard to conserving angular momentum by its specific sensitivity to the spin states
of the reacting particles. To solve for the eigenstates and -energies of the coupled
M, M system, one diagonalizes the full Hamiltonian matrix, most conveniently in
the basis of uncoupled spins for M and M . The approximations made are to work
in the non-relativistic limi and to use a truncated basis set, one that includes only
the n = 1 states of the system. Since the energy difference to the first excited level
in M, M is very large compared to the effects listed above, this is believed to be a
valid simplification. One finds, interestingly, that the energy levels in the coupled
system have been shifted and split by the conversion coupling (see Fig. 2.7). The
value of the splitting in the unpolarized levels is given by twice the magnitude of
the M — M conversion matrix element. One might consider the precision spec-
troscopy of the hyperfine interval of the ground state or of the 15 — 25 interval as an
alternative way to observe the effects of an M — M mixing. This is not thought
to be a promising approach, however, since the development with time of the M
admixture in the wave function of the system during the interaction time with the
radiation field leads to a time-dependent transition frequency. As the splitting of
the levels of the M, M system is already known to be small compared to the de-
cay width of the levels, this complicates the interpretation of a measured transition
frequency for the extraction of a limit on the Af — Af coupling.

Because the leptons constituting the M atom are the antiparticles of those mak-
ing up M, the splitting of the hyperfine levels in the ground states of M and M
under the influence of an external magnetic field will be relatively opposite in en-
ergy. This lifts the zero-field degeneracy of the levels participating in the M — M
conversion and will increasingly hinder the conversion with rising field values. For
the case of a coupling of (VV — 4) form, a simple interpretation will be given of the
magnetic field value that suppresses the conversion probability between the polar-
ized levels of M and M (iA,) and |\,); see Appendix B) by 50% and that which
suppresses the conversion probability between the unpolarized levels of M and M

(I1A2) and |A4)) by 50%. The derivations of some of the equations used are'given in
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Sec. B.4.

2.4.1 Conversion Between Polarized Levels

For the conversion probability between the polarized states of M and M, integrated

over all observation times of the decay of the system, one has the expression

)2
S'\—/: 2(2)

hiy? - g2 [((f_;): 4 yz:t'

from the first term of Eq. B.85 (multiplied by 2), where

; B m.
y-_ knB (gr _ g“) ’ (2.8)
m

a T

~ is the muon decay rate, a is the ground state hyperfine interval, pug is the Bohr
magneton, g, and g, are the absolute values of the g-factors, and m. and m,, are
the masses of the electron and the muon, respectively. The expression for 55; shows
that the conversion is unsuppressed at zero field and that any applied field will
diminish the conversion probability. Thus, we seek a solution to the rescaled field

Y =Y that reduces 517(}") to half of its zero-field value:

5"—,(}' =0). (2.9)
The result is
FL‘" : (5 :
Y= — 1~ (H) , (2.10)

which leads to

i
4

_ hvy1 ()

B/ = (2.11)
KB (gr - ;,_:gll)
that can be evaluated to give B/ = 26 m(G. It is appropriate to make a few
approximations:
m. 1 (2.12)
m, 206 ‘ -



and, assuming 0 < G,,77 < G\

pum—

, §\°
1< 1+ < 1.0000245 (2.14)
\ Ry
so that
\ (M) (2:13)
and
. Ry
Y= — . (2.16)
a

This simplifies the expression for Bj:

h,
B ~ o
2pp

(2.17)

To interpret this result physically, we note that the levels of M and M can be
considered to be spread by the finite lifetime of the system, which is governed by
the muon decay rate. So the conversion between the polarized states begins to be
inhibited when the degeneracy breaking between the levels of A/ and M due to an
applied magnetic field becomes comparable to the natural level width, as depicted
in Fig. 2.8. The overlap area of the two Lorentzians shown can be interpreted
as a relativ: measure of the conversion probability with respect to the zero-field
conversion probability, where this overlap area is unity for normalized Lorentzians.

To complete the argument, consider a Lorentzian of the form

(2.18)

/'XL(x)dle . (2.19)

Figure 2.9 shows that ~ is the FWHM. Referring to the case indicated in Fig. 2.8,

it is clear that the overlap area of the two Lorentzians is given by

-+ =
9

L(z)dz = 1 —/ " L(z) de, (2.20)

N
2

-+ X

A= [jL(x)d;c -
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and A turns out to be

+3 +3
A:l—l/7—~dL—2=1——7—[zAtan(2—x)] =L (2.21)
2w J-3 x2+(%) 2w |y Y /iy 2

Thus, if the degeneracy splitting between the M and the M levels involved is such
that
2un B, = hy, (2.22)

then the overlap of the levels is reduced by 50% and the conversion probability is

reduced to half of its zero-field value.

2.4.2 Conversion Between Unpolarized Levels

After applying the approximation that 2— < 1,1t is possible to express the conversion
probability between the unpolarized states of M and M, again integrated over all
decay observation times, as in the second term of Eq. B.87 (multiplied by 2):
s \2 L (8)?
—_ _+_ LA
Sw = (""2 ) (2.23)
2 [(ﬁl) +(1+ X?)]

where

B e
X =£e (g,, + T—'g,,) . (2.24)
a m,

Again, the conversion probability is unsuppressed at zero field and decreases with

increasing applied field. Here, too, we want a solution to

, 1 .
Si7(Xy) = -2—57(7(1\ =0) . (2.25)
The result is
A 2
.X’() = 1 + (—> =~ 1 3 (2.26)
a
or :
ay/l + (’Lﬂl)‘
B() = y (2.27)

po (gc + 22g,)
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which gives B, =~ 1.6 kG. With the same approximations as made earlier for the

first case and the additional realization that

3
T=16x107° <1, (2.28)
a .
we get a simpler expression for By:
a -
By = — . 2.2
v 2up (2.29)

This result is a little trickier to interpret. The general, magnetic field dependent
Breit-Rabi eigenstates of M and of M (in the absence of a conversion) can be
expressed as a superposition of the uncoupled basis states, with the admixture of
each being field dependent. Designating the middle level in the triplet by T and

the singlet level by S we can write:

|M;T) = ]—b- [(X + VI +X7) [M; 1) + |M; u)]

IM;S) = [|M,|1 (X + vVI+X2)|M;11)]

— 1

MT) = & (I37;11) + (X + VI + X?) |M; ]

— 1 o —

B;s) = & [- (XY + VIEX) R0 + ML) (2.30)
Here, the spin projections in the uncoupled basis are represented by T for +% and

by | for —}. The first spin is that of the electron and the second is that of the
muon. The charge and spatial states of the particles are indicated by M or by M.

The normalization, N, is given by

213
N=[1+(X+\/1+X2)J7. (2.31)
It is easy to check that the limits of these expressions are correct. For X — 0, that

is, as B — 0:

M;T) — [IMTl +IM; 1)) = |M;F = 1,mr = 0)

|M;S) - [IM 1) = [M; L)) = |M; F = 0,mp = 0)
MT) — = [M10) + B | = (M F = 1,mp = 0)

3M;S) — (<1371 + B1:17) ] = M F = 0,mp = 0) . (232)

sn«mr Sl-
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For X — oo, that is, as B — oo:

IM;T) — |[M;T])
IM;5) — —|M;1T)
|M;T) — |M;|1)
|M;S) — —|M;1l). (2.33)

More rigorously, this limit is valid for the range
1
1< X <« —a’m.c?, (2.34)
2a
which corresponds to about
10° G« B« 10° G, (2.35)

so that one ensures the perturbative nature of the interaction with the external

field. The case of most interest here, however,is X = 1:

IM;T) = [(1+ v2) |M;71) + M5 L)

fﬁ?&
f\/z_;— 134

M;T) = ————[W;Ti + (14 v2) 37;11)]

V22 + V2
3;S5) = \/_\/;_[ (1 +v2) 3570 + 17;17)] (2.36)

IM;S) = — (14 Vv2) |M;(1)]

It is evident that, for general X,

2
— §Y 1 — (X +v1+ X2
(M; S|HmIM;T) = (5) ( )2 (2.37)
+ (X +V1+X2)
and )
— s\ 1 — (X ++v1+ X?
<M;T|H/'./1TT'M35> = (5) ( >2 ) (2-38)
+ (X +V1+ X!)
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but one expects that such transitions will be strongly suppressed by the large energy
difference between the bra and ket states. This energy difference is at least as large
as the hyperfine interval, a, a spacing that is much larger than the natural level

width. In fact, 5‘0—1 = 1.6 x 1073, So the matrix elements to consider are

_ 5\ 2(X +VITXY)
(M;T|H x| M;T) = (5) > (2.39)
1+ (X +vVI+ X7)
and
— 5\ -2 (X +VI+X7)
(S ot 5) = (3) y (2.40)
1+ (X + VI+ X7)

The cases of interest are:

(M;T|\H,57M;T) — (g) as X — 0

— Das X —

- % (g) for X =1 (2.41)

and

— )
(M;S|H,wIM;S) — —(-2—) as X — 0

— 0as X — oo

_ _?}_5 (g) for X = 1. (2.42)

In words, for a value of the rescaled field of X = 1, the admixture of the spin
state in the M final state that mates with the spin state of the initial state of
M has dropped to \/—'5 of its zero-field amplitude. This means that the conversion
probability, which scales as the square of this matrix element, has dropped to ; of
its zero-field value for X = 1. The external magnetic field has begun to uncouple
the spins which at zero field may be imagined to precess around one another. The
individual spins are partially polarized in the external field and the magnetic mo-
ment of the electron begins to dominate over that of the muon in determining the
orientation of the atom. It is the unpolarized part of the T and S states that can

participate in the M — M conversion.
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2.4.3 Field Dependence of Scalar Coupling

The action of the conversion Hamiltonian on the spins, as discussed above, is a direct
consequence of the given (V — A) matrix element of the conversion Hamiltonian. It
seems reasonable that there be at least one other possibility, which may arise from
a neutral scalar coupling, as discussed in Appendix A:

_— , : )
(M;mi‘;c’msulHl\lﬁﬂM;m5=’m5u> = (5) 6m'sc~m5u5""s,""‘se ) (2.43)

where translating the helicity é-functions to conditions on the spin quantum num-
bers is the most difficult point. This matrix element would entail the same low-field
dependence of the conversion probability as above, but would give no suppression
of the conversion at high fields at all. The conversion probability would never fall
below 50% of its zero-field value. This is very interesting! It seems that, if a conver-
sion were ever observed, one would check its strength at low and high values of the
magnetic field to see whether or not the field affects it. This might, then, determine
the rank of the operator involved in the conversion.

In order to give a complete treatment, one should, in principle, calculate the
conversion for an arbitrary linear combination of scalar, pseudoscalar, vector, axial
vector, and tensor bilinear forms of a low energy effective conversion coupling. The
important conclusion, however, is that statements about the M — M coupling
constant (limits, etc.) as well as the specific behavior of the conversion suppression

in a magnetic field are model-dependent predictions.

2.5 The Connection to Experiment

The influence of an external magnetic field on the M — M conversion was dis-
cussed at length above, since magnetic fields have the greatest aptitude for sup-
pressing the coupling. For a static, uniform electric field applied to the 1S ground
states of M and M , the Stark effect lifts their degeneracy in energy in third order,
and a simple estimate indicates that fields on the order of 10° V/em are required

to split the M and M levels by an amount comparable to the decay width of the

levels.
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Due to the different reaction channels available to M and M atoms in collisions
with the atoms of a host medium, the M — M conversion is strongly inhibited in
a material environment [Mor73,Mor70,Mor66,Fei61b]. For M formed in gases, the
conversion is suppressed by a factor of 10° per atmosphere of gas pressure [Ama68b).
It is, therefore, very advantageous to search for M — M in a vacuum environment,
where the process may occur uninhibited by anything but residual magnetic fields,
which are the most difficult to control.

There are two established methods for producing M in vacuum. The beam-foil
method [Bol81,Bol82] has been successfully used in many muonium experiments
[Wo0090,Kua87,Kua89,Ket90a,Ahn90] including a search for M — M [Ni87,Ni88a].
As M produced by this technique has kinetic energies of several tens of keV, search-
ing for an M component with this source of M necessarily implies a small solid
angle of detection. That is where the production of thermal M from S§:0, pow-
ders [Bee86,Wo0088] offers a distinct advantage. Muonium at thermal energies with
T =~ 300K remains confined within a space of only a few c¢m extent throughout its
entire lifetime. This not only enables an increase in detection acceptance, it also
allows, for the first time, the observation of the breakup of the M, M system in
vacuum at any time after its formation. By contrast, all searches for M — M in
vacuum to date relied on the M atoms striking a specially chosen material to induce
the relevant signature. This experiment is not the first to search for M — M using
thermal M [Hub90], but it is the only one so far that searches for a decay from the
M component over the entire natural lifetime of the M, M system.

To relate the theoretical probabilities for M/ — M discussed above to the quan-
tities measured in this experiment, we recall that the definition of S3; was the prob-
ability of observing the system, initially prepared as M, decay from the M state.
The experiment yields the number of M decays, N,;, and the number of M de-
cays seen, Nyj, corrected to equal acceptance. The probability of the M — M
conversion is, then, the number of M decays divided by the total number of atoms

decaying from either the M or the M state:

N3
7 = e, 2.44
51\1 N/” +N,-\7 ( )
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Since the M — M reaction is known to be at best very weak, the condition Ny <«

Nj; will hold. Thus, one may write

2

A
: (2.45)

as an excellent approximation. Giving the results of an experiment searching for

S+ =

|

2

M — M as a value or an upper limit on Sj7 is, then, a model-independent way
of stating the result. This should be the number used in comparing the limits on
this process to those on other lepton-number violating decays to get a feeling for
the relative “sensitivities” achieved in different rare decay searches.

In the case of this experiment, any M — M conversion suffered a 50% sup-
pression due the external field of around 10 G. This, in effect, means that only
half of the observed M atoms, those in an unpolarized state, were available for
a conversion coupling to act upon. This field suppression has not been shown to
be model-independent, so one must allow now that it may be. It is conjectured
that any model-dependence enters only in the high-field behavior of the M — M
probability, in which case the present experiment could still be interpreted in a
model-independent way. The above expression must be modified within this con-
text to read

Sy~ 2 AL (2.46)
if we are to use the zero-field form of the conversion probability, S3; as given in
Eq. B.90, to obtain a result for the M — M coupling consfant. Into this equation
we will insert the measured number of M atoms observable during this search for
M — M , Ny will be the taken as the most probable number of M events seen
or as an upper limit thereon, and the factor of 2 accounts for the 50% suppression
of the conversion due to the ambient field in the apparatus.

Alternatively, one may use Eq. 2.45 and include the magnetic field dependence
in the theoretical half of the consideration. To relate the observed S37 to a value
for the G ;77 coupling constant as it appears in the (V' — 4) Hamiltonian in Eq. 2.2,
we refer to Eq. B.87,

, (2.47)
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derived in Sec. B.4 and evaluate it for the measured magnetic field of about 10 G
that was present in the region of the apparatus where a M — M conversion was
searched for. The rescaled fields, X and Y, are about 3 x 1072 at 10 G. The effect
of this field is to completely suppress any conversion between the polarized levels of
M and M , but to leave the conversion between the unpolarized levels essentially
undisturbed. The result is

N\ 2
Sxr = (1.28 x 10°?) (G—(;M) , (2.48)
la

where Gr is the Fermi coupling constant. Giyen a limit on S77 from the experiment,
a limit on the coupling constant, G,,57 , may then be calculated.
The result in either case is

Nzz s (G\m)?
D — (1.98 x 107°) (ZAMELY 2.49
= ) (&, (2.49)

Then, the value or limit for S37 must be given according to Eq. 2.48 or, equivalently,
Eq. 2.46, but not Eq. 2.45, since we are not allowed to include those M atoms in
the normalization which were not available to conversion at any strength because
of suppression by the magnetic field.

It has been customary to give the results of searches for M — M as upper limits
on G,,77 in units of the Fermi constant, assuming a (V' — A) conversion Hamiltonian

density. Lately, the limits have also been given on S3; and this inclination will be

followed here.



Chapter 3

The Experimental Search for

M —M

This is not the first experiment to search for the conversion of muonium to antimuo-
nium. As is often the case with experiments seeking to improve on existing results,
the present measurement is to be seen as the natural consequence of such previ-
ous work, which has built a body of experience indicating which avenues are worth
pursuing and which are likely to be fruitless in the development of an improved
approach.

To put this experiment in the proper context among previous searches for the
M — M conversion, the other experiments will be briefly surveyed. Further, this

chapter will present in detail the method and apparatus employed in this work.

3.1 Previous Searches for M — M

The last few years have been particularly active ones in the experimental search
for the M — M conversion, mainly as a consequence of new developments in
experimental techniques of M formation. Interest in searching for this process,
however, has been present for a much longer time. Early experiments did not
achieve very high sensitivities for the coupling, but were important in developing

the experience necessary in designing improved approaches.

35



36

After the first observation [Hug60,Hug70] of A, it was not long before the first
experimental search [Ama68a] for the M — M conversion was carried out. A
beam of u* produced at the Columbia University Nevis cyclotron laboratory was
directed into a gaseous target of 1 atm of purified Ar, where stopping u* captured
electrons from the Ar atoms to form M. As in the work confirming M production,
the presence of polarized M was verified by the observation of its characteristic spin-
precession signal. In the event of an M — M conversion, subsequent collisions of
the M atom with Ar gas atoms would form p~Ar with high efficiency [Mor66|.
The event signature for the presence of M was then the observation of the 643 keV’
2p — 1s (K.) Ar muonic X-ray, detected in either of two NalI(T!) scintillation
counters after a u* stopped and was not followed by a decay e*. For 5.2 x 107 u*
stopping in the Ar target, 4.2 x 10° M atoms were formed and no M events were
observed. Because of the severe suppression of the M — M conversion in gases
due to collisions, the resulting limit on the coupling constant of G577 < 5800 G-
(95 % C.L.) was not very stringent.

An investigation of a cross-channel to the M — M conversion, the process
e“e” — p~u~, was conducted [Bar69] at the Princeton-Stanford electron storage
rings by colliding two 525 MeV electron beams. The Stanford Mark III linear
accelerator supplied 300 MeV electrons that were stacked and raised to 525 MeV
in the storage rings. Collision products in the transverse direction were analyzed by
an arrangement of spark chambers, absorbers, and scintillation counters to detect
and distinguish electrons from the more penetrating muons and to veto cosmic ray
induced counts. Only events compatible with Méller scattering (e” e~ — e™ e”)
were observed and an upper limit on the cross-section for e"e™ — p~p~ of oy <
0.67 x 10732cm? (95 % C.L.) was reported for the center-of-mass energy used. This
implies an upper limit of G,,;77 < 610 G¢ (95 % C.L.) on the muonium-antimuonium
coupling.

The first search for M — M using M in vacuum [Mar82b] was carried out at
the Tri-University Meson Facility (TRIUMF) in 1982. Muonium was formed by
stopping a 29 MeV/c pu* surface beam in a layered silica powder target on CaO
substrates, taking advantage of the diffusion of M from within the S0, grains to the
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surrounding voids. A fraction of any M atoms that would have stopped in the CaO
coating of the support foils would have induced Ca 2p — 1s muonic X-rays. These
were searched for using two Ge detectors. For 2.32 x 10'" stopping u*, no evidence
of a conversion signal was seen and background limitation resulted in an upper limit
of S37 < 0.04 (95% C.L.) on the conversion probability per atom. This translates
to an upper limit of G,;57 < 42 Gr (95% C.L.) on the muonium-antimuonium
coupling constant. A reanalysis (Bee86] with more complete understanding of the
M formation and diffusion process in fumed Si0, powders led to an improvement
of this limit to G,,57 < 20 G¢ (90% C.L.).

After its employ in searches [Bol88) for u — ey, p — eyy, and g — 3e, the
Crystal Box detector [San85), a large solid-angle detector of 4 faces of 9 x 10 NaI(T!)
crystal modules covered by a plastic scintillator hodoscope, was modified for use
in another search for the M — M conversion [Ni87,Ni88a,Ni88b]. Muonium in
vacuum with kinetic energies of several tens of keV was formed via the beam-foil
method [Bol81] using a 10 MeV/c sub-surface u* beam from the LAMPF stopped
muon channel (SMC) incident on a 0.7 um Al foil. While charged particles were
magnetically swept out of the beam-line, M drifted further through a magnetically
shielded region of 280 cm length and then stopped in a 1 um thick Bi target of 40 cm
diameter coated with 7.5 nm of MgO. If an M atom struck this target, its impact
would have liberated an average of 5 secondary electrons from the MgO coating
and caused its breakup. The 4~ would have had sufficient energy to penetrate into
the B: substrate with high probability. There it would be captured on a B? atom,
giving a cascade of u~ Bi X-rays, including the transition quanta 3d — 2p (L, ) at
2.5 MeV and 2p — 1s (K,) at 6.0 MeV. The secondary electrons from the target
were electrostatically collected and counted on a 7.5 ¢m diameter microchannel
plate (MCP) detector, viewing the target from the upstream side. The three-fold
coincident observation of the Bi: muonic X-rays, K, and L,, in the Crystal Box
detector and the secondary electron burst on the MCP detector was required to
signal an M atom striking the target. A maximum likelihood analysis of the two-
dimensional photon energy spectrum cut on the presence of a MCP count in the

proper time window yielded no events attributable to the M signal distribution. The
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result for the upper limit on the M — M coupling constant was G771 <69 Gr
(90% C.L.).

At TRIUMF, another search [Hub90,Hub88] for the M — M conversion was
conducted using a rather original method. A 28.5 MeV/c surface u beam from the
M15 channel was partially stopped in a $i0, powder target. Thermal muonium
was formed in the powder and diffused out into the vacuum region downstream of
it. There, it drifted freely and a possible M component was allowed to develop
until the system struck the UHV grade surface of a W “catcher” foil, where any
p~ would create '*'Ta by nuclear capture on W. After typically 12 hours of beam
exposure, the foil was removed, its surface layer chemically removed and placed
in a low-background germanium counter. The signature for the '*'Ta isotope is a
B~ in coincidence with a v and a delayed vy. In 2 runs totaling 625 hours of data
taking, 2.7 x 10'? u* were accepted and the single event passing the M signature
was attributed to the background process of "*Ge disintegration. The upper limit
given on the conversion probability per atomis §37 < 2.1 x107°® at 90 % confidence.
This corresponds to a limit of G,,57 < 0.29 G on the coupling constant of a V — 4
type mediating interaction.

The experiment reported in this dissertation also uses a thermal M source, but
detection of M and M are afforded through a new and more direct method. Details

of the apparatus used and the signatures exploited foliow in the next sections.

3.2 The Experimental Apparatus

The limitation on searching for a conversion of M to M has always been given
by backgrounds, how well these were understood, and by low detection efficiencies.
This experiment is, of course, not exempt from the same concerns, but new exper-
imental developments [Bee86,Wo0088] and a novel signature have paved the way for

a better method to detect M atoms with very low background.



39

3.2.1 The Tools for a New Approach

Producing M in vacuum avoids the large suppression of the coupling to M that is
due to collisions in gases or solids. The beam-{oil interaction {Ber77| applied to pu*
passing through thin foils was the first source of vacuum M. The charge-exchange
reactions of u* incident on a thin Al foil produced M at kinetic energies up to several
tens of keV [Bol81,Bol82]. At the corresponding velocities, the M atoms traveled
a significant distance during a time interval allowed for a conversion to M to take
place. As an example, the experiment in ref. [Ni87] used beam-foil M at an average
kinetic energy of 11.7 keV, which corresponds to an mean velocity of 0.34 cm/ns,
traveling over a flight path of 340 c¢m in an average of 980 ns. It was during this
time that an M — M conversion was allowed to take place. Because M produced
by the beam-foil interaction is not fully forward-directed [Ahn91}, this source of M
implied a small solid angle for detection of any M component [Ni87,Ni88a,Ni88b].
The developmenut of sources of thermal M [Bee86,Mil86] enabled the detection of
an admixture of M with a larger solid angle, since M at thermal energies moves
oniy about 1.5 ¢m during its average lifetime.

While the M formation fraction per incident u* from gaseous and solid targets
can exceed 50% [Sta74,Kie79], the beam-foil method has achieved yields up to 12%
[Ket90b] and the SiO; powder method has reached yields up to 11% [Woo88].
However, the benefits of having M in vacuum far outweigh the disadvantage of the
reduction in formation fraction.

Thus, observing the thermal M “cloud” downstream of an §i0, powder target
over its entire lifetime by looking at decay e and searching for any admixture of
Michel-distributed e~ promised a new way to search for an M — M mixing.

Since thermal M is detected by observing the decay et originating in the vac-
uum, two or more multiwire proportional chambers (MWPCs) are needed to re-
construct the decay origins of Michel e* through a thin vacuum window. If one is
to search for M in the same way, a dipole magnet is necessary to separate Michel
et from Michel e~ and further MWPCs are required to allow observation of the

direction of deflection and the curvature of the tracks in the field.
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The background for such a measurement will be dominated by knock-on elec-
trons, caused by Bhabha scattering of incident e* on the e in the materials in
the vacuum window, the space between the MWPCs (air or He bags), and the
MWPCs themselves. A simple estimate shows that it may be difficult to improve
significantly on the results of M — M searches to date in this way.

Assuming that the material present in the MWPCs gives us the typical knock-
on probability per decay e* (of energy above 30 MeV') of 107°, there would be
one background count per 10° observed M decays. According to Eq. 2.48, this
corresponds to background limiting beginning at G,,57 ~ 1 GF , and so would not
improve upon the best published limit [Hub90|. Given a high statistics measure-
ment of the background and a distribution representing the conversion signal, one
could carry out a maximum likelihood analysis to find any admixture of a conver-
sion in the data. This method would then not be limited directly by the number
of counts acquired, but rather by the statistics of the background determination.
Thorough understanding of the background distribution(s) is the central difficulty
in this approach, though one cannot a prior: rule out its viability.

A detection method for M is needed that is much less susceptible to background
and that would be convincing in the case of the observation of a conversion. A
signature containing more information characteristic of the M system than only
the decay e~ would meet this requirement. So the question is: What else about
M can be observed? The atomic e* ! An M atom disintegrates when the ™ in it
decays and one expects to find an atomic et with about 1 Ry of kinetic energy left
behind - an energy that should allow high efficiency detection (see Sec. 3.2.9).

The full detection signature for M is then chosen as the coincident observation
of the decay e~ with the atomic et . Detecting M atoms in the analogous way —
observing time coincident decay e* and atomic e~ - can serve as a calibration.

This idea was implemented recently at the Los Alamos Clinton P. Anderson
Meson Physics Facility (LAMPF). The objective of this experiment [Sch87] was to
observe thermal M from a Si0, powder target by detecting for the first time the
coincidence of the decay e* and the atomic e from M atom decays and to search

for any M admixture by looking for coincident decay e~ and atomic e. After the
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proposal was submitted and approved in 1987, a test run in 1988 demonstrated the
feasibility of the experimental method. During the final beam time of more than 800
hours in 1989, about two thirds of the time was required for testing and calibrating

the apparatus and the balance was spent searching for the M — M conversion.

3.2.2 The LAMPF Accelerator

The heart of LAMPF is a half-mile long, pulsed LINAC capable of accelerating pro-
tons (H ™), negative hydrogen ions (H ™), and polarized negative hydrogen ions (P7)
simultaneously to kinetic energies of up to 800 MeV at very high beam intensity.
A duoplasmatron source at the high-potential side of an 750 kV Cockroft-Walton
accelerator injects H* into an Alvarez drift-tube LINAC driven by 201 M Hz RF,
which boosts the energy up to 200 MeV . The final and longest stage of the machine
is the “side-coupled cavity” section, resonant at 805 M Hz, which accelerates the
beam up to an energy of 800 MeV. The H™ ions ar= produced by passing the H+
beam from a duoplasmatron source through a charge-transfer channel filled with
H, at low pressure. These ions are then accelerated during the reverse phase of
the RF cycle in the machine. Focusing of the beams between waveguide sections
and in drift regions is accomplished by quadrupole magnets. The beams then enter
the “switchyard” where they are distributed to the various experimental areas that
include a proton storage ring (PSR), pion channels (LEP, EPICS, P?), a neutron
scattering facility (LANSCE), a neutron time-of-flight spectrometer (NTOF), pro-
ton scattering spectrometers (HRS, MRS), a beam-stop neutrino area, and a muon
channel (SMC).

The macrostructure of the typical operating conditions of the LAMPF H* beam
are an average current of 1 mA at a duty factor of 6.4%, where beam bursts are
of 800 ps length and 80 Hz repetition rate. The macropulse of the beam has the

additional structure of 250 ps long bunches every 5 ns.

3.2.3 The Stopped Muon Channel

The LAMPF Stopped Muon Channel (SMC) (see Fig. 3.1) views the A2 target
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wheel in the main proton beam line at an angle of 65° to the proton beam. This
channel consists of 4 bending magnets for momentum selection and 21 quadrupole
magnets for focusing control. In addition, this experiment used a removable exten-
sion of 3 quadrupole doublets and a static-field beam separator to allow locating
the apparatus in a semi-permanent fashion, out of the way of other users of the
channel. v

The channel can accept and transport charged pions that are produced by the
interaction of protons with the 4 cm thick A2 graphite target, allow these pions to
decay in flight and deliver a muon beam at the channel ports [Tho79]. These muon

+

beams (p* or p7) are called “decay beams” and are highly polarized. The high
degree of polarization is a direct result of the full polarization of the muons from
pion decay. Since a small fraction of these decay muons moving into the acceptance
of the SMC are transported, the resulting beam has a well-defined polarization.
An alternative mode for the SMC is to accept muons from pion decays in the
pion “cloud” around the A2 target (“cloud beam”). These beams have rather low
polarization. Finally, the SMC can accept positive muons resulting from 7* decays
at rest near the surface of the A2 target (“surface beam”) [Pif76,Rei78], or even from
7" decaying within the A2 target (“subsurface beam”) [Bad85]. The surface and
subsurface u* beams are nearly 100% polarized. Because the nuclear capture rate
of m~ is large compared to the #~ — u~ 7, decay rate, the surface and subsurface
muon beams are possible only for u* . Since the 7* free decay lifetime is 26 ns, the
microstructure of the H* beam is washed out and the time-structure of u* beams
follows that of the macrostructure of the proton beam.

In this experiment, the channel was operated in the subsurface u™ mode at
about 20 MeV /c beam momentum. Because of the profusion of positrons due to u*
decays and pair production from the 4’s from 7" decays at the A2 target and due
to ™ decays in flight in the channel, the e* contamination in the beam would be
about [Bad85] e™/u* ~ 10 at 28 Mel'/c. Compared to the ™ subsurface rate, the
rate of e varies only slowly with the channel momentum, so we can estimate that

et /u* ~ 30 by scaling the muon rate, R,,, to 20 MeV/c using the relation [Pif76]

my £

R, oxp™e o, (3.1)
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where p is the momentum, ¢ is the length of the channel (about 40 m), and m,, and
7, are the muon mass and lifetime, respectively. The first factor arises from the
range-momentum dependence for muons in this momentum region [Tro66] and the
second is a correction due to the decays of u* in flight down the channel. Because
these et cause background in some of the detectors of this experiment, it is desirable
to remove them from the beam as well as possible. At subsurface momenta, the
in-channel degrader (0.3 mm CH,), that can otherwise be used to separate muons
from positrons in the beam by their different energy losses, must be kept out of the
beam, so as not to stop it. At 28 MeV/c, this method has been shown to reduce
the e* contamination by a factor of 10 with slight loss of u* rate [Bad85].

3.2.4 The Wien Filter Beam Separator

Instead, the subsurface u* beam in this experiment is freed of e* contamination
by passing it through a Wien filter - a section with mutually perpendicular, static
E and B fields, both transverse to the beam. The velocity selected by it may be

found by simply requiring the Lorentz force on the particles to vanish:

VX T, (3.2)

where the proportionality factor may differ from unity due to the slightly different
lengths and fringe behaviors of the electric and magnetic field. Another contribution
to this factor may arise if the centroid of the transverse positional distribution of
the beam were not properly positioned on the beam-line axis. Since the channel has
been tuned for a particular momentum and the separator acts as a velocity-filter,
it selects on particle mass, effectively on particle type. Thus, it is set to transmit
pt with negligible loss while reducing the e* fraction by a factor of ~ 10' [Bad83],
leaving a beam positron contamination of roughly e*/u* ~ 0.003.

The separator used has electric field plates of 152 cmn length and 20 cm width
spaced by a 10 ¢ gap and a magnet with effective field length of 146 cm. For this
experiment, the high voltage was around —50 kV (+50 kV') on the top (bottom)

plate leading to an electric field of 10 kV/em. A vacuum of ~ 1077 torr was
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maintained in the separator by a CTI-Cryogenics Cryo-Torr 8 cryopump to allow
these voltages to be held by the plates. The typical magnetic field was generated
by 166 A giving 144 G. As particular example, a tune at 20.5 MeV/c used E =
9.42 kV/cm and B = 144 G. In units of ¢, the ratio of these fields is # = 0.22,
whereas the nominal momentum value gives § = 0.19. The dis.crepancy is due in
part to the correction factor in Eq. 3.2 and in part due to an unknown calibration

error in relating the channel settings to the transborted central momentum.

3.2.5 Radioactive Gas in the SMC

The intense proton beam on the A2 target — heating the A2 target to about 400 K
at 650 uA4 — will produce a variety of short-lived isotopes that may diffuse from the
A2 location down the entire length of the SMC and give rise to background in the
detectors of experiments[Don83]. For proton currents exceeding 250 pA there is a
rapid onset of the production of these spallation products. The gaseous ones are
dominantly N and ®He with half-lives of 0.011 s and 0.805 s, respectively. With
such lifetimes, these isotopes can cover the ~ 40 m distance from the A2 target
to the experiment’s detectors unless countermeasures are taken. At subsurface
momenta, the 25 um Kapton gas barrier in the channel cannot be used, as it would
stop an appreciable fraction of the u* beam. Instead, a 1.5 um Mylar gas barrier
is placed just upstream of the beam separator. By itself, it can stop the "N, but
the ®*He would mostly pass through it. The important effect of this gas barrier is
to separate the vacuum region of the experimental apparatus, with a pressure of
< 107% torr, from the vacuum in the channel, which settled at ~ 1073 torr when
thus decoupled from the pumps on the separator and the apparatus. This rather
poor vacuum retarded the diffusion cf the gaseous spallation products so that most

of them decayed before reaching the experimental apparatus.
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3.2.6 The Muonium Formation Process

The formation of thermal M by stopping p* in a §10; powder target has become
a well-established technique [Bee86,Wo0088,Jan90|. In this experiment, the subsur-
face u* beam, which had a relative momentum width of about 10%, was partially
stopped in a Si0, powder target of 9 mg/cn? typical thickness. As the target
was always inclined at 50° to the horizontal, this thickness translates to about
12 ng/cm? projected along the beam axis. The stopping pu* could then capture an
e~ and diffuse from the powder grains into the vacuum region downstream of the
target. The M atoms thus produced have been shown to have thermal energies.
The fraction of u* forming M upon stopping in S10, powder has been measured
by the spin-rotation technique to be (61 + 3)% [Kie79]. Of the M atoms thus
produced, (97 + 1)% emerge from the silica grains into the surrounding vacuum
regions [Mar78|. This is determined by introducing a few torr of O, into the system
and observing that the M precession signal is almost entirely quenched. The reason
is the high cross-section for depolarizing spin-exchange collisions of M with O,,
which can, of course, only be taking place in the space between the powder grains.
Of the remaining (59 + 3)%, some M atoms will diffuse to the surface of the
powder 1a;.yer and escape into the vacuum region beyond the powder target. Marshall
has estimated this rate using a diffusion constant obtained by modeling the powder

as a uniform distribution of $§10, grains [Mar81]. This diffusion coefficient is [Jan90)

= Zor (2
b= v (2). 59

where v is the mean speed of the Al atoms, r is the radius of the spherical §:0,
grains, p = 2.2 g/cm?® is the bulk density of silica, and p’ = 0.032 g/cm” is the
density of the silica powder. For the fumed silica used [Cab88], the radius of the
particle grains may be estimated to be 7 nm, as determined from N, adsorption
measurements. For thermal M at ~ 300 K, one obtains D =~ 8 c¢cm?/s via v =
0.75 cm/ps.

The diffusion equation for this problem may be written as

dp -
= = DV'?p — 3.4
51 p—pP, (3.4)
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where p is the number density of M atoms in the powder and v is the muon decay

rate. This diffusion equation follows from Fick’s Law
j=-DVp

and the equation of continuity

(3.5)

(3.6)

where a “sink” term representing muon decay has been added on the right-hand

side compared to the sourceless continuity equation. It is possible to isolate the

muon decay time-dependence by the definition of a new variable 7, implicitly given

by
P(th) = V(F7t) e ! )

(3.7)

where the space- and time-dependence of both p and n has been explicitly indicated.

The density n can be interpreted as a number density which does not suffer an

effective sink from decay. With the concurrent substitution of

j= ke
one may write
o = -
5 +V.-k=0
and
k= ~-DVn

The normalization conditions on the Af number densities are

/n(f‘at)drir— = Nyt =0)

/p(r“,t)d"r~ = Ny(t=0)e",

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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where Ny/(t = 0) is the number of M atoms that have migrated from within the
powder grains to the surrounding empty space.

Though the problem does not have exact azimuthal symmetry because of the
angular placement of the target and the finite-sized, elliptical u* beam spot, we
will make the useful approximation that the z- and z-dependences in the density n

may be integrated out:
(1) = [ [n(Ft)dsdz (3.13)

where the y-direction is that perpendicular to the powder-vacuum interface surface.

Dropping the prime, the diffusion equation becomes

on _ 0n
ot b oy?

The boundary conditions relevant here are that the particle density vanish at the

(3.14)

powder-vacuum interface, as the escape of M into the vacuum acts like an infinite
sink, and also that the density vanish at the Al-mylar foil that holds the target pow-
der, assuming that the M atoms that hit this surface will be destroyed. What one
wishes to solve for is the current of A atoms passing through the powder-vacuum
surface. Such a solution would allow us to estimate the expected M formation
fraction, given a stopping distribution of u* | a diffusion constant, and the target
thickness.

Equation 3.14 may be solved either by a Fourier series in the position variable, y,
or by an initial-condition Green’s function method. In the first solution method, the
boundary conditions are intrinsically satisfied by the choice of expansion function,
whereas in the second approach one must make use of the method of images to
fulfill them. We let the holder foil-powder interface be located at y = 0 and the
powder-vacuum interface at y = a. Then we define the stopping distribution of u*

in the powder by S(y), where

/ S(y)dy = N,,. . (3.15)

Here, N+ is the total number of u* stopping in the target. This may be related to
the number of M atoms by

N.’\l = fjv;l+ (316)
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and
n(y,t =0) = fS(y), (3.17)
where f is the formation fraction of M that reaches the space between the powder
grains. From above, f = (59 £ 3)%.
The Fourier series solution is given by

n(y,t) = Z Cne ! sin (Tﬂ) , (3.18)

a

where
nm

A, = (7)2 D (3.19)

and the coefficients, C,, are to be determined by the distribution at ¢t = 0, i.e. the

stopping distribution, according to

c. = f/ sm( : ) dy . (3.20)

The solution may be checked by assuming a flat stopping distribution, calculating
the particle current j, at the powder-vacuum interface, integrating over all times,
and taking the limit ¥ — 0. The sum over Fourier terms may be carried out
using a Watson transform to convert the sum into a calculable contour integral. As
expected for this case, one finds that exactly half of the M atoms formed emerge
at the vacuum surface.

The full solution from the Green’s function approach, including the infinite num-

ber of images required to satisfy the boundary conditions, is

ply,t) = 2\/~—f/

« Z [ (y+2na-y' )2 /(1D1)

n=-—->x

_ e-(_.,*z,.ﬁy')?/(uu)} . (3.21)

The current of particles crossing the y = a surface is then given by

p 9

]y(y = a?t) = 6y|

y=n
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e—”l ns Idl
svepn !, S

x Yy [(na -y) e~ (na=y")"/(4DY)

n=1.,3,...
—(na+7y") e“("“*'y')?/("u')] . (3.22)
The total number of M atoms crossing this surface, integrated over all times, is
then
Neww = [ iy =a,t)dt . (3.23)
This integral is a little tricky, but with a wise change of variable and sectioning

of the integration region, it can be carried out. The result is a series that may be

easily summed to give

28—\/§a ? "o Y '
Yo = 1 [ styysinn (/L) ay' - (3.24)

This expression has also passed the check described above for the case of a flat

stopping distribution and a vanishing muon decay rate.
For reference, we give the solution for flat stopping distribution
N+

S(y) = for0<y<a
a

0 fory<0 or y>a. (3.25)

N, = fj—véf—\/_gtanh< %%) . (3.26)

The two methods are, of course, completely equivalent and related by a Watson

The result is

transform. The difference lies in varying computational convenience depending
upon the case being considered.
The estimate of the A formation fraction of thermal M in vacuum per p*

stopping in the powder can now be written down as

Nl'ar
fﬂ/.var N .

u

f|D ( 7‘1>
_ f D, 7e 3.27
2\ tanh D3) ( )
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where f gives the fraction of stopping pu* that capture an electron and escape from
the Si0; particles; the rest of the expression describes the efficiency of the diffusion
process in delivering M atoms to the surface of the powder, starting from an initially
flat position distribution.

Inserting f = 59% and D = 8 ¢cm?/s and assuming that the target thickness is
a = 3 mm gives fa;oc = 1.4%. Actually, an example of a measured M yield is 18%
per stopped ut [Woo88|. This result corresponds to a diffusion constant of about
1300 ¢cm?/s ! The reason for this very large discrepancy in the estimated and the
indirectly measured diffusion coefficients is presumed to be due to the structure of
the S:0; powder. Electron micrographs [Cab88] show that the powder particles are
not at all distributed uniformly. Rather, they tend to form chains with large spaces
between, drastically increasing the mean free path that a M atom experiences in
moving through this powder and leading to a much larger diffusion constant.

Once a M atom reaches the vacuum, it travels unimpeded until it decays. It is
during this travel time that a component of M could develop. The speed is assumed
to be Maxwell-Boltzmann distributed at the temperature of the powder, but the
directionality has been found to be more likely distributed according to cos 8, where
6 is the angle to the normal on the target surface [Woo088,Jan90|, than isotropically.
This is also what one might expect from a simple geometrical argument. To escape
from the powder into the vacuum, a M atom will have to pass through a “hole”
in the target surface. The probability of passing through this hole is proportional
to its projected area along the direction of motion of the atom. If the hole area
is 4, then the projected area seen by the M atom is 4 cos 8, where 8 is the angle
between the normal to the area element and the direction of incidence of the atom.
This gives rise to the cos 6 angular distribution of the M atoms escaping from the

powder into the vacuum region beyond it.

3.2.7 Experimental Details of A/ Formation

To maximize the production of A/, one must arrange the most favorable stopping
distribution of u* within the powder target. This has two aspects that are coupled.

First, the momentum of the incident 4% beam must be chosen roughly to maximize
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the fraction stopping in the powder. Secondly, since the formation of the M atoms
which diffuse into the vacuum takes place at the surface of the target and down
to a distance within it that is characterized by the diffusion length, the stopping
distribution should be as narrow as possible to maximize the number of pu* stopping
in this region of the powder. This requires a beam of narrow momentum spread. As
arranging this often comes at the expense of absolute rate from conventional muon
channels, a suitable compromise must be chosen.

In the case of this experiment, the tune for the SMC had a FWHM momenium
spread of about 10% while the full subsurface channel rate that was expected at the
momenta used was obtained. With fully open channel slits, this rate at 20 MeV/c
channel momentum was about 10 s~! (average) at 6.4% duty factor with about
800 uA in the primary proton beam.

This u* beam was counted by transmission through a NE104 plastic scintillator
of 150 um thickness mounted at 50° to the horizontal. Its projected thickness along
the beam axis was then 196 pum. This scintillator was viewed by two Amperex
XP2020 phototubes (5 ¢m diameter) mounted on light guides that acted also as
vacuum feed-throughs for the scintillation light. The deposition of approximately
600 keV in the scintillator for each incident u* gave several thousand scintillation
photons (~ 180 eV /photon). This allowed nearly 100% detection efficiency for the
p* , as long as the instantaneous rate in the beam was not so high as to cause pulse
pileup in the tubes. At the full channel rate this was the case, and the measure
taken was to lower the operating voltage on the tubes. This cured the pileup
problem, possibly at the expense of some of the detection efficiency. The reduction
in efficiency was not determined, as the absolute number of counts from the beam
scintillator was not needed in this case. Even if the efficiency was reduced, it served
well as a relative rate monitor to check the constancy of the beam rate and to guide
the tuning of the channel magnets for maximum u* rate.

The scintillator also acted as a degrader that worked in conjunction with the
powder target to slow the 4™ from initially about 1.9 MeV" of kinetic energy to a
stop in the powder. The balance of the energy was lost in the 6 um Al-mylar holder

foil of the target assembly and the approximately 3 mm thick powder layer placed
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on it.

The target powder was deposited on the 6 um Al-mylar foil, which was held
in a U-shaped frame with the open end toward the vacuum window and the spec-
trometer. The powders used were Cab-O-Sil grades M-5, EH5, and PTG [Cab88).
Before making a target, the powder containers were shaken to fluff up the powder
in case storage had caused it to collapse and compress. This sometimes gave a
surprising doubling of the volume of the powder. It was then sifted onto the target
foil through a fine mesh, taking care to distribute it evenly across the entire area
of the target. The reflectivity of the aluminized mylar holder foil helped judge the
uniformity of the powder layer. The target thickness was determined by weighing
the target frame before and after adding the powder layer to it and measuring the
area covered by powder. This area was 177.4 cm?. The powder portion of the
typical target weighed about 1.6 g and therefore had an area density of 9 mg/cm?.
This corresponds to a thickness of roughly 3 mm, since the density of the fumed
silica powder is 32 mg/cm®. As this procedure did not always produce targets of
equal thickness, the beam momentum had to be tuned for optimal M production
for each new target.

The pressure in the vacuum system was kept at < 107° torr by a 1000 /s Cryo-
Torr 7 cryopump (CTI-Cryogenics) placed below the target region, a 600 [/s Turbo-
Torr Model 3131 turbomolecular pump (Sargent-Welch) located just upstream of
the target chamber, and two Balzers turbopumps - TPU200 (200 {/s) and TPU330
(300 I/s) — evenly spaced on the downstream section of the apparatus. Good vac-
uum is necessary to ensure that M escaping the powder target is rot destroyed
by collisions with residual gas molecules. At pressures < 10~° torr, the mean free
path is estimated to be > 10* ¢m. The nature of the remaining gas in the vacuum
system was monitored by a residual gas analyzer (Leybold-Inficon). The greatest
impairment to M formation came from the adsorption of pump oil fragmerts on the
S510,. This was only a problem when the oil level on the roughing pumps (Sargent-
Welch) ran low, causing excessive backstreaming of pump oil vapors. The remedy
is refilling the pump oil to the required level and, necessarily, installing a fresh 510,

target.
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New targets were usually installed once every three or four days, as we did
observe a steady decline in the M fcrmation fraction over this time-scale, typically
by a factor of two in this interval. The reason for the decrease in M is not clear.
One possibility is contamination of the powder surface with hydrocarbon fragments
from the pump oil backstreaming. Another may be that the microstructure of the
powder is somehow affected by pumping out the adsorbed gases and water from
the large surface area it presents. Finally, simple mechanical settling of the powder
grains over time, assisted by the slight but unavoidable vibrations in the apparatus,
may have the effect of reducing the open volume in the powder layer and thus
diminishing the diffusion constant the M atoms experience. An observation which
may be related is that when old targets were removed and their powder shaken off
into the waste basket, the powder layer fell off in loosely connected flakes. This is
to be contrasted to an almost liquid behavior of the fresh powder used to cover a
new target. Due to scheduling constraints, it was not possible to study explicitly
the time dependence of the formation fraction and the effects that may be involved.

The velocity distribution of the A atoms in the vacuum folded with the decay
time dependence of the muon gives rise to a characteristic position distribution of
the points where the M atoms decay. Since the thermal velocity at 300 K is about
0.75 cm/pus for M, the major part of this position distribution is well-contained in
a region of only a few cm in size. This region may be completely viewed by an
arrangement of MWPCs that seeks to detect the e resulting from the M atom
decays. To facilitate the passage of decay e from this region into the MWPCs,
which will be described in the next section, a 15 cm diameter 100 um thick heat-

tempered A! vacuum window was installed on the side of the beam-line facing the

MWPCs.

3.2.8 The Decay Electron Spectrometer

Central to the experiment was the ability to detect the decay e* from M and p¥
decay as well as any decay e~ that might signify an M — M conversion. The

momentum distribution of these decay e* from u* disintegrations follow the well-
known Michel distribution [Mic50]

e .

This distribution rises monotonically up to
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52.8 MeV/c with very little of its area below 15 MeV/c. Averaging over final state
helicities, neglecting the electron mass, and evaluating at an observation angle of 90°

relative to the incident muon polarization, this distribution (see Fig. 3.2) becomes

M(e) = 2€* (3 — 2¢) (3.28)

where € is the decay e energy in units of half the muon mass:

2F.

2
m,c

€ =

<1. (3.29)

Thus, these e and e~ lend themselves well to high-efficiency detection in an
array of position sensitive multiwire proportional chambers (MWPCs). The position
sensitivity allows recognition of e tracks defined as a correlated set of hits in
these chambers and also enables tracing the trajectory back to find the position
distribution of the decay points. It is in this distribution that evidence for M
decays is sought.

Four MWPCs are placed on an axis (z) at a right angle to the beam-line with
their planes perpendicular to this axis, as shown in Fig. 3.3. The locations chosen
for the MWPCs along the z-axis were dictated by the requirement for maximum
solid angle subtended at the Si0, targei in the beam-line. Space was left only to
accommodate the read-out electronics for the chambers, the fixtures that held them
in place, and the magnet between the second and third MWPC.

The active areas of the first two chambers were 32 ¢m x 32 ¢m, covered by 160
wires spaced by 2 mm along both the z- and y-planes. The z-axis has been chosen
to lie along the projected plane of the §:70, target so that the y-direction is the
axis perpendicular to the target. Since the powder target was mounted at an angle
of about 50° to the horizontal, the MWPCs were also mounted with this rotation
angle. The reason for this will be explained when the trigger is discussed.

The third and fourth MWPCs were larger, having active areas of 89.6 ¢m x
32 c¢m, where the z-dimension is the first and the y-dimension the second. Each
of these MWPCs had 448 wires sensing the z-coordinate and 160 wires along the
y-dimension, all spaced by 2 mm. In addition, these chambers had a plane oriented

at 45° to the others with 416 wires, spaced by 2.02 mm. In the following, these
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Figure 3.3: Schematic of the apparatus used to search M — M . View is from
the top for the vacuum apparatus and at 50° to the vertical for the spectrometer
elements.
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planes will be referred to as the “u-planes.” The information from this plane is not
purely redundant, as it can help pair up the correlated z- and y-hits when there
are multiple hits in these chambers. It may also be used to restore a missing hit in

z or y, when one of these planes does not respond to a particle passing through it.

. The relations needed are

u(mm) = ——\—}—5 [z(mm) + y(mm)] + 846.1 mm

z(mm)

—4/2[(2.02) x u(wire no.) — 846.1 mm] — y(mm),  (3.30)

where u designates the 45° plane coordinate. The large MWPCs are schematically
shown in Fig. 3.4. A summary of MWPC dimension data is presented in Table 3.1.

All wires in the MWPCs were 20 um diameter gold-plated tungsten strung at a
tension of 50 g onto G10 epoxy-fiberglass frames. The guard wires at the edges of
the wire planes were thicker and mounted with higher tension in order to hold the
electrostatic force from the neighboring wires and to control sparking from this last
wire to the high-voltage planes of the MWPCs. See Tables 3.2 and 3.3 for a summary
of the sequence of windows, high-voltage planes, and wire planes constituting the
MWPCs and of the materials and thicknesses used for these.  To estimate the
effects of multiple scattering on the particle trajectories, the track fitting algorithm
will require the radiation lengths in these chambers, so these have been estimated
to be 7773 c¢m for the small MWPCs and 2215 ¢m for the large MWPCs, where
the chambers are thought of as homogeneous scattering media in this presentation.
The calculation actually added separately estimated contributions from each of the
layers in the chambers to then arrive at the results stated for the net effect due
to the entire MWPC. A final number to characterize the behavior of the MWPCs
is the average energy loss suffered by a 35 MeVl'/c e* passing through them. This
energy loss is about 30 keV for the small chambers and about 255 keV for the large
ones.

The gas mixture used for operation throughout was determined by minimizing
the idle current drawn by the MWPCs at the plateau voltage operating point while

maximizing the efficiency reached on this plateau. The gas used was a mixture of
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{i | MWPC1 | MWPC2 | MWPC3 | MWPC4 \

r;-dimension | 320 mm | 320 mm l 896 mm \ 896 mm J

[mo. of z-wires | 160 [ 160 | 448 | 448 |

ry-dirnension | 320 mm | 320 mm | 320 mm | 320 mm

| no. of y-wires | 160 160 | 160 | 160
u-dimension “ - \ - 840.44 mm | 840.44 mm
no. of u-wires u - \ - 416 416

vz-location H 326 mm l 493 mm \

1369 mm \ 1802 mmJ

Table 3.1: Overview of dimensions and lo
z-locations given are measured between t
beam-line axis.

cations of MWPCs in spectrometer. The
he center of the MWPC bodies and the

Thickmnesses of planes in small MWPCs \

(type of plane H material | thickness_!
|  window I mylar 13 um
| gap | MWPC gas 0.64 cm
i HV plane H Al-mylar 6.4 pm
| gap I MWPC gas 0.64 cm
rwire plane H Au/W wires, 2 mm spacing 20 pm
L— gap I MWPC gas | 0.64 cm |
| HV plane I Al-mylar | 6.4 pum
| gap I MWPC gas | 0.64 cm
{—wire plane H Au/W wires, 2 mm spacing l 20 pm
| gap | MWPC gas | 0.64 cm
| HV plane I Al-mylar | 6.4 pm |
l' gap I MWPC gas | 0.64 ch
\f window H mylar I 13 um }

Table 3.2: Material composition of small MWPCs.



Thicknesses of planes in large MWPCs

type of plane || material | thickness
window Al 8.9 um
mylar 76 um

gap MWPC gas 1.76 cm
HV plane Al 8.9 um
mylar 76 um

gap MWPC gas 0.48 cm
wire plane Au/W wires, 2 mm spacing | 20 um
gap MWPC gas 0.48 cm

. HV plane Al 8.9 um
mylar 76 um

gap MWPC gas 0.48 cm
HV plane Al 8.9 um
mylar 76 um

gap MWPC gas 0.48 cm
wire plane Au/W wires, 2 mm spacing | 20 um
gap MWPC gas 0.48 cm
HV plane Al 8.9 um
mylar 76 um

gap MWPC gas 0.48 cm
HV plane Al 8.9 um
mylar 76 um

gap MWPC gas 0.48 cm
wire plane Au/W wires, 2 mm spacing | 20 um
gap MWPC gas 0.48 cm
HV plane Al 8.9 um
mylar 76 um

gap MWPC gas 1.76 cm
window Al 8.9 um
mylar 76 um

Table 3.3: Material composition of large MWPCs.

61
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75% Ar, 25% isobutane (C,H,,), a trace (0.09%) of Freon 13B1 (C Br F;) and a
trace of 2-propanol (C3H; OH), which was added by bubbling the mixture of the
first three gases through a refrigerated flask of 2-propanol. The fractions of each gas
in the mixture were adjusted by pressure regulators followed by needle valves and
calibrated flow-meters before combining them in a ballast tank for mixing. From
this reservoir, the flow rates for the MWPCs were maintained at 100 cm®/min for
the large chambers and at 75 cm’/min for the small chambers by a passive gas-
metering system of needle-valves and flow-meters that measured the supplied and
returned gas flow. This allowed detection of any leaks in the MWPCs which might
admit air into them and degrade their performance. The overpressure of operating
gas in the chambers was about 1.8 torr above the ambient atmospheric pressure of
an average of 585 torr in Los Alamos (at an elevation of about 2100 m above sea-
level). In a test, the idle MWPCs held this overpressure without loss over a period of
at least several hours, so they were assumed to be leak-tight for their purpose. The
operating voltages were chosen to be —3700 V' for the small chambers, which had
a 0.64 ¢cm half-gap, and —2650 V for the larger ones, with a half-gap of 0.48 cm.
By “half-gap” one refers to the perpendicular distance from a plane of wires to
either of their neighboring HV planes. The idle currents at these conditions were
less than 10 nA for all planes. With the full beam rate present in the experimental
cave, these values rose to several hundred nA, with more current being drawn in the
chambers closer to the beam-line. Over the course of the experiment, all MWPC
planes maintained efficiencies for Michel et of around 95%. As an example, the
efficiency of the MWPC3X plane plotted against the run number in the experiment
is shown in Fig. 3.5.

A C-yoke dipole magnet with a 30 ¢ gap was placed between the second and
third MWPCs to deflect Michel et and e~ in opposite directions. The pole tips
were rectangular, 30 cm wide and 14 ¢m long with respect to the spectrometer axis,
and the field at the center of the gap was 522 G. Field clamps below and above the
gap on either side of the magnet sought to control the fringe fields. This magnet
was also mounted at the canonical 50° angle, so that the main component of the

field, B,, was responsible for deflecting the e* along the z-axis. The mapping of
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the field produced by this magnet in described in Sec. 4.1.

Two planes of plastic scintillator (NE104) were located behind MWPC4 at
z = 2020 mm and z = 2070 mm. Their dimensions were 991 mm along z and
356 mm along y, and so completely covered the acceptance of MWPC4. Each
plane was actually composed of three separate scintillators mounted adjacently, but
their signals were logically added to effectively make two large scintillator planes.
As MWPC signals, with rise-times of ~ 50 ns, are not well-suited for accurate
timing applications, these scintillator planes in coincidence provided a signal that
marked the time of passage of a particle through the spectrometer.

A large, cylindrical NalI(T) crystal (Hug72] placed behind the plastic scintilla-
tors served to measure the Michel e* energy when the spectrometer field was turned
off for calibration purposes and to provide a backup energy measurement to com-
pars to momentum information deduced from the track in the MWPCs. Also, it was
essential to the online analysis, since the thorough treatment of track information
was then not yet avallable. This crystal was 76 c¢cm in diameter and 51 cm deep.
Scintillation light from it was viewed by ten 5 in diameter phototubes (RCA8055).
The tube bases had passive gain-balancing potentiometers to adjust the voltage on
the first' few dynodes. These acted more as a timing adjustment than as a gain
adjustment, so the criterion used to set them was for time coincident signals when
the crystal was tested with the 4.4 Mel" 4’s from a PuBe source. This ensured
coherence of the signals from all 10 tubes when each responded partially to the
energy deposited by a Michel e*. When the analog signals from each of the tubes
were then added, the resulting pulse-height distribtion had a resolution of about
20% at the high-energy edge of the Michel distribution (53 MeV').

For data taken to tune the momentum of the beam to maximize the production
of M, the trigger used to cause a spectrometer track to be latched and read out
by the data acquisition system required MWPC planes 1X and 4X to respond in
addition to hits in all MWPC Y-planes and pulses in the scintillator planes (see
Fig. 3.6). This trigger was only useful when the incident p* rate was reduced, using
a variable slit aperture in the channel (“jaws”), to the order of 3 x 10' s~' (average)

to prevent excessive dead time in the data acquisition system.
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Figure 3.6: Trigger used for tuning momentum for optimal M production.
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When searching for the M — M conversion, the full channel rate of about
108 /s was admitted into the apparatus. Since the rate of decay e* from ordinary
pt and M decays into the spectrometer was then so high that triggering on each
one would have caused excessive dead time, a trigger with reduced acceptance for
et was developed. To accomplish this, the X-planes of all MWPCs were coarsely
segmented into 6 groups of 24 wires each (32 wires for the first and last segment)
for MWPCs 1 and 2 and into 10 groups of 40 wires each (64 wires for the first and
last segment) for MWPCs 3 and 4. This allowed preselection in the trigger logic for
tracks with e -like curvature in the field by combining signals from the appropriate
segment combinations in scores of coincidence gates. First, combinations of MWPC
1,2 and MWPC 3,4 segments were made in discrete logic gates. The resulting signals
were then used as inputs to two “matrix logic” units, which are nothing more than
a large array of coincidences between a set of horizontal and a set of vertical inputs
with the topology of a matrix. At each row/column pair, the specified coincidence
may be selected or deselected by a simple DIP-switch. This trigger, which will be
referred to as the “matrix trigger”, is then also the reason for tilting the MWPCs
and the C-magnet to the same angle as the target: to decouple the measurement of
the y-coordinate (used to determine the position of decay along the axis normal to
the target) from the z-coordinate, along which the e* were magnetically deflected.

This matrix trigger is summarized in Table 3.4, which gives the segment com-
binations used, and in Fig. 3.7, which shows the inclusion of the other logic signals
required. The segments in the X-planes are numbered from positive to negative z
as mXn, where m is the chamber number and n is the segment number on that
chamber. The matrix trigger accepts about 66% of the e~ and 1.1% of the e*

passing through the spectrometer. The determination of these acceptances will be

discussed in the next chapter.

3.2.9 Detection of the Atomic Positron

As the atomic et and e~ start out at rather low energies, their detection can be
arranged with modest static electric and magnetic fields. At the same time, care is

necessary to control the influence of stray magnetic fields from unrelated elements of
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Figure 3.7: Trigger used to search for M — M taking the full channel rate.
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Table 3.4: Matrix trigger segment combinations used to select for e~ and against

e’ in the spectrometer.



69

the apparatus, such as the C-magnet or the last quadrupole magnet of the channel.

+

In any case, the detection of these slow e* is simple in principle, but was non-trivial

to develop into a reliable method.
To estimate the energy of the atomic e remaining afier the decay of a M atom,

we start with the 1S spatial wavefunction of M in relative coordinates:

wls(ragvd)) = <;|¢15>
- 2 e "/ (3.31)

3
Tay

where a, is the Bohr radius for muonium. This wavefunction is then transformed

into momentum space by

Yis(F) = (Flbis)
— /d“fe-"ﬁ'r'/" $15(7) (3.32)
which may‘ be shown to give
8y/ma}

Yis(p) = [ (3.33)

()]

To derive the momentum distribution of the atomic e~ one then calculates the

overlap with momentum space plane waves

d’ﬁo(F) = (F|¢ﬁo>

- %eiﬁw‘, (3.34)
or
¢5(7) = (Flos)
_ (@nh)’ 59 (5— 50) (3.35)

VvV
where V is a normalization volume for the wave function. It will later cancel out.
The overlap 1s then

(b3 ¥15)

1

\/?:IL'IS(}:;U) .

D(pv)

(3.36)
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This is an example of the sudden approzimation and is thought to be quite ap-
plicable to this case, where the pt that was at the center of the M atom quite
suddenly disappears. To obtain a probability distribution from the overlap, D(p'),

we calculate

Pp)pdp = [ 42 D)
1 25672alp® dp

G

where the integral over any angular dependence (the raw distribution is isotropic!)

(3.37)

has been taken, leaving a distribution purely in the magnitude of the momentum.

This distribution may be translated into an energy distribution according to

P(E)dE = P(p)p’dp , (3.38)

which results in 1 956n2d" S
'p(E) _ {; T aUme zm,i -, (3.39)

[1 + (14 2e) ﬁ]

where the non-relativistic relation between energy and momentum has been assumed
and R, is the Rydberg constant for infinite nuclear mass. This distribution is very

interesting. It has a peak at

1 R
EU = -

(14 2e)
~ 1.9V, (3.40)

but has an expectation value of

[ EP(E)dE
=P (E)dE
R

my

= 7 En
= 13.5¢eV, (3.41)

(E)
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as might be expected. A plot of the normalized distribution

P sy(1rm) E () e

(3.42)

is shown in Fig. 3.8.

The atomic et

, thus distributed in energy and distributed in space as the M
atoms would be, must be extracted with maximum efficiency. This is accomplished
by an arrangement of electrodes that collect, focus, and accelerate these et up to
a kinetic energy of 5.7 keV. A vertical section through this structure is shown in
Fig. 3.9. For orientation, the beam counter and target are included. After being
thus accelerated, the et would further be transported and focused by a series of coils
wrapped axially onto the beam pipe, deflected by 60° in an iron-free dipole magnet,
and finally focused by a solenoid onto a 75 mm diameter chevron-pair microchannel
plate detector (MCP).

The geometry for the 11 electrodes was designed by running Monte Carlo sim-
ulations of the transport of electrons through the electric field imposed by various
choices of potentials on several possible electrode arrangements. The basic spirit of
the design was to find the optimum geometry for a three-stage device: collection,
shaping and acceleration. The best results for the collection efficiency of the atomic
et from the point of M decay to the exit grid of the electrode structure were around
60%.

The further magnetic transport was simulated to give a maximum overall ge-
ometrical acceptance of the atomic e* detection of 35%. The actual acceptance
measured in the experiment included the detection efficiency of the MCP as a fac-
tor. Direct verification of the simulated results of low-energy e* transport is not
possible, as the literature gives widely scattered values for the MCP efficiency for e*
at a few keV of kinetic energy. Determination of the experimental acceptance gives
about 16% and will be discussed in the next chapter. One may suggest, however,
that a detection efficiency for the MCP of the order of 50% is not unreasonable.
Stray magnetic fields in the apparatus, mainly from the C-magnet, are not included

in the simulation, however, so there is freedom for the actual transport efficiency to



Probability

.08

.06

04

02

.00

I l |

O

10 20 30 40 50
Energy (eV)

72

Figure 3.8: Energy distribution of the atomic e* (e~ ) after the decay of p~ (u* )

in M (M).
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Figure 3.9: Vertical section through the electrode structure for extraction of the
atomic e* of M decay or, when polarity-reversed, of the atomic e~ from M decay.
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lie below the calculated 35% if the MCP efficiency is larger than 50%.

The first stage of the electrode structure was to collect as many of the widely
distributed atomic e as possible toward the second stage, while trying to compress
their transverse spread. The voltage drop from the target to the vertical wire grid
plane delimiting this region was from —5.7 kV to —3.2 kV over an average of 10 cm
(the distance from the center of the target to the first grid). The next stage, of
20 c¢m length, served as a shaping region in which the potentials applied from the
sides controlled the transverse envelope of the distribution of et and only 900 V'
were dropped in this region. The final stage was only 3 ¢m long, but the potential
falls from 2.3 kV on the second grid to ground at the exit grid, and the purpose of
this region was the final acceleration of the e* to the kinetic energy of 5.7 kV. The
transverse geometry of this small accelerator was square with interior dimensions
of 15.3 cm.

The structure was made up of rectangular pieces of Cu-clad G10, where the
Cu coating had been milled off over a margin at the edges to separate the conduc-
tive surfaces of neighboring electrodes. The in-line grids were strung with 20 um
Au-plated W wires at 2 mm spacing, giving a 99% transmissivity per grid. The
potentials on the various electrodes were under computer control via a CAMAC
LeCroy 2132 interface to the LeCroy 4032A programmable high-voltage supply bin.
The target was maintained at 5.7 kV, where a 12 line-per-inch electroformed mesh
placed on the surface of the Si0, target served to define the potential on this
otherwise insulating surface.

The magnetic elements of the transport system included steering coils with axes
perpendicular to the beam-line placed around the M production region and axial
focusing coils at three points after the exit grid of the accelerator. These were
capable of producing fields up to typically 10 —20 G. The bending magnet consisted
of wedge-shaped windings mounted in a non-magnetic Al frame and were operated
at about 16 A, which gave a vertical field of about 15 G at its center, bending the
et by 60° in the direction of the solenoid. The absence of a yoke gave large fringe
fields whose effects were compensated by two of the focusing coils, placed before

and after the bender. The aperture presented by the vacuum pipe in this region



| gap MWPC gas 1.76 cm |
i window Al 8.9 um
1 mylar 76 um

Table 3.3: Material composition of large MWPCs.

75

was rectangular, 20 cm wide and 15 ¢m high. The last element was a 117 cm long,
30 cm diameter yoke-less solenoid that generated an axial field of 11 G with 2.22 4
in the windings (462 turns/m). The fringe fields were shortened by wrapping two
layers of 0.1 mm thick, 38 em wide CONETIC shielding foil around the ends of this
solenoid. The shortened fringe field at its exit had the effect of focusing slow e*
onto the MCP, placed about 25 ¢cm downstream of the last turn. Figure 3.10 shows
the longitudinal field of this solenoid as a function of position along the solenoid
axis.

With beam in the apparatus, we only had atomic e~ available for testing this
transport system. It was with atomic e~ that the overall acceptance was measured,
with polarities of all elements reversed from those used for detecting e* . But, in

order to verify that the system was capable of transporting slow e* , a source of

* was constructed.

slow e

The e* from a sealed, in-vacuum ?? Na 3% source of about 3 mCi, placed above
the location of the target, were directed onto a “Venetian blind” arangement of W
foil strips, mounted in a frame located in the same target holder that was used for
the 510, targets. The effect utilized is the reemission of a fraction of these et at
energies on the order of an eV [Che85,Ver83,Can82,Lyn80,Dal80,Lyn77].

For best e* reemission efficiency with reasonable effort, the 25 um thick and
5 mm wide W {foils were cleaned by degreasing in a Freon ultrasound bath for 15
minutes, then etching in a 1:1:1 mixture of 30% H,0,, 1-molar NaOH, and 1-molar
NH,OH for about 10 minutes, and finally thorough rinsing in distilled H,O. After
thus removing impurities from the surface of the foils — which showed a matte finish
after this procedure - they were annealed at 2100°C for two hours in a vacuum of
better than 107° torr. The effect of this heat treatment is to enlarge the single-
crystal regions (“grains”) of the polycrystalline foil from sizes of less than 1 pum to
as large as 20 um, as verified by photomicrographs.

Large e reemission yields (107%) are seen with thin (100 pm) single-crystal
W foil moderators, but require UHV conditions to ensure surface cleanliness. For
our purposes, the grain-enlarged polycrystalline W served quite well, as the vac-

uum conditions were not better than 10~7 torr. Though it was not measured, the
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Figure 3.10: Axial Field of solenoid used for transport and focusing of slow e* onto
the MCP. The effect of field clamps at the ends is apparent.
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backward reemission yield for our foils was likely on the order of 10~° per incident
et.

After much adjustment of the electrostatic and magnetic elements of the trans-
port system, a fully tunable rate of 300 s™! of e* was successfully transported from
the W {oil source to the MCP. Most importantly, the tune developed for the sys-
tem also transported secondary e~ optimally when the polarities of all voltages and
currents were simply reversed. The secondary e~ are due to the impact of primary
et from the source on the W foils.

As the tuning curves of the slow e for all elements of the transport system
agreed with those for e™ ., the conclusion drawn was that any atomic et left after
M decay would be transported with the same efficiency as that which may be

measured by the detection of the atomic e~ of M.

3.2.10 The Data Acquisition System

Data in this experiment were recorded through a CAMAC interface by a VAXSta-
tion II/GPX mini-computer equipped with 5 MB of memory, two disk drives (71
MB and 120 MB), and two Kennedy 9100 9-track tape drives. The online software
was based on the LAMPF-standard “Q-system” [Shl74], with extensions specifc to
this experiment. The capabilities included:

e Cumulating counts of detector singles rates and coincidence signals in the

trigger logic to offer rate information used to monitor the performance of the

apparatus.

e Controlling the voltages applied to the electrode structure that accelerates

-
slow e=.

o Offering histograms of the wires struck in the MWPCs and the projected
decay origins obtained from these, of the time-of-flight (TOF) betwe=n tracks
in the specirometer and the MCP, and of the pulse-height distribution in the
Nal(T!) crystal. Also, histograms with some simple cuts were available for

focusing on the effects needed to tune beam momentum and slow e* collection.
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e Sampling individual events from the data stream and displaying their at-

tributes, including the spectrometer hits, TOF value, and the NaI(T!) pulse
height in a diagram of the apparatus.

e Reading the wires struck in the MWPCs upon receipt of the appropriate
trigger. The trigger also caused the readout of the TOF and the NaI(TI)
pulse-height correlated with the triggering MWPC track. This trigger will be

discussed in more detail below.

The principal triggers used were presented in the previous section, however with-
out reference to the details of ensuing response of the data acquisition system that
must read out the information in the MWPCs. Each wire on every chamber plane is
equipped with a preamplifier, discriminator, and a monostable multivibrator (“one-
shot”) that is triggered by a threshold-crossing pulse on the wire. The one-shots
held a logic-true level after such a triggering for ~ 50 ns. These signals were also
promptly available for other trigger logic uses and were nothing more than the
direct outputs from the wire segments discussed above (“segment FAST-ORs").
Additional one-shots (“MONO-OR") in the chamber plane control electronics held
true levels for ~ 400 ns after any wire in that plane was hit. During this time a
trigger decision was made in external logic.

Thus, to decide whether or not to read out the wires struck in the MWPCs
for a given particle passage through the chambers, the FAST-OR outputs were
used together with pulses in the plastic scintillator planes to decide whether or not
the event was worth recording. For the MWPC trigger, this simply meant that
something must have passed through all chambers. In the case of the MATRIX
trigger, the additional requirement was for a magnetic deflection in the direction
consistent with negative charge on the particle, as discussed above. The resulting
trigger signal was provided to the chamber plane controller electronics at the trailing
edge of the MONO-OR to cause the present wire hits to go into an indefinite holding
state. No further wire hits could be recorded until the present event data had
been read out. The trigger signal also started the chamber readout handshaking
between the chamber plane controllers and the word buffers in the CAMAC crate
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and set an external latch indicating a busy state of the MWPC readout. This busy
signal disabled any further triggers until it was reset. After the last bit of MWPC
information was sent to the CAMAC crate (in a serial, bi-phase code) and the TDC
(TOF) and ADC (Nal(T!)) were read, a signal indicating this completion cleared
the busy latch, the chamber plane latches, and the CAMAC word buffers for the

next event.

3.2.11 Summary of Online Data Taking

The data stream from the CAMAC crate was buffered in a Bi-Ra Systems Micropro-
grammable Branch Driver (MBD), which then dumped its data to the MicroVAX
when time was available. From there, the event data was both taped directly and
partially processed for online presentation. The online analysis guided progress

through different steps in the calibration and data taking:

1. Tuning the beam momentum on a new target for optimum M production
per incident u* . The number of spectrometer tracks originating from the
vacuum region downstream of the powder target normalized to the counts
in the beam scintillator was used to judge the rate of M formation. To
somewhat suppress the effects of multiple scattering on the reconstruction,
a cut on the pulse height in the NalI(T!) crystal eliminated all events with
less than 25 MeV energy. The mean-square scattering deflectior diminishes
with increasing energy. The requirement that the trajectory passed through
the vacuum window was also imposed, to eliminate any decay et that scatter
heavily in passing through the thicker walls of the vacuum chamber or the

flange holding the thin window.

2. To determine the absolute acceptance of the spectrometer, the incidert beam
momentum was lowered until the reconstruction showed that all of the incident
pt were stopping in the beam scintillator. It was then concluded that none
were passing through the scintillator and target. In other words, all of the
incident p* counted by the beam scintillator were stopped within the field of

view of the spectrometer. Thus, the total number of tracks seen in it divided
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by the number of beam scintillator counts gives the measured spectrometer

acceptance.

3. The acceptance for detecting atomic e* was found by comparing the number
of M counts in the reconstruction of the decay origin as used for momentum
tuning to the same histogram with the additional requirement that there be
a TOF count in the time window placed around the observed peak. The
ratio of the latter to the former is a direct measure of the TOF acceptance if
the background in the TOF distribution is small compared to the number of

correlated counts.

4, It was necessary in the deduction of the result for the conversion probability
per atom to know the acceptance of the MATRIX trigger relative to the
MWPC trigger for both e* and e~ . To cause the copious et to act as
e~ in the spectrometer, the field in the C-magnet was reversed in polarity.
Since the magnet was operated far below saturation of the yoke, a completely
reversed field was obtained by simply changing the direction of the current

and maintaining the magnitude of the shunt reading.

The most important point to make about procedure is that the polarities of the
C-magnet, of the voltages on all acceleration electrodes for the slow e*, and of all
magnets in their further transport to the MCP were always reversed together when
switching from tuning of M production and measurement of atomic e* acceptance
(in which the important tracks in the spectrometer are those of the Michel e* )
to the conditions in which evidence for M was sought (where e~ tracks in the
spectrometer were of interest). This was to ensure that the atomic et from M
decays would be detected with the same efficiency as that with which the atomic
e~ from M decays were seen. Any fringe field effects from the C-magnet on the
transport of the atomic e* then always contributed with the same polarity. Also,
any small transverse misplacements of the MWPCs in the spectrometer, which
would render the acceptance for e* and e~ different for a given C-magnet polarity,
did not have an effect when the polarity of the C-magnet was always adjusted to

give the same direction of deflection for the tracks of interest.
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T . .
he next chapter presents in detail the data taken for each of the point
oints enu-

m .
erated above and describes how the relevant information was extracted



Chapter 4
Data and Analysis

Though this experiment is simple in principle, extracting a result for the conversion
probability per atom for M — M proved to be rather involved. In this chapter,
I will describe in detail what data were taken to establish the acceptances of the
detectors, to verify the production of thermal M, to calibrate the acceptance ¢f the
M signature and measure the background to it, and to search for the M — M
conversion.

All stages of the data analysis depended on the development of an effective algo-
rithm to fit the particle tracks through the spectrometer MWPCs. For the alignment
corrections to the coordinates of the MWPC hits, the tracks were measured with
the spectrometer magnet shut off and thus fit to straight lines. During further data
taking, the spectrometer field was maintained at a constant level suitable for the
separation of Michel distributed decay e* from decay e~ with simultaneous broad-
range momentum acceptance. Tracks recorded during this phase of the experiment
were fit to a track model based upon the measured field-map of the spectrometer
magnet and a fourth-order Runge-Kutta forward integration of the equations of
motion of a charged particle in this field. This algorithm was used to identify decay
et tracks from the M atom decays as well as to search for decay e~ tracks from M

atom decays.

The final presentation of the data sample in which evidence of M decays was
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sought is a one-dimensional position histogram displaying the origin of a spectrome-
ter track as projected onto an axis perpendicular to the powder target at its center.
In this histogram, one identifies decays of u* from the beam-counter and the pow-
der target and M decays from the target and the vacuum region downstream of it.
In the event of a non-zero M — M conversion coupling, one would also expect to
see decays of M atoms in the vacuum. A maximum likelihood fit was developed to

obtain the contribution of each of these processes to these data.

4.1 Fieid Map of the Spectrometer Magnet

Critical to this experiment is the ability to discriminate between tracks of posi-
tively and negatively charged particles observed in the spectrometer. Placing a
dipole magnetic field between the second and third of four MWPCs is the “classi-
cal” arrangement for a spectrometer in rectangular coordinates. It allows for the
determination of the particle charge by simply comparing the incident and out-
going asymptotic directions of its trajectory and for the reccnstruction of a two-
dimensional projection of the origin of the particle track. With more effort, one may
estimate the probability that a given set of hits in the MWPCs represents a track
due to the passage of a single particle. This means one must fit the observed MWPC
hits to a model of a single particle track, a procedure that yields the momentum
of the particle as one of the determining parameters. Clearly, reliable knowledge of

the field of the spectrometer magnet is central to an accurate track model.

4.1.1 Field Map Data

The three Cartesian components of the magnetic field of the C-yoke dipole magnet
were mapped on a rectilinear grid of 17 x 10 x 81 position points (see Fig. 4.1). There
were 17 points with 2.54 ¢cm spacing along the z-axis (the direction along which the
deflection of the charged particles is expected), 10 points with 2.54 ¢m spacing along
the y-axis (the direction between the pole pieces of the magnet), and 81 points with

1.27 e¢m spacing along the z-axis (the axis of the spectrometer). Under the control
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Figure 4.1: Spectrometer C-magnet with mapping coordinate system.
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of a MicroVAX II computer, a Kinetic Systems CAMAC interface, and three Bausch
& Lomb servo drives with 0.0025 cm position resolution, three Group-3 Hall probes
were moved over this three-dimensional grid, sampling each field component with
an absolute measurement error of less than 0.5 G at each of the 13770 grid points.
A current-regulated power supply maintained a constant 200.00 A in the magnet
throughout this 1-week procedure. To verify the actual current in the magnet at
the time of measurement at each grid point, the voltage drop across a precision
shunt (100 mV/1500 A, 0.25%) was recorded through CAMAC together with the
position readout and the three field components.

To correct for various experimental idiosyncrasies, like left-handed coordinate
systems and different coordinate systems chosen for the position grid and the field
componénts, and to inspect the quality of the data, a replay system for the raw field
map data was developed. Its capabilities include the graphical presentation of any
field component as a function of one or two position coordinates, the ability to list
any subset of the raw or interpolated field map data, and the possibility to check
Maxwell’s equations around any interior grid point in the map. Figure 4.2 shows
the y-component of the field as a function of the z- and z-position with respect to
the center-gap point. This field component is chiefly responsible for the magnetic
deflection of charged particles in the spectrometer. Its value is 522 G at the center
of the magnet gap. The behavior of the components B, and B, is shown in Figs. 4.3
and 4.4.

4.1.2 Taylor Expansion of the Magnetic Field

It is apparent from Fig. 4.2 that we cannot assume the field to be constant in any
relevant region, so no simplifying assumptions regarding its shape can be made.
Since the track model that is fit to observed particle tracks in the spectrometer
relies on the ability to retrieve the value of all field components at any spatial point
within the boundaries of the mapping region, it is necessary to determine the field
accurately between the actual points where it was recorded. To accomplish this,
one may, for example, fit a functional form motivated by the boundary conditions to

the measured field data. This was judged to be an unnecessarily complex approach.
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Figure 4.2: Spectrometer magnet field component B, as a function of z- and
z-position relative to the center-gap point in the mid-plane. (B, = 522 G at the
center of the gap.)
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Figure 4.3: Spectrometer magnet field component B, as a function of z- and

z-position relative to the center-gap point in the mid-plane. (The magnitude of
B; is < 1.7 G in this plane.)
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Fitting an ad hoc empirical choice of function was deemed hopeless if the range of
validity was to be the entire mapping grid. Rather, the most attractive choice is
the local expansion of the magnetic field in a second order Taylor series for each
field component about each grid point of the map.

Appendix C details the derivation of the formulae involved in the expansion of
each field component in a second-order Taylor series in the three spatial coordinates
around each point in the field map. The field map data at the central point of the
expansion and at all nearest and several next-nearest neighbor points in the grid is
used to determine the expansion coefficients. Since the magnetic field must obey
Maxwell’s equations, one finds constraints relating the parameters of the Taylor
expansion. But, as the field map components all suffer from a measurement error of
about 0.5 G and are not all simultaneously large enough to keep the relative errors
negligible, small deviations from Maxwell’s equations were found. Another source
of error in the field map data may be slight nonorthogonalities in the positioning
of the Hall probes. This is not evident from the field data, however, as the largest
component, B,, does not appear to mix in to the other two components near the
center gap point of the magnet, where such an effect would be expected to be largest.
One might devise a method by which the field measurements may be corrected in
a globally consistent and convergent fashion to accord to Maxwell's equations. The
particles of interest in the spectrometer are the Michel-distributed e* and e™ at
several tens of MeV/c. Since the small fields and the fluctuations in their measured
values that cause the discrepancies with Maxwell’s equations lead only to negligible
deflections of these particles, this correction was not attempted.

Rather, the full complement of 30 expansion coefficients for each field component
around a given field map grid point was retained. The field at any space point is then
obtainable from the three-dimensional second-order Taylor series in the coordinates
using the expansion coeficients calculated for the grid point nearest to this point.
This amounts to a parabolic interpolation in the space coordinates. One might like
to be able to eztrapolate beyond the limits of the field map, say, further toward the
pole pieces than the closest grid points. Since the magnetic field at the pole piece

surfaces and edges and near the field clamp edges is expected to vary strongly with



90

position, such an extrapolation is probably invalid. Therefore, this is not permitted
and the edges of the field map constitute an effective limit on the “aperture” of the

spectrometer in the y-direction.

4.2 Fitting the Spectrometer Tracks

With a complete and reliable field map, one is prepared to construct a model of
the tracks observed in the spectrometer. It is this model that constitutes the “fit
function” that is used to extract the determining parameters for a measured track
via an appropriate fit algorithm.

Before attempting to fit a track, however, it is prudent to carry out some simple
tests on the MWPC hits that are purported to be due to a single particle. These
checks will intercept events with MWPC hits that under no reasonable circum-
stances can constitute a track due to the passage of a single particle. Such events
may then be skipped without expending much computing time, after which one
would only find that the x? for this “track” is very large. These simple pattern

recognition criteria are:

1. The event may have no more than one missing hit in the z-dimension and
no more than one missing hit in the y-dimension. This is to ensure sufficient
degrees of freedom so the track fit does not become under-constrained. A
certain amount of recovery is possible, so in the event of up to one missing hit
in either dimension, this is attempted. For the small MWPCs (1 and 2) this
is accomplished by assuming a virtual point on the track to lie in the center
of the vacuum window and extrapolating to the plane(s) for which a missing
hit is to be recovered. For the large MWPCs (3 and 4), the u-planes are used
to restore a missing z- or y-hit for a given chamber (but not both!) and to

ensure that the z, y hit pair is consistent with the u-hit.

2. If the product of the hit multiplicity per plane over all chamber planes is
larger than 2, the event is deemed too complex to analyze and is discarded.

This means that if there are more than 2 possible combinations of hits to
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characterize a track the event is skipped.

3. The straight-line projection in the yz-plane from y-hits in MWPCs 1 and 2

onto MWPC3 must lie somewhere on the active y-area of this chamber.

4. Similarly, the straight-line projection in the yz-plane from the y-hits in MW-
PCs 3 and 4 onto the z-location of MWPC2 must give a y-coordinate that

lies on the active area of this chamber.

5. The straight-line asymptotes in the zz-plane of the track before and after the
maguetic field region must cross in this field region when projected toward
the center of the magnet. The asymptote before the magnet is approximated
by assuming a line through the z-hits in MWPCs 1 and 2 and that after the
field by placing a line through the z-hits in MWPCs 3 and 4.

For up to two possible combinations of chamber hits, the above criteria are tested.
If neither passes them all, the entire event is skipped. If one passes, then it is
delivered to the fitting routine. If both pass, then both are fitted and the better
result (the fit with the smaller value of x?) is chosen for the track.

4.2.1 The Track Model

Any track in the spectrometer will be fully specified by five parameters: the momen-
tum, the initial z- and y-positions, and the initial direction cosines along the z- and
y-axes. It is possible, under certain circumstances, to develop analytic expressions
that take the positional hits in the MWPCs as arguments and give as a result, for
example, the momentum of the particle that produced the track [Win74]. These
methods use the track model to “train” the parameters of the analytic expressions
toward the best values for the most general validity. Because for such simulated
tracks the determining parameters are known, the coefficients in the expressions for
them may be found. This approach was attempted for our spectrometer without
success. The reason appears to be that the phase space acceptance of the spec-

trometer is too large to be described by any tractable analytic expression or series



92

expansion. This conclusion is indicated after having obtained a successful expres-
sion for the track momentum in terms of the MWPC hits when a restricted phase
space of incident particles was assumed. All attempts to generalize this to the full
acceptance of the spectrometer failed. The trouble ought not to be due to the in-
homogeneous magnetic field in the spectrometer, as dealing with this complication
is claimcd to be the design objective of the method [Lec69).

The track model for this experiment is based directly on the equations of mo-
tion for a charged particle in a magnetic field. These equations are numerically
solved by a 4th order Runge-Kutta method which uses the interpolated field map
information described in the previous section. Details of this algorithm are pre-
sented in Appendix D. The model was tested by applying it to the transport of
electrons through a uniform field region, for which the motion may be analytically
determined. The step parameter in the Runge-Kutta integration was adjusted to
the largest value that still gave positional agreement with the analytically obtained

track to better than 0.1 mm over its entire length.

4.2.2 Least-Squares Algorithm

Armed with a working track model, a suitable algorithm must be chosen that yields
the desired track parameters for a given event in the spectrometer. Assuming that
the measurement errors of the MWPC hits are Gaussian distributed, one is led to
adopt a suitably defined x? as the estimator of track quality. The strategy, then, is
to estimate the track parameters for a given event, optimize these parameter values
using a least-squares minimization algorithm, and conclude that the parameter
values at this optimum are the best possible characterization of the particle track
for this event.

The actual measurements of ¢ and y in MWPC1 were used to estimate the
starting point of the particle. Since the field of the C-magnet between MWPC1
and MWPC2 was about 15 G on average and only insignificant deflection of the

particle is expected in this region, a straight line between the hits in these chambers
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was used to give the initial guess at the z- and y-direction cosines of its track:

(z2 —z1)
c; = 4.1
\/(5'32—21)2+(y2—y1)2+(22*21)2 (1)
(yz—yx)

Y

\/("32 — o)+ (v —y1) + (- 2)

The third direction cosine, c,, is, of course, fixed by the condition
ci+ci+el=1. (4.2)

To determine the charge of the particle, the in- and out-going directions at
the field region are coinpared. The charge is simply the sign of the difference
of the z-direction cosines before and after the field region. There is no danger of
charge misidentification since the decay e* at the top edge of the Michel distribution
(52.83 MeV/c) will still be separated by about 10 cm at MWPC3 and about 18 cm
at MWPC4. Multiple scattering by a total of about 4° in the direction opposite
that of its magnetic deflection for a Michel e is necessary for it to appear to have
negative charge. Futhermore, this scattering deflection must occur mostly in a
region on the trajectory that would feign the magnetic deflection of an electron.
Comparing this to the approximate r.m.s. multiple scattering angle of the order
of 0.4° for the portion of the spectrometer with non-neghgible magnetic field, one
concludes that this is a very improbable event which will be characterized by larger
than average x? if it is even successfully fitted.

Estimating the momentum for the track from the measured hits is a little more
difficult. The calculation is detailed in Sec. E.1 in the context of obtaining a mo-
mentum estimate at which to evaluate the weight matrix to be used in the fit to a
given track. This approximate momentum is also the one used as the initial guess
to the momentum parameter in the track fit. It is given by

Az? + Az?
Pest = € Beyy 2(Azsing, — Az cos ) ’

(4.3)

where Az is the cffective length of the field of the magnet, B, is the approximate
field integral along the trajectory divided by Az, Az is the magnetic deflection of

L 1f
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the track over the field length, and ¢, is the incident z-direction cosine of the track

onto the field region. The effective field, B.s;, was estimated by calculating

1
Bers = %= / B,d: (4.4)

at ¢ and y chosen as the averages between the transverse coordinates of the point of
entry into and the point of exit from the field region. Figure 4.5 gives the geometrical
details for the momentum estimate.

Thus, given initial values for all track parameters, the least-squares algorithm
described in Sec. E.4 is iterated to convergence. In brief, the x? for a given track
is expanded to second order in the determining parameters. This effectively fits a
paraboloid surface to the local dependence of x? on the parameters. The minimum
of this surface gives improved parameter values for this event. As there may be
deviations from parabolic dependence in the parameters, the procedure is repeated,
taking the minimum of the previous step as the starting point for the next, until x2
changes by less than 10% from one iteration to the next. The parameter values thus
obtained are considered to be the fit results for this track. It may seem that the 10%
convergence margin is rather sloppy, but the fitting of some data with a 1% upper
limit on the change in x? to define convergence gave nearly identical results. This
is borne out by the observation that the great majority of track fits require only a
single iteration of the least-squares algorithm to converge under either condition.
The reason for this is, of course, that the dependence of x? on each parameter
accurately follows a parabola in a domain including the initial estimate as well as
the minimum for almost all measured tracks. In addition, the correlations between
the parameters in the region near the x? minimum are negligible.

In evaluating the x? the correlations between the MWPC hits can, however,
not be ignored. To see this, one may imagine that a particle passing through the
chambers scatters between MWPCs 1 and 2. As a result, the deviations of this
particle from an ideal, unscattered track at each of the subsequent MWPCs are
correlated — they are caused by the same stochastic event. The effects of multiple
scattering and of intrinsic measurement error in giving a deviation from an ideal

track may be formalized by characterizing these processes by random variables



Figure 4.5: Geometry for estimating the track momentum:.
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representing scattering angles and measurement uncertainty. The most convenient
choice is one that decouples the stochastic effects in the zz- and yz-planes. Still,
the x? definition that must be used may seem unusual, as it involves the cross-
terms between the z-hits in different chambers and, separately, between the y-hits

in different chambers. This definition 1s

= (F-R)"w(f-%), | (4.5)

where & is the vector containing the 8 MWPC hits (4 in z and 4 in y) as mea-
sured, f-‘ is the vector of the corresponding fitted coordinates on the track, and W
is the weight matrix. By construction, W is block-diagonal, as there are no zy
cross-cerrelations in the choice made for random variak.e representation. The full

derivaiion of the weight matrix, that correctly accounts for the hit correlations is

given in Sec. E.1.

4.3 Corrections to MWPC Alignment

Reliable track information derives from individual MWPC plane hits that are as
accurate as possible. There are three principal sources of uncertainty here. Firstly,
there is the intrinsic position resolution of the MWPC planes which is determined
mainly by the spacing of the individual wires. This spacing is 2 mm for all MWPC
z- and y-planes in this experiment. Then, there is the effect of multiple scattering
that may cause a particle to depart from the “ideal” track that it would follow in
a vacuum. As this is a probabilistic process, its contribution cannot be corrected
for in an individual track, though it may contribute to the weighting of the hits,
as described in Sec. E.1. Finally, if the MWPCs do not share the same transverse
coordinate system, that is, if the origins of their z- and y-axes do not coincide or
if any MWPGCs are relatively shifted along or rotated about any of the coordinate
axes, the raw hits from different MWPCs are not compatible in the sense that they
have been measured in different coordinate systems. Such misalignments remain

even after careful placement of the detectors.

To offer the most reliable values for the coordinates of the hits in the MWPC
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planes for a given particle track, it is necessary to correct the raw values of these data
according to those relative shifts and rotations of the MWPC planes which persist
even after careful adjustment of the MWPC placements in the apparatus. This is
most easily accomplished by analysis of data taken with the spectrometer magnet
turned off, since the track model for this case simplifies to a straight-line. Such data
were acquired at various times spaced throughout the entire run of the experiment to
allow the determination not only of the best-fit values to the misalignments between
the MWPCs, but also of their constancy in time and their possible changes during
maintenance on the apparatus. To prevent overall traveling of the spectrometer
coordinate system, the corrections to the transverse placements of MWPCs 2, 3,
and 4 were made with respect to MWPC1, which was kept fixed as the “reference
chamber.” The details of the procedure are described in Sec. E.2.

Since a direct fit to rotational misalignments would be significantly more diffi-
cult than the fit to shift misalignments is, a pedestrian approach to the correction
for these is chosen. Using the procedure described in Appendix E, an initial deter-
mination of the shift corrections is made. With these adjustments in place, one may
make a first attempt at determining the relative misrotations of the MWPCs. To
judge when two chambers have been rotationally aligned, one reconstructs a one-
dimensional view of the target along the direction perpendicular to its surface (y).
When the two chambers being considered are relatively parallel, the y-width of the
target image is minimized, as any misrotation between them causes a degradation
of the position resolution.

Thus, each of MWPCs 2, 3, and 4 are paired up in turn with MWPC1 to
reconstruct a y-view of the target. Different angular corrections of chambers 2,
3, and 4 relative to MWPC1 (which is again kept fixed) are attempted and the
full-width at half-maximum (FWHM) of the target is recorded for each of these.
The resulting dependences of the target resolution vs. angular correction around
the spectrometer axis are shown in Fig. 4.6 for MWPC2. The resolution of the
decay position reconstruction is much less sensitive to misrotations around the axes
transverse to the spectrometer axis (z), so such misalignments were left uncorrected.

As the fit to shift misalignments assumes that there are no misrotations around the
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Figure 4.6: Reconstructed target FWHM as a function of angular alignment cor-
rections around spectrometer axis. Here, MWPCs 1 and 2 were used in the recon-
struction.
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z- and y-axes, the presence of such small rotational misalignments is manifested by
the need for more than a single iteration in the shift correction procedure. From
the relative magnitude of these corrections from one iteration to the next (the third
was always of the order of its error) and from measurements taken on the apparatus
it may be inferred that the angular positioning errors around the z- and y-axes is
less than 0.5° for all planes.

Though the C-magnet was off during the acquisition of alignment data, one
might object that there is a remanent field of the yoke iron that can spoil the
alignment data. This remanent fileld was unfortunately not measured, but it ‘s
reasonable to assume that it is less than 10 G. Thus, if we estimate that the e*
passing through the spectrometer in the alignment runs experience a field along
the y-axis of 10 G over a distance of 30 ¢ around the center of the magnet, the
deflections due to the field at MWPCs 3 and 4 may be estimated. The radius of
curvature of 35 MeV/c et in a 10 G field is 117 m. This leads to a transverse
deflection of Az = 0.04 cm over the assumed 30 ¢m field length. This projects up
to deflections of 0.13 cm at MWPC3 and 0.25 ¢cm at MWPC4. Since this is of the
order of the wire spacing in the MWPC planes, it is not taken to be a significant

problem and is left untreated.

4.3.1 Alignment of Target to MWPCs

To be able to project the reconstructed decay origin onto one coordinate axis (y),
it is necessary to have the target plane arranged perpendicularly to this axis. Care
was taken to satisfy this requirement as closely as possible in the mounting of the
MWPCs at a 50° inclination angle to the horizontal to match the nominal mounting
angle of the target, but there are again residual discrepancies to this goal. Thus, it
is necessary to correct the reconstructed coordinates of the decay origin, z, and y,,

for a remaining misrotation by (01 — 6x511-pcy) according to

z, = zycos(0r —Orrirpc) + yo sin (87 — Oaryirper)

y& = —go sin(0r — Orpirpct) + yo cos(6r — Barvpct) (4.6)
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where 87 and 6,/y1-pc; are the angles of the target and of the MWPC1 z-plane to the
horizontal, respectively. The reason that MWPC1 appears here explicitly is that
it is used throughout as the reference for alignment procedures, as stated above in
the context of mutual alignment of the MWPCs.

To obtain the correction angle (81 — Ori-pc1), data taken with the MWPC
trigger are used to reconstruct the decay origin (zy, y,) and record it in a scatterplot.
Then, assuming that the distribution of decays from the target follows a Gaussian
in both 2’ and 3/, though with different widths, a fit is performed that includes the
correction angle as a fit parameter. The width of the Gaussian in z’ is determined
by the beam spot on the target and the width in y’ is given mostly by the finite
resolution of the reconstruction, as the physical width of the target is small. The
required correction angle was found to be 3.9°, meaning that the angle of the target
to the horizontal was actually nearly 54°.

This fit is performed with data at various points during the experiment to ensure
that changing targets and maintenance on the apparatus has not introduced addi-
tional misalignments. Such deviations were found to be less than 10 mrad, where
the fit error was usually about 2 or 3 mrad. A rotational misalignment of 10 mrad
causes an additional y-width of the reconstructed target of 0.2 mm. Since its recon-
structed FWHM is about 10 mm, these deviations of the target angle throughout
the experiment represent fluctuations in the reconstructed target width of only a
few percent.

A by-product of the fit described is that we may locate the coordinate system
of the spectrometer on the center of the vacuum window. This is accomplished
from measurements of the apparatus that relate the placement of the target to the
center of the vacuum window and the peak position of the target obtained from
the fit. Overall shifts to the spectrometer coordinates are implemented so that
(zi,,y,) = (0,0) refers to the center of the vacuum window. This alignment will
make it simple to place the condition on events that the track pass through the

vacuum window, a cut that will be described in more detail below.
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4.4 The y-Position Histogram

With a working track fitting algorithm and carefully aligned MWPCs, one may
trace these trajectories back to the vertical (zy) plane through the beam-line axis.
Since the magnetic field up to the second MWPC is negligible, one may use a simple
straight-line extension from the track-fitted hits in MWPCs 1 and 2 back to the
z = 0 plane to obtain the distribution of the points of origin, (2o, y0), of the particles
observed in the spectrometer:

zy —zl
T, = :1:1—(——2—-———) (2, — 20)

2 — 2

Yo = Y1 — (u) (21 — 20) - (4.7)

z22— 2
A two-dimensional contour plot of points (z, yy) is shown in Fig. 4.7. The contours
represent the logarithm of the number of counts from bins of 2 mm x 2 mm size.
Decays from the powder target are the dominant feature, but the enhancement due
to thermal M decays from the vacuum is visible. A few decays from u* stopping
in the beam scintillator are also recognizable. The image plane has been rotated,
as described above, so that the plane of the target is horizontal.

It is instructive to show the same contour plot for the case of a 4~ beam incident
into the apparatus at the same momentum. This distribution is shown in Fig. 4.8.
In contrast to the case of an incident p* beam, u~ do not form Mj; this is apparent
in the comparison of Figs. 4.7 and 4.8.

The most important histogram in the analysis is the y-projection of Fig. 4.7.
This is shown in Fig. 4.9. The logarithmic scale again serves to focus attention on
counts due to thermal M decays in the vacuum, to the right of the target peak.
The smaller of the two peaks on the left is from decays of u* stopping in the beam

scintillator. To obtain Fig. 4.9, the cuts applied are:

1. The x? of the track must be less than 6.250 for tracks with 3 degrees of
freedom, less than 4.605 for tracks with 2 degrees of freedom and less than
2.705 for tracks with 1 degree of freedom. These cuts represent the points

which border 90% of the area under the x? distribution from above, where
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Figure 4.7: Distribution of decay points in the vertical plane z = 0. The contours

are logarithmic to show the enhancement from the vacuum region due to thermal
M decays there.
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Gaussian measurement errors have been assumed. The x? distributions for 3
and for 2 degrees of freedom are shown in Fig. 4.10. Both of these distributions
are a little more enhanced toward small values compared to x? distributions
for Gaussian measurement errors because the errors in the MWPC hits of the
track are not quite Gaussian distributed. The assumption that the errors due
to multiple scattering are Gaussian in the construction of the weight matrix
(see Appendix E) causes this slight deviation. This cut removes events (about
5% of all) which are due to more than one particle leaving the spectrometer

track or a single particle scattering very heavily in its passage through the

chambers.

2. The track in the MWPCs must have passed through the vacuum window and
tke reconstructed decay origin must also lie in the same radial constraint.
The alignment of the spectrometer onto the center of the vacuum window, as
discussed above, is convenient at this point. This requirement removes most of

the events that are due to decays from the first grid in the electrode structure

of the slow e* collection system.

3. In the magnetic field, the tracks accepted must show the deflection of a pos-
itive particle. This serves to focus on the decay e* that are of interest when

detecting M and rejects the small contribution from knock-on e~ .

The first two cuts are applied unchanged throughout on this position histogram
in the further analysis. To search for M , however, the third condition is reversed

in polarity.

4.5 Time-of-Flight of Vacuum Muonium

When thermal muonium in vacuum was first observed [Bee86,Mil86], the signature
relied on the observation of the time elapsed between the entry of a u* into the
apparatus and the detection of a decay e* from the vacuum region downstream of
the target. It was found that the distribution of these decays in time and position

is consistent with a Maxwell velocity distribution of M atoms (at the temperature
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of the target) folded with the muon decay time distribution. One concluded that M
atoms in vacuum with thermal energies had been produced. In order to verify the
production of thermal M in vacuum 1n our apparatus, data were taken to observe
the characteristic distributicas that are the signature of thermal M in vacuum.

Because this signature requires correlating a decay e* track in the spectrometer
to the incident u* that gave rise to it, one can only tolerate a single ut in the
apparatus at a time. The gate length chosen during which to search for a decay
et after admitting a u* was 10us long, corresponding to 4.5 p* lifetimes. This
meant that the rate of the incident beam needed to be small compared to 10° s~!,
instantaneous, so that pileup of u* in the trigger did not diminish the detection
efficiency appreciably. At a duty factor of 6.4 % in the accelerator, this restricted
the allowed incident rate to less than about 6 x 103 s~!, average. The trigger used
to ensure the detection of a u* entering the apparatus and the observation of a
correlated et track in the spectrometer, without pileup from additional u* or e™,
is shown in Fig. 4.11. When this trigger was not cleared by either pileup or by
the absence of an observed e* in the spectrometer, it allowed the time-difference
between the incident u* and the decay e* to be recorded in a TDC (LeCroy 4208,
1 ns per channel).

This time-difference is expected, of course, to be distributed simply as a decaying
exponential with the time-constant of muon decay. But when we place the condition
on this histocgram that the decay e* must have originated in particular regions along
the y-axis, perpendicular to the target, then the et must first reach these regions
before being counted. More specifically, let us divide the y-axis into several regions:
one that includes the reconstructed target image, and then 3 more adjacent intervals
of 1 ¢cm length that cover corresponding portions of the vacuum downstream of the
powder target. In order for a decay e* to originate from these vacuum regions, a
M atom must have reached this region and decayed there. Since M is produced
in the powder target, the transit time from the formation in the target to the
point of decay may be measured. The distribution of flight times to reach the
different regions is characterized by the velocity distribution of the M atoms in

the vacuum. These flight-time/decay-time distributions are shown in Fig. 4.12 for
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different spatial regions. The histogram in (a) contains counts that have been
found to originate in the target y-distribution and therefore shows the expected
muon decay lifetime distribution. In (b), (c), and (d), the y-position was required
to lie in successive 1 ¢cm wide zones of the vacuum, starting at the surface of the
target. The departure from the exponential decay is apparent. Apparently, it has
taken most of the counts entering here some time (~ 1.4 us/cm average) to reach
these regions. This is due to the flight time of M at thermal energies from the
powder to this point in the vacuum. A very coarse estimate of the temperature of
the M from these histograms gives 300 K, in agreement with expectations.

The next section discusses the new signature that was developed for this exper-
iment as an alternative to detect M and as a clean way to search for the M — M

conversion.

4.6 Time-of-Flight of Atomic e~

The most important development that led to the success of this experiment is the
ability to detect the atomic e” from M decay and therefore the use of a signature
that includes the atomic et in searching for M events. To associate counts on
the MCP with particular decays observed in the spectrometer, the time-of-flight
between a count in the spectrometer and the MCP was recorded. As the TOF
peak of this correlation is expected at around 70 ns time difference between the
spectrometer track and the arrival of a correlated atomic e* at the MCP, a 2 us
gate was opened by the spectrometer pulse. Within this gate, the time elapsed from
the beginning of this gate to a delayed pulse on the MCP were recorded in a TDC
(LeCroy 4208). The TDC logic is shown in Fig. 4.13. The zero-time channel for
the TOF was not determined directly, but it was not needed for further analysis.
Rather, in data replay, a gate of 75 ns length was located around the observed peak
in the TOF histogram.

To properly identify atomic e~ and distinguish them from secondary e~ liberated
from the Si0, powder target surface by decay e‘+ leaving it, the TOF histogram

was subjected to the same series of position cuts requiring the decay origin of the
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event to lie in a specific region along the y-axis. The resulting histograms are shown
in Fig. 4.14. The uncorrelated background (flat because at low rate) in these TOF
histograms is mostly due to u* passing through the target powder and emerging
at its downstream surface, pulling with them a wake of secondary e~ . These
are accepted by the low-energy transport system and directed onto the MCP. To
suppress this background as far as possible, the TDC-stop logic included a veto
generated from a MCP pulse in coincidence with a count in the beam scintillator.
Due to finite efficiency of this veto, some of this background remains.

For data searching for the M — M conversion, this veto was removed, since
the low-energy transport was then tuned for e™ and no secondary e~ from the target
are expected to be transported to the MCP. A second, decisive reason is that the
full channel rate taken while searching for M events (10° u* s~! average) would
cause nearly every MCP pulse to be vetoed by accidental coincidence.

To display in an alternative fashion that the atomic e~ Lave been observed,
one cuts the y-position histogram on the presence of a count in the TOF gate of
interest (channels 625 to 700), as in Fig.4.15. In this histogram, the contribution
from thermal M in the vacuum is still patent, but the target appeais narrower than
it did without the TOF cut. This is because the requirement of a correlated TOF
count will only accept decays from the target surface, not from within the powder.
Secondary electrons from the powder can only be transported if they are liberated
at its surface.

Again, comparing the TOF histograms of Fig. 4.14 to the corresponding his-
tograms taken with an incident p~ beam serves to confirm the presence of thermal
M detected by the coincident observation of its decay et and atomic e~ . For
this check, the polarity of the collection system is also set to accept e , so that
secondary e~ from the target surface still appear. Figure 4.16 shows these TOF
histograms taken with a 4~ beam.

The striking feature is that there are very few counts with a decay origin in the
vacuum that give a TOF in the gate of interest. As there is no M present, the only
correlated events here are due to decays from the target that scatter strongly so as

to give a reconstructed decay origin in the “vacuum,” and to a few p~ that scatter
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Figure 4.14: Time-of-flight distribution between spectrometer track and MCP. The
TOF of secondary e~ from the target are shown in (a), whereas (b), (c), and (d)
are the TOF from successive 1 c¢m regions starting at the powder surface.
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in passing through the target, stop in the walls of the vacuum chamber in view of
the spectrometer, and give a decay e~ that liberates secondary e™ from the walls.
Having thus established that one can indeed detect the atomic e~ liierated by
the decay of M, it is clear that the analogous signature serves well to identify any
M decays. As no direct source of M is available, the acceptance of the collection
system for slow et was tested, as described above, by a W-foil moderator slowing

the 8% from a ??Na source.

4.7 The Maximum Likelihood Fit

The method of maximum likelihood is a very general prescription for extracting
information from a measured data set. The necessary ingredients are a set of dis-
tributions, in the same parameter space as the data to be analyzed, that each
describe one of the processes thought to contribute to the experimentally obtained
distribution of events. These reference distributions may be obtained by analytic
calculation when the model is confidently known, by a Monte Carlo of the process
to be described when the analytic method is too complex for solution, or from other
measurements in which the experimental conditions have been arranged in a con-
trolled way to emphasize the particular process whose distribution is sought. It is
then possible to state, separately for every event in the data to be analyzed, with
what probabilities it derives from each of the reference distributions. In effect, for
each physical process included by its characteristic distribution, one may give the
probability that it caused a given event. These probabilities are simply the values
of the normalized reference distributions at the point in the parameter space where
the data count occurred. To determine the probability that a given event is at all
described by a linear combination of the reference distributions, these values are

added with the appropriate weights.
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4.7.1 Definition of the Likelihood Function

One may extend this principle to an ensemble of data counts which are believed
to be drawn from a combination of reference distributions characterizing the dif-
ferent processes contributing to the observed distribution of the data. In this case,
the product of the probabilities for each event to come from the specified linear
combination of reference distribu.ions is a relative measure of the suitability of the
combined probability distribution for describing the data set. This product is called
the likelihood function and may contain parameters that are to be adjusted for the
best description of the experimental data.

Denoting the reference distributions by R;, the number of counts from each of
these distributions present in the data by N;, and the parameter dependence of
the distributions (say, for example, on position of decay origin and on fitted track
momentum for an event) by the vector X, the likelihood function may be written

L= 1;[1 [Z %’ R; (JE)] , (4.8)

where N is the total number of events in the data set. In this expression the index i
runs over all the events in the data distribution and the index ] is taken over the set
of reference distributions. Thus, the dependence on each event enters through its
location in the parameter space, X,. Because there is a fixed number of counts in the
data distribution, N, which are to be described by counts drawn in the appropriate

admixture from each of the reference distributions, the constraint that
N =3 N; (4.9)
J

must be imposed. The likelihood function may be thought of as a function of the
number of counts from each of the reference distributions, but satisfying aforemen-
tioned condition on their sum. Thus, one may consider the adjustment to the best
description of the data set as a fit, where the fit parameters are the N;. Because of
the constraint on their sum, the number of parameters in this fit is one less than

the number of reference distributions.
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4.7.2 Application of the Method

The histogram to which the maximum likelihood analysis is applied in this experi-
ment is the y-position distribution of the decay points, as traced back from particle
tracks in the spectrometer. This method is applied both to find the most probable
number of M atoms observed over the course of data taking and to the determi-
nation of the number of M atoms formed during this time, from which these M
counts would have resulted by conversion. The likelihood fit to these distributions

must be handled separately.
To fit to the y-distribution of M decays, the likelihood function takes the form

c=T[(F) T+ (F) M+ () Bw), @

where T'(y), M(y), and B(y) are the distributions of decays from the target, from
thermal M in vacuum, and from other background sources, respectively. The prod-
uct runs over all events in the histogram and the constraint N = N7 + Nj; + Np
applies. Therefore, this fit has two parameters.

The data distribution obtained from summing together all data taken to search

for the M — M conversion is fit by
_ h) M (v (&f_) | ]

where M(y) is the distribution of vacuum antimuonium decays after conversion
from an initial state of M at the target surface and K(y) is the distribution of
background events. The latter is dominated by knock-on e~ and includes structure
from decays from the target, the beam scintillator and knock-ons from M decays
in the vacuum.

So that the likelihood fit can be carried out, one needs the reference distribu-
tions. For the case of the target distribution in the M fit, it is simply determined
by folding the resolution distribution with the finite thickness of the powder. The
determination of the resolution function for the reconstruction of the decay origin is
described in Appendix F. The background distribution in the M fit has been empir-
ically found to be well-approximated by a uniform distribution (“flat” background).
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The background in the M fit, however, is more complicated and must be obtained
from the data; the relevant cuts will be described below. Finally, the distribution

of vacuum M and M decays may be analytically calculated and numerically folded

with the resolution distribution.

4.7.3 Reference Distributions for M and M

The calculation of the characteristic distributions for vacuum decays of A and M
assumes that the possibly coupled system is formed in an initial state of M. These
M atoms may be taken to emerge from the target surface at time ¢ = 0. Their
further motion is determined by their Maxwellian velocity distribution, their cos 8
angular distribution, and their decay. To find the y-distribution of M decays, one
calculates the folding integral

M(y) = /:c dv, /Uoo é}é(y—-y() — v t) F(v,) e /™, (4.12)
where y, is the location of the target surface zz-plane and F(v,) is the distribution
of the y-component of the M atoms velocity. The Dirac-delta function comes about
by requiring the decay-position of the atom to be kinematically compatible with the
y-velocity and time-of-flight until decay. The velocity integral may then trivially be

M(y) = /:c g—ie'l/"F (L:_}’g) . (4.13)

The normalized distribution F(v,) is determined by irtegrating out the z- and z2-

carried out to give

dependence from the three-dimensional velocity distribution, with the cos 8 angular

distribution accounted for. This integral is

3/2
F) = 4(gogp)  we D

- S e~ (mr2+mu?)/(2kT)
x / dvI/ dv, , (4.14)

Iy 2 2
v +v, +v;

where m is the mass of the M atom, k is Boltzmann’s constant, and T is the

temperature of the M atoms. The angular distribution of cos § with respect to the
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target normal has been inserted by the factor

vy

4.15
\Jv2 +v;j’ + v? ( )

and the normalization has been adjusted to satisfy

/Uw dv, F(v,) = 1. (4.16)

Negative values of v, are not included, as they will not carry the M atoms from the

target surface into the vacuum. The integral in Eq. 4.14 can be carried out to give

F(v,) = 2:;’“ [1 — erf (\/;—gvu)] . (4.17)

The M atom distribution, M(y), is then numerically evaluated at the diff=rent y-

values desired to obtain the M reference distribution. This distribution is shown be-

fore and after folding with the resolution function of the reconstruction in Fig. 4.17.

This distribution is actually that of the total M, M system, as we did not include
in the calculation above the depletion of the M population by the conversion. As
the M — M process is known to proceed at most very slowly, this distribution is
an excellent approximation to the M distribution alone.

To obtair. the distribution of thermal M atom decays in the vacuum, the time-
dependence in the folding integral must be modified by a factor describing how the

convergence populates the M state. It then reads

Moo= [T, [T %6y - -t Flo,)
x 2 [1 + (g:—_)z] e /" sin? (%)
= [ 5r (=)
x 2 [1 + ({‘;)2] e~ !/7 sin® (;5—;) : (4.18)

The result of the numerical quadrature to give the reference distribution M is shown

in Fig. 4.18, before and after smearing it with the resolution function.
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4.8 Number of M Atoms

The y-histogram in which evidence of M is sought requires several conditions for
entry of an event. These are chosen to maximally emphasize any M decays that
may be present. First, the tracks must pass the usual pattern recognition cuts
and be successfully fitted with reasonable x2. The trajectories in the sp'ectrorneter
must deflect in the direction of a negatively charged particle. Also, as established,
the tracks must pass through the vacuum window and their origins must lie in the
circular region defined by it when projected back to the z = 0 plane. Finally, there
must be a count on the MCP within the time window established by the observation
of the atomic e~ of M. The resulting y-histogram is shown in Fig. 4.19.

Slightly different cuts must be applied to determine the background distribution
relevant to this histogram. To ensure that the spatial acceptance for the background
tracks is not different from that for the M data histogram, the only change is
to require that there be no count on the MCP within the time window where
a conversion signal would appear. This ensures that no event enters into both
the data and the background distributions. The resulting distribution is shown in
Fig. 4.20.

With this background distribution and the M reference distribution, one fits the
data distribution according to the method of maximum likelihood. The algorithm
used is a grid search with adjustable step size in the single free parameter, for exam-
ple Ni7. This ensured that the global maximum was found. In fact the likelihood
function was found to be well-behaved, nearly Gaussian in shape and without sub-
sidiary minima. The likelihood function is shown in Fig. 4.21 in dependence on the
number of M counts. Its peak lies at zero counts and 90% of its area is contained in
the region Nj; < 7 counts. The result is, then, a 90% confidence level upper limit
of 7 M counts in a total of over 200 tapes of data searching for M — M .

There is, however, more information that has not yet been used. The momentum
distribution of the knock-on e~ that are presumed to be the cause of the background
is quite different than the Michel distribution that is characteristic of A/ decays. The

Michel distribution, determined from fits to e* tracks with a reversed C-magnet, and
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the measured Bhabha distribution in this momentum range, obtained by focusing
on tracks with e™ curvature, are shown in Fig. 4.22. The low-momentum fall-off of
the knock-on distribution is caused by the spectrometer momentum cut off that is
a result of its finite transverse dimensions. It is clear that a cut on this momentum
is very appropriate to remove much of the background from the M data while
maintaining any conversion signal. The figure of merit used to judge the choice of

lower momentum cut was chosen as the product

f.o.m. = €plichel (1 - eknock—-on) (4.19)

to optimize the rejection of knock-on electrons while maintaining acceptance for
Michel e~ . The dependence of this figure on the location of the cut is given in
Table 4.1. As the table indicates, the cut is optimally chosen as p > 22.5 MeV/c.
This condition removes over 89% of the knock-on e~ while preserving more than
87% of the Michel-distributed decay electrons. ,

The data distribution after application of this requirement is shown in Fig. 4.23.
The distribution of background events passing the momentum cut is given in Fig. 4.24.
The likelihood function that is obtained using these distributions, together with the
M signal distribution, behaves as in Fig. 4.25. For this case, the likelihood function
is maximal at N3; = 0 with a 90% confidence level upper limit of N37 < 2. This is

the final result for the number of M atoms.

4.9 Number of M Atoms

To determine the total number of M atoms formed during the search for M — M,
several steps are necessary. The guideline to be followed in properly finding this
normalization may be stated as the question: “If all the M atoms formed decayed
as M, how many M atoms would we detect?” In other words, the number of M
atoms used as a normalization must be stated with those acceptances folded in that
make the number compatible with the number of M atoms obtained above.

It was found that the matrix trigger accepts unequally over the field of view of

the reconstruction. This may seem somewhat surprising, as the histogram being
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I Pmin (MGV/C) “ €Afichel { €knock—on Lf-o-mJ

0.0 1.0000 | 1.0000 | 0.0000
10.0 0.9948 | 0.7596 | 0.2391
12.5 0.9843 | 0.5333 | 0.4594
15.0 0.9671 | 0.3636 | 0.6155
17.5 0.9432 | 0.2416 | 0.7152
20.0 0.9116 | 0.1617 | 0.7642
22.5 0.8730 | 0.1063 | 0.7802
25.0 0.8258 | 0.0750 | 0.7639

Table 4.1: Figure of merit of the momentum cut.
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analyzed is the y-view of the reconstructed origin. However, the varying accep-
tance of the matrix trigger over the z-range of the reconstruction mixes in to the
acceptance in y by the circular geometry of the vacuum window that constrains the
valid decay origins. The problem is manifest in the failure of the M distribution
to properly describe the distribution of counts in the vacuum region when the data
were taken with the matrix trigger selecting against et curvature.

To surmount this difficulty, instead of using the number of M atoms from the
likelihood fits to M — M data directly in the normalization, the fitted target
counts are taken as characteristic of the number of M atoms formed. Separately,
with the MWPC trigger that does not suffer from the difficulty of uneven accep-
tance, the M formation fraction per target count is determined before and after a
block of data taken searching for the conversion. The average M fraction is then
used to translate the number of decays from the target to the number of M atoms
that were formed.

Because the matrix trigger has unequal acceptance for e* from the target (used
to find the number of M atoms) and e~ from the vacuum (used to find the number
of M atoms), a correction factor accounting for this must be applied. This was
determined separately for most of the 510, targets used in data taking by taking
M decays in the vacuum with the C-magnet reversed in polarity to simulate the
vacuum decays of M atoms. The need for multiple determination arose because the
location of the beam spot on the target along the z-axis was not necessarily constant
for all targets. The ratio of the acceptance for e~ from the vacuum to that for et
from the target was averaged with equal weighting to obtain the value 60.08 + 2.52
as the best estimate of this factor. Multiplying the number of M atoms by this
correction then gives the number of M atoms that would have been observable as
M events in the case of a conversion. The matrix trigger acceptance for e~ from
the vacuum was about 66% and that for e* from the target was about 1.1%.

Since the full signature of the conversion also involves the detection of the atomic
et , the number of M atoms must be multiplied by the TOF acceptance for each
target. This acceptance was measured by detecting thermal M with the coincidence

signature and dividing the number of M counts that pass the TOF cut by their total.
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target Nt 2 (%) eror (%) Nt
number (10%) (10%)
11 585+2|3.71+0.10]19.3+1.2 | 252417

12 2207 +4 | 6.17+0.08 | 15.3 +£0.5| 1249 + 46
14 2212 +4 | 7.72+0.33 | 13.0 £ 1.3 | 1328 + 146
16 3476 £4 | 5.04 £0.14 | 16.1 £ 1.4 | 1694 + 153
17 4835+ 5 | 3.93 £ 0.09 | 18.1 £ 2.0 | 2063 + 230
18 1408 +3 | 7.10+0.12 | 8.1 £ 0.4 | 487 427

average 5.39 £ 0.07 | 15.5 £ 0.8
total 7073 + 317

Table 4.2: Results for determination of number of M atoms formed during M data
taking.

The conversions that are applied to the fitted number of target counts during the
M —— M data to get the number of M atoms formed that could produce observable
conversions may be summarized by the equation

Ny, = Ny % (%) x 60.08 X erop - (4.20)

Table 4.2 summarizes the M formation per decay from the target and the TOF
acceptances for each target together with the result for the number of “observable”
M atoms. Averages have been formed by weighting with the number of fitted decays
from the target.

The M formation per target count is not the true M formation fraction as usually
quoted, since the M counts themselves are due to stopped u* in the powder. For
completeness, Table 4.3 gives the true formation fraction of M and the u* stopping
fraction for each target together with its projected thickness along the beam axis
and the optimal momentum for M-formation.

Using these formation fractions and the spectrometer absolute acceptance of
2.5 x 107 the total number of incident and stopping #* may be calculated. These
are summarized in Table 4.4.

Now, the limit on G,,57 may be calculated.



target thickness | optimal Eicp ”%P J:"m
number || (mg/cm?) | momentum (%) (%) (%)
(MeV/c) -
11 11.27 | 21.2 44.4 + 2.7 | 3.58 £ 0.08 | 1.59 £ 0.09
12 5.64 | 20.5 45.0+ 1.5 | 5.80 + 0.07 | 2.61 = 0.08
14 6.76 | 20.25 61.5+3.5|7.16+0.26 | 4.40 + 0.19
16 10.71 | 21.0 63.7+4.114.794+0.12 | 3.05 £0.18
17 10.15 | 21.0 62.4 + 5.0 | 3.56 = 0.08 | 2.22 £ 0.17
18 0.58 | 20.75 40.4 £ 1.5 [ 6.63 £ 0.10 | 2.68  0.09
[average | [56.2 + 1.7 | 5.02 + 0.06 | 2.82 + 0.08 |

Table 4.3: Summary of M formation characteristics for data taking targets.

target Hinc Hstop
number (10%) (10°)
11 50 £ 5 22 +3
12 190 £ 11 86 + 6
14 141 +£22| 87+14
16 209 +£29 | 133 £ 20
17 312+ 54 | 194 £ 37
18 136 £ 11 55 £ 5
total 1038 £ 67 | 577 £ 45

Table 4.4: Total number of muons taken for each target.
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4.10 TUpper Limit on the Conversion

The total number of M atoms in the normalization has been determined to be
Nps = (7.07 £0.32) x 10, corresponding to a total of 1.04 x 10'? incident p*. Of
these M atoms, (6.17 & 0.28) x 10° will have a decay e* with a momentum above
22.5 MeV/c. The most probable number of M atoms is zero and the upper limit
on this number is N37 < 2 at 90% confidence. Inserting this into Eq. 2.46 gives an

upper limit on the probability per atom of a conversion at

St7 < 6.5x 1077 (90% C.L.), (4.21)

where the suppression of the conversion by 50% due to the external field of about

10 G has been included. According to Eq. 2.48, this yields an upper limit of

on the effective fonr-Fermion coupling constant of a (V — A) interaction.

The vacuu'n region (11 to 50 mm) in the M data histogram which has been
cut on p > 22.5 MeV/c contains no counts, so it is not possible to give a direct
background estimate for this case. Without any momentum cut other than the
spectrometer cutoff at around 10 MeV/c, there are 11 counts in this region. For
the 7.07 x 10®° M atoms in this data sample, this corresponds to a background of
1.6 x 10~° events per M decay, which would limit the result at G,;37 ~ 0.4 G if the
maximum likelihood fit were not used to separate contributions of background and
possible signal. It is clear that the method of maximum likelihood has the power
to separate the contributions from processes described by appropriate reference
distributions. Together with the leverage offered by the functioning track fitting
in identifying useable spectrometer tracks, the maximurn likelihood fit has proven

itself a powerful tool in the analysis of this experiment.



Chapter 5
Results and Discussion

The experiment described in this dissertation has searched for the M — M con-
version using a signature that required coincident detection of the decay e~ and the
slow et produced by M decay. To calibrate the apparatus, M atoms were observed
by detecting both the decay e* and the atomic e” from their breakup. The max-
imum likelihood analysis has shown that the most probable number of M — M
conversion events seen is zero with less than 2 events at 90% confidence. Enough
data were acquired to be successful in obtaining an improved upper limit on the

conversion probability per atom of
S+ < 6.5 x 107" (90% C.L.) . (5.1)

This is an improvement of a factor of ~ 3 over the previous best limit [Hub90].
Assuming a conversiun coupling of (V' — A) form, the corresponding upper limit on

the effective four-Fermion coupling constant from the present experiment is
G357 <0.16 G (90% C.L.) . (5.2)

Thus, the M — M conversion is now constrained to be an appreciably rarer
process than the most likely channel for muon decay, p* — e*v,7j,. The experimen-
tal progress of the upper limit on G717 is depicted in Fig. 5.1. As the M — M
conversion does not additively conserve lepton number for electron and muon fam-
ilies, this process is forbidden in the standard model. It is, however, permitted in a

minimal left-right symmetric model [Moh81a,Her].

136
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In this model, there is a triplet of Higgs bosons which have lepton-number vio-
lating couplings. The doubly charged member of this triplet can mediate M — M

. The coupling constant for the conversion in this model is

G, = Ve S (5.3)
AN 8m1+ .
and the Fermi constant may be written as
V2g?
Gr = M2 (5.4)

Therefore, the constraint this experiment places on the parameters of this model is

7n++ > (202 GeV) '%éi‘:& y (5-5)

where M, - = 808.9 GeV has been used for the mass of the W-boson. What makes
matters exciting is that cosmological arguments and mass relations among the mem-
bers of the Higgs triplet [Her91] in this model serve to place a lower bound on the
M — M coupling. This lower bound is G37 > 4 x 10~ Gr. Thus, the coupling
constant for the conversion within this model is now constrained to a range of less
than 3 decades.

The anomalous decay of the muon, ut — e*7,v,, may be considered as an
analogous process to the M — M conversion, as it also violates additive muon
and electron number conservation by two units each. Any conclusions about this
process are, however, model-dependent [Her91]. Models exist which allow M — M
while forbidding the anomalous muon decay in lowest order [Gel81,Cha89]. Under
the assumption that the process u¥ — e*D.v,, proceeds with the same coupling
constant as the M — M conversion, one may use the limit set by our experiment
to speculate that the branching ratio for the anomalous muon decay is constrained

by

I(p* —evey,)

F(p*t — etv.ty)

(G\/ﬂ)z
Gr

3x107%, (5.6)

N

TAN
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where the estimate is straightforward since the phase space of the final state is the
same for the ordinary and the anomalous muon decays. This limit is on the same
order as the result of an experimental search [Wil80] for the decay u* — et v,,.
Another interesting point to consider is the possibility of a contribution to the
anomalous magnetic moment of the muon from couplings with a A** Higgs boson.
The lowest order contribution is a simple vertex correction to the muon-photon

vertex that is proportional to
2 2

Ty

M3
For a model with a singlet doubly charged Higgs boson, the contribution to the

(5.7)

muon anomalous magnetic moment has been estimated [Cha89] as

1
ba, = 5(911 - 2)

1yt
22
6rimI

iy (5.8)
If one assumes that the couplings of the doubly charged Higgs boson to the muon
and to the electron are equal, then our limit on the M — M conversion implies
the upper limit

ba, < 4x107" . (5.9)

The first use of the coincidence signature in searching for M — M has proven
the approach to be feasible. An obvious improvement for a next-generation search
for this process is to increase the acceptance of the detection of the decay e~ .
This avenue is being pursued presently at the Paul-Scherrer-Institut (PSI, formerly
SIN) [Jun89]. There, a new search for M — M is under construction that will use
the same coincidence signature. The acceptance of the decay electron spectrometer
(the SINDRUM I will be used) is approximately 300 times larger than that of this
experiment. Furthermore, the signature of the atomic et has been extended to
include the observation of its annihilation v’s after its detection on a microchannel
plate. The expected sensitivity of this experiment is in the range of G,;3; ~ 107° Gf
for the coupling constant, corresponding to S37 ~ 10~''. If it has not already, the
search for M — M will come of age with this new experiment and join other rare

muon decay searches as an effort of equal stature.



Appendix A
Neutral Scalar ¥ — M Coupling

To date, the ragnetic field dependence of the M — M conversion probability
has been calculated only under the assumption of an interaction of (V — A) form

[Mor66,Ni88b,Sch88|:

Gy _ _
Hyw = \‘;ﬁ’ Eva(l+7s)emy* (L +vs)e + He (A.1)

Since the form of the conversion matrix element resulting from this interaction,

including the action on the spin projection of the particles involved, has been given

as [Mor66]

. 5
(M ymg,,mg |Hy 5| M;ms, ,ms,) = (5) b, ms, Oms, ms, » (A.2)

one is led to ask for an alternative form that may result from the assumption of
another type of interaction. In particular, another possibility seems to be

Eva ’ ! n
<A{[ ;msr’msulH."\IAT/_|A/[;mS€"m5u> = <-2_) 6"1’5(‘"‘5“6"1[5“‘”‘5: * (A.3)

A completely general treatment of an arbitrary conversion coupling must include
scalar, pseudoscalar, vector, axial vector, and tensor bilinear forms in arbitrary
linear combination. One might expect the resulting matrix element to have the
form of a linear combination of the two different forms given above, though it

seems possible that conditions relating *he incident and outgoing spins may occur.

140
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The full calculation has not been done, but in order to demonstrate that there
is an alternative to the usually assumed form of the conversion matrix element,
the calculation of the matrix element for a neutral scalar conversion coupling is

presented.
Let us call the neutral scalar boson being exchanged X". Then we can draw
tree-level diagrams for s-, t-, and u-channels of u* e~ —— u~ e as shown in

Fig. A.l. First, take the relevant interaction Lagrangian density to have the form

Ly57=fu-BeX"+ H.c. (A.4)

Then, consider the scalar propagator in momentum space,

1

Ay (k) = pEpp—y

) (A.5)
which has the low energy limit (k? < m?, that is, far below mass shell) of
-1

The coordinate space propagator is

d'k eik-(r—-r')
(271‘)‘ k2 — m?\' + 1€

Ay(z—2') = / y (A7)

where the i€ term represents the prescription for the integral over k" to avoid the
singularity on mass shell after doing the integral over k. This propagato: nas the

low energy limit

Ay(z-2) — — W (e -2, (A.8)

and so exhibits the same point-like nature as the V — A coupling. Thus, the low

energy effective interaction Hamiltonian density is

Hyti= 5 Hefe + Hec. ‘ (A.9)
The low energy effective interaction Hamiltonian is then given by

Hym = /d"‘fH.\lﬂ(m) : (A.10)



142

................... (@)

X ©

Figure A.l: M —— M conversion mediated by neutral scalar boson in: (a)
s-channel, (b) t-channel, and (c¢) u-channel (this is actually the process ppu — ee).



143

To be specific about conventions, we shall use the Dirac representation of the

~v-matrices and the following form of the plane wave expansion to the Fermion fields:

o m, Cipa -
z)= ;/(27‘.};”} E. (7) [bc(P,S)ue(P,S)e + d! (p,s)ve (p,8)e ] (A.11)
2(0) = 5 [ o [5 B )% (0 0) ™ + ()7 0) 7]

(A.12)
and similarly for the yu and & fields. Here, b! (b],) and b, (b,) are the creation and

and

annihilation operators, respectively, for e~ (¢~ ) in Fock space. The operators d!
(d!) and d. (d,) are the creation and annihilation operators for e* (u* ). The

anti-commutation relations among these operators are

{b(p,s),b'(p',8")} = 8.0 8V(F—5") (A.13)

{d(p,s),d'(p/,s")} = 6.06DF~5")

{b(p,5),b(p',s)} = 0O
)
)

{d(p. S), d(p’,s')}
{t'(p )0 (7,50} =
{d’(P,) d(p,s)} =
{b(p,s),d(p',s")} =

(

(

b'(

! /

p,s

! ’

p,Ss

{o(p,9). " (7,5} =
{d(p,s),b p,s)} =
{dlp.s), 0"

o O O o o o o

p.s)} =

for each particle type separately. Muon and electron operators, however, commute

I

with one another. The energy appearing in the plane wave expansions is given by
E(5) = /15l + m? . (A.14)

The Dirac spinors satisfy

(P—m)u(p,s) =0=1u(p,s)(p-m) (A.15)
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and
(p+m)v(p,s) =0=735(p,s)(P+m). (A.16)

The relevant orthogonality relations are

a(p,s)u(pys’) = s (A.17)
3(p,s)v(pys’) = —bs

u(p,s)v(p,s’) = 0

3(p,s)u(p,s’) = 0.

Plane wave solutions to the Dirac equation have the form

u(p,s) = E+m( X )x, (A.18)

2m _-LE"_!'_m
and B
E+m [ %
v(p,s) = = ( El ) Xs - (A.19)

In these expressions, & designates the Pauli matrices and x,, with s € {1,2}, are the
orthonormal 2-spinors that represent helicities of =1. We now have all the required
tools.

To begin the calculation, we specify the initial and final states. This will be most
convenient if the center-of-mass coordinate frame (relative coordinates) is chosen.

Let the expansion of the 1S spatial wave function in momentum space plane waves

be given by
- d3p N 5
$15(Z) = = ¢1s(p) e” (A.20)
(2m)
for M and iy
—) . lp -] ,7-)"f'
bs5(5') = /(%)3 $15(F' e (A.21)

for M . This means that the initial state of M may be represented by

3_-

d L
M’I’ 1535e15u> = /(2ﬂ_p)3 (}515(}7)17:.(}76,36)6{:,(}3”,su)'O) (A22)
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and the final state may be specified by

(‘i 5 01T A s, (A2)

where |0) is the Fock vacuum. In the center of mass system, the relative momenta

IMIS%,Q=/

are those in the integrations above; specifically

5=p. - (A.24)
for M and
p =p.—D, (A.25)

for M . The center-of-mass momenta are

P=p.+p,=0 (A.26)
for M and

P =p +p,=0 (A.27)
for M .

Since the calculation is being carried out in the low energy limit, it is useful to

note the low energy form of the Dirac spinors:

1
u(p,s) = ( 0 ) X (A.28)

» o v(pys) = ( (1) ) Xs (A.29)

The resulting low energy form of the Fermion field operators in the plane wave

and

expansion is

o(2) = 5 [ 555 b o)ulp, 017" + (oo, 0)e™] (A-30)

and

é(z) = Z/ d:r [bf(p,s)u (p,s)e™" + dr(p’s)ﬁr'(p’s)e—iplr] ) (A.31)
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for the electron fields and similarly for the muon fields. The integrations are to be
understood as restricted to a range of | p| <« m. to accord to the low energy limit.

The matrix element sought is
Mogpes, = (F,18; 5, 8 Hysg 1M, 153 5,,8,) (A.32)
Inserting explicitly the initial and final states and the interaction Hamiltonian gives

2 ) d.’lﬁl d'!z‘,‘
_ e 3= ~ (=t -
Masone = 25 [03 [SE6560) [GH o) (433)
x (0

“(p:"s:l)d (pc’ r‘)[“e/"e
+ -él“l'él'l‘] b(f_‘(pé’,sP)du p“,su)(o

The second term vanishes; it would induce M — M transitions. With the explicit

low energy form of the Fermion field operators this becomes

Mugoen, = ”ﬂWZZZZ (A.34)

s s s My

< [ G5 ) [ s aus(h)

d°p d*p, d’p; d*p.
/(2#}3 ,/(27r)1’ (27)3 /(271')3
x (0]b,(p),,5,,)d.(Pes 5e.)

X

x (B (810 B (12 51)€™ 7 + (1,31 )50 (p131)e™ ]
X [ben Py 82 )ter (e, 32)e™ 7% + (P2, 52)0es (P2, 52)e ™)
% [b (P31 83)8s (P, 53)€™ 7 + dyua (P2, 83) 0, 1(Pn s3)e _.,,,.r]
X [u (P1s81)ue,(P1y8)e _'p”4;dp,,l(Pnsx)Ue,(Pnh)e"’”]

X bH(pe,se)d (prrs,)I0)

Of the 16 terms in this equation, only 4 have non-zero occupation number matrix

elements. Without the integrations and streamlining the notation somewhat, these

are

T, = (0b,d.b! boddt bld"[0) (T ey B e, ) €' P17P2=PIFPT (A 35)

10Ty HA ey e
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T, = (O\,d.b! d' d,,b.,bld"|0) (Tpy ey Bpyte, ) &P HPI=P=P

e ey €+ Ye '

Ty = (015,d.d, be, b, db bldh10) (Tps ey Tyiyve, ) €T P2 POAP) T

€2 Y13 ey Vet

T, = (0|b,d.d, d} bt b, bEd!|0) (Tpu Vey Ty e, ) €' (P HPTFPI=PA)T

H1 Yeq Ty PI eu

(A.36)
These terms reduce to
Ty = (=1)6u.0 6D(B) = 51) bura, 8 (pr — pa) (A.37)
X 5’7 3e 6 ( pc) 583.ﬁu 5( )(P:l - pu)
% ( 6 n “ 4)ei(r’l-17'1--77:“{'~!)4)~-1'
T._) =0
T, = 0
T4 = ('"1) 6-4}..33 5(3)(1-7: - I;J) 53',..19 5(3)(5:: - 13.2)
X 6-"1 Sy ‘5(3)(1;1 - ﬁu) 651'59 5(3)(5i - ﬁt)
X (—'63{.37 6.41 ‘q‘)e'(_pl+ﬂ7+ﬂ3—p4)-r
(A.38)

when applying the anticommutation relations on the creation and annihilation op-
erators and using the orthonormality of the two-spinors x,. Carrying out the spin

sums over 3;, 82, 33, 5, doing the integral over d*z, and assuming that the conversion

takes place at time t = 0, we obtain
f . dJ — _‘/
Mosiss, = 5 / 5 D1s(P )/( ) ¢15( ) (A.39)

eyt i
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X By b4, (27) 8RB — B2 = B3 + P
< [695, - 5) 6P (7L — 5) 8V (72 = Pr) §(5y — Bu) +
65, — 7) 6 (5 — 52) 80 — B 80(F = 7)) -

Doing the integrals over the momenta pi, P2, P3, and p, and using the definition of

the center of mass momentum gives

oo p 85 Ly [P -
"\As'e"u’s’u - m'._)\. (27‘,)3 <zsIS(p )/(2TF)3 ¢IS(P)
X 28y 4 Bep, (2m)° 80P~ P). (A.40)

Now, the integrals over p and p' can be done. Inspecting the definition of the
momentum components, $1s(p), of the spatial wavefunction in Egs. A.20 and A.21

shows that

By &5 )
$15(0) = /(27‘.)3 $15(P) (A.41)
which results in
Myt ses, = 7{::: 28, 4. 05,0, (2m)? §ON P~ P) ‘¢1s(6)\2 . (A.42)
AN

The probability of finding the e~ overlapping the pu* enters as a result of the low en-
ergy limit which has rendered the coupling a contact interaction. One can integrate
the matrix element we have found over the final state center of mass momentum to
remove the remaining delta function. The result is

fae

my

/\Als’es’usgs“ =2 ¢15(6)‘2 631,.5: 632.3‘, . (‘A'43)

The leading factor of 2 is a result of the nonvanishing terms T, and T of above and
may be interpreted as coming from equal contributions of s- and t-channels (see
Fig. A.1).

Thus, we have shown that there is an alternative possibility for the action on
the spins in a conversion coupling matrix element. In particular, for a neutral scalar

coupling, we have shown that

(H;mls,,m,su ‘H\{'\_/\ 1\1§m5.’m5u> = (%) 6""‘5,'"‘5’-;‘ 5m’5“,m_c€ ) (A44)
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where the helicities have been translated to the projection quantum numbers of the

uncoupled angular momentum basis. The parameter 7 is given by

2=2 3“3
2 2

AY

$150)| . (A.45)

Inserting the form of the 1S spatial wave function, defining a new coupling constant,

G, ;57> and substituting for all other constants gives

n_ ~-13 ___i\@'j_
5= (3.8 x 10 eV) >< ( G ) ) (A.46)
where 5
Gy = 22 (A7)

If one were to work out the magnetic field dependence of the conversion prob-
ability under the assumption of a neutral scalar conversion coupling, I expect that
the same low field behavior as for a (V' — A) coupling would be found (because of the
symmetry of the M and M mp = £1 states under spin interchange of ms, & ms,),
but that the high field conversion would be unaffected (see Sec. 2.4). So, again, the
important conclusion seems to be that the magnetic field dependence of the conver-
sion probability is a model-dependent result, just as is the definition of a coupling

constant for the conversion.



Appendix B

Effect of External Magnetic Field

on M — M

B.1 The M Atom in a Magnetic Field

The non-relativistic Hamiltonian for the M atom in an external magnetic field is

H=H,+H,y;+Hz, (B.1)
where ) ,
_Pr _ €

H, = 5 " (B.2)

describes the unperturbed hydrogenic Bohr atom in relative coordinates and CGS

units. The reduced mass of the system is defined as usual by

mz[l +—1—]_1 (B.3)

me, m,

and the eigenenergies of H, are

1 a?mc? 1 me'
il - B.4
2 2 n? 2hr? (B.4)

These energies depend only on the principal quantum number, n. The Fermi contact

EU:’—

portion of the hyperfine interaction between the electron and the muon spin is given
by

—

Hyy=aS§,-J, (B.5)

150
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where a will be referred to as the hyperfine structure interval, .5—",, i1s the muon spin
operator, and J is the total electron angular momentum, J=1I+S, In the
following, we will restrict ourselves to the ground state, for which n = 1 and the
orbital angular momentum of the electron, L, has an expectation value of zero.

Thus, the expression for Hys; becomes
th :ag,‘-g,, . (Bﬁ)

Lastly, Hz describes the Zeeman effect, the interaction of the magnetic moments of
the electron and of the muon with the external magnetic field, B. Designating the

magnetic moments by [, and by [,, we have
Hy,=-i B - [, -B. (B.7)

The magnetic moments are related to the spin angular momenta by

[Zn = —ge U' Sf,’ (BS)
for the electron and
— me ~
Ky = Gu KB ( ) S, (B.Q)
m,
for the muon. Here, ug = 2;"”__ is the Bohr magneton, m, and m, are the electron

and muon masses, respectively. The g-factors for the electron and the muon differ

by O(a?), so for our purposes they may be taken to be approximately equal:
gy = go ~ 21 + éa—) = 2.00232 . (B.10)
T

To express the eigenenergies of Hy; and of H;, we introduce two possible bases

for the state vectors. The uncoupled basis is labeled by six eigenvalues:

In,l,sp,s,,,m,e,m,,‘,) . (Bll)

Here, n is the principal quantum number (n = 1 for our case), [ is the orbital

angular momentum quantum number, such that

L*n,l,s,,5,,m,,m,) =l(l+1)In,l,s,,8,,m,,m,) , (B.12)
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s, and s, are the eigenvalues of the electron and muon spins, respectively, with

5-:3 ‘TL, l’smsuamsumau> = Se (5(’ + 1) Inalv 'Srv's;z’mse’m.vp) (B13)
and
'S-:,—: |TL, l)scvsu7mag!ms“) = 5;4(5;1 + 1) |n,l,se,s,,,m,c,m,“) ’ (B14)

and, finally, m,, and m,, are the eigenvalues of the z-projection of the electron and

muon spins, respectively. Since we are considering only states with n = 1, = 0,

se = 3, and s, = 3, a shorthand is appropriate:
ITT) = l1101%1{;7+§)+£>
|Tl> = |1a0a% 7% $+% 1’"%)
|LT> = '1’07%3%$_)§ ?+%>
In this basis,
Srz: |mﬂnyms,l> = mse msﬂmsu\) (B16)
and
S Imy,,my,) =m,, |m,, ,m,,) . (B.17)
After introducing the total angular momentum operator, f, as
F=58+8§,, (B.18)
we can define the coupled bastis as
Inylyse, 8., fimy) . (B.19)

Again, there is an appropriate shorthand notation:

I1,+1) = [1,0,3 ,%,1,+1)
|1,0) = |1,0,%,%,1,0)
1,-1) = 1,0,5,3,1,-1)
0,0) = |1,0,5,3,0,0). (B.20)
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In this basis,

F? |f,mg) = f(f + 1) |f,my) (B.21)
and
F.\fyms) =mg |f,my) . ~ (B.22)
Now, the eigenehergies of Hy; may be expressed in the coupled basis as
a 3
(Hpy) = Eny = E[f(f+1)_§] (B.23)
after making use of the identity
T N
Su-Se=3 (F* - §2-387) . (B.24)

The representation of Hj, is, however, not diagonal in the uncoupled basis. Since

the coupled and uncoupled bases are related by the orthogonal transformation

|m.q,amsu> = Z lfamf><famf|ma,1msu> ) (B25)

where the factors (f,m {m, ,m,, ) are the Clebsch-Gordan coefficients:

(L+1l+3,+3) = 1

mol+i.-4) = =

(1,00 — L ,+1) = \/%

1= 4,-) = 1

0.0+4,-F) = -

(0,0 =1, 41) = % (B.26)

the operator Hy; may be represented in the uncoupled basis by

oy o= (145,050,000 + (1-4,-D5- 1)
= (e 5051 ) - (-85 )
s (gm0t ) + (-85 1) B2



The eigenenergies of H; are

m,
(Hz) = Ez = ge pp Bm,, — g, B (m ) B m,, (B.28)

u
in the uncoupled basis. Here, one can apply a corrolary of the Wigner-Eckart
theorem, the Landé formula [Wei78]:

(j,m|A - J|j,m)
7(7+1)

where A is any vector operator, J is an angular momentum operator, j is its eigen-

(j,m| A |j,mr) =

(j,m| J |7,m1) , (B.29)

value, and m is its z-projection eigenvalue. Applying this to Hz in the coupled

basis gives

1 me
(famf|Htham.f>:§<9c*‘—g,,)#33mf, (B.30)
my
which may be rewritten be as
(Hz> =4gr 4B Bmf y (B31)
where we have defined the effective g-factor
1 m.
ar = 5 (9( - -'rn_u 9;.) . (B.32)

At small magnetic fields, B <« i the coupled basis states well approximate the
v

eigenstates of the full Hamiltonian (Eq. B.1), but at larger fields, -~ < B < ";‘——"ﬂnL,
it is the uncoupled basis states that closely approximate the eigenstates of H. The
latter upper limit derives from the condition that the Zeeman effect be treated
perturbatively, that it not influence the structure of the atom grossly. At field
values intermediate to these limits, B ~ =, We must carry out the diagonalization
of H in either of the state vector bases to obtain its generally valid eigenstates and
eigenenergies.

Choosing the uncoupled basis to express the full Hamiltonian gives

E, 0 0 0 [TT)

H - 0 E, § O 1T4) , (B.33)
0 2 E; 0 A
0 0 0 E [11)



where the rows are labeled
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by the basis vectors and the columns are arranged

similarly. The diagonal entries are given by

a /1 i
B = Eot+g(5+7)
a 1
E, = E —(-— )
2 u+2 2+Y
a 1
E, = E —<——-—X)
3 u+2 5
a /1
L= B+ (5-Y), .
E, ot 35 (5 (B.34)
where B
X = k8 (ge + 2o g,,) (B.35)
a m,,
and B
y = B8 (g,,,— I’iﬁ;g“) _ (B.36)
a m,

The solutions to the diagonalization of H are the well-known Breit-Rabi states and

energies, here designated by

| ALy
2
PYSES!
A

N

The Breit-Rabi energy levels

1AMy and AN respectively:
111

(X +VIT=X7) | 11) +111))]
[110) = (X +vT+X7)[11)]

L)

1+ (X = VT X

z|~2|-

—

L
?

(B.37)
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1+ X7
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+
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(B.38)

(

are shown in Fig. B.1 as a function of the magnitude

N

of the external magnetic field. It is straightforward to verify that, as B — 0, the
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Ground State Hyperfine Energy Levels
of Muonium in a Magnetic Field

' . ; T ; T ' T ' 1 ' 2.5
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Figure B.1: Energy levels of ground state muonium in an external magnetic field.



157

Breit-Rabi eigenstates and -energies tend to the coupled states and energies and
that, for B > -2, they approach the uncoupled states and energies. One concludes
that an increasing external field decreases the extent to which the coupling of the
muon and electron spins affects the energy levels of the M atom in favor of an
increasing interaction of the spins with the applied magnetic field. The external

"field decouples the spins.

B.2 The M Atom in a Magnetic Field

The M atom differs from the M atom only by the reversal of the charges of the
muon and of the electron. Thus, the field-dependent description of the M atom may
be obtained easily by noting that the only change needed in the above calculation
for the M atom is a reversal of the signs of the magnetic moments of the muon and
the electron from Eqs. B.8 and B.9:

—

Hovr = g U Se (B.39)
- m.\ =
Ky- = —Gu UB (m_> Sy - (B.40)

u

Thus, the prescription for transforming the results for M to M is X —» —-X,Y —
~Y, and 1+ X% — —+/1 + X2. The last sign change seems arbitrary, but it is
allowed by making the opposite sign choice as for the case of M when diagonalizing
H,; and H; together for the M atom. This choice renders the index assignment of
the levels more symmetric and eases the comparison of the limiting behavior of the
M and M levels with the magnetic field. We retain the definitions of the coupled
(Eq. B.19) and uncoupled (Eq. B.11) state vector bases, with the addition of a label
to indicate a M or an M basis state. In other words, the label M or M designates
the charge state of the component leptons. For M , the Breit-Rabi states are

Ay = (BT ,17)
PUI. %[_(mmw,uwm,m]
Ay 717[|7»7,u)+(X+\/1_5§7(7)I'M',lT)]

171
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ATy = BT L)
N = [1+(X+ 1+/2)2]5 (B.41)

and the corresponding energy eigenvalues are

T 1
’\(IM) = E,+ g (5 - Y)
EYi 1
A(M) — EU + g_ (__2_ — 1+ X2>
7 1
AN = Eu+g<—§+\/1+X2)
77 a /1 .
A = E(,+§(§+}') : (B.42)

These energy levels are shown in Fig. B.2 as a function of the external magnetic
field. It is between the M levels of Fig. B.1 and the M levels shown in Fig. B.2 that
the possibility of conversion is to be considered. Since the conversion Hamiltonian
is not diagonal in any basis considered so far - it acts in a space spanned by M
and M ground state hyperfine levels — the rigorous procedure for calculating the
conversion probabilities between given hyperfine levels of M and M is to diagonalize
the full Hamiltonian describing the hydrogenic structure, the hyperfine interaction,
the Zeeman effect, and the conversion coupling. Then one expresses the desired
initial and final states in terms of the eigenstates of the full M, M system and
calculates the overlap of these. The next section discusses the diagonalization of

the full 8 dimensional Hamiltonian in the space of coupled M and M in then =1

state.

B.3 The Coupled M, M System in an External
Magnetic Field

The full Hamiltonian that describes M and M in the n = 1 state with a possible

conversion coupling is

HZH()+th+HZ+H/\Iﬁ, (B-43)
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Figure B.2: Energy levels of ground state antimuonium in an external magnetic

field.
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where
5? ¢?
H = — - —
© T
ﬁ = 5e"ﬁu
T o= fe—T,
-1
1 1
. =[ +—] , (B.44)
m, m,

as before, for the spatial part of the Hamiltonian which acts the same for M and
for M

S, S
["‘2

Hh/ e
-5.2-8.7 , (B.45)

Il

Nia R

also as before, for the hyperfine interaction which acts equally on M and Af ,

. = 2] me = =3
Hz = = (gc#556~B - guua;n—-Su-B) , (B.46)

u

where the sign choice is “+” for M and “-" for M , and finally

)
H,\I:TT = Z Z ‘AI mae m ) (5) 6ms,.m',e 6m,“.m{,“ (A’Iy M,,, My,
-+ H.c.
= Y m,,) (g) (M; m,,,m,, | + H.c. (B.47)
for a (V — A) conversion coupling, or
H‘\IT\-T = Z Z ‘Aﬂ[ ) msg m ) <g) 6m,=.mg“ (Sm,“,m’,e (A’[, ms:) msu
+ H.c.
= > lﬁ—f My, ™) (%) (M; m,,,m,,| + H.c., (B.48)

for a neutral scalar conversion coupling. The convention of spin-projection labeling

is still that the electron spin is given first and the muon spin second.
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The uncoupled basis will be chosen for the diagonalization of H, since it seems
easier to interpret the difference between the magnetic field dependence of the con-
version probabilities for the two possible forms of the M — M conversion Hamil-
tonian in this representation. Here, the diagonalization will be carried out in detail
for the (V — A) form of the conversion Hamiltonian, Eq. B.47, as this form is be-
lieved at present to be more well-motivated physically than the alternative. For

convenience, we recall here Eq. B.34

Al a(l
EE ) = EO+'2'(§+Y>
= FE,
; a 1 R
Eg‘l) == E() + ‘2‘ ("‘5 -+ x\)
= F,
; a 1 R
EI()‘I) = E(]+§ (—5 —A)
= F,
( a /1 .
Eg.\l) = E,+ _2_ <§ _ },) :
= E.; (B.4g)

and its equivalent for M

N a /1l .
5" = B+3(5-7)
* - E,

Y 1
E(\/) _ £ 48 (___ B />
2 E +2 5 X

= FE4
(:\_I) a( 1 ,)
E = ( - —_ x‘
3 E)+2 2+
= FE,
Y 1 .
Eg ) = Eu+%<‘2“+}’>
= E] . (B.50)

With these assignments and the choice of uncoupled basis, the matrix representation
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of the full Hamiltonian is

E, 0 0 £ 0 0 o0 |M, 11)
0 E, 32 0 ¢ o0 o M, T1)
0 ¢ E, 0 0 0 ¢ o |M, LT)
6 0 0 E, 0 0 o0 ¢ M,
H — ) 1 2 | li> (B.51)
5 0 0 0 E, 0 0 0O M, 11)
o & 0 0 0 E; 2 0 M, 1])
o 0 5 0o o ¢ E, 0 M, LT)
\0 0 0 ¢ 0 0 0 E ] |MI)
where the rows have been labeled with the uncoupled basis vectors and the columns

are ordered correspondingly.

We seek a solution to the eigenvalue equation

Hln) =nln) , (B.52)

where the eigenenergies are represented by 7,, the eigenstates by |7,), and the label-
ing index by : € {1, ...,8}. All quantum number dependence labeling charge and
angular momentum state of the eigenvectors is contained in the label n,. In fact,
these states will turn out to be mixtures of the uncoupled basis states, so it is not
possible to display any of the charge and angular momentum labels explicitly; there
are components of several of these present. The necessary and sufficient condition

for the existence of a solution for the eigenenerg'i,es 7, is the secular equation
det(H —nlI)=10, (B.53)

where I is the identity matrix and 75 is to have eight possible solutions. Straight-
forward, though tedious Gauss-Jordan manipulations on the 8 x 8 determinant

transform Eq. B.53 into
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—4(%>2(Ez—n)(sz—n)} . (B.54)

The solutions can be written as

a|l /6\°
= E,+2]= ° <
i) EJ+2L2+ a) +}
SO IS S T G A
To= BT T \ a ‘

1
M = E, + - ‘—’2‘“—\(1—}-

- , .
all 5\?
= E,+-=-1=-— - Y?
T T2 TN a) *
a |l 5\° R
3 = E()+_ - - - },—'2
7 2 |2 (a) N
- r - :
- E. = a —l+ | 1 é Y2
N = vT G 5 \J a + 4
1 : ]
Ny = EIJ":“E — _\J(l__é) _,'_:"2
2 a
all 5\° N
R = EU+§ -2“+ (;) LY, (B.55)

where n; = 1, and 73 = 7, have been written as separate solutions, though they are
degenerate. They result from the first factor in Eq. B.54, in brackets. which gives
two double roots. Since there must be eight solutions, due to the dimensionality of
the Hamiltonian, we expect eight distinct eigenstate solutions, of which two pairs
of states are energy degenerate.

The eigenstate solutions are found by substituting the solutions for 7, into
Eqg. B.52. For the degenerate pairs 1, ng and 7, 7;, there remains one free pa-

rameter for each eigenvector that must be chosen in determining the exact form of
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the eigenfunctions when forming them as linear combinations of the uncoupled basis
states. The requirement to fulfill in these choices is the orthonormality of the eigen-
functions. The freedom for these choices is a direct result of the energy degeneracy
of these eigenstate pairs. The choices are made to give the minimal representation
in the uncoupled basis. The remaining eigenvectors are well-determined. After a

lengthy calculation, the eigenvector solutions are

m = ¥ {uu m+ (%) [_y-h (&) +yz} 7, m}

) = ]—\1,; {w, 1) + (1+ g)] {—X—%— J(1 + %) +x2} M, 1T)

~X + \J (1 + g)z +X'2} )H, 1)+ \H, lT>}

lng) = 1—&- {— (1 + g)—l {*X + \J (1 + g) + X'-’} M, T1) + M, |T)
+ |8, 11) - (1 + g)-l {—X + \j (1 + —Z) +X‘2] |T\J, lT)}

—

) = i}{w,w—(%) v (E)Q*W}lﬁ?, u>}
ns) = i{—(%) {——H\(g) };M 1) + A, m}
ne) = iﬁ-{—(l \'+J 1—— X'Z}IM, 1) ~ M, 17)

+ M, 1) + (l— g)— {X"‘ (1 - g)LV} M, lT)}
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|M, IT)

6 2
X + 1-—) + X2
a.

X + (1— )2 X2 lM 1) +|M, u}

Ins) = ‘J\‘I/-T{

where

Y+ (55- +Y2] M, L) + |7, 1) } (B.56)

N = \1+(%>2[—Y+ (2)2+Y2

Ne = \2{1+(1—2)_2 -.¥+J(1—-§>2+X2r}. | (B.57)

-

An energy level diagram for the eigenstates of the coupled M, M system is presented
in Fig. B.3.

Several checks have been carried out to verify the expected behavior of the
eigenstates and -energies for the coupled M, M system. The orthonormality of the
eigenvectors as given has been verified. Limits for B — 0 and § — 0 have been
taken and found to be correct.

In previous work [Mor66,Ni88b,Sch88], perturbative approximations to the en-
ergy levels and states of the coupled M, M system were derived. It has been shown
here that the solution may be obtained without resorting to a perturbation expan-
sion of the eigenstates and -energies. The cited treatments give their results for the
eigenstates in terms of the coupled basis. To facilitate the comparison of results,
the eigenstates given above in the terms of the ur.coupled basis may be cast into

the coupled representation:
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Ins) = L {(%) [—Y + \J (g)z +Yi’} |M; 1, —1) + l?\—/l—; 1, —1)} . (B.59)

When these results and the eigenenergies are expanded to first order in the quantity
(6/a), they agree with results given in previous work [Ni88b|. For computational
convenience, the results as given in terms of the uncoupled basis states will be used
in the following.

To prepare for taking matrix elements of the M —— M conversion operator
when calculating the probabilities relevant to this experiment, the expressions for

the (M, M ) eigenstates have been inverted for the uncoupled basis states. The
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results are:

I

|M, TT)

M, 1]) = %{2

2 l775>}

- (1+2) |- °) 4 x2 m%
+§;{(1_94{x+JQ_ZY+Xﬂhm—m»}

o = (1) [ox o) v em]
o= (-8 [ {2 e ]

M, LY = i{mo+@)LY+ @)+Yﬂma}

(B.60)
nd

3, 11) = —]\1,—]{ %){—1-% (g) +Y2}ln>+h7>}

i _ L

.M,T) = NQ{ 72) + [n3)

10 = %{2
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M, 1) = 737{‘(%) v (é)” lm)+|ns)}- (B.61)

In the next section, the time-dependent probabilities that the coupled M, M
system is in the M state will be calculated assuming an initial state of pure M.
These probabilities will be specific to particular angular momentum quantum num-
bers of the initial and final states. Since M in this experiment is formed in a mixed
angular momentum state, this calculation will be followed by the density matrix

treatment appropriate to the experimental conditions.

B.4 The M — M Conversion Probability

The action of the M — M conversion Hamiltonian on the spins of the particles
involved figures centrally in the calculation of its matrix elements. In accord with

the result given in previous work (Mor66], the form

)
A/I) m,,, m3p> = (5) 6m,e,m"e 5""#'""3“ (B62)

X7 ’ /
(M; m, , m,,

HMKT

will be assumed for the calculations in this section.

Since we have solved for the eigenstates and -energies of the coupled M, M
system, the time-dependence of any superposition of these states may easily be
written down. If we construct an initial state, for example of pure M in a well-

defined angular momentum state, as

lp(t=0)) = cxlm) , (B.63)
k
then the time development of this state in the Schrédinger picture proceeds accord-
ing to
(L) =D cke™™ M iny) (B.64)
k
Thus,

() = U(t,0)[%(t =0)) , (B.65)



the charge state of the component leptons. For M , the Breit-Habi states are

A =
Ay =

—
—

)
[~ (X + VITX2) (B, 10) + (77 ,11)]

AT = [T+ (X + VITXP) 7T, 11))

’

=1~ g
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where
U(t',t) = e 11E-0/k (B.66)
and H is the full Hamiltonian. For the eigenstates of H we have, of course,
U(t,0) me) = e™ ™A ne) . (B.67)

Now, we define the probability of the system being in the state |M; m;,, m, )

at time t after starting in the state |[M; m,,, m,,) at time t = 0 by

— 2
Pﬂ(m:c’m;u;m’e7m"u;t) = ’(M’ m;', m;u|U(t,0)|M; m,,, m,,)

(B.68)

As we prepare the system initially in a state of pure M, we list now the probabilities
of finding it in the M state at some later time. Displaying explicitly the magnetic

field dependence in the coefficients of the time-dependence, they are

(&)
P(T1, 115 t) = @7{'—:—2 sin’ wyt

Pr(ll, L) = P(77, 115 1)

—

(1+%) ,
Pr(1L,1Li) = ; sinw,

4 \/(1+§)2+X?

D
Y-8 xe

Pr(lT, 11 t) = Pr(Tl, TLit)

sinw_t

{(cos wit — cosw_t)’

| =

Pyr(lT, Tl t) =

X X

+ sinw,t — sinw_t

\/(1 NE \/(1—3)2+X2
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Po(11, 1T5t) = Pg(ll, 1L 1) (B.69)

In these expressions

+ X2, (B.70)

)
w_ = Q—ag\ (1 - 2)2 + X2, (B.71)

and

2

wy = 5‘% (g) +Y?, (B.72)
All other possibilities give zero. The most important observation at this point is
that all of the non-vanishing probabilities depend upon the magnitude of the exter-
nal magnetic field through the quantities X and Y. More precisely, an increasing
magnetic field will increasingly suppress the M — M conversion in all possible
channels. This suppression is due to the breaking of the energy degeneracy of the
M and M levels involved in the conversion, as is discussed in more detail i~ Sec 2.4.
The suppression is strongest in the extreme levels of the triplet, | T1) and | ||}, for
which a field of only 0.2 mG will halve the coefficient of the time-dependence. In ad-
dition, however, the time-development of any M component is somewhat speeded,
due to the field-dependence in w,. For the unpolarized states, the dependence of
the denominator in the coefficients on the field is not strong until X ~ 1, which
corresponds to B ~ 1.6 kG.

The M initial state in this experiment is a mixed state of 50% each of |M; T])
and |M; ||), if the quantization axis is assumed to lie along the incident u* beam
direction. Therefore, rather than calculating the integrated conversion probabilities
for each of the separate angular momentum channels, we turn next to the density
matrix description of the system.

Working in the uncoupled basis, the initial state of 1S A produced in this

experiment may be represented by

p(t=0)=[M;T]) 5 (M; Tl + [M; L) 5 (M; L], (B.73)

N
N
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where the quantization axis has been chosen to lie along the incident beam direction.
This form is a direct result of the pickup of an unpolarized e~ from the §i0, powder
by the incident u* , which is fully polarized with helicity —1. The density matrix

describing this mixed state at a later time is then given by

p(t) = U(t,0) p(0)U'(¢,0) , (B.74)

where U(¢,0) is the time-evolution operator of the full Hamiltonian, defined above
in Eq. B.66. Next, an operator is needed that projects out any M components in the
system with equal probabilities, that is, an operator that represents M detection
that is not sensitive to the particular angular momentum state of the M atom. This

operator, which will be called Pjy, is then

Pry

M) (M| + M5 1) (M ;1
+ M) (BT 11|+ ML) (M5 L (B.75)
Thus, the probability of the system being in an A state is given by
Py(t) = Tr (p(8) Py) (B.76)
which becomes
P(t) = Tr (e-"’“/" p(0) e'it/h P;\—,) . (B.77)
To evaluate Py7(t), we can either transform p(0) and Pj7 as given into the eigenstate
basis {|n,) } or express the time evolution operators into the uncoupled basis. In

any case, to perform the trace, all matrices must be in the same basis. The former

approach is chosen for simplicity, so the required transformation may be written as
|Th> = Z Arj |uj> 3 (B78)
1

where A,; is the basis transformation matrix and the uncourled basis for the full

M, M system is given by

) € {IM; m,,, m,,), IM ; m,,, m,,)} . (B.79)

The matrix elements of the transformation may be read off the set of equations

above (Eq. B.67) expressing the uncoupled state vectors in terms of the M, M
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eigenstates. The matrix multiplication is lengthy, but straight-forward. Taking the

trace yields the result

6
P(t) = 2[(2)24.}/2] sin® wyt
[ 1+x)-(8)° Lo (et
’ 4.1 Ja+8) x /(1= 8"+ x2] (=55
[ (1+x7) - (&) 1 e —w.
+ ZliL1+\/(1+§)2+/?\K1—§)2+X2J sin (-——————2 t) (B.80)

where and wy, w4, and w_ are given in Eqs. B.72, B.70, and B.71, respectively,
and the magnetic field dependence of the coefficients has been explicitly displayed.
The above is then the instantaneous probability of finding the system in any of the
M sublevels after initially preparing it in the specified mixed state of M in our
experiment. The first term may be identified as coming from conversions between
the polarized states of M and M and is very sensitive to an external magnetic field,
whereas the second and third terms are due to conversions between the unpolarized
states, which exhibits a weaker degree of field dependence. The limit as B — 0 of
47(t) is simple and provides another check on the result:
P (t; B =0) = sin? (ét—) . (B.81)
2h

The quantity P;7(t; B = 0) is plotted against time in Fig. B.4 together with the
normal muon decay time-dependence.

We note here that this result could also have been obtained by calculating sepa-
rately the conversion probabilities between polarized and unpolarized states, since
conversions between the two do not mix. The contribution to conversions between
unpolarized states, however, has two components that do indeed interfere: the con-
versions from triplet-to-triplet (singlet-to-singlet) and triplet-to-singlet (singlet-to-
triplet). Thus, using the density-matrix formalism will ensure that proper account

is taken of this behavior. For convenience, the right-hand side of Eq. B.80 may be
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state of M, for B = 0.
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expanded in powers of £, since ¢ ~ 1077, The result is

1( 6\, ,a¥t 1. ,(8 1
Pa) = (7)1 (3 veee)
1(6\° X° (6t 1
= (2) —— - Vi X)
4(a) (H-V[ \ﬁx/1+X") cos(h i ]

+0(<(§)3) . (B.82)

This section concludes by considering the integral of Eq. B.80 over the full
observation time during which the apparatus may observe a decay of the M, M

system. This integral represents the “signal” that is sought in this experiment and
may be written as ;
T) = / ye~ P(t)dt (B.83)

t
where < is the muon decay rate

1
= — B.

Y - (B.84)
and T is the duration of the observation. Since the mean speed of the thermal M in
vacuum is about 0.7 cm/us and the size of the field of view of the spectrometer is on
the order of 7 cm, the M, M system requires about 10 ps to leave this acceptance.

As this time is long compared to the muon lifetime, the approximation of T — oo

is valid and will be used. Carrying out the integral on Eq. B.80 gives

(&)’

Sti(ee) = 2 2
.I( ) 4[(,_5_) +(§) +Y~_x]
+ 1 | - (1+X?%) - ()2 (wy +w_)?
8 i \f(l+§)2+ \2\/( _2)24.)(2‘ ¥+ (wy +wo)?
| 1+ x2)- () (wi —w.)
+ = |1+ , 5 (B.85)
R R (R R Rt

Substituting nurnbers into the expression for Sy reveals that an external magnetic

field inhibits 50% of the conversion for values above the order of 100 mG but below
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the order of 1 £G. It is on this “plateau” that this experiment was carried out, with
a magnetic field in the conversion region of about 10 G. The dependence of Sy on
the magnetic field is shown graphically in Fig. B.5.

Calculating the correct expansion in powers of ¢ can be a little tricky and has
been treated in a cavalier fashion in previous work by keeping inconsistent orders.

Expanding all quantities involved through second order in £ and collecting terms

yields

O
Sl\l( ) - 4[(%1 2+Y_2]
()
4(%) 1+ x2)

+ (S)zlf.i'? '
4[('—‘})2+(1+X2)]

Here, the first term is due to conversions between the polarized states, the second

Qi

+

(B.86)

term is due to conversions from triplet-to-triplet or singlet-to-singlet unpolarized
states, and the third term describes conversions between unpolarized states going
from singlet M to triplet M or from triplet M to singlet M . As a check, the limit
of S57(00) — 0 as § — 0 is correctly obtained. We notice that the last term vanishes
as X — 0, as expected, because a non-zero magnetic field is required to mix the
triplet and singlet unpolarized states in M (and in M ). In the absence of such
mixing, the conversion cannot couple the unpolarized part of the M triplet with the
M singlet or the M singlet with the unpolarized part of the M triplet state. The

last two terms may be combined to get the result

£)? )2 (8)?
N O M O 184 0

4 [(”—1)2 + Y?} 4 [(’—1)2 +(1+ X?)

(B.87)

In this equation, the contributions from conversions between polarized states are

collected in the first term and from those between unpolarized states in the second

term.
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Figure B.5: Experimentally expected M — M conversion probability as a function
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It is possible to take the X,Y — 0 limit to get the form of S3j(co) valid at zero

field without approximations. This limit is

B—u

62
5—\7(00) - 2

1
2
(hy) + 62"

in agreement with results of earlier work. The value of the matrix element for the

(B.88)

M — M conversion is

2 \/éwaa Gr
= (1.07 x 107"?) <GA‘“—’) (B.89)
Gr

with Gr = 8.96x 107 eV -2 and ay = 0.532x 1078 cm. Also, Ay = 3.00x 107 '"VeV is
the muon decay constant in energy units, and we know [Hub90] that G357 < 0.29 G
(90% C.L.), so, assuming that § < Ay, we may write

Syi(c0; B =0) = (2.57 x 10“5) (%ﬁ> . (B.90)
1o

This is the final result in the B — 0 limit for the assumption of a (V' — A) conversion

coupling.



Appendix C

Second-Order Taylor Expansion of
the Magnetic Field

Since the track model that is fit to the measured particle hits in the spectrometer
requires knowledge of all components, B,, B,, and Bz, of the field in the spectrome-
ter magnet at arbitrary space points, it was necessary to develop a suitable method

by which to determine these values from the measurements at the field map grid

points.
In a vacuum region, the static magnetic field may be expressed as the gradient of

a potential. Maxwell’s equations require this potential to satisfy Laplace’s equaticn:

B = Véyu (C.1)

V.B = Vi¢p=0. (C.2)

V x Veéu =0, (C.3)

and has been reduced to an identity by assuming Eq. C.1. Thus, one might, in
principle, fit the magnetic field globally to the field map data, using a series of the

eigenfunctions of the Laplace equation for the given boundary conditions. These

180
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boundary conditions are exceedingly complicated for the wide-gap field-clamped
" C-magnet used, so this approach was abandoned.

Instead, it is sufficient to have a locally valid interpolation procedure that uses
the measured field map values at grid points surrounding the point at which the
field is needed. The interpolation is accomplished by a Taylor expansion of each
field component around every field map grid point up to second order in the spatial
coordinates. The order was chosen to allow use of Maxwell’s equations to constrain
the expansion parameters and to handle regions of rapidly varying fields more ac-
curately than a linear interpolation would.

The expansions of the field components around the point £, = (zy, yu, 2y) are

B. — B, +(z—z) aaB; ) (v —w) 35: . (z — zy) BBB; .

~(z = z0)(y — W) g;‘g'; . + (2 —2)(z — =) g;gz z

+(y — w)(z = 2) g;};: i

+0(A%), i 4
B, = B, +(z—=z) %—”- . + (¥~ w) 36113; . + (2 = z) %{? )

+1 (2 = zy)? B;Qiy § + 5 (¥ = w) 832 2y‘f0 +3 (- a) 682? -

+(z ~ zo)(y — ) g:g; H (@ =)z - 2) g:gz 3

Sy - e - =) T2

+~0(a%, (c:9)
B. = B, +(z—z) BBB ‘ (v - w) %]zi . H =) % :




182

, 0°B; , 0°B. , 0°B.
+1 (¢ — z0) 6°~~0+%(y yu)’az'fo.‘g(z—z()) 62*5
0°B. 0’ B.
+(:I! - xU)(y - yl)) 6176;/ _ + (:I: - zU)(Z - ZU) 6.’1:(92\-
6°’B.
+(y — vo)(z = 2) 590z |-
+0(A%) (C.6)

where B(Z,) = (Bzos Byo» Bz ), & ~ (z — z0), (v — W), (z — zu), and all derivatives
are evaluated at the central point of the expansion, z,. To render these formulae
useful, one must determine all of the first and second partial derivatives of each
field component at every one of the field map points. These may then be thought
of as the coefficients in the spatial expansion of the magnetic field.

For easier reference to the derivatives in the expansion, one introduces the co-

efficients 5B
Dabz ab . y (C.()
where a,b € {z,y, 2z}, and
9% B,
Sabc - M ’ (CS)

| £4
where a,b,c € {z,y,z}. It is reasonable to assume that the field components are at
least once continuously differentiable, so that Sabe = Sacs holds for the mixed partial
derivatives. This assumption has already been built in to Eqgs. C.4, C.5, and C.6.
We thus have 10 expansion coefficients for each of the field components. To
determine these coefficients, we use the field map data at the grid points given
in Table C.1. In the expansion, (zy,yu,2y) is chosen to be the point on the field
map grid that lies closest to the point at which the field is needed. The remaining
points are nearest neighbors and next-nearest neighbors to this central point of the
expansion. At each of these points, the field map gives the value of 3 field compo-
nents. This gives 57 field values with which to determine 30 expansion parameters.
It turns out that, excluding the central point of the expansion, the remaining 54
values doubly determine each of the remaining 27 expansion parameters. Of two

possible expressions for each of the expansion coefficients, at most one can be the



Field Map Grid Point

Field Components at this Point

(zv, Yo, zy)

(1‘ 1,yu,2u)
(T+1,ymzu)
(Zoyy-1,20)
(1‘07y+1,zu)
(lfu,yu,z 1)
(mu,yu,24.1)

T_y1,Y-1,20
I4—l7y+l’zti
Ty Y+15 %0
Tr13Y-1320
To1yYny 2

TiyYus 2y
TiyyY-1,2-
Loy Y+1s 241
Loy Y—152+1
TosY+15 21

(z )
( )
(z )
( )
( )
(1'+lsylh‘~+l)
(E lyy”s"+l)
( )
( )
( )
( )
( )

BrovByo’Bzo

FlmFly’Flz
F2J‘aF2yaF'Zz
E’]z)Ely)Fi}z
F‘IsFlysFJz
E’).r, FSU’ F"):
FSJaFGy,FSz

i F:JaF _/aFT:
Frpy Foys 1,
FR:raFHvaﬂz
F!;.r?F?:y?Féz
F,().TaFQt/,FQz
Fo, Fgy Fo,
F\U.T’ Fl“ya FHJ:
F{Ur’Fl’Uy’ FI,Uz
FllryFllnyllz
Fl,lJ'!Frlinl’lz
Frazy Fiay, Fio:
Fl,'l.r’Fl,ZJ’F\,2z
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Table C.1: Grid points and field values used in the Taylor expansion of the spec-

trometer magnetic field.
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symmetric approximaiion to the first or second derivative at the central point. Since

this is accurate to one higher order in the grid point spacing than any asymmetric

approximation, the symmetric derivative approximations are used to find all of the

coefficients. The resulting expressions for the D, are

Dr:r =

D., =

(11_1 - 130)(1:".’1- — Brn) _ (1:-*-1 — :BU)(FII _ Biro)
(33+1 - -’Bu)(iﬂ—l - :n+|) (:v_‘ - -’130)(-73—1 - z+l)
(-1 — z0)(F2y — By) _ (41 — z0)(Fiy — By,)
(I-H - 1‘0)(34 - m-H) (1’—! - Q’U)(m—l - w+l)

(33—1 — 33!))(F2: - B:n)

((E+1 - 31))(Flz - Bzo)

(zo1 —zo)(z1 — 241)

(y+1 - yU)(F3.r - on)

(zo1 —zo)(zo1 — z41)
(y-1 — y)(Fir = Bs,)
(Yor = Yo )(y-1 — y41)
(y—l - y")(Fly - Bu,,)

(y-1 — yU)(y—l ~ Y1)

(Y+1 = yu)(Fsy = By,)

(y+l - yu)(y—l - y+1)

(y-1 — yo)(Fi. — B..)

(y-1 — yu)(y-x — Y+1)

(y+1 - le)(ET: - Bzo)

(y+1 - yU)(y-—l - y+|)

(z-y — 2y)(Fs, — By,)

_ (2+1 - ZU)(FSI -

(Y1 = wo)(Y=1 = y41)

B.,)

(Z-H - ZU)(Z-I - Z+l)

(2—1 - ZU)(Z—I - 2+1)

(2, — z0)(Foy — B,,) _ (241 — ZU)(FBU - Buu)

and the S, are given by

SITT

Sy_rr

(Z-H - ZU)(Z—I - Z+l) (Z—l - Z(J)(Z—l - z+l)
(2—1 - Zu)(Fﬁz - B:r») _ (34.—1 - Zu)(Fs - Bzo)
(21 = 20)(2-1 — 241) (201 = 20)(201 = 244)
2 [(Fu-B.) (Fu- BJ.,J)]
(z+1 —z1) | (241 — z0) (z-1 — zu)

(x+l - 27—1)

2 —(F'Zy”Byn) . (Fly"Byo)]

L (zo1 — zv)

(37—1 - mu)

(C.9)

(C.10)
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S . (F111'+F121‘"F1,11—Fl’>21~)
i (y+| "y‘l)(zﬂ'—l —z_,)

S . (Flly+Fl2y—F{1y“F;2u)
. (y+1 "y—x)(ZH = z_,)

S _ (Fui: + Fio. — F{,, — F{;.)
yz  — .

(y+1 - y-l)(3+1 - Z—l)

These formulae are used to calculate the full set of expansion coefficients for each
interior field map grid point. Those grid points on the boundary do not have al' of
the nearest neighbor points required for this procedure, so they represent the limits
on where field values are available.

During the execution of the analysis code, all expansion coefficients are stored in
memory, so the field at any point within the spatial limits of the field map is found
by calculating it according to the expressions given in Equations C.4, C.5, and C.6.
This minimizes the computational effort of this aspect of the replay program.

Finally, it must be noted that the constraints that may be placed on the ex-
pansion parameters by Maxwell’s equations and their first spatial derivatives were
not enforced. The absolute measurement error of 0.5 G together with the fact that
not all field components are simultaneously large at most points in the field map
causes some deviations from Maxwell’s equations. These always occur at points
where at least one field component was very small compared to the center gap field
of 522 G and, hence, had a large relative error associated with it. Since this only
happens for small values of a field component, it will not cause any difficulty or
diminish the validity of the field values as obtained above. One may imagine a
global “smoothing” algorithm that adjusts iteratively each field component at each
grid poini in a way to convergently bring the whole field map into precise agreement
with Maxwell’s equations, effectively using information about the whole field of the
magnet to constrain the values at each point. As such a procedure seemed quite
complicated to devise and since we did not expect any significant improvement in

the reliability of the field information, it was not attempted.



Appendix D

Model of Spectrometer Tracks for
Track Fit

The track model for this experiment is based directly on the equations of motion

for a charged particle in a magnetic field, the Lorentz force law,

d ©
== Loy, , (D.1)

dr  m
where u" is the 4-velocity, dr = dt/+v is proper time, ¢ = =e is the charge of the e*

or e~ , m is the electron mass, F*’ is the Faraday tensor, and SI units are used.

Using
a P
vt o= (hey9) = (D.2)
and

0 =l= ks =L

o k=0 -B. B,
LY B, 0 -B, |’
[f -B, B, 0

where E is the electri field and B is the magnetic field, the Lorentz force may be

decomposed into equations in laboratory coordinates:

d& —
2 5 E (D.3)

Ew'ym
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t,

‘2—'; = q<v+7—1m*ﬁ><§> ,
where £ is the total energy of the e*.

The specifics of the experimental conditions allow further simplifications. No
electric fields are present in the spectrometer, so E = 0. Since the energy loss of
Michel-distributed e* has been estimated to be on the order of 1 MeV in the air
and the MWPCs, a small value compared to their typical energy of several tens of

MeV | energy loss in the spectrometer material will be neglected in the track model.

This entails £ = const. and v = const. The remaining equations are thus

dp: g

dt = "/_m (pyB: - P:By) (D‘4)
dpy q

—2 = — (p.B, — p.B.

7 p (p: p:B.)

dp: q

—Ef,_ = 7’_m(pIBy _pyB.r) .

Since the magnetic field is a function of the spatial coordinates, these equations
may only be solved locally, where the field can be assumed to be constant over a

small region. To obtain this solution, one rewrites the equations as

dp
X M.5 D.5
a P (D-3)
and postulates the Ansat:z
At = M5 (D.6)
where
0 B. -B,
mM=-21|_B 0o B, (D.7)
Ym
B, -B, 0

and p, is the momentum at the outset of the motion through the small region.
Inserting the power series definition of the exponential of the matrix, M, and using

the recursive property found for powers of this matrix gives the result

sinth N (1- C?SWt)MZ 7 (D.8)

w?

plt) = |1+



189

where
g8
w=1 (D.9)
ym
is the cyclotron frequency of e* in a field of magnitude B.

Since the position of the particle in the spectrometer is related to its mome.atum

by
- dz
p=am_ (D.10)
the solution for the position of the particle follows iinmediately as
- Pyt 1 — coswt) Mp, wt — sinwt) M?p,
=g, 4 2ot . ) Mpy inwt) M'py (D.11)

ym w ym w3 ym
To use this equation as a step prescription in a simulation, a few approximations
that follow from assuming small time steps are possible and indeed necessary, since
the form of the equation is very susceptible to round-off errors. When these are
carried out, one has an equation that is third order in the time step and so might
promise to be computationally efficient. It is not, however, useful to us, since we are
bound by the assumption that the magnetic field be locally constant, an assumption
that holds for distances of at most on the order of 1 ¢m. Instead, the more robust
4th order Runge-Kutta integration method is chosen. It offers the advantage of
being able to use information on how the magnetic field varies along each of the
four intermediate points that are part of its step prescription.

For the differential equations (Eqs. D.5 and D.10) for transporting a charged
particle through a magnetic field, the prescription for the nth 4tk order Runge-
Kutta step, transporting the particle from location £, to Z,., with a change in

momentum from p,, to p,+1, is given by ihe equations

1 ,- - ~ -
511—#—1 = fn - 6 (kl.r + Zkz‘r + 2k3;p - k|f> (D12)
- R - =
Pnst = Pn T 6 (klr’ - Zk‘.’p + 2k1)h - klp) 3
where the step parameters are
- At
k|f = D p—‘n (D13)
ym

k”, = At "M(In)P—n
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~ At 1~
Ky = — (Pu+ =k

2z ‘7m (p + 2 lp)

- 1-~ -
kgp = At JM((En -+ Eklz) (ﬁn + Eklp)
- At 1-
By, = — (f+ =kap)

3 +m (Pn + 5 %2p)

- 1-~ - -
k;;p = At ./M((L‘n -+ Ekgz) (Pn -+ §k2p)
- Al —~
k4:r = 'Y_m (pn + kﬁp)

k-lp = At M(zn + ES::) (ﬁn + I;Sp) .

The track model then begins with the particle at a given point in space with given
momentum components, the above step rules are used to move this particle dis-
cretely through the whole spectrometer, and the hits in the MWPCs are recorded
as this simulated track passes through each chamber. Two minor modifications,
however, improve the performance of this method for the particular situation of
this experiment.

Firstly, the magnitude of the momentum is apt to be perturbed by round-off
errors. This can cause increasing errors in the position and momentum of a particle
as it is transported through the spectrometer. A small error in momentum causes
a deviation from the true track into a region of field different from where the par-
ticle was “supposed” to be. This, in turn, will cause a deflection in the particle’s
path that is different from what it would have been along the correct path. Thus,
round-off errors compound with systematic deviations from the desired path for
this particle. To cure this problem, the momentum components are renormalized
at every integration step to maintain the correct magnitude. This, in effect, assumes
that any round-off errors will occur with equal frequency in each of the momentum
components.

The second modification addresses the optimal value for the step size. Adap-
tive step size control of the time step At was briefly attempted, but then removed.
The spatial variation of the magnetic field in the spectrometer figured centrally

in the determination of the optimal step size. However, the overhead of the step
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size adjustment to maximize speed and minimize the errors in the dependent vari-
ables cancelled any advantage in reducing the total number of steps through the
spectrometer.

Rather, the most important modification to the general algorithm is that the
particle is transported through the field-free regions before and after the spectrom-
eter magnet in a single step each. The time step within the field region is, then,
the only tunable parameter of the algorithm and its value was found optimal at
At == 0.15 ns. This is equivalent to a spatial step of about 4.5 ¢cm. The objec-
tive in this determination was for maximum speed while maintaining accuracy in
the MWPC hits. This accuracy was checked by replacing the measured C-magnet
field map with a uniform field for which the particle trajectory was analytically
calculable.

The time for passage of the e through the entire spectrometer (210 cm) was
about 7 ns, and about 80 c¢m of this distance was in the field region of the spec-
trometer magnet. Thus, a typical track requires on the order of 20 Runge-Kutta
steps in tracing it through the full spectrometer. The fitting of an actual track from
the data requires at least 14 — and usually not more than 14 - integration passes
through the track model. For each of two iterations, one is for the initial value of
the x* of the track, five are for the calculation of the first derivatives of x? with
respect to the parameters, and one more is for the determination of x? after the pa-
rameter correction. It is found that these typically 280 Runge-Kutta steps per event
required an average of 130 ms of CPU time on the VAX6420/VAX8700/VAX8650

cluster computer system that was used for the data analysis.



Appendix E

Minimizing x? for Track Fitting

E.1 Definition of the Weight Matrix

Since multiple scattering in the passage of decay e* through the spectrometer can
cause appreciable deviations from an ideal, unperturbed track, this effect must be
accounted for to obtain a meaningful x* for the fit to each particle trajectory. In
particular, if the particle leaving a track scatters at some point in the spectrome-
ter, all further hits in the MWPCs will show correlated deviations from the ideal
track. This correlation between hits and the relative importance of the hits in the
different MWPCs must be incorporated into a carefully constructed weight matrix
that appears in the definition of the appropriate x* for the track fit.
To formalize this. define the measured hits in the MWPCs as

B “_") , (E.1)
Yh

Iy = . (E.2)

where
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and

Yin

- Yah

Yn = . ( ES)
Yan
Yin

The fitted hits, for which the track parameters need to be determined, will be

f=(;) : (E.4)

mlf

designated by

where

Laf

B
i

(E.5)

Tyf

and

The x? for the track fit is then defined as
) T - -
x'=(h=F) W(k-7f), (E.7)

where W is the weight matrix that contains all the information about the relative

importance of each hit and the correlations between them.

Short of including scattering angles as fit parameters to the track model, multiple

scattering can not be °

‘corrected” for any given measured track. Rather, one must
treat scattering as a stochastic process which introduces uncertainty to the measured
hits in addition to any intrinsic measurement error (i.e. wire spacing). The correct
choice for the weight matrix in this case is the inverse of the covariance matrix of
the errors in the MWPC hits:

W=zx"", (E.8)
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In terms of the measured and fitted MWPC hits, the covariance matrix is defined

as

Z,; = cov ((E—fd), , (ﬁ—f))) . (E.9)
Since the fitted hits derive from the track model presented in Appendix D, which
describes “ideal” tracks that suffer neither energy loss nor scattering, the difference
between such fitted and the measured hits will be characterized by the effects of
multiple scattering and energy loss. The energy loss of a decay e* is negligible
in the spectrometer, so the covariance matrix is constructed solely by considering
multiple scattering and the intrinsic resolution of the chambers.

The random variables in which to express the covariances between the MWPC
hits are chosen to be the projected planar scattering angles and uncorrelated mea-
surement errors for each plane that are due to the intrinsic chamber plane resolution.
With this choice of random variables, there are no correlations between measure-

ments of z-coordinates and y-coordinates in the MWPCs and the covariance matrix

S, 0
Ez(on' (E.10)

This entails a block-diagonal weight matrix

W:(WTO), (E.11)
0 W,

becomes block-diagonal:

where

s

; (E.12)

Thus, we need to evaluate

(,),, = cov (&), , (&);) (E13)
and

(Z,),, = cov ((&), , (&),) (E.14)



where

{

)

|
8

& = (

=1
St

gy:(

) .
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(E.15)

The vectors €; and €, are the deviations of an actual track from the track model.

Next, these deviations will be expressed in terms of the appropriate random vari-

ables describing the scattering and measurement process.

In the following, the intrinsic measurement errors in MWPC : are denoted by §; .

and 6, ,. The planar scattering angles in the air between MWPCs i and j are denoted

by 6,;. and 6;;, and the planar scattering angles due to passage through MWPC 14
are Oy pe.e and Oy pe,,. The length of the track path between MWPCs ¢ and
J is symbolized by [/;; and the planar angles of incidence on MWPC i are ¢, , and

¢,.,- With this notation, the deviations in the z-hits may be written as

€1 = 51.:
ll’;‘gl'JJ
67.’ = 52 r /‘—
V'3 cos G
) 1!201'.’..r
€ry = 5'!.: T
V'3 cos ¢, .
N LiBia e lasBypivpes,  1yBag.
-+ - —
Cos ¢3.J' cos QSZLJ' VvV O COS ¢ 3r
E — 5 f llzgl'.'.l‘
rd - lr T
\/§ cos ¢2,.r
. l‘.ZIBIL’J l'z lg.\l\\‘l’(."z.f . 12:)923,:
-+ -
cos @, . cos ¢, V3 cos by.r
!
} llle‘.’:s.: lr’ixe,\lll‘l"(,‘ 3.r o 4:5‘9:11,1
e —= .
cos ¢, , cos @, » v3coso,,

In complete analogy, the deviations from an ideal track in the y-hits are

€ = b

. 112912,11
€ = 6‘.’." T T

V3 cos ¢y,

(E.16)

(E.17)

(E.18)

(E.19)

(E.20)
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€3 = 53‘5/ “112912.y -
‘ V3 cos ¢,

153612,  laabarvipea,y 1336,
cos ¢ cos @3, V3 cos ¢s,

ey.‘ — 54 y ll'zol’z,y
1162, " LOanvreay 133623,
cosPyy cos ¢, V3 cos Dy
3025,  Ly@anvpes.y l3,65,,

cos QS Ly cos ¢4.y \/§ COS ¢.|‘y ’

The random variables &, 1, 6., 81j.rs Biss G111 ¢ 1z @and @apipe .y are indepen-
dent by construction so that the covariance matrix can be easily evaluated. In the
equations for the deviations, the values of these random variables for a particular
track enter. Of course, we can never determine these values for an individual track,
but, as the calculation of the covariance matrix involves finding the expectation val-
ues of the random variables for each entry, we will be left with error estimates valid
for any track. These estimates then depend only on the models for the distributions
of the random variables as this determines their expectation values.

The above expressions for the track perturbations at the MWPC planes have
been designed assuming that one can estimate the r.m.s. planar multiple scattering

angles in a slice of material according to an empirical fit to Moliere theory [Yos88]:

. 14.1 MeV/c [ L 1 L
')n:w = ——————__I_Zinc ean \:1 + - lo \ <"‘_‘>] ra‘dians . E.21
plane pﬁ Ll{ 9 Eio LI{ ( )

In this equation, p, 8, and Z;,. are, respectively, the momentum in MeV/c, the
velocity in units of ¢, (vacuum speed of light), and the charge in units of e (electron
charge) of the incident particle. The ratio L/Lp is the thickness of the scattering
medium in units of its radiation length. The range of validity of the expression is
107 < L/Lp < 10.

The MWPCs are treated as scatterers of negligible thickness compared to the
overall length of the track, whereas the air between them is treated as a bulk
scattering medium. To find the deflection due to scattering in a region of air, it

is necessary to estimate the length of the particle track between the two bounding
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MWPCs. This may be found approximately from the coordinates of the measured
MWPC plane hits. Also, since the simple estimate of transverse deflection to a

particle due to scattering over a path of length L in a medium [Yos88],

1

rms L rms

plane ™ % plane » (E22)

holds in a coordinate system affixed to its particular direction of motion, these
deflections need to be transformed into the coordinate system of the MWPC planes.
Both of these considerations require knowledge of the direction cosines of the particle
at each point. These may again be estimated from the measured MWPC hits. The
deflections of a particle in each part of the spectrometer are then added together
over the portion of the track up to the MWPC plane for which the deviation is
being calculated.

Using Eq. E.21 to estimate the r.m.s. values of the random variable scatter-
ing angles in MWPCs and air and assuming that the r.m.s. value of the intrinsic

measurement error in all MWPC planes is

———

V() =0, (E.23)

the expectation values in the elements of the covariance matrix may be evaluated

to give

ZI_|_] = 0 (E.24)

21.1,2 = EI." 1 = 0

2:,1.:3 = Em.:i‘l =0
Zooao= Zpa=0

o 12.(62,
E.r,‘z_! = g+ ~__l_2__{ l-.r)

3 cos? o, ,
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112(0’12'2.1'> [ ll? + 123 ]
V3cosgyr |V3cosd, CcOSPa,

E:,z.z; =

21.3‘2 = 21‘"3

N

9 . 112(832.2) Ly n Ly ]
= V3cosdy, [ V3cosy, cosdy,

E:r.-i,? = Yraq

vl

Lo

by \?
EJI 3 = 2 + — + — 6, T
3 7 (\/3 cos ¢y, COS ¢3.1‘) (612.2)

la3 ? 2 lys )2
+ 85,01 ppe + | ——— 02.
(COS ¢) G renn) + (=) (B

Ly, , Ly, Ly lyy ]
S, = —=——1f,, + + =
i V'3 cos ¢y, (612.) [\/§ cosg,, COSP3, COSQ,
l?(l l'.’l l?:; l'.’i} l:ll

02 YA + = 9'2 d +
(B3 pcas) V3 cos ¢:;.z< 23.2) [\/gcos $s.. COS Py

COS @y r COS Py 1

2:.1,15 = Ez.ii.l

. L, 1° . L, :
2 — 2 12 21 02 21 02 s
.44 o+ [\/ﬁcos . + cos by s (615.) + 0 by s (B3 reaq)

lyy Ly, : Ly, ? 1 .
62 [ 02, o 2192 }
+ [\/gcos baa + cosqsu} (0hy.2) + (cosqﬁm.) (Brnvpeaz) + 3( )

for the matrix of z-covariances and

Ty = o° (E.25)
Ey,l,Z = 2y,2|l:0

Tyas = Zyar =0
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Ey.l.l = Z:y,l.l =0
lf <91221>
\/§ COS ¢21

5 _ 112(91°;> Lia + lyy
v23 V3 cos ¢y, | V3 cosd, cos ¢,
y y

Ey,ii." = Ey,2.3

) l 2 l
Ey,'>.| — ‘~< 12, lj/ [_ 12 , 24 ]

/3 co sPry [V3cosp, cos@,

21,.1.2 = Ey.z.l
: L Ly T
Zyan = 00 (V§ C(l)s D2 - cos dlm,) \91:.;,/‘
+ (:65;;:) ( ,Z\IH'I’(,".’.;/j’ - (‘\/gcl;—;%) (95:3,;)
P— Lya {.9.132.”,) [ _ Ly N L2y n Ly }
V3 cos oy, v3cosg,y, cosdyy cos ¢,
+— qSl;,: ilols ¢,1..,<6§IH PC2y) T Tacosdr. Cl(;: ¢M<9f; y) [\/5 Cl(;; oo + co:’qlb,',,

! ! : l :
2 12 21 p2 2 ‘
Yo = o+ [ = ‘ + ‘ ] ‘\.gnzxy) - (—]> <9.2\/u'1-(:2.y>

V3cosg,, COsQy, COS Py

l'_r( l : ) \ [ : ] 1 )]
+ [ 15 ; + ”, } {H'Eiu) + ( ‘, ) [(931\\‘/’('3‘;/) + 5(9-}“/)

v'3 cos ¢.’Ly COS @y Cos @,

for the matrix of y-covariances. By construction, there are no cross-correlations
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between z- and y-hits:
Er.x:y.) =0 Vv (l’J) . (Ezﬁ)
Some simplifying assumptions are introduced by specifying the estimates of [;;

and ¢, ., ¢,,. Denoting the measured MWPC plane hits for a given track by z, and

y, for 1 € {1, ..., 4}, the planar direction cosines are given approximately by

_ (zo — )

cos@,, = CoOSPy, = : : (E.27)

V(@2 — ) + (22— 21)
C05¢l.y = cos ¢'3,y — / (y22_ yl) -

VI =) + (2 - 21)

T, — T

cosgy, = cOSQ,, = ; ( '2 ) =

Vizi—z3) + (20 — 23)
cos¢y, = cos¢,, = (yl — %)

\/(y, — )+ (z) — 2z3)° ’

where z, is the location of the ith MWPC along the spectrometer axis. For both
transverse dimensions, the planar direction cosines of incidence are taken to be
equal for each pair of MWPCs, before and after the magnet, since the field of the
spectrometer magnet extends only negligibly into the regions between each chamber

pair. This assumption leads also to expressions approximating the length of the
track between adjacent MWPCs:

Ly = \/(1‘-2—%)2+(y2'—y|)2‘*'(22—21)' (E.28)

Z("—ZZA 2 P
b = ( >V/(‘B3‘“xl) +(y2 — y1) ‘*‘(z‘.’—ln)z
z

ly = \/(-’Cx - w:i)z + (y.u - y:s)2 + (24 - Zx)z
Ly = b+,

where 2. is the center-gap point of the magnet along the spectrometer axis. One

slight deficiency in these expressions is the consistent overestimate of the actual
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length of the track from MWPC2 to MWPC3 by neglecting the smooth curving of
the particle track in the magnetic field region. This was not found to significantly
impact the performance of the fit. It modestly overestimated the multiple scattering
between the second and third chambers which caused a slight under-weighting of
the track coordinates in MWPCs 3 and 4.

Referring to Eq. E.21, it is clear that the momentum of the particle leaving
the track in the MWPCs enters into the estimate of the r.m.s. scattering angles
in the covariance matrix. Thus, a value for this momentum is required to find the
elements of the covariance matrix. For the case of data taken with the spectrometer
magnet turned off with the purpose of providing data to be used for the final off-
line alignment of the MWPCs, this estimate comes simply from the calibrated
pulse-height measured in the Nal(T!) crystal calorimeter. Requiring a sensible
pulse height of the NaI(T!) crystal reduced the acceptance of the spectrometer,
which does not spoil the alignment data, but is clearly undesirable in the search for
M — M events. For MWPC alignment data, the NaI(T!) pulse height is the only
available momentum estimate for the track, but when the magnetic field is on, one
may construct a momentum estimate from the observed MWPC coordinate data
together with the field map data.

To this end, the field of the spectrometer magnet is modeled by a region of fixed
length with sudden boundaries (see Fig. E.1). The value of the field in this region
is estimated by taking the field integrals of the magnet along the spectrometer axis,
for given transverse coordinates, and dividing by the length of this region along z.

Assuming, then, that the particle experiences a constant field,

1 2(4'%':'
By =+ fé_ B,(2,y,2)dz , (E.29)

along its trajectory through the magnetic field region, one can relate the radius
of curvature of the track, R, to the deflection angle, 6, and the secant across the

portion of the track in the field region, s, by

6
s=2R sinE . (E.30)



202

Figure E.1: Geometry for the momentum estimate to seed the track fit. The mag-
netic field is modeled by the values of the field integral over the effective length.
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The secant is also related to the field length and the transverse deflection by
s = Az? + AzZ? . (E.31)

The angles of incidence entering and leaving the field region in the zz-plane add to

give the total deflection angle
§=¢+ ¢ (E.32)

Furthermore, the z-deflection and the field length may be related to these incidence

and exit angles and the radius of curvature by

Az = R(cos¢, — cosad,) (E.33)
Az = R(sing, +sin¢,) .

Then, combining Eqs. E.30, E.31, E.32, and E.34, one can solve for the radius of
curvature in terms of only the incidence angle, the transverse deflection, and the

effective field length:
R - Az + Az? E.34)
~_'..7(.A;:sin(,z’)|-—Az:cosgi;,) ' (E.

Finally, as the radius of curvature of a particle in a magnetic field is directly related

to its momentum, the latter may be found from

p”’ '——EBPffR . (E35)

The momentum thus estimated is used to seed the x* minimization algorithm for

fitting to the particle track.

E.2 Fit to Alignment Tracks

For the fit to straight-line tracks acquired to align the MWPCs, it is possible to
specify the solution for the track parameters in closed form. This is a direct conse-
quence of the linearity of the fit function (a straight line) in its parameters (slopes
and intercepts in each of the zz- and yz-planes). The results of this fit are then

used to estimate the necessary alignment corrections to the coordinates measured
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in each of the MWPC planes to ensure that they relate to a coordinate system

common to all chambers.

The fit functions, one for each planar view of the track, are

Tog =(2) = Zref) My: + Trey (E.36)
and

Yor = (20 = Zreg) Myz + Yrey - (E.37)
Here, the chamber index is 7 € {2, ...,4}, while the “reference chamber” is taken to

be MWPC1. This means that no corrections will be applied to the coordinates of
MWPC1; rather, the coordinate systems of all other MWPCs will be adjusted such
that they agree with that of the reference chamber. Fixing the coordinate system
of one of the MWPCs in this way prevents an overall “travelling” of the corrected
spectrometer coordinate system, ensures minimal adjustments to the coordinates
measured in the other chambers, and entails a simplification of the fit.

The z- and y-intercepts may be immediately identified as z,.; = z, and y,.; =
y;. This reduces the fit to determining the best slopes, m,. and m,,. Assuming
that there are no zy-correlations in the measured MWPC hits, the fit decouples
into separate linear fits in the z2- and in the yz-planes. Each of these have three
remaining data points (discounting the hit in the reference chamber) with the slope

as the only fit parameter, leaving 2 degrees of freedom. The x* for the fit may be

written as

x! = €'we (E.38)
W, 0 €,
= (e en)| ‘
0 W, €,
= éfw,e + e“;' W, €,
= X:zr T X;: ’

where one may identify
X; =W, E (E.39)
and

X, =€l W,E, . (E.40)



It is now possible to redefine the variables of the fit to be

Az, = z;p —z,.;,
Ay, = yin — Yref
and
Az =z, — 2, ,
so the x?’s hecome
X: = Z (Az, —m,.Az) Wi (Az; — m,,Az;)
)

and

X:; = Z (Ay, - my:Azr) Wy,xj (AyJ - myzAZ)‘) .

1y

The minimization conditions are

and
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(E.41)

(E.42)

(E.43)

(E.44)

(E.45)

(E.46)

Though the weight matrix is dependent on the fit parameters through the length

of the track between the MWPCs, the dependence is weak near the x? minimum.

One may, therefore, assume that the weight matrix is stationary for this problem,

allowing the closed form solutions

Ny
[STRR T

AZTW, A
AZTW, A

my. =

&y

and
AzT W, Ay
my. = ——=——T—"—— .
AZT W, Az

(E.47)

(E.48)

The 1-0 errors on the slopes can be determined from the condition that the x? be

increased by unity. The calculation is a little lengthy, but straightforward, and gives

(E.49)
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and

I
Tmee T\ AZTW, AT

Since the weight matrix is symmetric, the denominator under the root is a proper

(E.50)

quadratic form and thus positive definite.

E.3 Fit to Shift Corrections of MWPC Coordi-

nates

With linear fits to a large sample of tracks taken with the spectrometer magnet
turned off, one may determine the best shift corrections to the measured coordinates
in MWPCs 2, 3, and 4 to align them with the transverse coordinate axes of MWPCI.
This procedure is expressible as a fit to a constant for each z- and y-plane of
chambers 2, 3, and 4. An important assumption at this point is that there are no
rotational misalignments between the NIWPCs, so that the z- and y-coordinates
for a given chamber do not “mix.” In practice there will be such misrotations, but
they are known to be small. The procedure to correct for them is described in
Section 4.3 and is performed iteratively in conjunction with the correction for shift
misalignments described here.

The shift corrections for the MWPC planes according to a single fitted straight
line track would simply be the deviations, €, and ¢, defined above. These may be

rewritten, according to Eqs. E.16, E.36, E.37, E.41, and E.42, as

& = AT -m.A7 (E.51)

AZTW, A
= AF- (22 25 2%) A7
o (AETW,AE) ‘

& = A¥-m,.AZ
AZTW, Ay
= Aj- [ 222V ar
Y <A£’7WyAE) ‘

The hypothesis, now, is that these deviations are sampled from distributions whose

means are the best corrections to the measured MWPC hits. Over the sample of



207

all tracks recorded under alignment conditions, we may take the weighted average
of the deviations for each track to obtain the best estimate for the required shift
corrections to each MWPC plane coordinate.

This weighted average requires an error estimate for the deviations, €, and €.
To calculate these errors, one notes that all random variable dependence in the
deviations in Eq. E.51 is contained in the quantities AZ and Ay. Estimating the
uncertainties in the track deviations by the roots of their diagonal covariances gives

2 (Az,)"’

U = J‘.?I—T'-ﬁ-—.‘
AZT W, Az

Cra
= Er.u - 0'2 (Azx)z

me,

(E.52)

and

2 iy :(AZ’) (E53)

(o = “yna T oy T
" T XTTW, As

2

= Zyn _U:)n[, (Az)" .

These errors are used to weight the determinations of the best alignment shift
corrections on the placements of NWPCs 2, 3, and 4 relative to the reference

chamber, MWPC1, according to

(n}

—_— 1 ET,I
€., = D. ; m (E.54)
and
L
TN D (E.55)

Von ((T:;':).
where n is the index labeling the event number, which runs over all tracks recorded

for alignment purposes at fixed conditions, and

D, =y 1 _ (E.56)
" (o))
and
p,=% L (E.57)
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The errors on these shift corrections are

1

=5 (E.58)

0'(:". =

and
1

o7 = \/ITy . (E.59)

Since the determination of the best alignment corrections is tantamount to fits to

constants for each chamber plane, one may calculate a x? for each of these to judge

the overall quality of the alignment procedure:

(n)  —. 2
X, = Z<E—(——,—]i)~—)— (E.60)
n o’"r.’l

Py (EyJ EUJ
le., - Z (n) 2
n Ocy.,

For the alignment data, these x”’s differed no more than a few % from the number

of events fitted. This means that the x* per degree of freedom is very nearly unity,

indicating believable alignment shift results.

E.4 The x? Minimization for Curved Tracks

Since there is no closed functional form for particle tracks in the spectrometer when
the magnetic field is turned on, the fit to particle trajectories for most of the data
must rely on an iterative numerical algorithm to converge upon the best parameters
describing these tracks. To arrive at a prescription that accomplishes this, we can
use the fact that the initial track parameter estimates rarely lie far from their
best fit values. Futhermore, the behavior of the x? as defined in Eq. E.7 along
each of the parameter axes was found to be quite parabolic. Thus, one may fit a
paraboloid to the x” hypersurface and estimate the parameter values of the best
fit from the minimum of this paraboloid surface. To ensure that the procedure has
indeed converged, the paraboloid fit may be iterated until the resulting value of the

x° minimum changes by less than some given fraction from one step to the next.
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We need, therefore, an expansion of the x* through second order in the param-
eters of the track fit. It can be shown that this is completely equivalent to carrying
out a second-order Taylor expansion of the fit function in the parameters [Bev69).
First, it is in order to restate the form of x3, displaying explicitly the parameter de-
pendence in the fit function, which in this case is given by the track model discussed

in Appendix D:
X\ = 2 (2 = 20 0(@) Waaj (25 — 25,4(8))
T (Y = (@) Wy, (n — y5.0(8))] (E.61)

The track parameters are symbolized by @. They have been chosen as

a = ! = inverse magnitude of momentum

a = 51.} = z—position of particle at MWPC1

ay = Yy s = y—position of particle at MWPC(C1

a; = ¢, = zr—direction cosine at MWPC(C1

a; = ¢, = y—direction cosine at MWPC(C]1 . (E.62)

Since the particle deflection in the spectrometer magnet depends inversely upon its
momentum, the given choice for a, is superior to using the momentum directly as a
fit parameter - the dependence of ¥2 of the track fit upon a, is parabolic, whereas
it is rather pathological when the momentum itself is the fit parameter. The charge
of the particle is determined by simply comparing the in-going and out-going z-
direction cosines with respect to the magnetic field region, as determined from the
track asymptotes. The latter are approximated by the lines passing through the
chamber pair before and the chamber pair after the field region. As the particle
charge is not a continuous parameter, it is determined once in this way and passed
to the track fitting routine as a fixed condition.

With respect to the parameters thus defined, one seeks the global minimum of

x* determined by
Ox*

et T ) E.63
Ja. 0 Vvne{l, --,5} ( )
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Since the initial guesses at the a, lie close to the solution sought, there are no

complications due to multiple minima. Also, there is no danger of converging upon

a maximum, so the curvature of the x? surface need not be checked to be concave
upward. Inserting the definition of x? from Eq. E.61 into Eq. E.63 gives

Oz f

0= —

)3 [ da,

1,7

- 0y,. -
Weii(zin — zj4(a)) + 3aj Waij (yin —ys(@))| » (E.64)

a

where the symmetry of the weight matrix has been used and it has been assumed
that its dependence on the parameters may be neglected. This means that the
initial parameter estimates are used throughout to determine the weight matrix, an
approximation that holds because the starting parameter values are not far from
the minimum sought. At this point, one needs the second-degree Taylor expansions

of the fit function around the desired minimum:

:r,‘f(.a) = I,.f(at))+z -

0.1 8y..s
@) = 1, 4(ay) + —=\ bai + baiba,, , E.65
yf( ) 3 f( '-) ZA: aak . k % aakaam i k ( )
where éa = @ — @, and k,m,n € {1, ...,5}. The present parameter values are a

and the parameter values at the minimum are a,. The first derivatives of the fit

functions are thus approximately

6:1:,'/ N 6113,'] 621:,‘]
Ba, |~ Ban | + 'Zn Bandan |, a,, (E.66)
and 5 5 ‘ 52
yi.f ny -yl._f
= —=| ba,, . E.67
Bar |~ Bar|. T2 Bargan|. (E.67)

It is not necessary to retain terms beyond first order in the éa,, in Eq. E.64, since the

intent is to keep x? itself only up through second order in éa,. Thus, the derivatives

of z,; and y,; have been given only up to first order in da,. Substituting these
expansions into Eq. E.64 and collecting orders gives

6.’1,‘, f

0 = —

2 [ Oan,

1]

. Oy,
Wiy (= (@) + 221w
(:‘- an 1

“

vy (Yin = ¥5.0(a0))

dn
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—~ Bm,,; (91:]'.] ay,‘/ By,,f
B 2/c‘ Z_]: [ 60‘" ao WT.,J 60"&7 do aan @n WUJ} 6ak -
62:13,"] -
- m P Weij (zjn — 2, (dy))
0y..s _
- Ba. Ba, . Wy.x’j (yj.h - yj.j(au))] bay (EGS)

with n,k € {1, ...,5} and 1,5 € {1, ...,4}. This may be written as

,Bn - Z Qnk 6ak ) (Eﬁg)
k
where
62:,‘] - ay!./ s
Br = Z Da, W,-‘,J (:EJ‘;, - -'L'J,j(au)) + dax Wy.:} (yj.h - yj.f(ali)) (ETO)
17 JQ d.
and
_ 81:,,/ 6115).[ | By:./ ayj«f
ank = Z]: |:aa” !5‘ WJ‘.'} 8a«k !ﬁ“ + 60.,, 2 W.U-'] aak o
&z, ;| -
- 3a 6;ki~ W,-.,) (wj,j - z),h(an))
8%y, -
- da aék!_ Wy, (yj.f - y,.,,(a.,))} . (E'71)

Since we wish to solve for the corrections §a; that allow us to find the parameter

values at the presumed x*° minimum from those at the current position on the x?

surface, we write

Sa, =S (a")nk By (E.72)

k
and the problem has been reduced to inverting the x? curvature matrix, a. At this
point one may, for calculational efficiency without loss of accuracy, drop the second
derivative terms [Bev69] in a, since the factors (z,4 ~ z,/(ay)) and (y,4 — y,/(@y))
are very small for a good intial guess. This means that

033,./ | W 6:1:”
I- raj a(lk

5 | Oan |

'aq.

4 8y;.f
n aa”

Qe =

ay).f‘ -
W, lﬁ“] . (E.73)

1
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This ensures a positive-definite curvature matrix [Bev69] and significantly reduces
computational effort, since it avoids the need to numer.-ally find second derivatives.
This approximation is equivalent to the assumption of relative independence of the
fit parameters near the minimum.

A final practical concern is the fact that the entries in the curvature matrix, a,
have differing dimensions according to the various dimensions of the parameters.
As a result, the entries of a can have very disparate orders of magnitude. This
situation is often fatal to the matrix inversion algorithm used [Bev69]. To avoid

such trouble, the curvature matrix is rescaled to become dimensionless according to

(E.74)

which may be shown to entail

(a7) = =k (E.75)

Thus, the final form of the prescription to step from the present location in param-
eter space to the presumed minimum of x? is
&..” = 6: - 6&‘ (E-76)

with .
60, = Y (@ u Bt (E.77)

i ———
. VOennQkk



Appendix F

Determination of MWPC

Resolution Function

It may be argued that the resolution of the reconstruction of the decay origin of et
tracks observed in the spectrometer may be modeled by a Gaussian distribution,
as this is the approximate behavior of multiple scattering angles [Yos88]. But the
multiple scattering distribution deviates from a Gaussian in such a way that we
may not neglect it for this experiment. In particular, multiple scattering is more
likely to give large angle deflections than the Gaussian approximation would imply
[Bet53]. As it is of central importance to reliably determine the number of M atom
decays from the vacuum, where these decays may originate from regions very close
to the target, one must be able to distinguish the contribution from M decays from
those of scattered target decays. Understanding the resolution of the reconstruction
gives the tool to accomplish this.

Thus, to derive the correct y-position distributions that describe the decays of
pt and M in the target and the decays of M and M atoms from the vacuum, it
is necessary to have a quantitative measure of the finite position resolution in the
reconstruction of the decay origin by the MWPCs. The principal contributor to
finite resolution is the multiple scattering in the material of the Al vacuum window,
the air between the window and MWPC1, the material of MWPC1, and the air

between MWPCs 1 and 2. The intrinsic resolution of about 1 mm in the chamber
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planes due to the 2 mm wire spacing is also a factor, though not dominant.

In order to measure directly the resolution function of the reconstruction, data
were taken with an A4l foil target of 0.026 ¢m thickness in place of the usual S0,
powder targets. The area density of this foil at 7.0 mg/cm? is comparable to that of
the powder targets used while searching for the M — M conversion, but its phys-
ical thickness is negligible by comparison. Therefore, it presented in effect a point
source along the direction perpendicular to its surface (y), so that its image from
reconstruction along this axis is a direct measurement of the resolution function.

The data taken to measure this resolution are, however, of finite statistics and
overlayed by a small amount of “background”, counts that result mainly from u*
that scatter in the Al target, pass through it, but lodge themselves in the wall of
the vacuum chamber in regions from where their decay e* may still be seen in the
chambers of the spectrometer. Thus, one requires an algorithm that can extract
the counts from the Al target while suppressing the effect of background. It also
must be able to “smooth” out the statistical fluctuations that are present in the
data in a way that is consistent with simple assumptions about the characteristics of
the position-resolution function. A simplifying circumstance is that the background
decays appear in the data to be distributed as a constant over the entire field of
view of the reconstruction.

The first step is a fit to the data using Gaussian distributions to describe decays
from the thin scintillator and the Al target foil plus a background constant. Since
a least-squares fit is known to underestimate the area under a data distribution
(by x?) in the case of Poisson-distributed measurements [Bev69], another strategy
was adopted. The least-squares method derives from the more general maximum-
likelihood method under the assumption of Gaussian distributed measurements for
each data point. The likelihood function is a quantitative estimate of the probability
that the observed data actually derive from some assumed probability distribution.
More accurate for our situation is the assumption that the measurements originate
from Poisson distributions around some mean for each channel in the y-position
histogram. It is now possible to construct a fit algorithm by inserting the assump-

tion of Poisson statistics into the likelihood function [AwaT79]. For this case, the
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likelihood function is

. H( )" e I(u.)>, (F 1)

where f is the fitting function and d, are the data values. Since £ is to be maximized
by adjusting the parameters of the fit function, one may perform the equivalent but

computationally more convenient task of minimizing the negative of the logarithm

of L:
~Inl = Z —d,In f (y.))+ f(y.) +1n(d)})] . (F.2)

In practice, one may omit the constant due to

S In(d.}) (F.3)

and minimize

G = }: ~d,In f(y)] . (F.4)

It can be shown that, for Poisson distributed data, this method neither under- nor
overestimates the area under a data distribution {Awa79|. This point is critical to
this application, as the background must not be underestimated. If it were, one
would get unreasonably long tails on the resolution distribution. Overestimating
the background would suppress legitimate portions of the tails. The drawback of
this procedure compared to the least-squares minimization is the loss of an absolute
measure of the quality of the fit.

Next, an array of numbersis initialized to the fit values from the target Gaussian,
as determined from the above method. This array is now to be treated in a fashion
that will cause it to deviate from the Gaussian but approach the actual resolution
distribution as judged by the background-subtracted Al target data. There are two

basic assumptions made about the shape of the resolution distribution:
1. The resolution function must be symmetric about its peak.

2. The resolution function must fall off monotonically to each side of the peak,

asymptotically approaching zero.
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Under these constraints, one performs what might be termed a relazation fit of the
initial guess at the resolution distribution to the background-subtracted Al target
data. This procedure does not consider a functional form for the fit. Rather, it tries
to adjust an array of numbers to the best fit to a data set by adding or subtracting
counts from each channel in the distribution; only the simple constraints listed
prevent convergence to the “perfect fit.” The quality of the “fit” is judged here by
minimizing its square deviation from the data. This choice will be justified below.

This method proceeds as follows:

1. Choose a channel for which an alteration of the current estimate of the reso-

lution distribution is being considered.

2. Evaluate the x* between the current guess at the resolution distribution con-
tained in the array reserved for it and the Al target distribution from the

data, taking care to properly center the resolution function on the Al target

peak.

3. Add a count on a trial basis to the channel being considered.

4. Reevaluate x°.

(&1

If x° improves, accept the added count and return to step 1.

6. Subtract a count from this channel on a trial basis. .
7. Again, evaluate x°.

8. If x* has improved, accept the subtraction and return to step 1.

9. Select the next channel, looping over the entire relevant range of the data

distribution.

When there is no change to the resolution distribution over one full loop of at-
tempted additions and attempted subtractions, the current distribution is consid-
ered to be the final fit to the resolution. The constraints listed above are incorpo-
rated by actually adding or subtracting trial counts symmetrically from the resolu-

tion distribution and by not allowing a count addition or subtraction if it violates
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the monotonicity requirement, even if the x? were to improve.

The sanity of the choice of x* as the relevant estimator of fit quality must be

proven. To this end, we define x? by

()" = Zw (£ -D)" (F.5)

1]

where n labels the iteration number of the procedure outlined above, w; is the weight
with which channel i enters into x2, F,(") is the fit to the resolution distribution in
channel : after n passes, and D, is the background-subtracted contents of channel ¢

in the data distribution. Next, the procedure for adding or subtracting a count in

channel j is given by

{ne1)  _ (n)
Fr=0 = F g
F(n+l) — F(n) +1
-7 J -
tn+1) (n)
R#:] - F‘l#ij ’ (FG)

where the symmetry constraint has been explicitly built in. [nserting the prescrip-

tion of Eq. F.6 into Eq. F.5 gives x° at iteration n + 1 as

(X-Z)(nﬂ) _ Z w, (F,("H) _ D,)2

= ()" )", (F.7)
where
AR =w, =2(F" - D)) +wo, 1=2(F - D) . (F.8)
Using the symmetry requirements
F"' = F™ (F.9)
and
w, = 1w, (F.10)
gives

NIRRT (B UL | SR 1
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Here, the sign choice is still “+” for adding a count and “—" for subtracting a count.

In order for this iteration to give an improvement in the fit, we require

a()™ <o, (F.12)

With the Eq. F.11 this gives

D;+D_; 1
F(") ( J J) - .
) <\ T 5 (F.13)
for the condition that must be fulfilled if a count is to be added to channel j and
D,+D_; 1
F}") > (-J—'E'—J) + 5 (F.14)

as the requirement to be satisfied before subtracting a count from channel j. One
notes that the weights of the individual channels (as long as they are non-vanishing
and symmetric) have cancelled out; they have no effect on the procedure to obtain
the best resolution distribution. They only determine the absolute scale of the values
of x?, which for this procedure has not been shown to have any deeper meaning.

The criteria obtained for the adding or subtracting of a count from a given
channel in the fit to the resolution distribution are what one may have written
down intuitively and the rationality of this result lends credibility to the form of x*
given. In practice, the fit was done not using the relational criteria for individual
channels, but calculating the full x* at every step. This made the algorithm slightly
more flexible, for example allowing the range of the fit to be asymmetric about
the peak. Since the data distribution contains counts not just from the Al target,
but also from the beam scintillator, the range over which x* was evaluated had to
exclude the scintillator, as counts from it were not described by a fit with the single
resolution distribution positioned at the target peak.

This procedure will work with any number of counts in the Al target data
distribution, but the results certainly improve with statistics. Since these are finite,
though, alterations to the resolution function on a scale finer than a single count
would not be well-motivated by the level of confidence in the number of counts
in any given channel. The data used for the relaxation fit are shown in Fig. F.1.

The resulting resolution distribution, after normalization to unit area, is shown in

Fig. F.2.
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Figure F.1: Distribution of decay positions projected onto the y-axis for the Al
target. Decays from the beam scintillator are also apparent to the left of the target.
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Appendix G

Beam-Correlated Rates

Often it is desirable to know what fraction of a measured detector rate is correlated
to the incident beam and what fraction is due to beam-uncorrelated background
processes. This is possible when the accelerator has a pulsed beam structure, so
that some scalers counting the rates of interest may be gated to count only during
the beam pulses. Comparison of these counts with those from ungated scalers allow
one to derive the information sought.

Specifically, we recorded counts from detectors and from a clock (10 kHz2) once
with the condition of “computer live in the beam gate” (BG ¢ C B) and once with
the condition of “computer live” (CB). Some of these counts (for example, the p-
counter linear-X counts, the clock (CLK'), and the beam-gated clock (CLK ¢ BG))
were also recorded without live-time gating.

What we would like to extract from what we have is the best possible estimate of
the true raw detector rates averaged over the beam cycle as well as in the beam-gate.
Also, often more intuitively useful rates are the beam-correlated and the beam-
uncorrelated rates for a detector, again both undistorted for any data acquisition
dead time.

The basic complication is that the C' B signal was clearly correlated to the BG,
because we triggered the MWPCs on hopefully beam-correlated events of interest
occurring during the beam gate. This was the “Event 8” trigger and was responsible

for most of the overall dead time and for all of the in-beam-gate dead time (Event

221
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4 (collector HV supply) and Event 6 (CAMAC scalers) were forced between beam
gates). Thus, the C B rates are not a good measure of truly ungated rates, because
of the unequal dead times in- and outside of the BG.

To surmount this difficulty, start by defining:

CLK = ungated clock (10 kHz)
CLK ¢« BG = beam gated clock
CLK ¢« CB = computer live clock

CLK ¢« BGeCB = computer live clock in the beam gate
(CLK ¢ CB)

L = T CILK - overall live time fraction

Ly, = (CLgL.KB.GB.GCB) = live time fraction in the beam gate
- N = raw detector counts during counting interval

N ¢ BG = detector counts in the beam gate

N eCB = detector counts while computer live

N ¢ BGeCB = detector counts in beam gate while computer live

N.,,, = beam correlated detector counts

Nuncorr = beam uncorrelated detector counts .

(G.1)

The easiest way to argue for expressions relating the differently gated counts seems
to be to construct the measured counts from the basic beam-correlated and beam-

uncorrelated rates and the appropriate live times:

NeCB = ‘Nr'nr‘r X LHG + Num'm‘r x L (Gz)

and

N e BG e 5-B— = N:.urr X Lb’G + jvum'urr x 6 x LH(; ) (G3)

where § is the duty factor of the beam cycle. In words, the computer-live counts,
N o CB, are the sum of the beam-correlated counts (which must occur in the beam-

gate and thus have the beam-gated live time applied) and the beam-uncorrelated



223

counts (which may occur anytime during the beam cycle and thus have the overall
live time as a factor). The beam-gated computer-live counts are the sum of the
same beam-correlated counts as above but only with that fraction of the beam-
uncorrelated counts that happens to fall in the beam-gate (and is thus also subject
to the beam-gated live time).

Solving the above equations for the beam-correlated and beam-uncorrelated

counts gives
Npcp L — Neg § Lyg

NC!)rr = G4
Ly (L —6Lgg) ( )

and . )
‘Vum*orr = B BGeCB G.5
(L - 6 LB(;) ( )

From these we may also infer the raw detector counts and the raw detector counts

in the beam gate:
N = Neorr + Nuncorr (G.6)
and

]VH(.' = jvr‘orr -+ 6 x }Vunr-urr . (GT)

At this point one may choose to refer the counts to a clock of chosen gating. The
online CAMAC scaler output typically used C LK ¢ CB as the normalization. Here

let’s define detector rates as:

N
R= , .
CLK (G.8)
Ny ,
Ry = C;{ : (G.9)
Nz ,
_ 3.1
N .._f— Al
RH(?.W = CZ(}\,(—;: ) (G.ll)
Ia
N,
Rm)rr = — y 12
CLK (G-12)
and
‘NHTH‘V)TT
Runrorr = . (G13)

CLK
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Thus, solving for R, and R,,corr i terms of the rates found in the online end-of-

run-summaries, we have

& Ly
RBG.(_‘E - R('B 6 L.

R('()TT = . . (G-14)
Ly (1 - 6 baes)
and R R
Runr,orr = CB [BGTCB (G.15)
(1 ~ § Lua)
These combine to give
L L
-~ |Re=(1-6)+R _,‘-(_.___% .
K (L = 8Lni) [ A )+ Rycics Lyg (G.16)
and
L
Rp; = Ryrg - (G.17)
Ly

These expressions have been checked against a few cases where NIM scaler infor-
mation and/or ungated CAMAC scaler information are available and were found
to be in good agreement with both.

One can imagine taking approximate forms of these expressions that are va.id for
certain limiting conditions, such as live times of 100%. This provides a way to check
the formulae obtained. If L — 1 and Ly, — 1 then R — Rggm and Ry — Ryi.075-
This, of course, reads as an identity if CB is always true.

Other clock normalizations may be chosen to get, for example, instantaneous
rates. Factors can be adjusted to refer back to the rates as given in the CAMAC

scaler printouts or to the raw counts that are available on tape.
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