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PRECIPITATION OF AMORPHOUS SILICA FROM HIGH-TEMPERATURE 
HYPERSALINE GEOTHERMAL BRINES 

Abstract 

A s e r i o u s  problem a s s o c i a t e d  w i t h  t h e  

conve r s ion  of t h e  energy  c o n t e n t  of hyper- 

s a l i n e  geothermal  sys tems t o  e l e c t r i c a l  

power i s  p r e c i p i t a t i o n  of amorphous s i l i c a  

and o t h e r  phases  t h a t  can  u l t i m a t e l y  

c a u s e  s c a l i n g  of power p l a n t  equipment.  

The ra te  of po lymer i za t ion  of monomeric 

s i l i c a  i s  dependent  upon pH, t empera tu re ,  

s a l i n i t y ,  s i l i c a  c o n c e n t r a t i o n ,  and t h e  

p re sence  of s o l i d s .  A t  t h e  S a l t o n  Sea 

Geothermal F i e l d ,  s i l i c a  p r e c i p i t a t i o n  i s  

promoted by c o o l i n g  and d e p r e s s u r i z a t i o n .  

Evo lu t ion  of CO and H S causes  an  in -  2 2 
c r e a s e  i n  r e s i d u a l  b r i n e  pH, and ,  as a 

consequence, monomeric s i l i c a  polymer izes  

more r a p i d l y  and i s  c o - p r e c i p i t a t e d  w i t h  

s u l f i d e s  and hydroxides .  However, i t  may 

be p o s s i b l e  t o  s t a b i l i z e  s i l i c a  i n  geo- 

thermal  b r i n e s  by a c i d i f i c a t i o n  w i t h  

h y d r o c h l o r i c  a c i d .  

Introduction 

P 

The energy  c o n t e n t  of ho t -water  

geothermal  sys tems can  be conve r t ed  t o  

e l e c t r i c a l  power by s e v e r a l  p r o c e s s e s .  

T o t a l  f l ow (Aust in  e t  a l . ,  1973) d e n o t e s  

an  energy-convers ion  system i n  which t h e  

e n t i r e  wel lhead  p r o d u c t ,  water o r  a 

mix tu re  of s t e a m  and w a t e r ,  i s  expanded 

d i r e c t l y  t o  low p r e s s u r e  and low tempera- 

t u r e  t o  d r i v e  a t u r b i n e .  The pr imary  

advantage  of t o t a l  f l ow,  as  compared t o  

e i t h e r  a f lashed-s team p r o c e s s ,  i n  which 

steam i s  s e p a r a t e d  from - the  f l u i d  phase  

and used t o  d r i v e  a t u r b i n e ,  o r  a b i n a r y  

sys tem,  i n  which a h e a t  exchanger i s  

u t i l i z e d  t o  t r a n s f e r  energy  from t h e  

geothermal  b r i n e  to  a working f l u i d ,  is  

i t s  h ighe r  e f f i c i e n c y  of energy  convers ion .  

However, one problem a s s o c i a t e d  w i t h  a l l  

proposed sys tems f o r  t h e  u t i l i z a t i o n  of 

h y p e r s a l i n e  geothermal  b r i n e s ,  similar t o  
those w h i c h  occur a t  the S a l t o n  Sea G e o -  

t he rma l  F i e l d  (SSGF), is  p r e c i p i t a t i o n  of 

s i l i c a  and o t h e r  phases  t h a t  can  u l t i m a t e l y  

cause  s c a l i n g  of  p l a n t  equipment. The ob- 

j e c t i v e  of t h i s  r e p o r t  i s  t o  d i s c u s s  t h e  

aqueous chemis t ry  of s i l i c a  and t h e n ,  u s i n g  

t h e  SSGF as an example, t o  p o s t u l a t e  a mo- 

d e l  t h a t  can  accoun t  f o r  i ts  p r e c i p i t a t i o n .  

Aqueous Chemistry of Silica 

A g r e a t  d e a l  of expe r imen ta l  d a t a  h a s  (1956) compiled a n  e x c e l l e n t  summary of 

been pub l i shed  concern ing  t h e  s o l u b i l i t i e s  t h e  work completed p r i o r  t o  1956. S ince  

of v a r i o u s  forms of s i l i c a .  Krauskopf then ,  a d d i t i o n a l  s t u d i e s  have  conf i rmed  

- 1- 



t h e  f a c t  t h a t  bo th  q u a r t z  and amorphous 

s i l i c a  e x h i b i t  r e l a t i v e l y  h igh  s o l u b i l i t i e s  

a t  e l e v a t e d  t empera tu res ,  p r e s s u r e s ,  and 

pH. 
c r i t i c a l  rev iews  of s i l i ca  chemis t ry  by 

Fourn ie r  (1970) ,  Volosov e t  a l .  (1972) ,  

Wahl e t  a l .  (1974) and e s p e c i a l l y  I l e r  

(1955). To avoid  confus ion  w i t h  termin-  

o logy ,  Krauskopf’s  (1956) d e f i n i t i o n s  of 

s i l i ca  s p e c i e s ,  provided i n  Table  1, 

should b e  consu l t ed .  

The i n t e r e s t e d  r eade r  i s  r e f e r r e d  t o  

S i l i c a  S o l u b i l i t y  

S o l u b i l i t y  d a t a  f o r  v a r i o u s  s i l i ca  

phases  a long  t h e  vapor  p r e s s u r e  curve  f o r  

water are summarized i n  F ig .  1. It i s  

immediately e v i d e n t  t h a t  amorphous s i l i ca  

i s  more s o l u b l e  than  q u a r t z  a t  a l l  temper- 

a t u r e s .  The d a t a  p l o t t e d  i n  F ig .  1 were 

obta ined  f o r  aqueous s o l u t i o n s  a t  a pH of 

about  7 .  I n  s a t u r a t e d  s o l u t i o n s  w i t h  pH 

less than  about  9 ,  d i s s o l v e d  s i l i c a  i s  i n  

t r u e  molecular  d i s p e r s i o n ,  and t h e  pr imary 

aqueous s p e c i e s  i s  t h e  n e u t r a l  monomeric 

molecule  of o r t h o s i l i c i c  a c i d ,  H S i 0 4  

(Alexander ,  1953a;  Alexander ,  1953b; 

Alexander e t  a l . ,  1954;  Goto, 1956;  

Krauskopf ,  1956;  White e t  a l . ,  1956; 

Okamoto e t  a l . ,  1957; Fourn ie r ,  1970; 

Volosov e t  a l . ,  1972) .  The pr imary s p e c i e s  

i n  superhea ted  steam i s  a l s o  monomeric 

H4Si04 (Morey and Hesse lgesse r ,  1951; 

K i t aha ra ,  1960a) .  S o l u b i l i t i e s  of a l l  

s i l i c a  v a r i e t i e s  i n c r e a s e  a t  pH v a l u e s  

t h a t  exceed 8.5 as  a r e s u l t  of t h e  d i s s o -  

c i a t i o n  of o r t h o s i l i c i c  a c i d  t o  t h e  a n i o n s  

H S i04  , and H S i04  

F igs .  2 through 4 ) .  

4 

- -2 -9 .8.  (K1 = 10 , see 4 2 

P o s s i b l e  s t r u c t u r e s  f o r  aqueous 

s i l i c a  s p e c i e s  were reviewed by Iler (1955) ,  

I n g r i  (1959) ,  Boehm (1966) ,  and Snoeyink 

and Weber (1972) .  The s t r u c t u r e s  are 

based on S i 0  - t e t r a h e d r a .  Monomeric 

molecules  and i o n s  are formed as fo l lows :  
4 

\ /OH , \ / O H  O\ p” HO 

( 0 )  (-1) (-2) 

According t o  Carman (1940) ,  po lymer i za t ion  

of monomeric s p e c i e s  t o  p a r t i c l e s  of 

c o l l o i d a l  dimensions proceeds by t h e  

l i n k i n g  of a d j a c e n t  S i 0  - t e t r a h e d r a  by 

Si - 0 - Si (siloxane) bonds: 
4 

- S i  - OH + HO - S i  = H 0 + - S i  - 0 - S i  -. 
-2 By analogy w i t h  S i  F6 , which i s  known t o  

e x i s t ,  Iler (1955) sugges ted  t h a t  polymer- 

i z a t i o n  of s i l i c i c  a c i d  may invo lve  a 

temporary i n c r e a s e  i n  t h e  c o o r d i n a t i o n  

number of s i l i c o n  from 4 t o  6 :  

2 

Si(OH)4 + OH- + Si(OH)4 

= (HO); Si-O-Si(OH)3 
H 

= (HO) 3 S i  0 Si(OH)3 + OH- + H 2 0  

H (-) 
HO 0 OH HO 

\ / O H  

HO ’ ‘o./ 
OH 

- S i  
\ /  

HO /si\ OH - HO A 0 OH 

j i Y H  KO’ 

However, I n g r i  (1959) noted t h a t ,  w i th  t h e  
excep t ion  of S i  F6 -2 , t h e r e  i s  no o t h e r  

an  Si(OH)6 -2 i on .  
s t r u c t u r a l  ev idence  f o r  t h e  e x i s t e n c e  of 

-2- 



Tab le  1. C r y s t a l l i n e ,  amorphous, and aqueous forms of s i l i c a  (S i0  ) .  2 
(modif ied a f t e r  Krauskopf, 1956) 

C r y s t a l l i n e  s i l i ca :  Spec ie s  of s i l i c a  w i t h  c r y s t a l  s t r u c t u r e .  

(a) M a c r o c r y s t a l l i n e .  

Quar tz ,  t r i d y m i t e ,  o r  c r i s t o b a l i t e .  

(b)  C r y p t o c r y s t a l l i n e .  

C o n s i s t s  of f i b r o u s  c r y s t a l l i t e s  w i t h  submicroscopic  po res ;  gene ra l  term i s  

chalcedony.  

Amorphous s i l i ca :  Forms of s i l i c a  l a c k i n g  c r y s t a l  s t r u c t u r e .  

( a )  S i l i c a  g e l .  

Hard amorphous s i l i c a  c o n t a i n i n g  20 t o  30% water,  prepared  commercially 

e i t h e r  a s  a chemical  r e a g e n t  o r  a s  a d e s i c c a n t .  

(b)  Ge la t inous  s i l i ca .  

Appears i n  s o l u t i o n  as g e l a t i n o u s  f l o c s  o r  as  a con t inuous  g e l ,  formed e i t h e r  

by e v a p o r a t i o n  of  a s i l i c a  s o l u t i o n ,  by a l lowing  a s u p e r s a t u r a t e d  s o l u t i o n  t o  

s t a n d ,  o r  by a c i d i f y i n g  a f a i r l y  concen t r a t ed  s o l u t i o n  of an  a l k a l i  s i l i c a t e .  

(c )  S i l i c a  s o l  o r  c o l l o i d a l  s i l i ca .  
-3 S i l i c a  d i s p e r s e d  i n  water i n  p a r t i c l e s  of c o l l o i d a l  d imens ions  (10 t o  

m m ) .  

(d )  Opal. 

N a t u r a l l y  o c c u r r i n g  s i l i ca ,  i n c l u d i n g  t h e  s i l i c a  of d i a t o m i t e  and r a d i o l a r i t e ,  

g e n e r a l l y  w i t h  less  than  12% water. Some v a r i e t i e s  appear  t o  be t r a n s i t i o n a l  

t o  c r y s t a l l i n e  mater ia l  ( c r i s t o b a l i t e ) .  

(e )  S i l i c a  g l a s s .  

Prepared  by t h e  quenching of a s i l i c a  m e l t .  

Aqueous s i l i ca :  S i l i c a  s p e c i e s  i n  s o l u t i o n .  

( a )  O r t h o s i l i c i c  a c i d .  

The p r i n c i p a l  form of  s i l i ca  i n  s a t u r a t e d  s o l u t i o n s  w i t h  pH less than  9 i s  

t h e  monomer H S i 0  

Alexander  e t  a l . ,  1954) .  

10-9. 8 Above pH 9,  o r t h o s i l i c i c  a c i d  d i s s o c i a t e s  (K1 = 4 4 '  Y 

(b) Disso lved  o r  c o l o r i m e t r i c  s i l i ca .  

The s i l i c a  i n  t r u e  s o l u t i o n  (H S i 0  ) t h a t  reacts w i t h  ammonium molybdate  

w i t h i n  2 min a f t e r  t h e  s o l u t i o n s  are mixed. 
4 4  

( c )  Polymerized s i l i ca .  

S i l i c i c  a c i d s  c o n t a i n i n g  two ( d i s i l i c i c )  , t h r e e  ( t r i s i l i c i c )  o r  more atoms o f  

s i l i c o n  p e r  molecule  ( i n c l u d i n g  c o l l o i d a l  suspens ions ) .  A t  room t empera tu res  

noncyc l i c  s i l i c i c  a c i d s  react w i t h  ammonium molybdate  w i t h i n  5 min, b u t  c y c l i c  

p o l y s i l i c i c  a c i d s  r e q u i r e  s e v e r a l  hours  t o  react (O'Connor, 1961) .  High o r d e r  

polymers do n o t  react a t  a l l .  I n  unsa tu ra t ed  s o l u t i o n s ,  p o l y s i l i c i c  a c i d s  

depolymer ize  t o  t h e  monomer (Alexander ,  1954) .  

- 3- 



Table  1. (con t inued) .  

(d)  T o t a l  s i l i c a .  

A l l  s i l i c a  s p e c i e s  i n  s o l u t i o n  can be  determined c o l o r i m e t r i c a l l y  fo l lowing  

convers ion  of  polymerized s i l i c a  t o  t h e  monomer by t r ea tmen t  w i t h  N a O H ,  o r  

by g r a v i m e t r i c  t echn iques .  I n  most n a t u r a l  waters g r a v i m e t r i c  and c o l o r i -  

m e t r i c  s i l i ca  are i d e n t i c a l ,  i n d i c a t i n g  t h e  p reva lence  of t h e  monomer 

H4 S i 0  

Apparent c o l o r i m e t r i c  s o l u b i l i t i e s  f o r  s i l i c a  i n  sea water must be  m u l t i p l i e d  

by a f a c t o r  of 1 .23  ( c a l l e d  t h e  sa l t  f a c t o r )  t o  b r i n g  them i n t o  cor respondence  

w i t h  s o l u b i l i t i e s  i n  pure  water (Chow and Robinson, 1953) .  The c o r r e c t i o n  i s  

probably  t h e  r e s u l t  of e l e c t r o l y t e  i n t e r f e r e n c e  w i t h  t h e  c o l o r i m e t r i c  d e t e r -  

mina t ion .  I n t e r f e r e n c e s  can  be minimized by ma in ta in ing  a t o t a l  i o n i c  

s t r e n g t h  (wi th  t h e  excep t ion  of Mo) of less than  0 . 5  ( S t r i c k l a n d ,  1952) .  

4'  

1500 I I 
/ 

/ 
/ 

V 

v, 

.- - .- 

0 100 200 300 400 

0.005 1 8 

0.002 

0.001 
2 4 6  8 10 12 

Temperature - OC PH 

Fig .  1. S o l u b i l i t i e s  of v a r i o u s  s i l i ca  
phases  a long  two-phase cu rve  Fig.  2. S o l u b i l i t y  of s i l i c a  i n  water (25°C) 
(water  p l u s  vapor) ( f rom Fourn ie r ,  (from Alexander e t  a l . ,  1954) .  
1970) .  
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F i g .  3.  S o l u b i l i t y  of amorphous s i l i c a  
(from Okamoto e t  a l .  , 1957) .  

1111111 
'5 6 7 8 9 10 1 1  

PH 

1 8000 

I I I 
8 9 10 

PH 
(a  ) Low temperature 

PH 
(b) High temperature 

Fig. 4 .  C a l c u l a t e d  s o l u b i l i t y  of q u a r t z  (from F o u r n i e r ,  1970) .  
( a )  Low t empera tu re .  
(b) High t empera tu re .  
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The s t e p s  involved  i n  t h e  polymeriza- 

t i o n  of  monomeric s i l i ca  s p e c i e s  t o  t h e  

u l t i m a t e  p r e c i p i t a t i o n  o r  a g g r e g a t i o n  of 

p a r t i c l e s  of c o l l o i d a l  d imens ions  w e r e  

summarized by I ler (1955): 

Po lymer i za t ion  
Si(OH)4 t C o l l o i d a l  

Aggrega t ion  
( s o l )  

p a r t i c l e s  + Network of p a r t i c l e s  
( g e l )  

Aggrega t ion  
D i l u t e  s o l  - Weak g e l  o r  

p r e c i p i t a t e  

Aggrega t ion  
Concent ra ted  s o l  - Strong f i r m  g e l  

Drying 
Wet g e l  - Shrunken g e l :  Su r face  of 

p a r t i c l e s  i n  g e l  covered by S i  OH groups .  

A p e c u l i a r i t y  of s i l i c a  chemis t ry  i s  

t h e  f a c t  t h a t  when a s o l u t i o n  becomes 

s u p e r s a t u r a t e d  w i t h  r e s p e c t  t o  amorphous 

s i l i c a ,  upon s t a n d i n g ,  o r  c o o l i n g ,  q u a r t z  

does  n o t  c r y s t a l l i z e .  I n s t e a d ,  m o l e c u l a r l y  

d i s s o l v e d  s i l i c a  s lowly  polymer izes  t o  a 

c o l l o i d a l  suspens ion  t h a t  may u l t i m a t e l y  

p r e c i p i t a t e  as amorphous s i l i c a .  Krauskopf 

(1956) emphasized t h i s  p o i n t .  H e  no ted  

t h a t  a l though  q u a r t z  should t h e o r e t i c a l l y  

c r y s t a l l i z e  from a s o l u t i o n  s a t u r a t e d  w i t h  

r e s p e c t  t o  amorphous s i l i c a ,  i t  f a i l s  t o  

do so,  because  of t h e  slow r e a c t i o n  rate.  

Morey e t  a l .  (1964) a l s o  cau t ioned  t h a t  

t h e  e q u i l i b r i u m  between s o l i d  amorphous 

s i l i c a  and d i s s o l v e d  s i l i c a  i s  a m e t a s t a b l e  

e q u i l i b r i u m  because  t h e  s t a b l e  form of  

s o l i d  S i02  a t  room t empera tu re  and p r e s s u r e  

i s  a-quar tz .  

A second p e c u l i a r i t y  of s i l i c a  

chemis t ry  w a s  po in t ed  o u t  by Hi tchen  

(1935). H e  observed  t h a t  s i l i c a  i s  unab le  

t o  accommodate i t s e l f  r a p i d l y  t o  changing 

c o n d i t i o n s ,  e s p e c i a l l y  t empera tu re  d e c r e a s e .  

A s  an  example, Hi tchen  r e p o r t e d  t h a t  i t  

was p o s s i b l e  t o  withdraw a h igh- tempera ture ,  

n e u t r a l  s o l u t i o n  (310°C) c o n t a i n i n g  1800 

ppm S i02  from a hydro thermal  bomb by means 

of a s tee l  condenser t u b e  and t o  s t o r e  t h e  

s o l u t i o n  a t  room tempera tu re  f o r  s e v e r a l  

months wi thou t  p r e c i p i t a t i o n  of amorphous 

s i l i c a .  He concluded t h a t  h igh- tempera ture  

s a t u r a t e d  s o l u t i o n s  showed no tendency t o  

d e p o s i t  s i l i c a  (form s c a l e )  on t h e  i n n e r  

w a l l s  of t h e  condenser tube! A t  room 

t empera tu re ,  t h e  s i l i c a  remained i n  so lu -  

t i o n  as a hydroso l .  

Subsequent s t u d i e s  have demonst ra ted  

t h a t  t h e  quenching of h igh- tempera ture  

s a t u r a t e d  s o l u t i o n s  of monomeric s i l i ca  

(pH < 7 )  does  n o t  r e s u l t  i n  immediate 

po lymer i za t ion  of d i s s o l v e d  s i l i c a  

(Okamoto e t  a l . ,  1957; Krauskopf,  1956; 

White e t  a l . ,  1956; K i t a h a r a ,  1960b; 

Morey e t  a l . ,  1961; Morey e t  a l . ,  1962; 

Fourn ie r  and Rowe, 1962) .  For example, 

White -- e t  a l .  (1956) and Morey e t  a l .  (1962) 

i n d i c a t e d  t h a t  s i l i ca  d i d  n o t  po lymer ize  

f o r  s e v e r a l  months a f t e r  s l i g h t l y  a c i d i c  

ho t - sp r ing  waters, w i t h  400 t o  500 ppm 

d i s s o l v e d  s i l i c a ,  were cooled  t o  room 

tempera ture .  

-- 

I n  s u p e r s a t u r a t e d  s o l u t i o n s  a t  low 

t empera tu res  (less t h a n  lOO"C), s i l i c a  
n 
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s lowly  polymer izes  ove r  a pe r iod  of  

months ( o r  y e a r s )  u n t i l  t h e  c o n c e n t r a t i o n  

of d i s s o l v e d  s i l i c a  i s  reduced t o  t h e  

e q u i l i b r i u m  v a l u e .  Rates of d i s s o l u t i o n  

of s o l i d  s i l i c a  phases  are a l s o  low a t  

low t empera tu res  ( F i g s .  5 and 6 ) .  A t  

h i g h  l e v e l s  of s u p e r s a t u r a t i o n ,  s i l i c a  

s o l s  may e v e n t u a l l y  p r e c i p i t a t e  as f loccu-  

l e n t  masses, i n  weakly b a s i c  s o l u t i o n s ,  

o r  se t  t o  a g e l ,  i n  weakly a c i d i c  s o l u t i o n s  

( I l e r ,  1955) .  C o l l o i d a l  s i l i c a  i n  under- 

s a t u r a t e d  s o l u t i o n s  depolymer izes  u n t i l  

t h e  e q u i l i b r i u m  s i l i c a  c o n c e n t r a t i o n ,  

w i t h  r e s p e c t  t o  amorphous s i l i c a ,  i s  

reached .  The ra te  of depo lymer i za t ion  of 

c o l l o i d a l  s i l i c a  i s  a c c e l e r a t e d  by t h e  

e l e c t r o l y t e s  i n  sea water (Krauskopf,  

1956; Okamoto e t  a l . ,  1957) .  Krauskopf 

(1956) emphasized t h a t  a t r u e  e q u i l i b r i u m  

s o l u b i l i t y  i s  e s t a b l i s h e d  by depolymeriza- 

t i o n  of c o l l o i d a l  suspens ions .  Hi tchen  

Supersoturoted s i  I ico solution 

E 
400 

I 

Time - days 

Fig .  5. Rates of s o l u t i o n  and po lymer i za t ion  
of amorphous s i l i ca  i n  water a t  
25OC (samples were tumbled i n  water 
a t  75 rpm, and s i l i c a  i n  s o l u t i o n  
w a s  measured a t  i n t e r v a l s  by 
c o l o r i m e t r i c  molybdenum b l u e  
method)(from Morey e t  a l . ,  1964) .  

(1945) p o s t u l a t e d  a p e p t i z a t i o n  e q u i l i b r i u m  

of t h e  type :  

S o l i d  > Molecular > C o l l o i d a l  
phase  d i s p e r s i o n  d i s p e r s i o n  

t o  account  f o r  t h e  s o l u b i l i t y  of s i l i c a  i n  

water. However, i t  should  be emphasized 

t h a t  s a t u r a t e d  s o l u t i o n s  of s i l i c a ,  formed 

by d i s s o l u t i o n  of s o l i d  s i l i c a  phases  (o r  

by t h e  d i s s o l u t i o n  of po lymer ic  molecu le s )  

Time - days 

Ini t ia l  In i t ia l  
total d i ssol ved 
s io2 sio2 

Curve PH ( PPm ) ( PPm ) 
I 7.7 - 8.3 32 0 2 84 
I1 7.3 - 7.9 975 544 
I11 8.3 - 7.4 187 25 
I V  5.2 - 5 . 6  (sil ica gel in  water) 

Dashed lines show the solubility range for 25OC, 
100-140 ppm S i 0 2 ,  as given by Alexander, 

Heston, and I l e r  (1954). 

Fig .  6. Approach t o  s o l u b i l i t y  e q u i l i b r i u m  
from b o t h  s i d e s  (from Krauskopf,  
1956) .  
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remain s t a b l e  i n d e f i n i t e l y  a l though  e x c e s s  

s o l i d  phases  are removed from s o l u t i o n .  

For example, i n  exper iments  des igned  

t o  de t e rmine  t h e  s o l u b i l i t y  of s i l i c a  i n  

sea water, Krauskopf (1956) concluded t h a t  

s o l u b i l i t y  w a s  no t  a f f e c t e d  by t h e  e l e c t r o -  

l y t e s  i n  s o l u t i o n .  H e  no ted  t h a t  i n  

i n i t i a l l y  s u p e r s a t u r a t e d  s o l u t i o n s ,  e q u i l -  

i b r ium c o n c e n t r a t i o n s  of d i s s o l v e d  s i l i c a  

were r e l a t i v e l y  r a p i d l y  achieved  (pH > 7 ) .  

Excess s i l i c a  w a s  polymerized t o  c o l l o i d a l  

suspens ions  and coagu la t ed  by t h e  e l e c t r o -  

l y t e s  i n  t h e  s o l u t i o n .  Once r eached ,  t h e  

e q u i l i b r i u m  c o n c e n t r a t i o n  of d i s s o l v e d  

s i l i c a  remained c o n s t a n t  even though 

c o l l o i d a l  s i l i c a  p r e c i p i t a t e d .  

Van L i e r  e t  a l .  (1960) found t h a t  

q u a r t z  s o l u b i l i t y  i s  n o t  a f f e c t e d  by N a C l  

a t  s a l t  c o n c e n t r a t i o n s  below 1 0  s. A t  

a N a C l  c o n c e n t r a t i o n  of 1 0  3 q u a r t z  

s o l u b i l i t y  i s  s l i g h t l y  i n c r e a s e d .  However, 

d i s s o l u t i o n  ra tes  are i n c r e a s e d  by concen- 

t r a t i o n s  of 1 0  3 N a C 1 ,  o r  h i g h e r  ( s e e  

a l s o  Ki t aha ra  1960a) .  

f o r  t h e  observed  N a C l  e f f e c t s ,  Van L i e r  

-- e t  a l .  (1960) r e f e r r e d  t o  p rev ious  work 

by Sadek (1952) ,  which i n d i c a t e d  complex 

fo rma t ion  between S i 0  and H C 1  i n  a r a t i o  

of 1:l. The e f f e c t  of sodium c h l o r i d e  on 

q u a r t z  s o l u b i l i t y  was a l s o  s t u d i e d  by 

K i t a h a r a  ( 1 9 6 0 ~ ) .  He r e p o r t e d  a n  i n c r e a s e  

i n  s o l u b i l i t y ,  r e s u l t i n g  from t h e  g r e a t e r  

d e n s i t y  of b r i n e  s o l u t i o n s  as compared t o  

pu re  water, a t  t empera tu res  h i g h e r  t han  

300°C. However, Fourn ie r  and Rowe (1966) 

concluded t h a t  K i t a h a r a ' s  ( 1 9 6 0 ~ )  h i g h  

s o l u b i l i t y  r e s u l t s  r e f l e c t e d  con tamina t ion  

of h i s  expe r imen ta l  a p p a r a t u s  w i t h  NaOH. 

Subsequent a n a l y s e s  by Fourn ie r  and Rowe 

i n d i c a t e d  t h a t  t h e  s o l u b i l i t y  of q u a r t z  i s  

u n a f f e c t e d  i n  2M N a C l  s o l u t i o n s .  

-1 

-1 

-2 

A s  a n  e x p l a n a t i o n  

2 

Polymer i za t ion  of D i s so lved  S i l i c a  

F a c t o r s  t h a t  c o n t r o l  rates of 

po lymer i za t ion  of d i s s o l v e d  s i l i c a  from 

monomeric t o  polymer ic  molecules  ( i n c l u d i n g  

c o l l o i d a l  suspens ions )  are pH, s a l i n i t y ,  

d e g r e e  of s u p e r s a t u r a t i o n ,  p re sence  of 

s o l i d  s u b s t a n c e s ,  and tempera ture .  

C o l l o i d a l  p a r t i c l e s  of s i l i c a  i n  

a l k a l i n e  s o l u t i o n s  are n e g a t i v e l y  charged 

and ,  t h e r e f o r e ,  k e p t  from c o a g u l a t i n g  by 

t h e i r  mutua l  r e p u l s i o n  (Carman, 1940) .  

However, i n  t h e  p re sence  of s o l u b l e  

s a l t s  n e g a t i v e l y  charged p a r t i c l e s  are 

s u s c e p t i b l e  t o  n e u t r a l i z a t i o n  by c a t i o n s .  

A t  pH v a l u e s  between 1 - 3 c o l l o i d a l  

s i l i c a  p a r t i c l e s  p a s s  through t h e  i s o e l e c -  

t r i c  p o i n t  ( t h e  p o i n t  where t h e i r  e l e c t r o -  

s t a t i c  cha rge  i s  n e u t r a l i z e d )  and a re ,  

t h e r e f o r e ,  s u s c e p t i b l e  t o  r a p i d  a g g r e g a t i o n  

(Carman, 1940; I l e r ,  1955) .  I n  s o l u t i o n s  

more a c i d i c  t h a n  t h o s e  w i t h  a pH of 3 ,  

c o l l o i d a l  s i l i c a  p a r t i c l e s  become p o s i t i v e l y  

charged and are u n a f f e c t e d  by o t h e r  c a t i o n s  

i n  s o l u t i o n  ( I l e r ,  1955) .  

The p resence  of (OH)- and (F)- i o n s  

c a t a l y z e  t h e  po lymer i za t ion  of c o l l o i d a l  

s i l i c a  ( I l e r ,  1955; Goto, 1956) .  Accord- 

i n g  t o  I le r  t h e  c a t a l y s t s  are  r e q u i r e d  f o r  

fo rma t ion  of s i l o x a n e  b r i d g e s  between 

p a r t i c l e s .  F l u o r i n e  i s  impor t an t  because  

i t  can  s u b s t i t u t e  d i r e c t l y  f o r  oxygen. 

The c a t a l y t i c  e f f e c t  of F- and (OH)- i o n s  

i s  i l l u s t r a t e d ,  as a f u n c t i o n  of pH, i n  

F ig .  7 .  The maximum po lymer i za t ion  r a t e  

o c c u r s  between pH v a l u e s  of 5 t o  8. I n  

more b a s i c  s o l u t i o n s  t h e  i n c r e a s i n g  

n e g a t i v e  cha rge  of c o l l o i d a l  p a r t i c l e s  

overcomes t h e  c a t a l y t i c  e f f e c t  of i n c r e a s -  

i n g  (OH)- c o n c e n t r a t i o n .  

The ra te  s c a l e  i n  F ig .  7 i s  i n  

a r b i t r a r y  u n i t s .  The fo l lowing  two 
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0 1 2 3 4 5 6 7 8 9  

PH 

Fig .  7 .  S o l  s t a b i l i t y :  r e l a t i o n  between 
l o g  ( g e l  t ime)  v s  pH ( r e p r i n t e d  
from Iler (1955);  c o p y r i g h t  1955 
by C o r n e l l  U n i v e r s i t y ;  used by 
pe rmis s ion  of  C o r n e l l  U n i v e r s i t y  
P r e s s ) .  

examples i l l u s t r a t e  t h e  r e l a t i o n s h i p  

between pH and ra te  of po lymer i za t ion  of 

s u p e r s a t u r a t e d  s i l i c a  s o l u t i o n s .  

K i t aha ra  (1960b) produced s a t u r a t e d  

s o l u t i o n s  of  monomeric s i l i c a  i n  a high- 

t empera tu re  p r e s s u r e  v e s s e l  and then  

quenched them t o  room tempera ture .  H e  

concluded t h a t  ra tes  of po lymer i za t ion  

were h i g h e s t  a t  pH 7.5.  Above and below 

t h i s  pH v a l u e  po lymer i za t ion  r a t e s  

dec reased  (F igs .  8 and 9 ) .  A t  a pH of 

4 . 9  o r  less, po lymer i za t ion  ra tes  were 

n e g l i g i b l e .  With t h e  e x c e p t i o n  of Goto 

(1956),  p rev ious  work i s  i n  agreement w i t h  

K i t a h a r a  (1960b).  Goto (1956) concluded 

t h a t  b o t h  po lymer i za t ion  rates and p a r t i c l e  

s i z e  of c o l l o i d a l  s i l i c a  i n c r e a s e  w i t h  

i n c r e a s i n g  pH. K i t a h a r a  (1960b) agreed  

t h a t  i n i t i a l  po lymer i za t ion  may occur  

more r a p i d l y  a t  h i g h  pH (7 t o  9 ) ,  bu t  

maximum rates are subsequen t ly  ma in ta ined  

a t  pH 7.5. A s  a second example, Treadwel l  

(1935),  r e p o r t e d  t h a t  a t  a pH of 3 . 2 ,  a 

0.5 molar s o l u t i o n  of d i s i l i c i c  a c i d  

pH3.9 

c + 

2 100 
U 0 " 1 

0 7  
0 60 120 .180 240 300 

Time - min 

Fig. 8. Po lymer i za t ion  of s i l i c i c  a c i d  
i n  a c i d i c  s o l u t i o n s  (from K i t -  
a h a r a ,  1960b).  

8oor - - l - - l  
E 7 0 0 t  

60 120 180 240 300 0 
Time - min 

Fig .  9. Po lymer i za t ion  of s i l i c i c  a c i d  
i n  b a s i c  s o l u t i o n s  (from Kita- 
h a r a ,  1960b).  
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n 
r e q u i r e d  4 days  t o  i n c r e a s e  i n  molecular  

weight  from 159 t o  1500. Po lymer i za t ion  

induced by i n c r e a s i n g  t h e  pH of a n  a c i d i c  

s o l u t i o n  is  n o t  immediately r e v e r s i b l e  by 

r e d u c t i o n  of pH. Alexander  (1954) d e t e r -  

mined t h a t  a s o l u t i o n  of monos i l i c  a c i d  

w i l l  po lymer ize  a lmost  i n s t a n t l y  a t  Ooc, 
when t h e  pH of t h e  s o l u t i o n  i s  main ta ined  

between 5 and 6 f o r  s e v e r a l  seconds ,  and 

then  lowered t o  pH 3 .  

I n  b a s i c  s o l u t i o n s ,  rates of s i l i c a  

po lymer i za t ion  i n c r e a s e  w i t h  i n c r e a s i n g  

s a l i n i t y  (Krauskopf, 1956) .  For example, 

a t  low t empera tu res  (22 t o  27OC), h i g h  

c o n c e n t r a t i o n s  of s i l i c a  i n  a l k a l i n e  

s o l u t i o n s  of sea water are r a p i d l y  (%24 h r )  

reduced t o  t h e  e q u i l i b r i u m  v a l u e .  A s  noted  

p r e v i o u s l y ,  above t h e  i s o e l e c t r i c  p o i n t  

(pH 1 t o  3 )  t h e  i n c r e a s i n g  c o n c e n t r a t i o n  

of hydroxyl  i o n  promotes polymer iza t ion .  

S ince  c a t i o n s  can  n e u t r a l i z e  n e g a t i v e l y  

charged c o l l o i d a l  p a r t i c l e s ,  h igh  s a l i n i t i e s  

w i l l  a c c e l e r a t e  t h e i r  aggrega t ion .  A t  and 

below t h e  i s o e l e c t r i c  p o i n t s ,  s a l t s  such 

as sodium c h l o r i d e  have l i t t l e  i n f l u e n c e  

upon s o l  s t a b i l i t y  ( I l e r ,  1955) .  

Po lymer i za t ion  rates of s u p e r s a t u r a t e d  

s o l u t i o n s  are  i n v e r s e l y  p r o p o r t i o n a l  t o  t h e  

second power of s i l i ca  c o n c e n t r a t i o n  a t  

pH v a l u e s  i n  excess  of approximate ly  3 .  

I n  more a c i d i c  s o l u t i o n s ,  po lymer i za t ion  

i s  a th i rd -o rde r  r e a c t i o n  ( I l e r ,  1955) .  

The re fo re ,  s o l u t i o n s  w i t h  h i g h  i n i t i a l  

deg rees  of s u p e r s a t u r a t i o n  polymerize 

r e l a t i v e l y  r a p i d l y  t o  t h e  e q u i l i b r i u m  

s o l u b i l i t y .  

(1956) r e p o r t e d  t h a t  a hot -spr ing  water 

sample w i t h  a n  i n i t i a l  s u p e r s a t u r a t i o n  of 

50% showed no s i g n i f i c a n t  po lymer i za t ion  

i n  4 months, w h i l e  i n  ano the r  sample, 

w i t h  i n i t i a l  s u p e r s a t u r a t i o n  of 200% 

For example, White e t  a l .  

(pH 7 . 3 ) ,  50% of t h e  e x c e s s  s i l i c a  had 

polymerized w i t h i n  24 h r .  

e s s e n t i a l l y  no po lymer i za t ion  occurred  

du r ing  t h e  f i r s t  hour .  

. -. 

But even so,  

White e t  a l .  (1956) and Krauskopf 

(1956) a l s o  s t u d i e d  t h e  e f f e c t  of t h e  

p re sence  of s o l i d  phases  on s i l i ca  

s o l u b i l i t y ,  Krauskopf r e p o r t e d  t h e  a lmost  

q u a n t i t a t i v e  c o - p r e c i p i t a t i o n  of c o l l o i d a l  

s i l i c a  by hydrous f e r r i c  ox ide .  White 

-- e t  a l .  no ted  t h a t  t h e  p re sence  of o p a l i n e  

s i n t e r  g r e a t l y  inc reased  t h e  rate of 

po lymer i za t ion  of  s u p e r s a t u r a t e d  s o l u t i o n s .  

However, n e i t h e r  f e r r i c  ox ide  nor  o p a l i n e  

s i n t e r  a f f e c t e d  monomeric s i l i ca  i n  

s a t u r a t e d  s o l u t i o n s .  

Fourn ie r  (1970)  , summarizing the  

work of Kat0 (1969) ,  r e p o r t e d  t h a t  d i s s o l v e d  

s i l i c a  w i l l  c o - p r e c i p i t a t e  w i t h  hydroxides  

of i r o n  and manganese. I t  h a s  a l s o  been 

shown t h a t  even from u n d e r s a t u r a t e d  

s o l u t i o n s  ( S i 0 2  = 0.5 ppm) d i s s o l v e d  s i l i ca  

can  be  adsorbed by, and c o - p r e c i p i t a t e  

w i t h ,  hydroxides  of i r o n ,  aluminum, mangan- 

ese, magnesium, and o t h e r  e lements  

(Harder and Flehmig,  1970;  Schink ,  1968;  

I l e r ,  1955) .  However, t h e  r e a c t i o n s  do 

n o t  occur  below t h e  pH a t  which metal  

hydroxides  would normal ly  p r e c i p i t a t e  

(Table  2 ) .  Adsorp t ion  may proceed by 

r e a c t i o n  of s i l a n o l  groups  w i t h  t h e  metal 

hydroxides  (I ler,  1955; Haze l ,  e t  a l . ,  

1949) : 

S i  OH + (Fe OH)+2 = ( S i U F e  OH)' + k. 

Iler (1955) n o t e s  t h a t  a t  pH v a l u e s  of 2 t o  

3 copper  i o n  i s  n o t  adsorbed by monomeric 

s i l i c a ,  sugges t ing  t h a t  s i l a n o l  groups can- 

n o t  r e a c t  w i t h  an  i o n  such as [ C U ( H ~ O ) ~ ]  

u n t i l  a hydroxyl  i o n  i s  inco rpora t ed  i n t o  

t h e  c o o r d i n a t i o n  sphe re  of t h e  metal. 

+2 
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a Table  2. P r e c i p i t a t i o n  of metal s i l i ca tes .  

~ ~~ 

Metal s i l i c a t e  p r e c i p i t a t i o n  began a t  Hydroxide 

p r e c i p i t a t i o n  

S o l u t i o n  t i t r a t e d  PH ml of sodium s i l i c a t e  a t  pH 

0.01 M. Z r C 1 4  

0.01 M.  ThC14 

0.001 M. A1(S04)3 

0.02 M.  BeS04 

0.02 M. ZnS04 

0.02 M. MnC12 

0.02 M.  MgS04 

0.02 M.  C a C 1 2  

3 .98  

3.50 

4.04 

5 .31  

5 .25  

7.35 

9.50 

10.07 

35.0 

30 .0  

6 . 0  

20.0 

1 .0  

1 . 0  

1 .0  

3 .0  

- 

1.86 

3.50 

4.14 

5.69 

5.20 

8 .41  

10.49 
-- 

~ 

2 
The d a t a  were ob ta ined  by t i t r a t i o n  of 100 m l  s a l t  s o l u t i o n s  w i t h  0 . 1  N Na20 2.16SiO 
s o l u t i o n s  ( B r i t t o n ,  1927) .  

a 

The work of Okamoto e t  a l .  (1957) 

s e r v e s  as  a good example of t h e  i n f l u e n c e  

of t r a c e  e lements  on bo th  d i s s o l v e d  and 

c o l l o i d a l  s i l i c a .  They determined t h a t  

aluminum g r e a t l y  decreased  t h e  ra te  of 

depo lymer i za t ion  o f  c o l l o i d a l  s i l i c a  i n  an 

a l k a l i n e  medium. Other  exper iments  

i n d i c a t e d  t h e  e f f e c t  of  pH and Si02-to-Al 

c o n c e n t r a t i o n  r a t i o s  on t h e  s t a b i l i t y  of 

c o l l o i d a l  s i l i c a ,  and s o l u b i l i t y  of 

monomeric s i l i c a .  The optimum pH range  

f o r  t h e  e s s e n t i a l l y  q u a n t i t a t i v e  p r e c i p i -  

t a t i o n  of c o l l o i d a l  s i l i c a  from a s o l u t i o n  

w i t h  an S i 0  -to-A1 r a t i o  of 4 5 : l  was 4.2 

t o  4.7 (F ig .  1 0 ) .  Ne i the r  c o l l o i d a l  s i l i c a  

nor  aluminum p r e c i p i t a t e d  a t  o t h e r  t han  

t h e  optimum S i 0  -to-A1 r a t i o  of 4 5 : l .  The 

optimum pH and t h e  S i 0  -to-A1 r a t i o  f o r  

p r e c i p i t a t i o n  of d i s s o l v e d  s i l i c a ,  however, 

were much d i f f e r e n t ,  abou t  9 and 1 : 3 ,  

r e s p e c t i v e l y  (F ig .  1 0 ) .  Unfo r tuna te ly ,  

t h e  a u t h o r s  d i d  n o t  d i s c u s s  t h e  rates of 

p r e c i p i t a t i o n  o r  t h e  n a t u r e  of t he  s i l i ca-  

2 

2 

2 

aluminum p r e c i p i t a t e .  However, t hey  d i d  

r e f e r  t o  t h e  work of Betz e t  a l .  (1940a) 

invo lv ing  t h e  removal of  s i l i c a  from 

bo i l e r - f eed  water by c o - p r e c i p i t a t i o n  

w i t h  aluminum hydroxide.  

Betz e t  a l .  (1940a) r e p o r t e d  a 

r e d u c t i o n  i n  d i s s o l v e d  s i l i c a  from 1 8  t o  

4 ppm (78%) i n  1 h r ,  by c o - p r e c i p i t a t i o n  

w i t h  aluminum hydroxide a t  23°C and pH 

between 8.3 t o  9 .1 .  A s imi l a r  r e d u c t i o n  

i n  d i s s o l v e d  s i l i ca  (67%) w a s  ob ta ined  a t  

pH 7.6 t o  8 . 0  w i t h  no r e s i d u a l  A 1  remain ing  

i n  s o l u t i o n .  The a u t h o r s  i n d i c a t e d  t h a t  

c o - p r e c i p i t a t i o n  of s i l i ca  w a s  less 

e f f e c t i v e  a t  h ighe r  t empera tu res .  No pre-  

c i p i t a t i o n  of s i l i c a  occurred  a t  pH 6 .8 .  

They concluded t h a t  p r e c i p i t a t i o n  of 

d i s s o l v e d  s i l i c a  by aluminum hydroxide 

proceeds  by a d s o r p t i o n .  

Magnesium ox ide  w a s  a l s o  found t o  be 

e f f e c t i v e  i n  t h e  r e d u c t i o n  of d i s s o l v e d  

s i l i c a  c o n c e n t r a t i o n s  (Betz  e t  a l .  1940b). 

A 100% r e d u c t i o n  i n  d i s s o l v e d  s i l i c a  
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( a )  Colloidal silica ( S i 0 2  45 rng/l, 

A I  1 mg/l) 

(b) Molecularly dispersed silica 
( S i 0 2  35 mg/l ) 

F i g .  10.  Co-p rec ip i t a t ion  of s i l i c a  and aluminum (from Okamoto e t  a l . ,  1957) .  

c o n t e n t  ( i n i t i a l  c o n c e n t r a t i o n  21.3 pprn) 

w a s  ach ieved  a t  95°C and pH 1 0 . 1  i n  1 5  min 

by c o - p r e c i p i t a t i o n  w i t h  300 mg magnesium 

ox ide  (added t o  a 3 - l i t e r  s o l u t i o n  as a 

s l u r r y ) .  

from s o l u t i o n  w a s  thought  t o  be by adsorp-  

t i o n .  Magnesium ca rbona te ,  i n  s l u r r y  form,  

w a s  s l i g h t l y  less e f f e c t i v e  i n  t h e  removal 

of d i s s o l v e d  s i l i c a  from s o l u t i o n .  An 

i n i t i a l  s i l i c a  c o n c e n t r a t i o n  of 21.0 ppm 

w a s  reduced 86% i n  1 5  min w i t h  900 mg MgC03 

added t o  3 l i t e r s  of s o l u t i o n  (pH > 9 ) .  

It has  a l s o  been demonstrated t h a t  bo th  

anhydrous magnesium s u l p h a t e  and f e r r i c  

s u l f a t e  are capab le  of p r e c i p i t a t i n g  

d i s s o l v e d  s i l i c a  (Behrman and Gus tafson ,  

1940) .  

The mechanism of s i l i c a  removal 

Rates of po lymer i za t ion  (and 

d i s s o l u t i o n )  i n c r e a s e  w i t h  i n c r e a s i n g  

tempera ture  (Krauskopf, 1956; K i t a h a r a ,  

1960b; F o u r n i e r ,  1970) .  While s e v e r a l  

months might  be r equ i r ed  t o  r e a c h  e q u i l i -  

brium s o l u b i l i t i e s  a t  low t empera tu res ,  

w i th  r e s p e c t  t o  e i t h e r  q u a r t z  o r  amorphous 

s i l i c a  (see F ig .  5), a t  e l e v a t e d  tempera- 

t u r e s  s a t u r a t e d  s o l u t i o n s  can  be ob ta ined  

i n  4 h r  t o  4 days  (Hitchen,  1935; 

Kennedy, 1950; Morey e t  a l .  1962; Fourn ier  

and Rowe, 1962) .  

Goto (1956) g i v e s  t h e  fo l lowing  

e q u a t i o n  f o r  t h e  ra te  of po lymer i za t ion  

of d i s s o l v e d  s i l i ca  : 

- - -  d c  - k (C - Ce)n , d t  

where : 

C = c o n c e n t r a t i o n  of  monomeric s i l i c a ,  

C = e q u i l i b r i u m  c o n c e n t r a t i o n  of e 
monomeric s i l i c a  a t  a p a r t i c u l a r  

tempera ture ,  

k = ra te  c o n s t a n t ,  

n = o r d e r  of r e a c t i o n .  

K i t aha ra  (1960b) r e p o r t e d  t h a t  n=2 i n  

a c i d i c  s o l u t i o n s  and n=3 i n  a l k a l i n e  

s o l u t i o n s .  H i s  p l o t s  of monomeric s i l i c a  

c o n c e n t r a t i o n  and - log k as f u n c t i o n s  of 

t i m e  and l / t e m p e r a t u r e ,  r e s p e c t i v e l y ,  

i n d i c a t e d  t h a t  po lymer i za t ion  ra tes  
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i n c r e a s e  w i t h  i n c r e a s i n g  t empera tu res  

(F igs .  11 and 1 2 ) .  

Summary 

The impor t an t  c o n c l u s i o n s  t o  be drawn 

from t h i s  r ev iew of t h e  aqueous chemis t ry  

of s i l i c a  a r e :  

1. The pr imary  aqueous s i l i c a  s p e c i e s  

i n  s a t u r a t e d  s o l u t i o n s  of pH less 

t h a n  8 . 5  t o  9 i s  t h e  monomer, 

H4Si0 4 '  
2 .  Amorphous s i l i ca  c o n t r o l s  t h e  s o l u b i l -  

i t y  of o r t h o s i l i c i c  a c i d  (H S i 0 4 ) .  

3 .  The ra te  of po lymer i za t ion  of s i l i c a  

i s  pH-dependent. Po lymer i za t ion  

rates are h i g h e s t  a t  pH 7 . 5 ,  b u t  are  

lower i n  a c i d i c  o r  more a l k a l i n e  

s o l u t i o n s .  Minimum rates  of  polymer- 

i z a t i o n  occur  a t  pH v a l u e s  of 1 t o  3. 

For example, amorphous s i l i c a  does  

n o t  p r e c i p i t a t e  from s o l u t i o n s  of  sea 

water ( t empera tu re  = 22 t o  27°C; 

pH = 4.9)  w i t h  i n i t i a l  deg ree  of 

s u p e r s a t u r a t i o n ,  w i t h  r e s p e c t  t o  

amorphous s i l i c a ,  of abou t  150%. 

4 

7 

pH = 6.0 
b g 100 
a, 
V 
S 
0 0  

60 120 180 240 300 
Time - rnin 

F ig .  11. Temperature dependence of r a t e  
of po lymer i za t ion  of s i l i c i c  
a c i d  (from K i t a h a r a ,  1960b).  

Below 100°C, t h e  po lymer i za t ion  rate 

has  been shown t o  be a c c e l e r a t e d  by 

N a C l  f o r  s o l u t i o n s  w i t h  pH > 7.  I n  

a c i d  s o l u t i o n s ,  e l e c t r o l y t e s  do  n o t  

i n f l u e n c e  po lymer i za t ion  rates.  

4 .  The po lymer i za t ion  ra te  of a super -  

s a t u r a t e d  s i l i c a  s o l u t i o n  i n c r e a s e s  

w i t h  i n c r e a s i n g  t empera tu re .  

5. Disso lved  s i l i ca  can  be  e f f e c t i v e l y  

removed from s o l u t i o n  by co- 

p r e c i p i t a t i o n  w i t h  MgO MgC03, Fe-, 

A l - ,  Mg-, and Mn-hydroxides, and by 

magnesium and f e r r i c  s u l p h a t e s .  

C o l l o i d a l  s i l i c a  can  be  coagu la t ed  by 

e l e c t r o l y t e s  of sea water, and 

e s s e n t i a l l y  q u a n t i t a t i v e l y  p r e c i p i t a t e d  

by aluminum and hydrous f e r r i c  o x i d e .  

The r a t e  of p o l y m e r i z a t i o n  of super -  

s a t u r a t e d  s o l u t i o n s  and p r e c i p i t a t i o n  

of c o l l o i d a l  s i l i c a  i s  a c c e l e r a t e d  

by t h e  p re sence  of s o l i d s .  

2'  

6. S u p e r s a t u r a t e d  s o l u t i o n s  (pH < - 7 ) ,  

when cooled  by passage  through a 

s tee l  condenser  t u b e ,  show no tendency 

t o  p r e c i p i t a t e  amorphous s i l i ca .  

3.0 3.2 3.4 3.6 3. a 
I/T x lo3 

F i g .  1 2 .  V a r i a t i o n  of p o l y m e r i z a t i o n  ra te  
c o n s t a n t  k w i t h  t empera tu re  
(from K i t a h a r a ,  1960b) .  
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Mechanisms Controlling Precipitation of Amorphous Silica From 
Salton Sea Geothermal Field Brines 

Source of S i l i c a  i n  SSGF Br ines  

The sediment  f i l l  of  t h e  S a l t o n  

Trough c o n s i s t s  p r i m a r i l y  of s i l ts ,  f i n e -  

g ra ined  sands ,  and muds d e p o s i t e d  as  p a r t  

of t h e  Colorado River  d e l t a  (Muff ler  and 

White, 1969) .  Q u a r t z  i s  undoubtedly a 

major  c o n s t i t u e n t  of t h e s e  sed iments .  

Helgeson (1968) i n d i c a t e d  t h a t  t h e  h i g h e s t  

t empera tu res  i n  t h e  SSGF were measured i n  

t h e  Elmore No. 1 w e l l  (Q 360°C). I f  i t  i s  

assumed t h a t  t h e  b r i n e s  a r e  i n  e q u i l i b r i u m  

w i t h  q u a r t z ,  F ig .  1 i n d i c a t e s  t h a t  t h e  

d i s s o l v e d  s i l i ca  c o n t e n t  of t h e  b r i n e  

should b e  about  500 ppm. White (1968) 

r e p o r t e d  400 ppm s i l i c a  f o r  Imper i a l  

I r r i g a t i o n  Dis t r ic t  ( I ID) No. 1 and No. 2 

w e l l s  ( co r rec t ed  f o r  steam l o s s ) .  The 

agreement between e m p i r i c a l  and observed 

s i l i c a  c o n c e n t r a t i o n s  i s  reasonab ly  good, 

and s u g g e s t s ,  t h e r e f o r e ,  t h a t  d i s s o l u t i o n  

of q u a r t z  i s  t h e  pr imary c o n t r o l  on t h e  

s i l i c a  c o n t e n t  of t h e  b r i n e s .  

P r e c i p i t a t i o n  of Amorphous S i l i c a  From 

SSGF Br ines  

With t h e  rev iew of  t h e  aqueous 

chemis t ry  of s i l i ca  completed,  i t  w i l l  now 

be of i n t e r e s t  t o  ana lyze  t h e  e f f e c t s ,  

r e l a t i v e  t o  t h e  p r e c i p i t a t i o n  of amorphous 

s i l i ca ,  of expanding t h e  b r i n e  from 300°C 

(assumed r e s e r v o i r  tempera ture)  t o  50°C 

( t o t a l  f low t u r b i n e  exhaus t  t empera tu re ) .  

For t h e  purposes  of t h i s  d i s c u s s i o n ,  i t  

w i l l  be assumed t h a t  t h e  "br ine"  i s  water 

(pH 4 .5  o r  l e s s )  s a t u r a t e d  w i t h  r e s p e c t  

t o  q u a r t z  a t  300°C (Q 630 ppm H S i04 ) .  4 

According t o  Aus t in  e t  a l .  (1973) ,  t h e  

steam q u a l i t y  of a t y p i c a l  t o t a l  f l o w  

system o p e r a t i n g  on b r i n e  from a 300°C 

r e s e r v o i r  i s  abou t  37% a t  t h e  exhaus t .  

This  q u a l i t y  cor responds  t o  an  e f f e c t i v e  

s i l i c a  c o n c e n t r a t i o n  of 1000 ppm i n  t h e  

b r i n e  a t  300°C. S ince  t h e  pr imary aqueous 

s i l i c a  s p e c i e s  i n  a c i d i c  waters i s  t h e  

monomer, H4Si04, and s i n c e  amorphous 

s i l i c a  c o n t r o l s  t h e  s o l u b i l i t y  of  d i s s o l v e d  

s i l i c a ,  no p r e c i p i t a t i o n  should occur  

u n t i l  t h e  b r i n e  tempera ture  f a l l s  t o  about  

230°C (see F ig .  1). A t  50°C, t h e  deg ree  

of s u p e r s a t u r a t i o n  of t h e  b r i n e ,  w i t h  

r e s p e c t  t o  amorphous s i l i c a  i s  about  400%. 

However, so long  as t h e  pH does  n o t  r ise  

above 4 .5  t h e  ra te  of po lymer i za t ion  of 

monomeric s i l i c a  w i l l  be  low, and immediate 

p r e c i p i t a t i o n  of  s i l i c a  should n o t  occur .  

I t  i s  concluded,  t h e r e f o r e ,  t h a t  

s imple  s i l i c a  s o l u b i l i t y  e q u i l i b r i u m  

r e l a t i o n s h i p s  cannot  account  f o r  t h e  p r e c i -  

p i t a t i o n  of amorphous s i l i c a  from SSGF 

b r i n e s .  

Scale Formation 

No s t u d i e s  a r e  a v a i l a b l e  i n  t h e  

l i t e r a t u r e  t h a t  d e s c r i b e  t h e  format ion  of 

SSGF o p a l i n e - s u l f i d e  scale as  a f u n c t i o n  

of d e c r e a s i n g  tempera ture  and p r e s s u r e .  

However, i t  h a s  been e s t a b l i s h e d ,  from 

o b s e r v a t i o n  of scale morphology and com- 

p o s i t i o n ,  t h a t  s u l f i d e s  p r e c i p i t a t e  b e f o r e  

amorphous s i l i c a  (Skinner  e t  a l .  1967; 

Aus t in ,  1975) .  Arborescent  growths of  

s u l f i d e s ,  curved inward i n  t h e  d i r e c t i o n  
,n 
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from which t h e  f l u i d  f lowed,  have been 

d e s c r i b e d  by bo th  Skinner  e t  a l .  ( 1 9 6 7 )  

and Aus t in  ( 1 9 7 5 ) .  The u n a l t e r e d  c o n d i t i o n  

of d i s p e r s e d  s u l f i d e  phases  i s  evidence  

f o r  t h e  subsequent  growth of  p r o t e c t i v e  

l a y e r s  of s i l i c a  i n  i n t e r s t i c i a l  spaces .  

The amorphous s i l i c a  has  a l s o  been shown, 

on t h e  b a s i s  of i t s  h igh  index of r e f r a c -  

t i o n ,  t o  c o n t a i n  up t o  5.4  w t %  i r o n ,  and 

6 . 0  w t %  s u l f u r  (Skinner  e t  a l .  1 9 6 7 ) .  

Authigenic  c r y s t a l l i n e  s i l i c a t e  phases  

have n o t  been r e p o r t e d  i n  SSGF s c a l e .  

I t  i s  impor t an t  t o  i d e n t i f y  those  

e lements  t h a t  are s e l e c t i v e l y  f r a c t i o n a t e d  

i n t o  p r e c i p i t a t e d  phases .  P a r t i t i o n  

c o e f f i c i e n t s  can be de f ined  f o r  t h i s  

purpose  as the  r a t i o  of t h e  c o n c e n t r a t i o n  

of an  element  i n  the  b r i n e  t o  i t s  concen- 

t r a t i o n  i n  p r e c i p i t a t e s  formed from t h e  

b r i n e .  Computed p a r t i t i o n  c o e f f i c i e n t s  

f o r  p r e c i p i t a t e s  formed from S i n c l a i r  

No. 4 ,  and a Magma Power w e l l  b r i n e  are 

g iven  i n  Table  3 .  Chemical a n a l y s e s  f o r  

b r i n e  from IID No. 1 and I I D  No. 2 w e l l s  

were used t o  compute an average  b r i n e  

composi t ion .  

Although t h e  a b s o l u t e  v a l u e s  of  t h e s e  

p a r t i t i o n  c o e f f i c i e n t s  are meaningless ,  

t h e i r  r e l a t i v e  magnitudes c l e a r l y  i n d i c a t e  

whether a n  element  f r a c t i o n a t e s  i n t o  t h e  

s o l i d  phase.  For example, scale h a s  been 

r epor t ed  w i t h  aluminum and magnesium 

c o n c e n t r a t i o n s  up t o  30,000 and 5000 ppm, 

r e s p e c t i v e l y ,  a l though  t h e i r  average  

c o n c e n t r a t i o n s  i n  b r i n e  are low (Skinner  

-- e t  a l .  1 9 6 7 ;  L i m  and Peck, 1 9 7 4 ;  Lim e t  a l .  

1 9 7 4 ) .  A s  a consequence,  t h e i r  p a r t i t i o n  

c o e f f i c i e n t s  are  less than  1 .0 .  

Table  3 .  P a r t i t i o n  c o e f f i c i e n t s  f o r  

e lements  i n  SSGF b r i n e .  

Average Br ine  Br ine  
a C 

Element b r i n e  P r e c i p i t a t e b  P r e c i p i t a t e  

Na 51,700 5.17 10 .34  
K 1 7 , 0 0 0  3.40 _ _ _  
Ca 28,400 2.84 5 .68  

Ba 242.5 1 . 2 1  1 . 2 1  

Mg 32 0.11 0.06 

Mn 1385 0.35 0 .69  

A 1  4.2 0.00014 0.0021 

Fe 2145 0.022 0 .054  

cu 5 . 5  0.00011 0.014 

Zn 520 0 1.73  0.17 

Pb 9 1  0.018 0 .0005 

Ag 1 . 4  0.00007 0.00004 

a Average computed from b r i n e  a n a l y s e s  f o r  
I I D  No. 1 and I I D  No. 2 w e l l s  (White, 
1 9 6 8 ) .  

bChemical a n a l y s e s  f o r  p r e c i p i t a t e s  are 
from L i m  e t  a l .  ( 1 9 7 4 ) .  

s a g m a  power w e l l  p r e c i p i t a t e .  

S i l i c a  P r e c i p i t a t i o n  Mechanisms 

A s imple  model i s  proposed t o  account  

f o r  t h e  p r e c i p i t a t i o n  of amorphous s i l i ca  

from SSGF b r i n e s .  Because of t h e  l a c k  of 

i n fo rma t ion  b e a r i n g  on t h e  k i n e t i c s  of 

s c a l e  fo rma t ion ,  t h e  model should be  

viewed a s  a working hypo thes i s .  A s  more 

d a t a  become a v a i l a b l e  necessa ry  r e f inemen t s  

can  be  made. The u l t i m a t e  g o a l  w i l l  be t o  

ach ieve  a b a s i c  unde r s t and ing  of  p r e c i p i -  

t a t i o n  mechanisms, a t  which t i m e  i t  may 

be p o s s i b l e  t o  d e v i s e  methods f o r  minimiz- 

i n g  o r  p reven t ing  t h e  problem. 
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A s  b r i n e  i s  expanded t o  t h e  s u r f a c e  

from a geothermal  r e s e r v o i r ,  i t  c o o l s  

a d i a b a t i c a l l y .  A s  p r e s s u r e  d e c l i n e s ,  

d i s s o l v e d  gases  and steam are evolved ,  and 

t h e  r e s i d u a l  b r i n e  s a l i n i t y  i n c r e a s e s .  

The p r i n c i p a l  r e s u l t  of t h e  e v o l u t i o n  of 

COZY t h e  most abundant  noncondensible  gas  

i n  SSGF b r i n e ,  and H S i s  a n  i n c r e a s e  i n  2 
b r i n e  pH. A s  a consequence,  s u l f i d e s  (and 

probably hydroxides  of m u l t i v a l e n t  ele- 

ments, such as i r o n ,  aluminum, z i n c ,  l e a d ,  

p o s s i b l y  rare e a r t h s ,  e tc . )  beg in  p r e c i p i -  

t a t i n g .  A s u i t e  of d i s p e r s e d  f ine -g ra ined  

s u l f i d e s  (and hydroxides)  induces  t h e  

p r e c i p i t a t i o n  of d i s s o l v e d  s i l i c a  e i t h e r  

by s e r v i n g  as n u c l e a t i o n ' c e n t e r s  o r  by 

a d s o r p t i o n  mechanisms. 

The p resence  of N a C l  promotes t h e  

po lymer i za t ion  of monomeric s i l i c a  i n  

b a s i c  s o l u t i o n s .  Simultaneous i n c r e a s e  i n  

pH and d e c r e a s e  i n  t empera tu re ,  coupled 

w i t h  h i g h  c o n c e n t r a t i o n s  o f  N a C 1 ,  KC1 ,  and 

C a C 1 2 ,  p robably  induce  po lymer i za t ion  of 

s i l i c a  i n  SSGF b r i n e s  when b r i n e  pH v a l u e s  

exceed 4 . 5 .  

L i m  (1974) ob ta ined  expe r imen ta l  

ev idence  t h a t  s u p p o r t s  t h e  hypo thes i s  t h a t  

s u l f i d e s  and hydroxides  c o - p r e c i p i t a t e  

d i s s o l v e d  s i l i c a  from SSGF b r i n e s .  A 

mix tu re  of b l ack  and clear g e l a t i n o u s  pre-  

c i p i t a t e s  formed w i t h i n  15 min a f t e r  a 

quenched S i n c l a i r  No. 4 b r i n e  sample 

( tempera ture  2 4 O C )  w a s  opened and p laced  

under  a n i t r o g e n  o v e r p r e s s u r e  t o  avoid  

a tmospher ic  contaminat ion .  The pH of t h e  

b r i n e  s o l u t i o n  inc reased  from 4 . 5  t o  6.7 

over  a p e r i o d  of  s e v e r a l  hours .  

The p r e c i p i t a t e d  phases  were n o t  

i d e n t i f i e d ,  b u t  on t h e  b a s i s  of h i s  

chemical  a n a l y s e s  i t  i s  p robab le  t h a t  t h e  

b l a c k  phase w a s  a s u l f i d e ,  and t h e  c l e a r  

g e l a t i n o u s  material w a s  amorphous s i l i c a .  

The s low r ise  i n  pH of t h e  s o l u t i o n  can  

be a t t r i b u t e d  t o  t h e  e v o l u t i o n  of CO and 

H S a f t e r  t h e  sample b o t t l e  w a s  opened. 

The c r i t i c a l  o b s e r v a t i o n  i s  t h a t  s i l i c a  

d id  n o t  p r e c i p i t a t e  from t h e  b r i n e ,  which 

w a s  s u p e r s a t u r a t e d  w i t h  r e s p e c t  t o  amorphous 

s i l i c a ,  u n t i l  fo rma t ion  of t h e  b l ack  p r e c i -  

p i t a t e  and pH i n c r e a s e .  

2 

2 

Subsequent ly ,  L im exposed t h e  f i l t e r e d  

Fe (OH)3 r e s i d u a l  b r i n e  t o  t h e  atmosphere.  

c o - p r e c i p i t a t e d  a d d i t i o n a l  s i l i c a .  The 

f i n a l  s i l i c a  c o n t e n t  of t h e  remaining 

b r i n e  w a s  o n l y  34 ppm, a c o n c e n t r a t i o n  

w e l l  below t h e  s o l u b i l i t y  of amorphous 

s i l i c a  a t  room tempera ture  ($ 100 ppm). 

Summary and Conclus ions  

The p r e c i p i t a t i o n  of amorphous s i l i c a  

from SSGF b r i n e s  cannot  be  exp la ined  i n  

terms of s imple  s o l u b i l i t y  e q u i l i b r i u m  

r e l a t i o n s h i p s .  S i l i c a  p r e c i p i t a t i o n  i s  

promoted by s e v e r a l  independent  mechanisms. 

Release of p r e s s u r e  and e v o l u t f o n  of CO 

and H S r e s u l t  i n  an  i n c r e a s e  i n  r e s i d u a l  

b r i n e  pH from a nominal v a l u e  of between 

4 and 4 .5  t o  5 or  h i g h e r .  A s  a consequence,  

d i s s o l v e d  s i l i c a  polymer izes  more r a p i d l y  

and i s  c o - p r e c i p i t a t e d  by s u l f i d e s  and 

hydroxides .  A t  h i g h e r  pH v a l u e s  (2  5 )  

sodium-, calcium-,  and potass ium c h l o r i d e s  

promote t h e  po lymer i za t ion  of monomeric 

s i l i ca .  Any c o l l o i d a l  s i l i c a  t h a t  appea r s  

i n  s o l u t i o n  i s  e i t h e r  coagula ted  by e l e c t r o -  

l y t e s  o r  p r e c i p i t a t e d  by s o l i d  phases  in-  

c l u d i n g  p a r t i c u l a t e s  d e r i v e d  from t h e  pro- 

producing f ormat i on .  

2 

2 

The u t i l i z a t i o n  of SSGF b r i n e s  by a 

t o t a l  f low o r  o t h e r  energy-conversion 

system w i l l  n e c e s s i t a t e  minimizing o r  

p reven t ing  p r e c i p i t a t i o n  of s o l i d  phases  
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and subsequent  s c a l e  format ion .  S ince  

s u p e r s a t u r a t e d  s i l i ca  s o l u t i o n s  polymerize 

more r a p i d l y  a t  h i g h e r  t empera tu res  and 

pH (2 5 ) ,  i t  i s  concluded t h a t  i t  may be 

p o s s i b l e  t o  r e t a r d ,  i f  no t  p r e v e n t ,  

p r e c i p i t a t i o n  by c o n t r o l l i n g  b r i n e  pH and 

e x p e d i t i n g  i t s  f low from t h e  wel lhead 

through t h e  power p l a n t  equipment. Acidi-  

f i c a t i o n  may a l s o  p reven t  i n i t i a l  s u l f i d e  

and hydroxide p r e c i p i t a t i o n .  

The e f f e c t i v e n e s s  of a c i d i f i c a t i o n ,  

as  a means of s t a b i l i z i n g  s u p e r s a t u r a t e d  

s i l i c a  s o l u t i o n s ,  h a s  been demonstrated 

f o r  Cer ro  P r i e t o  geothermal  b r i n e s .  Af t e r  

steam s e p a r a t i o n ,  r e s i d u a l  b r i n e  c o n t a i n s  

over  1000 ppm s i l i c a ,  which can  be k e p t  

i n  s o l u t i o n  f o r  up t o  one month by main- 

t a i n i n g  t h e  pH between 0 and 1 w i t h  n i t r i c  

a c i d  (Reed, pg. 35, 1 9 7 4 ) !  The v i a b i l i t y  

of any proposed a d d i t i v e  f o r  b r i n e  modif i -  

c a t i o n  i s  u l t i m a t e l y  dependent  upon i t s  

c o s t .  I f  an  ave rage  f low ra te  of 500 l b  

b r i n e l s e c  i s  assumed ( t h e  f low from f o u r  

w e l l s  r e q u i r e d  t o  produce 44 MW of 

e l e c t r i c i t y  - A u s t i n  e t  a l .  1 9 7 3 ) ,  2 . 1  

t o n s  p e r  day of concen t r a t ed  hydroch lo r i c  

a c i d  w i l l  be  r e q u i r e d  t o  ma in ta in  t h e  

pH of  SSGF b r i n e  a t  a v a l u e  of 3 .  Assuming 

t h e  a v a i l a b i l i t y  of  commercial g rade  hydro- 

c h l o r i c  a c i d  ( 3 1 %  by weight )  a t  $50 t o  

$60 pe r  t o n ,  t h e  maximum c o s t  pe r  day i s  

$126 o r  0.12 mil ls /kW h r .  The c o s t  of an  

hydroch lo r i c  a c i d  a d d i t i v e  i s ,  t h e r e f o r e ,  

accep tab le .  

D i r e c t  r e i n j e c t i o n  of s p e n t  b r i n e  

i s  no t  a d v i s a b l e  i f  p r e c i p i t a t i o n  cannot  

be prevented .  Even i f  t h e  b r i n e  w e r e  

r ehea ted  t o  ambient r e s e r v o i r  t empera tu res  

i n s t a n t a n e o u s l y ,  t h e  t i m e  r e q u i r e d  f o r  

d i s s o l u t i o n  of p r e c i p i t a t e s  may b e  

r e l a t i v e l y  long .  For example, s e v e r a l  ' 

hours  are  r e q u i r e d  t o  produce s a t u r a t e d  

s i l i ca  s o l u t i o n s  by d i s s o l u t i o n  of amor- 

phous s i l i c a  i n  high-temperature  bombs. 

I f  t h e  ave rage  r a d i i  of p r e c i p i t a t e s  

exceeds  po re  space  r a d i i ,  fo rma t ion  seal- 

i n g  w i l l  be i n e v i t a b l e .  A p r a c t i c a l  

r e i n j e c t i o n  system might i nvo lve  t h e  u s e  

of temporary ho ld ing  ponds. Exposure of 

b r i n e  t o  a tmospher ic  oxygen will r e s u l t  i n  

p r e c i p i t a t i o n  of hydroxides ,  ox ides ,  and 

s i l i ca .  S ince  t h e s e  p r e c i p i t a t e s  may a l s o  

be  en r i ched  i n  i r o n ,  copper ,  s i l v e r ,  e tc . ,  

t h i s  t ype  of system h a s  t h e  p o t e n t i a l  f o r  

i n t e g r a t i o n  i n t o  a mine ra l  r ecove ry  

o p e r a t i o n .  On t h e  o ther  hand, i f  a c i d i f i -  

c a t i o n  comple te ly  p r e v e n t s  p r e c i p i t a t i o n ,  

d i r e c t  r e i n j e c t i o n  of r e s i d u a l  b r i n e  may 

be f e a s i b l e .  
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