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Nodal methods play a special role in reactor physics 3 Duwh\ p l),.m,!;) 0 )
calculations. In recent papers the high computational ef- R T ) AYWD] '
ficiency of nodal methods has been established [1] and .
the developnient of more cfficient algoritlnns tailored to where node 1 is vertically adjacent to node m, 3, = ¢Z,,.

the advanced architectures of modern day computers pro-
posed [2-G]. The rapidly changing architectures of today’s
conputer influence the way codes have to be programmied
so that reasonable speed up and efficiency are attained.

Similarly, if integration is done over [—au,, +oug,]
across r-constant surfaces, the r-current equations he-
vulnes
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We lave applied these concepts in solving the one-group ot |1, hen ) o b, (i‘fl_\
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neatron diffusion equation in two-dimenstonal geometry on
parallel computers like the Intei iPSC/2 Ly percube and the
Sequent Balance 8000. The efficiency of the hypercube for
the neutron diffusion equation is highly deternnned by the
message passing scheme; on the other hand, ou a shared
memory processor like the Sequent, it is dependent on the
mampulation of variables in shared memory. In this pa-
per, we present a scheme on shared nemory processors
which proditces very high computing efficicucies in agree-
ment with Amdahl’s law.

We start with the one-group neutron diffusion equia-
tion in two-dimensional geometry given by
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where D is the diffusion cocfficient, o the removal cross
scetion, S the external source and ¢ the neutron flux.

By dividing the problem geometry into a set of closed
rectangular regions of the form [—ay, +am] X [—bu, +hu],
m = 1,..., M, integrating over the volume of node m, av-
craging in the x- and y-directions, and proper substitution
of resulting variables, a five-point scheme for the neutron
Lalance equation is obtained

Do, 3 P2 -y .= <y 2, Py
T{ '(l - l’fn) (¢+"' RS R Sw)

__ . _ (2)
(':f’im - 2¢m + &:,,.)} - 'Im¢,,. = =~Sm,

wlicre

o tanh{vmba) tanh(ymam)

" = ' [J'l’l‘ = v T =/ ”m/l)m f

Tmbm Tl

¢, 's arc the node-averaged luxes, ¢, ¢% . ¢ . ¢%,.
are the surface-averaged tluxes.

To obtain the current continuity conditions, iute-
gration is performed over the closed interval [=b,,, +b,,],
across y-constant surfaces for the y-current equations,
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where node s horizontally adjacent to node m in the
positive r-direction.

We describe briefly the numerical steps taken in solv-
g Egs. (2-4). We start with initial estimates of the node-

averaged fhixes ¢ 's. Equations (3-4) then bhecomne sys-
tews idependent of eacli other; that is Eq.(3) ondy involves
the unknown ¢4, 2, and ¢4, and Eq.(4) the unknowns
A ‘f’{,_,,, tﬁﬂ_,. These two syst'cms can be solvc.(l in par-
allel. This comprises one iteration. In the uext iteration,
Eq.(2) is used to update the node-averaged fluxes. Tliese
newly updated values are substituted in Eqs. (3-4) again
ad the parallel systeins are solved. Convergence of this
niethod is determined by exantiuiug the relative difference

between the previous and the new iterates of the ¢, 's. Sue-
cessive overrelaxation is also applied 1w between iterations

to the ¢,.'s for faster convergence. This algoritlun is very
well suited to computers with parallel architectures. In
shared memory systems, cautious programming is needed
1 order that the processors do not overwrite memory loca-
tions which are vital in each iteration. This is done through
locking mechanisins.

Following is a description of the implementation of
the iterative method on shared memory processors. We
store the old and new iterates of the node-averaged flaxes,
the current terates of the sucface {luxes, the mesh size
aned other physical parameters needed into connuon wem-
ory.  For an n x n mesh, there will he 2n independent,
processes.  The progriun starts ruuning initially on one
processor, which becomes the parent process.  The par-
ent process then ‘forks’ and creates subprocesses.  Eacli
processor 1s assigued a subprocess which 1s the solution of
the tridiagonal current contimiity eqnations. Ia order for
the processors to start at the same time, synchronization
calls are perforined before and after the solution of the cnr-
rent equations. Upon exiting from this step, the processors
have solved the surface-averaged fluxes for given initial val-
ues of the node-averaged fluxes. Then they npdate specif-
ically assigued values of the node-averaged finxes with the
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use of successive overrelaxation. Each processor J, then

computes the relative difference between the old and new

,,’s assigned to it and stores the maximumn value into
DIFMX(J). A call to synchronize all processes is done at
s point. The check for convergence is assigned to pro-
cessor 0 and is done by comparing all values of DIFMX(J),
I1=1,. NP (where NP is the nwnber of processes) to a
given tolerance criterion (this is the only portion of the
code whicli is not parallclizable). When coavergence is at-
tained, all the processes are released.

The above approach to solving the nodal ditfusion
equations is totally lock-free. The avoidance of locks s
achieved by storing thie surface fluxes into common memm-
ory. Tle extra cxpense in memory is minimal.

We applied the algorithm to a test problem and the
weasured speedup and cfficiency are presented in Fig. 1.
Ou a 32 x 32 mesh, we achieved efficiencies of 99.2 for
two processors, 99.1 for four processors and 98.6 for cight
processors on a Sequent Balance 8000 with 16 megabytes
of memory. The important question of load balancing via
dynamic scheduling will be addressed in the full paper.
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Fig. 1. The speedup and efficiency of the lock-frec parallel algorithnn for the 32 x 32
mesh test problem as a {unction of the muuber of participating processors on the

Sequent Balance §000.



